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Based on the text:

Practical formal
software engineering,
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Cambridge University Press. [2009]
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This course describes
a generic method for
software engineering

and illustrate its use
through detailed examples.
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This course is about
the mind of the engineer,

not about the computer.
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The course is in three main parts.

1. Fundamentals:
generic reasoning with software.

2. Languages:
form and meaning of software.

3. Practice:
practical software examples.
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Lecture 1
Roman Arithmetic

Arithmetic is not obvious,
it took thousands of years
to develop.

From Chapter 1: arithmetic.
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It is hard to look at text
without reading.

It is hard to look at numerals
without seeing numbers.

But, to learn more,
we must do exactly that.
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We say there are 2 goats in a field.

We believe that with another 2,
there would be 4 goats in the field.

But, this is physics,

it might not be true.
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Let I mean one thing.

Let II mean two things.

Let III mean three things.

Let IIII mean four things.
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Let IIIII mean five things.

Abbreviate IIIII as V.

So, VV means ten things.

And, VVII means 12 things.
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Order does not matter

IV is the same as VI

VIIVVI = VVIIIV = IIIVVV

IVVIVI = sort(IVVIVI) = VVVIII
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Warning:

Some of you heard IV = 4.
As on clocks.
Romans did not use this much.
And neither will we.

IV = VI = 6
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Two Hindu numerals
with the same meaning
look exactly the same.

Test for equality
by checking the form is the same.
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Two different Roman numerals
might have the same meaning.

Sometimes sorting will show this.

sort(VIIVVI) = VVVIII
sort(VVIIIV) = VVVIII
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Permuting the symbols

does not change the meaning.

IIIVIIVVII = VVVIIIIIII
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Changing IIIII into V

does not change the meaning.

VVVIIIIIII = VVVVII
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To normalise a Roman numeral,

sort and abbreviate until

no more changes occur.

The result is the

unique minimal numeral

for the given number.
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In the Roman system

normalise first,

then

check equality of normal forms

character by character.
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Most software data types

are like the Roman system

not the the Hindu system

in their algorithms.

Equality must be defined.
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Let+mean to combine collections.

III + II = IIIII = V,

Addition algorithm is catentation.

IIIVII + VVII = IIIVIIVVII
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Changing VV into X

does not change the meaning.

VVVVII = XXII



Bruce Mills Practical Formal Software Engineering (slide 17 of Roman Arithmetic)

Abbreviate XXXXX as L

Abbreviate LL as C

Abbreviate CCCCC as D

Abbreviate DD as M
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Even though we are not sure

what XVXXLCII is
or XXLLVV is
in Hindu numerals,

we can compute the sum.
using pure Roman numerals.
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XVXXLCII + XXLLVV
catenation
= XVXXLCIIXXLLVV
sorting
= C LLL XXXXX VVV II
abreviation
= C CL L XV II
abbreviation
= CCC X V II
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Multiplication by distribution.
VI * VII = (V+I)*(V+I+I)
And remembering special cases

* I V X
I I V X
V V XXV L
X X L C

Just like the Hindu system.
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VI * VII =
VI * (V+I+I) =
V*V + V*I + V*I +
I*V + I*I + I*I =
XXV + V + V + V + I + I =
XXVVVVII =
XXXXII
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Algorithms for manipulation of
the symbols allow an abstract
analogy between the behaviour of
the symbols on the page, and the
physical goats in the field.
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Lecture 2
Tally arithmetic

The decimal system is not the only
or the obvious choice
of arithmetic.

From Chapter 1: arithmetic.
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The tally system uses dashes.

II I
I
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Using base-5,

the right-most column means 1,

and each other means 5 times

the one on its right.
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Addition:

IIII I
+

II II
=

IIII I
II II

=
I III
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Do not keep track of ‘place value’
just recall the rule ...

IIIII
=

I

Regardless of where this occurs,
or in which direction it is used.
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Shift left means IIIII becomes I.

Shift right means I becomes IIIII.

Do not give meaning to this.
It is the mechanism of these tables.
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Distinct tally forms
can have the same meaning.

Normalisation:
shift to the left when possible.

Check equality
by comparing normal forms.
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Abbreviate:
I by 1, II by 2, III by 3, IIII by 4.

If a column has nothing in it,
use 0 to emphasise this.

Call 0, 1, 2, 3, 4,
the base-5 digits.
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It is acceptable
to have multiple digits in a col-
umn.

1 2 4
+

4 3 0
=

4 3 0
1 2 4
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Normalise from right to left.
Put shifted digits in the top row.

4 3 0
1 2 4

=

0

4 3 4
1 2

=

1 0

4 0 4
1

=

1 1 0

1 0 4 =

1 1 0

1 1 0 4
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The regular tableaux,
without rubbing out:

1 1 0 0 auxiliary

0 4 3 0 summand

0 1 2 4 summand

1 1 0 4 result

New digits in blue.
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Subtraction:

Fill a blank addition tableaux
with one summand and the result.

Work out what
the other summand has to be.
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In multiplying,
the column a dash is in
is important.
The dashes multiply,
and the columns add.
The grid system helps
to keep track of this.
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The grid system for multiplica-
tion.

1 3 2

3

1

2

0 3 2

1

2+5

1+5+5

3 4 1
0 1 1

1 3 2
0 0 0

2 1 4
0 1 0

0 3 2 1 2 1
5 5
5

213 * 132 = 0 ; 3 ; 2 ; 1 5 5 ; 2 5 ; 1
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Normalisation:
0 0 2 1 0 0
0 3 2 1 2 1
0 0 0 5 5 0
0 0 0 5 0 0
0 3 4 2 2 1
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For arithmetic
there is the formal system
of manipulation of symbols,
and the meaning of these symbols.
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A system is formal
if the manipulations
can be completed
without reference to
any meaning for the symbols.
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A formal system is
a game with symbols,
like chess, or Rubick’s-cube.

It does not have to have meaning.

But, it may have applications.
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Lecture 3
Natural Logic.

Logic is the empirical study
of correct argument, as such,
it is always hypothetical.

From Chapter 2, logic.
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It is hard to look at text
without reading.

It is hard to look at argument
without seeing meaning.

But, to learn more,
we must do exactly that.
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Logic is not blinkered thinking.

This is from a horror movie:

There must be a logical
explanation.

