
9 Chapter 9 Solution Set

Problems

9.1 Show that in the special case where the background is lossless so that the

scattering potential V0 is real valued that

ψ∗
+(r, k0s0) = e−ik0s0·r +

∫
d3r′G−(r, r′)V0(r

′)e−ik0s0·r′ ,

from which we conclude that for such backgrounds

ψ∗
+(r′, k0s0) = ψ−(r′,−k0s0).

Take the complex conjugate of both sides of the LS equation satisfied by

the plane wave scattering state ψ+(r, k0s0) for the case where V0 is real valued

to obtain

ψ∗
+(r, k0s0) = e−ik0s0·r +

∫
d3r′G∗

0+
(r, r′)V0(r

′)e−ik0s0·r′ .

Now make use of the fact that for a real V0 G
∗
0+

= G0− to obtain the required

result.

9.2 Compute the plane wave scattering states in two space dimensions for an

inhomogeneous medium consisting of a homogeneous plane parallel slab with

constant wavenumber k1 6= k0.

The plane wave scattering states for a plane parallel slab are the classical

physical optics solutions of the field resulting from plane wave incidence onto

a plane parallel plate. We assume that the slab is aligned perpendicular to the

z axis and the incident plane wave is propagating in the positive z direction

and given by

U (in)(r) = eik0s0·r = eiKρ·ρeiγ0z

where ρ is the component of r in the (x, y) plane and k0s0 = Kρ+ẑγ0. We can

also express the incident wave in terms of the “angle of incidence” θ0 formed

by s0 with the positive z axis (normal to the slab). In terms of θ0 we have

that |Kρ| = Kρ = k0 sin θ0 and γ0 = k0 sin θ0.

The incident plane wave will generate a reflected plane wave and a transmit-

ted plane wave into the plane parallel slab that will suffer multiple reflections

from both sides of the slab resulting in a standing wave in the interior of the
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slab. This standing wave will then generate both a reflected wave and trans-

mitted wave from the slab. It is well knows and easily proven using continuity

of field and normal derivative of the field at the two ends of the slab that all of

the plane waves resulting in the scattering process possess wave vectors having

identical transverse components. This then allows us to write the plane waves

in the problem in the form

ψ0(r) = eiKρ·ρe±iγ0z, ψ1(r) = eiKρ·ρe±iγ1z

where ψ0 denotes plane waves propagating outside the slab and ψ1 plane waves

propagating inside the slab. In all cases

γ0 =
√
k2
0 −K2

ρ = k0 sin θ0, γ1 =
√
k2
1 −K2

ρ = k1 sin θ1

where k1 is the wavenumber of the material in the slab region and θ1 the angle

formed by the unit wave vector s1 with the positive z axis.

We will first solve the problem for an incident wave propagating in the

positive z direction and for a slab whose left boundary is aligned on the z = 0

plane and right boundary is located at z = 2a0. Once we obtain this solution it

is easy to obtain the solution for a centered slab having boundaries at z = ±a0

and for incident plane waves from either the left or right half-spaces.

We can express the wavefields in the three regions left of the slab, within

the slab, and to the right of the slab in the forms

ψ<(r) = eiKρ·ρ[eiγ0z + Re−iγ0z], z < 0

ψ(r) = eiKρ·ρ[Aeiγ1z + Be−iγ1z], 0 ≤ z < l0

ψ>(r) = eiKρ·ρTeiγ0z z > l0

where l0 = 2a0 is the width of the slab. Continuity of field and normal deriva-

tive to the slab yields

[eiγ0z +Re−iγ0z]z=0 = [Aeiγ1z + Be−iγ1z]|z=0

[Aeiγ1z + Be−iγ1z]z=l0 = Teiγ0z|z=l0
γ0[e

iγ0z −Re−iγ0z]z=0 = γ1[Ae
iγ1z −Be−iγ1z]|z=0

γ1[Ae
iγ1z − Be−iγ1z]z=l0 = γ1Te

iγ0z|z=l0

One approach to the problem is then to solve the above set of equations for the

quantities R,A,B and T which then yields the plane wave scattering states

ψ+(r, k0s0) with ẑ·s0 > 0 corresponding to an incident plane wave propagating

in the positive z direction. As mentioned above the the plane wave scattering

states for a centered slab and for incident plane waves propagating in the

negative z direction are then obtained using a translation theorem and a

simple argument of symmetry.