There is; this house is haunted.
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When it appears that you have killed
the monster, never check to see if it is
really dead.

From the guide to
how to survive a horror movie.
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Logic is the process.
Statement is the raw material.

‘Statement’ cannot be defined
unambiguously.

But, very good clues can be given.
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Examples of statements:

The cat sat on the mat.
This frog is green.
I like green eggs and Ham.
1435 × 1903249 = 6
The moon is made of green cheese.
‘What’ is your name.
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This is also a statement:



Bruce Mills Practical Formal Software Engineering (slide 8 of Natural Logic)

Examples of not statements:

Where is the cat?
Go to your room!
What is your name?
Tra la la.
12391456
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Our observations
are not pure.

What we expect
strongly affects
what we observe.
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Our state of mind
is a set of statements.

Australia is a country.
A kilometre is 1000 metres.
She is pretty.
I need to go to the toilet.
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Argument
changes our state of mind
by addition or removal
of statements.

Our state of mind can also include
questions and commands.
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All cats are fish and
all fish are mammals,

becomes

All cats are fish and
all fish are mammals and
all cats are mammals.
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Classical logic adds only
So, abbreviate,
write only additions:

All cats are fish and
all fish are mammals,
therefore
all cats are mammals.
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Argument does not only add,
it often removes elements.

We change our minds when
we are convinced we are wrong.

Classical logic does not
cover this case.
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To classical logic our mind
is often contradictory.
So too is software.
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When we find a contradiction,
we might attempt to remove it.

But, often
by meta-logical rules:

rules that avoid
certain lines of thought.
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Logic develops rules of reasoning
with the intention that ...

If the premises are all true,
then the conclusions will be also.

If any conclusion is false,
then some premise will be also.
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If the premises are false,

then the conclusion might be false,

but it could equally be true.
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Everyone gives a variant
meaning to their words

If an argument depends
on the exact meaning,
then proof is personal, subjective.
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Logic looks for
objective argument.

Argument that can be examined
and accepted by others.
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Paradoxically,
it must not depend
on the meaning of the terms.
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Classical logic research
found arguments
whose syntax was the same,
even when the semantics was not.
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All cats are mammals and
all mammals are hairy,
therefore all cats are hairy.

All men are tall,
all tall people are strong,
therefore all men are strong.
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The pattern is

All X are Y and all Y are Z,
so all X are Z.
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Not always direct replacement,
some allowance must be made
for the rules of English grammar.
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The truth does not depend
on the details of the meaning
of the inserted words.

If nothing else, this abbreviates
multiple arguments
in a single form.
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Logic is like a puzzle:

I have some statements. If I have
a statement of this form, and a re-
lated statement of this other form,
then I may add a statement of yet
another form.
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Logic is like a puzzle:

A typical goal is that I must find a
way to generate a statement with
predefined properties.
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Premise pattern :

{All X are Y, All Y are Z}

Conclusion pattern :

{All X are Z}
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All our precise reasoning
is permutation and substitution.

Permutations and substitutions
are recorded as
pattern matching operations.
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I match

All cats are wet to All Xs are Y,

by noting that X=cat and Y=wet.
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Allowance must be made for
English grammar.

All cats are wet, but
all fish (no ‘s’) are wet
Computer languages could be
built this way,
but we choose not to.
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Lecture 4
Logical Terms

Logic is a game we play with symbols,
in practice this always comes down
to terms.

From Chapter 2: Logic
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Simple sentences in English are
predicate and subject.
The cat is wet:
“The cat” is the subject, and
“is wet” is the predicate.
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The cat is wet
can be rewritten as ...
IsWet(TheCat)

wet(cat)

w(c)
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The software engineer can accept
the conventional and transitory
nature of language.
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Define and redefine words
to suit the situation.

Words are tools.

They should not control us,
we should control them.
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Pure string replacement.

replace ]i with i]

replace 0i with 1

replace 1i with i0

replace [i with [1



Bruce Mills Practical Formal Software Engineering (slide 7 of Logical Terms)

Increment binary numbers

[1011]i -> [1011i] ->

[101i0] -> [10i00] -> [1100]

[111]i -> [111i] ->

[11i0] -> [1i00] ->

[i000] -> [1000]



Bruce Mills Practical Formal Software Engineering (slide 8 of Logical Terms)

Wildcards improve the power.
add(X0,Y0,0) -> add(X,Y,0)0
add(X0,Y0,1) -> add(X,Y,0)1
add(X0,Y1,0) -> add(X,Y,0)1
add(X0,Y1,1) -> add(X,Y,1)0
add(X1,Y0,0) -> add(X,Y,0)1
add(X1,Y0,1) -> add(X,Y,1)0
add(X1,Y1,0) -> add(X,Y,1)0
add(X1,Y1,1) -> add(X,Y,1)1
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This is pure string replacement,
the brackets are not special,
but there is a problem.

the wild card might match across
parts of the expression.
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add(add(10,1,0),add(1,0,0),0)

X = add(10,1

Y = 0),add(1,0,0)

Add respect for brackets to fix this.
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In practice all precise symbolic
reasoning is based on pure string
substitution, but the sugar of wild-
cards and punctuation makes a big
difference to how efficient and nat-
ural the reductions are.
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Correctly bracketed terms can
be used to construct,
without using meaning.
If R is a raw symbol,
and X and Y are correct.
Then R, (X), R(X), and (X, Y)
are all correct.
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Correctly bracketed terms can

Define rabbits.
0 is a rabbit.
If r is a rabbit, s(r) is a rabbit.

Clearly, 0, s(0), s(s(0))
are all rabbits.
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wait(x,0) -> x

wait(x,s(y)) ->

s(wait(x,y))

So,
wait(s(0),s(s(0)))

-> s(wait(s(0),s(0)))

-> s(s(wait(s(0),0))

-> s(s(s(0)))

This is addition.
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Expression of logical proof explic-
itly in terms of term reduction on
a collection of terms.
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The state is a single term,
not a set.

No pre-existing set theory needed

Use implicit lists, and add rules
for permutation and duplication.
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Permutation of sub terms is
(A and B) -> (B and A)

(A and (B and C)) ->

((A and B) and C)

Duplication of sub terms
A and B -> A and (A and B)
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Implication A => B is the rule

A and X -> A and B and X
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Lecture 5
Meta logic

Algebra is the manipulation of sym-
bols, usually intended as a meta logic
of some other symbol system.
From Chapter 3, Symbolic Algebra.
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A data structure
can be defined concretely.
0 is natural, and
if x is natural
then s(x) is natural.
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And then operations
defined directly on them.
add(x,0) = x

add(x,s(y)) = s(add(x,y))
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From this we can prove that
add(0,0) = 0

and
add(0,s(0)) =

s(add(0,0)) =

s(0)
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A longer example is ...
add(0,s(s(0))) =

s(add(0,s(0))) =

s(s(add(0,0))) =

s(s(0))
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What about
add(0,s(s(s(s(s(0)))))

What does the proof look like?
Each step moves one s from
inside to outside the add.
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We need 5 steps to get it to
s(s(s(s(s(add(0,0))

and one last step to get
s(s(s(s(s(0)))))
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If there are n instances of s,
then n steps will get them all
outside the add,
and one more step will
reduce the add(0,0) to 0.
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This is meta logic.

Talking about the proof.

Showing that a proof exists, rather
than writing out the proof itself.
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This is mathematical induction.

Informally: if the process works
the first few times, and it seems
that it would keep working the
same way as long as we kept go-
ing, then we conclude that it works
indefinitely.
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In more formal terms

If P(0) is true, and
P(i) implies P(i+1), then
P(n) is true for all natural n.
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So we now see that

add(0,0)=0

and

add(0,y)=0 implies

add(0,s(y))=s(y)
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So we claim that
add(0,y)=y for all y.

This is not a rule of
the original definition.
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We claim we can find
a sequence of reductions
for each specific case

This is a metaphysical assertion
about the infinite behaviour
of the sequence of integers.
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We cannot be sure
that it is correct.
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This claim is a claim about the
larger scale behaviour of the
original rules.

It is a meta-logical claim.

The logic of logic.
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The algebra of
a concrete data type

is the logic that is taken to
describe the behaviour of the
reductions that define that type.
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There might be multiple algebras.

An algebra is just some system
to describe some behaviour
of some other system.
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An algebra is complete if

all assertions about the reduction
system can be produced from us-
ing the reductions defined in the
algebra.
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An abstract datatype is defined by
giving a complete algebra for it,
a typical task is to generate the
concrete version given the abstract
version.
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We have integers,
but we want rationals.

We want numbers such as 1/2,
but what does it mean?

It is defined by the rule
(1/2) * 2 = 1.
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For every integer a and
non zero integer b,
the number (a/b)
is defined by (a/b)∗b=a.
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Every pair (a,b)
defines a unique rational,
We can construct rationals
from pairs.
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The laws we need are the rules of
fractions:
a/b ∗ c/d = ac/bd
just rewrite as
(a,b) ∗ (c,d) = (a∗c, b∗d)
and so on.
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Equality must be defined.

a/b = c/d

is defined to mean

ad = bc.
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An important technicality.

It is the meaning of
the phrase ‘a=b’
that is defined,

not the meaning
of the symbol ‘=’
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Let (a,b)mean
a + b

√
2

then
(a,b) + (c,d) = (a+c,b+d)

(a,b) ∗ (c,d) =
(a∗c+2∗b∗d,a∗c+b∗d)
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In like manner,
any selected number can be give
any positive integer root.
Including the famous case of -1.
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Start with 0 and 1.

Build the naturals by induction.
Their use is justified by
the behaviour of
real world computers.
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Build the algebraics
by concrete extension.

There are no concrete reals.
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Lecture 6
Set theory

Set theory is not a good thing on which
to found mathematics,
Skolem.

From Chapter 3: algebra.
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The idea of an abstract set
comes from
the idea of a set of spanners.
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Each spanner is different.

A set of spanners is defined by
which spanners are in it,
and which are not.
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Build a set
one spanner at a time,

no matter the order
they are picked

the resulting set is the same.
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From 5 spanners,
32 possible sets can be made.

2 × 2 × 2 × 2 × 2 = 32

The set containing no spanners
is still a set.
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Describe a set
by writing down the elements.

This gives the names order.
This allows multiple membership.
This is a list.

The list is prior to the set.
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The list is the natural
foundation of software.
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To have a set we ignore
the order and multiplicity.

We define a different equality
on a foundation of lists.
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Let cons(S,x) be
the set the elements of S,
together with x.

The definitive operation on sets.
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Start with set S,
put in x then y.

The result is the same if we
put in y then x.

cons(cons(S,x),y) =

cons(cons(S,y),x)
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Start with set S
Put in x, and put it in again.

The result is the same
if we put it in just once.

cons(cons(S,x),x) =

cons(S,x)
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The rules

cons(cons(S,x),y) =

cons(cons(S,y),x)

cons(cons(S,x),x) =

cons(S,x)

define finite sets.
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The procedural version is

cons(S,x) ; cons(S,y) ==

cons(S,y) ; cons(S,x)

cons(S,x) ; cons(S,x) ==

cons(S,y)



Bruce Mills Practical Formal Software Engineering (slide 14 of Roman Arithmetic)

A typical implementation
uses a list,

Sort the list and
remove duplicates
after each operation.



Bruce Mills Practical Formal Software Engineering (slide 15 of Roman Arithmetic)

The basic property
of a set is membership.

x in S.

x in cons(S,y)

iff x==y or x in S



Bruce Mills Practical Formal Software Engineering (slide 16 of Roman Arithmetic)

If we know for each thing
whether it is in the set
then we know the set.

This is a policy, not observation.

By definition sets with
the same elements
are the same.



Bruce Mills Practical Formal Software Engineering (slide 17 of Roman Arithmetic)

This is called
the axiom of extension,

but it is just the essence of
what is meant by the word ‘set’.



Bruce Mills Practical Formal Software Engineering (slide 18 of Roman Arithmetic)

Union:

given two sets
build a set containing
all the items in each of the sets.

union(S,cons(X,x)) =

cons(union(S,X),x)



Bruce Mills Practical Formal Software Engineering (slide 19 of Roman Arithmetic)

(x in union(A,B)) ==

(x in A) or (x in B)

For any finite boolean expression
there is an equivalent
set constructor.