A simpler procedure and the one used in physical optics books is based on

tracking the multiple reflections between the two ends of the slab. Using this
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procedure we find, for example, that the field interior to the slab is given by

ψ(r) = [t0e
iγ1z + t0r1e

2iγ1l0e−iγz + t0r
2
1e

4iγ1l0eiγ1z + · · · ]eiKρ·ρ,

where t0 is the Fresnel transmission coefficient going from the exterior medium

into the interior of the slab and r1 is the Fresnel reflection coefficient from

the interior medium into the interior medium and the various terms represent

multiple reflections between the two ends of the slab. It is clear that we can

separate the interior field into the two components propagating to the right

and left to obtain

A = t0[1 + α2 + α4 + · · · ] =
t0

1− α2
, B = t0r1[1 + α2 + α4 + · · · ] =

t0r1
1− α2

where α = r1 exp(2iγ1l0). We thus find that the plane wave scattering state

within the slab is given by

ψ+(r, k0s0) =
t0

1− α2
[eiγ1z + r1e

−iγ1z ]eiKρ·ρ, 0 ≤ z ≤ l0,

corresponding to plane waves propagating in the positive and negative z di-

rections, respectively.

Using the same general procedure we find that the plane wave scattering

state outside the slab is given by

ψ+(r, k0s0) = [eiγ0z + [r0 +
t0t1r1
1− α2

]e−iγ0z ]eiKρ·ρ, z < 0,

ψ+(r, k0s0) =
t0t1

1− α2
eiγ0zeiKρ·ρ, z > l0,

where t1 is the transmission coefficient from the interior medium to the exte-

rior medium and r0 the reflection coefficient from the exterior medium back

into the exterior medium.

The problem is completed by using the so-called Stokes relations and the

expressions for the Fresnel coefficients in terms of the relative index of re-

fraction nr =
√
k1/k0 between the two media. The Stokes relations are given

by

t0t1 = 1− r20, r0 = −r1
and when used in the above expressions for the plane wave scattering states

yield

ψ+(r, k0s0) = [eiγ0z + r0[1−
1− r20
1− α2

]e−iγ0z]eiKρ·ρ, z < 0,

ψ+(r, k0s0) =
t0

1− α2
[eiγ1z − r0e−iγ1z ]eiKρ·ρ, 0 ≤ z ≤ l0,

ψ+(r, k0s0) =
1− r20
1− α2

eiγ0zeiKρ·ρ, z > l0,

where

α2 = r20 exp(4iγ1l0).
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The final step is to substitute the expressions for the Fresnel coefficients t0
and r0 into the above equations. These quatities are given by

r0 =
cos θ0 −

√
n2
r − sin2 θ0

cos θ0 +
√
n2
r − sin2 θ0

,

t0 =
2 cos θ0

cos θ0 +
√
n2
r − sin2 θ0

.

The plane wave scattering states obtained above can be transformed into

the states for a centered slab and for plane waves propagating in either z direc-

tion by making use of a simple translation theorem similar to the translation

theorem proven in Appendix A and the subject of the following problem. This

theorem states (see following problem statement) that if the slab is translated

to the left by a distance a0 so that it is now centered at z = 0 the plane wave

scattering states are transformed to

ψ
(c)
+ (r, k0s0) = e−iγ0a0ψ+(r + a0ẑ, k0s0)

where ψ
(c)
+ (r, k0s0) is the plane wave scattering state for the centered slab and

ψ+(r, k0s0) the plane wave scattering state for the slab centered at z = a0

that we just computed. On making the above substitution we obtain

ψ
(c)
+ (r, k0s0) = [eiγ0z + r0e

−i2γ0a0 [1− 1− r20
1− α2

]e−iγ0z]eiKρ·ρ, z < −a0,

ψ
(c)
+ (r, k0s0) =

t0
1− α2

e−iγ0a0 [eiγ1a0eiγ1z − r0e−iγ1a0e−iγ1z ]eiKρ·ρ, −a0 ≤ z ≤ a0,

ψ
(c)
+ (r, k0s0) =

1− r20
1− α2

eiγ0zeiKρ·ρ, z > a0.