Bruce Mills Practical Formal Software Engineering (slide 20 of Roman Arithmetic)

Every finite sum has a value.
The value does not depend on
the order in which
the elements are added.
1+2+3 = 6
3+2+1 = 6
2+1+3 = 6



Bruce Mills Practical Formal Software Engineering (slide 21 of Roman Arithmetic)

What is the value of
an infinite sum?

1+1+1+1+ ...

does not have any sum.
Unless we invent new numbers,
such as infinity.



Bruce Mills Practical Formal Software Engineering (slide 22 of Roman Arithmetic)

1-1+1-1+1 ...

Can be grouped in 2 ways.

(1-1)+(1-1)+ ... = 0
or
1 - (1-1) - (1-1) - ... = 1

Which is the correct value?



Bruce Mills Practical Formal Software Engineering (slide 23 of Roman Arithmetic)

The resolution requires
the development of
a theory of infinite sums.
The main constraint is that this
theory must agree with the the-
ory of finite sums, when speaking
about finite sums.



Bruce Mills Practical Formal Software Engineering (slide 24 of Roman Arithmetic)

Such a theory of infinite sums
is a conservative extension
of the theory of finite sums.
There could be many such theories
they could conflict.



Bruce Mills Practical Formal Software Engineering (slide 25 of Roman Arithmetic)

There is no concrete definition
of infinite sums,
only an abstract logic.
Infinite sums, in general, cannot
be represented in software.



Bruce Mills Practical Formal Software Engineering (slide 26 of Roman Arithmetic)

This is a conservative extension.

The logic of the extension always
agrees with the original logic,
when the original logic says some-
thing.



Bruce Mills Practical Formal Software Engineering (slide 27 of Roman Arithmetic)

General infinite sums
do not exist as a concrete form.

There is no finitary system
with all the right properties.



Bruce Mills Practical Formal Software Engineering (slide 28 of Roman Arithmetic)

They exist only in the sense that
we can reason with the meta logic.

But, the logic itself exists,
is concrete, and is useful.



Bruce Mills Practical Formal Software Engineering (slide 29 of Roman Arithmetic)

Thus also

infinite lists

and infinite sets.



Bruce Mills Practical Formal Software Engineering (slide 1 of Network Diagrams)

Lecture 7
Network Diagrams

Diagrams can be reasoned with
and reasoned about.

From Chapter 4: Diagrams.



Bruce Mills Practical Formal Software Engineering (slide 2 of Network Diagrams)

A lot of diagrams are networks.

Not a mathematical graph,
which allows at most one line
between any two points.



Bruce Mills Practical Formal Software Engineering (slide 3 of Network Diagrams)

Network approach to a puzzle.

A farmer wants to cross a river
using in a small boat,
taking a goat, a wolf, and a lettuce.



Bruce Mills Practical Formal Software Engineering (slide 4 of Network Diagrams)

Without the farmer,

the wolf would eat the goat,
the goat would eat the lettuce.

The farmer can only take one
thing with him on the boat.



Bruce Mills Practical Formal Software Engineering (slide 5 of Network Diagrams)

With three items,
there are 8 possible
distributions to the banks,

With the farmer, 16.

On each move, the farmer and
at most one other item
is transferred.



Bruce Mills Practical Formal Software Engineering (slide 6 of Network Diagrams)

The initial state is
(fwgl|)

Possible next states are

(wg|fl) .. the wolf eats the goat.
(wl|fg) .. safe
(gl|fw) .. lettuce is eaten.



Bruce Mills Practical Formal Software Engineering (slide 7 of Network Diagrams)

(fwgl|)

(wl|fg)

(fwl|g)

(l|fwg) (w|fgl)

(lgf|w) (wfg|l)

(g|flw)

Build a network.

The data is the same,
but easier for a person
to see the way.

And
it can be automated.



Bruce Mills Practical Formal Software Engineering (slide 8 of Network Diagrams)

The action of the network for
the farmer puzzle uses the
principle of a device moving
on a network. The nodes are
the state of the puzzle.

All software
is based on this principle.



Bruce Mills Practical Formal Software Engineering (slide 9 of Network Diagrams)

An addition is done on a grid.
1 1 0 0
0 4 3 0
0 1 2 4
1 1 0 4

With 16 cells and 10 digits,
there are pow(10,16)
ways to fill in the grid.



Bruce Mills Practical Formal Software Engineering (slide 10 of Network Diagrams)

The ways of filling in the cells
are the states of the computation.

The ways of changing the contents
are the transitions.



Bruce Mills Practical Formal Software Engineering (slide 11 of Network Diagrams)

The states could be written
within circles
on a very large piece of paper.

The transitions could be expressed
on lines drawn between the two
states.



Bruce Mills Practical Formal Software Engineering (slide 12 of Network Diagrams)

There are rules that give

exactly

the changes to the grid
based on the current state.
These are the transitions.



Bruce Mills Practical Formal Software Engineering (slide 13 of Network Diagrams)

This combination of states and
transitions is a state machine.

It can be represented on paper
with lines and nodes,

as a network.



Bruce Mills Practical Formal Software Engineering (slide 14 of Network Diagrams)

A neumann machine operates
in the same way.

The digital memory is the same
as the paper grid.

In each case the memory can be
increased without clear limits.



Bruce Mills Practical Formal Software Engineering (slide 15 of Network Diagrams)

The memory
can be a network.

If the state is a term f(x,y)
then this network encodes it

f

x y



Bruce Mills Practical Formal Software Engineering (slide 16 of Network Diagrams)

Replacement and permutation of
subnetworks performs the same
duty as similar work on terms.



Bruce Mills Practical Formal Software Engineering (slide 17 of Network Diagrams)

An infinite term

f(f(f(...,y),y)

can also be encoded finitely.

f

y



Bruce Mills Practical Formal Software Engineering (slide 18 of Network Diagrams)

Only some infinite terms can be
encoded in this way.

But, reductions on networks give
such infinite terms their
expected properties.



Bruce Mills Practical Formal Software Engineering (slide 19 of Network Diagrams)

Similar networks can be used to
encode simultaneous equations.

x = 23a + 2b

a

b

x

23

2



Bruce Mills Practical Formal Software Engineering (slide 1 of Solid Algebra)

Lecture 8
Solid Algebra.

Solids have
discrete and algebraic aspects

From Chapter 4: Diagrams.