The centered slab has the advantage that it is symmetrical about the ρ

plane so that the plane wave scattering states ψ
(c)
+ (r, k0s0) with ẑ · s0 < 0 can

be easily obtained from those with ẑ · s0 > 0 by simply replacing z by −z.
More precisely this result, which is easily proven for centered and symmetrical

scattering potentials using the LS equations, states that

ψ
(c)
+ (r, k0s̃0) = ψ

(c)
+ (r̃, k0s0),

where s̃0 = (s0x
, s0y

,−s0z
) and r̃ = (x, y,−z). Using these two results we the

obtain that the general form of the plane wave scattering states for a centered

slab having sides at z = ±a0 and for incident plane waves propagating in any

direction is given by

ψ+(r, k0s0) = [e±iγ0z + r0e
−i2γ0a0 [1− 1− r20

1− α2
]e∓iγ0z]eiKρ·ρ, z < −a0, z > a0

ψ+(r, k0s0) =
t0

1− α2
e−iγ0a0 [eiγ1a0e±iγ1z − r0e−iγ1a0e∓iγ1z]eiKρ·ρ, −a0 ≤ z ≤ a0,

ψ+(r, k0s0) =
1− r20
1− α2

e±iγ0zeiKρ·ρ, z > a0, z < −a0,
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where we have now dropped the superscript c to denote the centered states

and the upper sign applies for a plane wave incident from the l.h.s. and the

lower sign for a plane wave incident from the r.h.s.

9.3 Prove that the plane wave scattering states satisfy the relationship

ψ+(r, k0s0; X0) = eik0s0·δX0ψ+(r− δX0, k0s0; X
′
0)

where δX0 = X0−X′
0 with X0 and X′

0 being any two central locations of the

background scattering potential.

This is accomplished in an identical manner as employed in proving the

proof of the translation theorem in Appendix A.

9.4 Fill in the missing steps in the derivation of Eqs.(9.10) of Example 9.1.

Make the substitution

< Y ml , ψ± >= 4πilY ml
∗(s0)g

±
l (r)

in

< Y ml , ψ± >= 4πilY ml
∗(s0)jl(k0r)∓ik0

∫ ∞

0

r′2dr′ jl(k0r<)h±l (k0r>)V0(r
′) < Y ml , ψ± >,

to obtain the required result.

9.5 Fill in the missing steps in the derivation of Eq.(9.15).

The required missing step is to show that

χ(r) =

∫

∂τ

dS′ [U0+(r′)
∂

∂n′G0+(r, r′) −G0+(r, r′)
∂

∂n′U0+(r′)]

vanishes in the limit when ∂τ → Σ∞ with Σ∞ being the surface of a sphere

of radius R→∞. In this limit we have

U0+(r′) ∼ f(s′)e
ik0r

′

r′
, G0+(r, r′) ∼ − 1

4π

eik0r
′

r′
ψ+(r,−k0s

′)

where s′ = r′/r′ is the unit vector in the direction of r′. We then find that

U0+(r′)
∂

∂n′G0+(r, r′)−G0+(r, r′)
∂

∂n′U0+(r′)

∼ f(s′)e
ik0r

′

r′
[−ik0

1

4π

eik0r
′

r′
ψ+(r,−k0s

′)] +
1

4π

eik0r
′

r′
ψ+(r,−k0s

′)[ik0f(s
′)
eik0r

′

r′
] = 0

to order 1/r′2 establishing the required result.

9.6 Complete the derivation of Eqs.(9.21).

We begin with the equation

U0(r) = lim
r′→∞

r′2
∫

4π

dΩr′ {U0(r
′)
∂

∂r′
G0+(r, r′) −G0+(r, r′)

∂

∂r′
U0(r

′)}

where the free field U0 and background Green function satisfy the asymptotic

conditions

U0(r
′) ∼ u+(s′)

eik0r
′

r′
− u−(s′)

e−ik0r
′

r′
, G0+(r, r′) ∼ − 1

4π

eik0r
′

r′
ψ+(r,−k0s

′)
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where s′ = r′/r′ is the unit vector in the direction of r′. We then find that

U0(r
′)
∂

∂r′
G0+(r, r′) ∼ − ik0

4π
[u+(s′)

eik0r
′

r′
− u−(s′)

e−ik0r
′

r′
]
eik0r

′

r′
ψ+(r,−k0s

′)

G0+(r, r′)
∂

∂r′
U0(r

′) ∼ − ik0

4π

eik0r
′

r′
ψ+(r,−k0s

′)[u+(s′)
eik0r

′

r′
+ u−(s′)

e−ik0r
′

r′
],

so that

U0(r
′)
∂

∂r′
G0+(r, r′)−G0+(r, r′)

∂

∂r′
U0(r

′) ∼ ik0

2π

1

r′2
ψ+(r,−k0s

′)u−(s′)

which then yields the required result

U0(r) = lim
r′→∞

r′2
∫

4π

dΩs′
ik0

2π

1

r′2
ψ+(r,−k0s

′)u−(s′) =
ik0

2π

∫

4π

dΩs u−(s)ψ+(r,−k0s).

The expansion given in Eq.(9.21b) is obtained in a completely parallel manner

using G0− in place of G0+ .

9.7 Complete the derivation of Eqs.(9.24).

We consider the free space propagator G0f
(r, r′) as a function of r with r′

a fixed parameter. We then find using Eq.(9.21b) that

G0f
(r, r′) =

ik0

2π

∫

4π

dΩs u+(s, r′)ψ−(r, k0s)

where on using Eqs.(9.9a)

G0f
(r, r′) = G0+(r, r′)−G0−(r, r′) ∼ − 1

4π
ψ+(r′,−k0s)

e+ik0r

r
+

1

4π
ψ−(r, k0s)

e−ik0r

r

so that

u+(s, r′) = − 1

4π
ψ+(r′,−k0s), u−(s, r′) = − 1

4π
ψ−(r′, k0s).

The plane wave expansion of the free field propagator is then obtained from

either of Eqs.(9.21) and found to be

G0f
(r, r′) = − ik0

8π2

∫

4π

dΩs ψ+(r′,−k0s)ψ−(r, k0s).

9.8 Derive Eq.(9.25b) from Eq.(9.25a) and the reciprocity condition satisfied by

the background Green functions.

We begin with Eq.(9.25a):

G0+(r, r′) = − ik0

8π2

∫ π

−π
dβ

∫

C±

sinαdαψ+(r, k0s)ψ−(r′,−k0s),

where the contour C+ = [0 : π/2−i∞] is used if z > z′ and C− = [π/2+i∞ : π]

if z < z′. Reciprocity requires that G0+(r, r′) = G0+(r′, r) so that G0+(r, r′)
can also be written in the form

G0+(r, r′) = − ik0

8π2

∫ π

−π
dβ

∫

C∓

sinαdαψ+(r′, k0s)ψ−(r,−k0s), (9.1)
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but where now, since z and z′ have been interchanged, C− = [π/2 + i∞ : π]

is used if z > z′ and C+ = [0 : π/2− i∞] if z < z′.

We now make the change of integration variables β′ = β−π and α′ = π−α
so that

s = sinα cosβx̂ + sinα sinβŷ + cosαẑ

→ sin(π − α′) cos(β′ + π)x̂ + sin(π − α′) sin(β′ + π)ŷ + cos(π − α′)ẑ

= − sinα′ cos β′x̂− sinα′ sinβ′ŷ − cosα′ẑ = −s′.

Under this transformation dβ = dβ′ and sinαdα = − sinα′dα′ and β′ ranges

over a full 2π radians while the contours C∓ transform to

C− = α = [π/2 + i∞ : π]→ α′ = [π/2− i∞ : 0] = −C+

C+ = α = [0 : π/2− i∞ : π]→ α′ = [π : π/2 + i∞] = −C−.

The expansion Eq.(9.1) then assumes the form

G0+(r, r′) = − ik0

8π2

∫ π

−π
dβ

∫

−C±

(− sinα′)dα′ ψ+(r′,−k0s
′)ψ−(r, k0s

′)

= − ik0

8π2

∫ π

−π
dβ

∫

C±

sinαdαψ−(r, k0s)ψ+(r′,−k0s),

where now C+ is again used if z > z′ and C− if z < z′.