Bruce Mills Practical Formal Software Engineering (slide 2 of Solid Algebra)

Diagrams can be used
to reason about algebra.

a b

a aa ab

b ba bb

Therefore (a + b)2 = a2 + 2ab + b2.



Bruce Mills Practical Formal Software Engineering (slide 3 of Solid Algebra)

Such diagrams are an aid
to reasoning in the algebra.

They are not a proof of
properties of physical space.

About physical space,
these conclusions might be false.



Bruce Mills Practical Formal Software Engineering (slide 4 of Solid Algebra)

The basic diagram is a two dimen-
sional drawing with regions, lines,
and nodes, decorated with colour,
shape, texture, text, etc.

node-a



Bruce Mills Practical Formal Software Engineering (slide 5 of Solid Algebra)

Sometimes it is seen as solid,
by the human visual system.

Nodes,
edges,
regions,
solids.



Bruce Mills Practical Formal Software Engineering (slide 6 of Solid Algebra)

With training,
some people can think about
four dimensional diagrams.

But, always a geometric scheme.

The parts are related by closeness.



Bruce Mills Practical Formal Software Engineering (slide 7 of Solid Algebra)

Elements in a diagram are
recognised by their
approximate shape and position.
Like letters.
A square is a square,
even if it is badly drawn.

Snap-to-grid.



Bruce Mills Practical Formal Software Engineering (slide 8 of Solid Algebra)

All precise diagrams,

including textual elements,
are made this way.



Bruce Mills Practical Formal Software Engineering (slide 9 of Solid Algebra)

Draw a planar network.

Draw lines and dots on paper.
Each end of each line is a dot.
Perhaps the same dot.
No line crosses another.

The regions outlined are the faces.



Bruce Mills Practical Formal Software Engineering (slide 10 of Solid Algebra)

The simplest network
has a single dot,
so it has one face.

faces - lines + nodes =
1 - 0 + 1 = 2



Bruce Mills Practical Formal Software Engineering (slide 11 of Solid Algebra)

Add a line in a loop,
another face.

2 - 1 + 1 = 2



Bruce Mills Practical Formal Software Engineering (slide 12 of Solid Algebra)

faces - lines + nodes

is the Euler constant for the plane.
Every network drawn on a plane
gets the same value.



Bruce Mills Practical Formal Software Engineering (slide 13 of Solid Algebra)

On more complex surfaces
like a torus
a rule is all faces must be
one sheet of rubber with no holes.



Bruce Mills Practical Formal Software Engineering (slide 14 of Solid Algebra)

The Euler constant for different
surfaces is different.

Try it with a torus.



Bruce Mills Practical Formal Software Engineering (slide 15 of Solid Algebra)

The faces are very important.

One way to describe a network
is to describe the faces and
how they are stitched together.



Bruce Mills Practical Formal Software Engineering (slide 16 of Solid Algebra)

a b

c d

e f g

Described as
{aecf,fdgb,gdceab}.



Bruce Mills Practical Formal Software Engineering (slide 17 of Solid Algebra)

The edges of the faces are
taken in a standard order:
in this case, clockwise.

This means, the face is
to your right as you walk
around the boundary of the face.



Bruce Mills Practical Formal Software Engineering (slide 18 of Solid Algebra)

The outside face seems to be
going counter clockwise.
But, from inside the outer face,
it is clockwise.



Bruce Mills Practical Formal Software Engineering (slide 19 of Solid Algebra)

Application:

The equations that are set up
to solve for the state of an
electric circuit are selected
one per face, from the diagram.



Bruce Mills Practical Formal Software Engineering (slide 20 of Solid Algebra)

When the diagram is non planar,
select enough loops to cover the
network, and call them faces.

The details of this
leads to vector spaces
and to homology



Bruce Mills Practical Formal Software Engineering (slide 1 of Object Diagrams)

Lecture 9
Object Diagrams

Aspects of object databases
can be expressed as diagrams.

From Chapter 5: UML.



Bruce Mills Practical Formal Software Engineering (slide 2 of Object Diagrams)

Object systems are databases.

A network of objects.

An object is
a record with connections.



Bruce Mills Practical Formal Software Engineering (slide 3 of Object Diagrams)

A record is a named tupple.

(x=5,y=6), not (5,6)

Each entry is a field,
or attribute.



Bruce Mills Practical Formal Software Engineering (slide 4 of Object Diagrams)

A relational database is
a collection of records
grouped into tables.

Records in the same table
share a type signature.



Bruce Mills Practical Formal Software Engineering (slide 5 of Object Diagrams)

The type of a field can be
another record.

(x=(1,2),y=6)

We say the type of x is the
name of a table with the same
type signature.



Bruce Mills Practical Formal Software Engineering (slide 6 of Object Diagrams)

When the type sig of table A
includes a variable X
whose type is table B.

Draw a line from A to B, label it X.
A ----[X]----> B



Bruce Mills Practical Formal Software Engineering (slide 7 of Object Diagrams)

In practice, many variables
have type Integer.

So the diagram would be clogged.



Bruce Mills Practical Formal Software Engineering (slide 8 of Object Diagrams)

Instead, make each node a box,
and write the type signature
in the box.

+---------+

|X:Integer|

|Y:ThingA |

+---------+



Bruce Mills Practical Formal Software Engineering (slide 9 of Object Diagrams)

Put this together in a network.
This is the basis of a class diagram.



Bruce Mills Practical Formal Software Engineering (slide 10 of Object Diagrams)

What makes an object database
different from a relational one

is indirect reference.

If the data is not in the record
then look for it somewhere else
using an inbuilt search strategy.



Bruce Mills Practical Formal Software Engineering (slide 11 of Object Diagrams)

In object systems this is called
inheritance.

It is a special case of the Codasyl
structure.



Bruce Mills Practical Formal Software Engineering (slide 12 of Object Diagrams)

Put links into
the class diagram
that stand for the direction
a search should proceed.



Bruce Mills Practical Formal Software Engineering (slide 13 of Object Diagrams)

When field value is missing
from a record,
perform a search
of the indirect reference
network structure.



Bruce Mills Practical Formal Software Engineering (slide 14 of Object Diagrams)

A record can store a function.

(mag="xˆ2+yˆ2",x=6,y=5)

Often this is called
a method or an operation.



Bruce Mills Practical Formal Software Engineering (slide 15 of Object Diagrams)

An operation can
modify the object.

(setx="x=23",x=6,y=5)



Bruce Mills Practical Formal Software Engineering (slide 16 of Object Diagrams)

State diagram

An object has state
that can be changed
by operations on it.



Bruce Mills Practical Formal Software Engineering (slide 17 of Object Diagrams)

For example,
the action setx(6)
might map

state (x=5,y=7) to (x=6,y=7).



Bruce Mills Practical Formal Software Engineering (slide 18 of Object Diagrams)

Each call to the object
is an input to a state machine.

(5,7)
setx(6)

(6,7)



Bruce Mills Practical Formal Software Engineering (slide 19 of Object Diagrams)

Place the states of an object
on a piece of paper, and
draw links labeled by
a method call,
from the state on
which it was called,
to the state that it produces.



Bruce Mills Practical Formal Software Engineering (slide 20 of Object Diagrams)

This is a statechart diagram.

It is a state machine.

Typically, the states of the object
are factored, into a finite number
of options.



Bruce Mills Practical Formal Software Engineering (slide 21 of Object Diagrams)

An operation can change
the database structure.

new record(x=6,y=45)



Bruce Mills Practical Formal Software Engineering (slide 22 of Object Diagrams)

Activity diagram is
kin to a petri net.
Multiple points of activation.
Explicit decision elements.
Fork and join.



Bruce Mills Practical Formal Software Engineering (slide 1 of UML Diagrams)

Lecture 10
UML Diagrams

The UML is an OMG standard
defining some families
of object diagrams.

From Chapter 5: UML.



Bruce Mills Practical Formal Software Engineering (slide 2 of UML Diagrams)

UML is an open standard
by the OMG.
It defines several types
of diagrams.



Bruce Mills Practical Formal Software Engineering (slide 3 of UML Diagrams)

The UML diagrams are mostly

relation diagrams and

petrinets.

The diagrams might be factored.



Bruce Mills Practical Formal Software Engineering (slide 4 of UML Diagrams)

Relational UML diagrams:

Object diagram
Class diagram
Package diagram
Usecase diagram
Deployment diagram



Bruce Mills Practical Formal Software Engineering (slide 5 of UML Diagrams)

Petrinet UML diagrams:

State diagram
Activity diagram
Sequence diagram
Timing diagram



Bruce Mills Practical Formal Software Engineering (slide 6 of UML Diagrams)

Object diagram:
Nodes are objects
Links show relation by value



Bruce Mills Practical Formal Software Engineering (slide 7 of UML Diagrams)

Class diagram:
Nodes are classes
Links show relation by type.

Links also show inheritance



Bruce Mills Practical Formal Software Engineering (slide 8 of UML Diagrams)

Package diagram

Nodes are units of deployment.
Links are dependencies.



Bruce Mills Practical Formal Software Engineering (slide 9 of UML Diagrams)

Factor an object diagram to
get a class diagram.

Factor a class diagram to
get a package diagram.



Bruce Mills Practical Formal Software Engineering (slide 10 of UML Diagrams)

Deployment Diagram:

Nodes are software tasks.
Links are protocols.
Links are middleware.

Nodes are factored
into machines.



Bruce Mills Practical Formal Software Engineering (slide 11 of UML Diagrams)

machine 1 machine 2



Bruce Mills Practical Formal Software Engineering (slide 12 of UML Diagrams)

Usecase diagram

Nodes are actors and usecases
Links show involvement
Links also show special cases



Bruce Mills Practical Formal Software Engineering (slide 13 of UML Diagrams)

State Diagram

Nodes are objects

Links are decorated with methods.

Tokens are points of execution.



Bruce Mills Practical Formal Software Engineering (slide 14 of UML Diagrams)

Activity Diagram

Is a factored state diagram,
with extra syntax,
and variable token count.



Bruce Mills Practical Formal Software Engineering (slide 15 of UML Diagrams)

Activity Diagram

Nodes are places in a program.

Tokens are points of execution.



Bruce Mills Practical Formal Software Engineering (slide 16 of UML Diagrams)

Sequence Diagram

Gives the history of transitions.
A trace of a protocol.

Nodes are stretched into lines.

Down the page is a time-axis.



Bruce Mills Practical Formal Software Engineering (slide 17 of UML Diagrams)

state

t
i

m
e

A B C

A token moves from state C to B
and later moves back to B.



Bruce Mills Practical Formal Software Engineering (slide 18 of UML Diagrams)

Timing Diagram

For the most part it is
a sequence diagram on its side

Comforms to
electronic engineering practice.



Bruce Mills Practical Formal Software Engineering (slide 19 of UML Diagrams)

time

s
t
a
t
e

B

C

A token moves from B to C
then back to B,
and then to C again.



Bruce Mills Practical Formal Software Engineering (slide 20 of UML Diagrams)

A timing diagram might also
have link-to-link edges

showing cause and effect

between transitions.



Bruce Mills Practical Formal Software Engineering (slide 1 of OCL Combinators)

Lecture 11
OCL Combinators

OCL is a language with inbuilt
finite set theory operations.

From Chapter 6: OCL.



Bruce Mills Practical Formal Software Engineering (slide 2 of OCL Combinators)

OCL is a language for writing

pure mathematical expressions.

Such as: y = 2*x + z.



Bruce Mills Practical Formal Software Engineering (slide 3 of OCL Combinators)

OCL includes Integers and Reals,
But its core is

pure finite-set theory,

as well as bags and sequences.



Bruce Mills Practical Formal Software Engineering (slide 4 of OCL Combinators)

Except for some partial
special case exceptions,

such as Integers,

infinite sets do not exist in OCL.



Bruce Mills Practical Formal Software Engineering (slide 5 of OCL Combinators)

Basic arithmetic uses
traditional notation.

x+y, x-y, x*y, and x/y.



Bruce Mills Practical Formal Software Engineering (slide 6 of OCL Combinators)

Expressions such as
3*x*x + 4*y + 3*x*y

are very clumsy in object notation.



Bruce Mills Practical Formal Software Engineering (slide 7 of OCL Combinators)

Extended operations
use object notation

23.mod(5) = 3



Bruce Mills Practical Formal Software Engineering (slide 8 of OCL Combinators)

OCL also has strings,

with the common
standard operations.