9.9 Prove that the operators T̂ and T̂ † defined in Eqs.(9.30a) and (9.30b) are

compact.

The proofs follow identical lines as employed in the proof for the associated

operators in a uniform background presented in Example 5.4. In particular,

employing the same method as used in that earlier proof we use the fact that

the operator T̂ : HQ → Hf is Hilbert-Schmidt if there exists a complete

orthonormal sequence en ∈ HQ such that
∑

n

||T̂ en||2Hf
<∞.

We then select any orthonormal sequence en(r) ∈ HQ so that

T̂ en = − 1

4π

∫

τ0

d3r′ ψ+(r′,−k0s)en(r′) = − 1

4π
< ψ∗

+(r′,−k0s), en >HQ
.

It then follows that

||T̂ en||2Hf
= (

1

4π
)2

∫

4π

dΩs | < ψ∗
+(r′,−k0s), en >HQ

|2

from which we find that
∑

n

||T̂ en||2Hf
= (

1

4π
)2

∑

n

∫

4π

dΩs | < ψ∗
+(r′,−k0s), en >HQ

|2

= (
1

4π
)2

∫

4π

dΩs
∑

n

| < ψ∗
+(r′,−k0s), en >HQ

|2 ≤ (
1

4π
)2

∫

4π

dΩs ||ψ+(r′,−k0s)||2HQ
||2,
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where we have used Bessel’s inequality. We thus conclude that T̂ will be

Hilbert-Schmidt if the plane wave scattering states ψ+(r′,−k0s) have finite

norm in HQ. That this is the case follows immediately from the requirement

that the source volume τ0 is compact (finite volume) and that the plane wave

scattering states are solutions to the homogeneous Helmholtz equation with

wavenumber k0n(r) and, hence, must be continuous. The proof for T̂ † is proved

in a similar fashion.

9.10 Complete the derivation of Eqs.(9.55).

This problem should pose no difficulty for the reader.

9.11 Prove the inhomogeneous medium “Field Uniqueness Theorem” which states

that the field radiated by a source compactly supported in a space region τ0
within a non-uniform medium is uniquely determined over all space points

lying outside τ0 by the radiated field or its normal derivative (Dirichlet or

Neumann conditions) over any closed surface ∂τ that completely surrounds

τ0.

This can be proven in a completely parallel manner as was used in the proof

of the corresponding theorem for the wave equation presented in Chapter 1.

In particular, we assume that a second field is radiated by a source in τ0 and

that assumes identical Dirichlet or Neumann conditions on a closed surface

∂τ of a volume τ that completely contains τ0. Then the difference field δU0+

must be radiated by some source in τ0 and assume zero Dirichlet or Neumann

conditions over ∂τ . The first Helmholtz identity given in Eq.(9.16a) then shows

that the field δU0+ must vanish identically outside of τ and, hence, must be

an NR source supported in τ1. But, by hypothesis, the source of δU0+ has to

be supported in τ0 ∈ τ proving that the field δU0+ vanishes throughout the

exterior of τ0.

A second more direct proof, that also has the advantage that it is construc-

tive and, in principle, allows the field to be computed throughout the exterior

of the source region from the boundary conditions, is via the angular spectrum

expansion presented in Section 9.3. In particular, Eq.(9.27) allows the field to

be back propagated throughout the exterior of the convex hull of τ0 from the

radiation pattern of the field. The radiation pattern, in turn, can be computed

from Dirichlet or Neumann conditions over ∂τ leading to both a proof of the

theorem as well as an algorithm for performing the field determination from

the boundary conditions.

9.12 Show that for a lossless inhomogeneous background that

T̂ †T̂ =
i

2k0
Mτ0

∫

τ0

d3r′G0f
(r, r′),

where T̂ is the operator defined in Eq.(9.30a).

1 The Dirichlet condition over ∂τ is uniquely determined from the Neumann condition and
vice-versa via the second Helmholtz identity Eq.(9.16b).



97 Problems

From Eq.(9.33) we have

T̂ †T̂ =
1

(4π)2
Mτ0

∫

τ0

d3r′ {
∫

4π

dΩψ∗
+(r,−k0s)ψ+(r′,−k0s)}.

For a lossless medium we have that

ψ∗
+(r,−k0s) = eik0s·r +

∫
d3r′G0−(r, r′)V0(r

′)eik0s·r′ = ψ−(r, s)

which yields

T̂ †T̂ =
1

(4π)2
Mτ0

∫

τ0

d3r′ {
∫

4π

dΩψ−(r, s)ψ+(r′,−k0k0s)}

=
i

2k0
Mτ0

∫

τ0

d3r′G0f
(r, r′),

where we have made use of Eq.(9.24a).

9.13 Formulate and solve the 2D ISP for a source compactly supported within

a homogeneous plane parallel slab with constant wavenumber k 6= k0 and

Dirichlet data over two bounding planes. Compare and contrast your solution

with that obtained in Section 5.3 of Chapter 5.

This problem employs the plane wave scattering states obtained in Prob-

lem 9.2 and a formulation and solution that parallels that used in Prob-

lem 5.17. The ISP is defined using Eqs.(9.30a) and (9.30b) which, for this

particular case, yield

∫

τ0

d3r

ψ+(r,−k0s)︷ ︸︸ ︷
e−iKρ·ρ[A(Kρ)e

−isγ1z + B(Kρ)e
isγ1z]Q(ρ, z) = 2iγ0Ũ+(Kρ, sa0)e

isγ0a0 ,

with s = ±1 and where k1s = Kρ + sγ1 ẑ is the wavevector in the slab and

k0s = Kρ + sγ0 ẑ the wavevector in the outside medium. Here, Ũ+(Kρ, sa0) is

the spatial Fourier transform of the field on the two ends of the slab assumed

to be ±a0 and the two quantities A(Kρ) and B(Kρ) are given in Problem 9.2.

Following our treatment of the ISP for a source in a plane parallel slab in

a purely homogeneous medium presented in the solution to Problem 5.17 we

re-write the above equation in the form
∫ +a0

−a0

dz [A(Kρ)e
−isγ1z + B(Kρ)e

isγ1z ]Q(Kρ, z)

= 2iγ0Ũ+(Kρ, sa0)e
isγ0a0 , (9.2)

where

Q(Kρ, z) =

∫
d2ρQ(r)e−iKρ·ρ

is the 2D spatial Fourier transform of the source w.r.t. ρ. We base our solution

of the ISP on Eq.(9.2) which is solved for Q(Kρ, z) considering the transverse

wavevector Kρ to be a fixed parameter. Once Q(Kρ, z) is computed the actual

source is found using an inverse 2D Fourier transform.
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Defining

ψ(z, s) = A(Kρ)e
−isγ1z + B(Kρ)e

isγ1z

we can write Eq.(9.2) in the form

T̂ q(z) = f(s)

where

T̂ =

∫ +a0

−a0

dz ψ(z, s), q(z) = Q(Kρ, z), f(s) = 2iγ0Ũ+(Kρ, sa0)e
isγ0a0

and Kρ is assumed to be a fixed parameter.

With the above formulation the problem is solved using a procedure that

parallels that used in Problem 5.17.

9.14 Compute the scattering amplitude for a set of discrete point scatterers em-

bedded in an inhomogeneous medium using the Foldy-Lax scattering model.

the scattering amplitude for this case is found from Eq.(??)

U
(s)
+ (r, ν) =

M∑

m=1

VmG0+(r,Xm)U+(Xm, ν).

On making use of the asymptotic approximation for the Green functions given

in Eq.(9.9a) we find that

U
(s)
+ (r, ν) =∼ − 1

4π

M∑

m=1

Vmψ+(Xm,−k0s)U+(Xm, ν)
eik0r

r
.

yielding

f(s, ν) = − 1

4π

M∑

m=1

Vmψ+(Xm,−k0s)U+(Xm, ν).

9.15 Complete the derivation of Eq.(9.70) in Section 9.10.3.

This follows immediately from the result that

∫ a0

0

rdr

∫ 2π

0

dφ e−iK·r =

∫ a0

0

rdr

∫ 2π

0

dφ eiiKr cosφ = 2π

∫ a0

0

rdr J0(Kr) = 2πa0
J1(Ka0)

K

9.16 Derive Eq.(9.66).

We have from