"this".concat("that") =

"thisthat"



Bruce Mills Practical Formal Software Engineering (slide 9 of OCL Combinators)

For collections:

OCL has

finite sets,
finite bags,
finite sequences,
finite ordered sets.



Bruce Mills Practical Formal Software Engineering (slide 10 of OCL Combinators)

Take the union of two sets
using object notation.

A->union(B)

is an expression for
the union of A and B.



Bruce Mills Practical Formal Software Engineering (slide 11 of OCL Combinators)

Note the use of ->
instead of a dot
when the object is a collection.

This is a syntactic convention
the dot and arrow have the same
core meaning.



Bruce Mills Practical Formal Software Engineering (slide 12 of OCL Combinators)

OCL has no commands
and no control flow.

There are no loops.

There are no assignments.

All variables are parameters.



Bruce Mills Practical Formal Software Engineering (slide 13 of OCL Combinators)

Given a list X of integers,

get the sum as X->sum()

This is a instance of an iterator.



Bruce Mills Practical Formal Software Engineering (slide 14 of OCL Combinators)

Add a list like this ...
sum (1,2,3,4)

= 1 + sum (2,3,4)

= 3 + sum (3,4)

= 6 + sum (4)

= 10 + sum ()

= 10 + 0

= 10



Bruce Mills Practical Formal Software Engineering (slide 15 of OCL Combinators)

There is an implicit 0.
0 + sum (1,2,3,4)

= 1 + sum (2,3,4)

= 3 + sum (3,4)

= 6 + sum (4)

= 10 + sum ()

= 10 + 0

= 10



Bruce Mills Practical Formal Software Engineering (slide 16 of OCL Combinators)

Absorb this into the sum function
sum(0,(1,2,3,4))

= sum(0+1,(2,3,4))

= sum(1+2,(3,4))

= sum(3+3,(4))

= sum(6+4,())

= 10



Bruce Mills Practical Formal Software Engineering (slide 17 of OCL Combinators)

The general idea is

sum(s, cons(x,X))

= sum(s+x,sum(X))

In function notation, this is

sum(s,cons(x,X))

= sum(add(s,x),sum(X))



Bruce Mills Practical Formal Software Engineering (slide 18 of OCL Combinators)

The iterator concept:

iterate(f,e,empty) = e

iterate(f,e,cons(x,X)) =

iterate(f,f(e,x),X)



Bruce Mills Practical Formal Software Engineering (slide 19 of OCL Combinators)

The OCL syntax for an iterator.

X->(x,t=e|f(x,t))



Bruce Mills Practical Formal Software Engineering (slide 20 of OCL Combinators)

The value of an OCL expression is
the result that would be returned
by performing the implied actions.

So, an iteration over
an Infinite set
is an error.



Bruce Mills Practical Formal Software Engineering (slide 21 of OCL Combinators)

For example,
there is a ‘forall’ iterator
that checks a predicate on
all elements of a set.

forall(Integer, P)

Is not valid OCL.



Bruce Mills Practical Formal Software Engineering (slide 22 of OCL Combinators)

The OCL standard gives
an ‘indeterminate’ value to all

non-terminating calculation.



Bruce Mills Practical Formal Software Engineering (slide 1 of OCL scripts)

Lecture 12
OCL Scripts

OCL describes a program
written in a target language.

From Chapter 6: OCL.



Bruce Mills Practical Formal Software Engineering (slide 2 of OCL scripts)

OCL describes constraints,

on object systems,

using the theory of finite sets.



Bruce Mills Practical Formal Software Engineering (slide 3 of OCL scripts)

OCL is declarative.

It does not say “do this”,

it says “this is so”.



Bruce Mills Practical Formal Software Engineering (slide 4 of OCL scripts)

OCL syntax for saying
a class exists:

context C



Bruce Mills Practical Formal Software Engineering (slide 5 of OCL scripts)

OCL syntax for saying
a class has an attribute
of a given type:

context c::x : integer



Bruce Mills Practical Formal Software Engineering (slide 6 of OCL scripts)

OCL syntax for saying
a class has an operation
with given parameter types
and return type:

context

C::f(integer x) : integer



Bruce Mills Practical Formal Software Engineering (slide 7 of OCL scripts)

An OCL script
describes constraints
on a program which is
written in a target language.

To be concrete, we will use
Java as the target language.



Bruce Mills Practical Formal Software Engineering (slide 8 of OCL scripts)

Sometimes
an OCL constraint on attributes
implies that the Java
must have a method.



Bruce Mills Practical Formal Software Engineering (slide 9 of OCL scripts)

context

a:integer,

b:integer

inv: a = sqr(b)

This says that at all times
the value of ‘a’ is the
square of the value of ‘b’.



Bruce Mills Practical Formal Software Engineering (slide 10 of OCL scripts)

An OCL script describes con-
straints on an object database.
These constraints are of two kinds.
A restriction on a value, and a re-
striction on a transistion.



Bruce Mills Practical Formal Software Engineering (slide 11 of OCL scripts)

Conceptually, a value could be an
Integer, or a function.



Bruce Mills Practical Formal Software Engineering (slide 12 of OCL scripts)

To restrict an integer value

we can say x>6, for example.

This eliminates many options,
but leaves an indefinite number.



Bruce Mills Practical Formal Software Engineering (slide 13 of OCL scripts)

A constraint such as x=6
eliminates all but one option.

But, it is not otherwise distinct
from any other constraint.



Bruce Mills Practical Formal Software Engineering (slide 14 of OCL scripts)

To restrict an integer function

we might say f(x)>0, or

f(x+y)=f(x)*f(y),

for example.



Bruce Mills Practical Formal Software Engineering (slide 15 of OCL scripts)

A common concept is an invariant.

p(f(x)) = p(x)

Where p is some property of
numbers.



Bruce Mills Practical Formal Software Engineering (slide 16 of OCL scripts)

For example, p(x)might mean

the parity of x,

so p(f(x)) = p(x)

means that f conserves parity.



Bruce Mills Practical Formal Software Engineering (slide 17 of OCL scripts)

In OCL,
parity conservation could be

context

C::f(Integer x) : Integer

post:

parity(result) = parity(x)



Bruce Mills Practical Formal Software Engineering (slide 18 of OCL scripts)

But, OCL does not handle well

constraints using multiple calls.

f(x+y) = f(x)*f(y)



Bruce Mills Practical Formal Software Engineering (slide 19 of OCL scripts)

The OCL post constraint is used

more for expressing the state that

the database has achieved after

the call to the operation.



Bruce Mills Practical Formal Software Engineering (slide 20 of OCL scripts)

A pre constraint is a constraint on
the values of the arguments.
Effectively it is a type constraint on
the argument list.
But, it might be easier to express it
as a pre constraint on the function.



Bruce Mills Practical Formal Software Engineering (slide 21 of OCL scripts)

If a function makes sense only
for positive integers ...
context:

C::f(Integer x) : Integer

pre: x>0



Bruce Mills Practical Formal Software Engineering (slide 22 of OCL scripts)

Polymorphism:
A pairing of

a pre and post constraint.



Bruce Mills Practical Formal Software Engineering (slide 23 of OCL scripts)

If the pre condition
is true of the call,

then the post condition
is true of the return.



Bruce Mills Practical Formal Software Engineering (slide 1 of Zed Core)

Lecture 13
Zed Core

Zed contains a rich expression lan-
guage.

From Chapter 7: Zed.



Bruce Mills Practical Formal Software Engineering (slide 2 of Zed Core)

Type declaration is constraint.

unsigned int x;

means the same as
int x; x>=0;

except that the latter
is not C-semantics.
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In semi-mathematical notation

x in Integer and x >= 0

In mathematical notation

x∈ZZ ∧ x≥0
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For functions this becomes
int f(int x);

In mathematical notation
f : ZZ→ ZZ
In Zed notation
f : ZZ ZZ
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The arrow says
f maps int to int.

The bar says that
maybe f does not return
a value for every int.
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Zed notes 3 aspects of functions
so has eight related operators.

partial function total function
partial surjection toal surjection
partial injection total injection
partial bijection total bijection
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total/partial
is the domain covered ?

surjective/not
is the range covered ?

injective/not
is the reverse a function ?
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Zed is a notation for sets.

Functions and relations are
explicity special types of sets.

Much of the notation is from
classical mathematics.
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Zed has many set operators

Proper Subset A ⊂ B ≡ A ⊆ ∧A , B strictly smaller set
Superset A ⊇ B ≡ (x ∈ B⇒ x ∈ A) bigger set
Proper Superset A ⊃ B ∧ A , B strictly bigger set
Power IP(A) = {B|B ⊆ A} all subsets
Power IP1(A) = {B|B ⊆ A ∧ B , φ} non empty subsets
General Join

⋃
A = {x|∃a ∈ A • x ∈ a} join of a set of sets

General Meet
⋂

A = {x|∀a ∈ A • x ∈ a} meet of a set of sets
Integer Interval a..b = {n ∈ ZZ|a ≤ n ∧ n ≤ b} integers from a to b
Selection {D|S • E} selected elements
Cartesian Product A × B = {(a, b)|a ∈ A ∧ b ∈ B} set of all pairs
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A function is a set of ordered pairs.
Think of f(x){return x*x}
as {(0,0),(1,1),(2,4) ... }
the list of all pairs of input and
output.
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The roots of 1 are +1 and -1,

so the list for
√

includes (1,-1) and (1,+1)

√
is a

multi-valued function
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A multi-valued function is
usually called a relation.

Relations are any
set of ordered pairs.

The meet of relations
is another relation.
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Function usually means
single valued.

A set of ordered pairs
But for each first element
there is at most one second

The meet of two functions
is another function.
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Functions are relations, so
the union of two functions
is a relation.

But the union of two functions
might not be a function.
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define id(x) = x.
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define abs(x) as the absolute value
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id meet abs is unsigned id.
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id join abs is not a function
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The natural domain
of a relation is the set
of all first elements of
its ordered pairs.
The natural range is the
set of all second elements.
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A relation might be declared
with a domain or range larger
than its natural domain or range.
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The declared domain of
int f(int x){return 3/x;}
covers all ints,

but no value is defined for 0,
0 is not in the range of f.

The natural domain of f
is all non-zero ints.
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The declared range of
int f(int x){return 3*x;}

is int, but it can only return
multiples of 3.

Its natural range is
[... -9, -6, -3, 0, +3, +6, ...]
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Lecture 14
Zed Scripts

Zed is intended for use by humans.

From Chapter 7: Zed.
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The differences between Zed
expressions and classical
mathematical set theory
expressions are superficial.

Zed is a set-theory language.
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That is the small of Zed.

An entire program can be de-
scribed by a Zed expression.
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The large of Zed are Z-scripts
that exist mostly to provide
encapsulation.

A Z-script defines a set of tupples
of a consistent type signature

A table.
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This is the principle
of a database language,
but Z has stronger
virtual tables
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A function f(x)=x*x
is an infinite table:

f x
0 0
1 1
2 4
: :
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Store two functions in a table
by storing all the combinations.

f x g y

0 0 0 1
0 0 1 2
: : : :
1 1 0 1
1 1 1 2
: : : :
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This is the concept of a free-join
f x
0 0
1 1
2 4
: :

×

g y
0 1
1 2
2 3
: :

Z defines a table as a
free join of other tables.
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Define the square function as

sqr == [x:int; y:int y=x*x]

This is almost like

int f(int x){return x*x;}
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But the square-root
can be defined as

sqrt==[y:int; x:int x=y*y]

Which you cannot do in C.
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These expressions are
called schemas in Zed.
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Zed also admits
a semi-graphical syntax

myscheme
D1
D2
D3
P1
P2
P3
P4
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Given two schemas

sqrt==[y:int;x:int x=y*y]

sqr==[x:int;y:int y=x*x]

The x and y in sqrt are different
from x and y in sqr.
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They are local variables
sqrt.x and sqr.x.

But, they are on an export list.
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Use one schema in another ...

prog =

[

sqrt ; a:ZZ; b:ZZ

a=x ; b=a+2*y

]
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The export from sqrt become
local in prog.

But, sqrt is a copy,
there is no dynamic link
between prog and sqrt.
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A schema has no state.

Including schema A
in schemas B and C
does not create
a means of communicating
between B and C.
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Schemas allow the larger scale
structure of the program
to be described.
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To define a function
without exporting the variables
define them inside something
that is not a schema.
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math ==

[

f : ZZ ZZ

∀ x∈ZZ • f(x) = x*x
]
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The quantifiers ∀ and ∃

define truely local variables.


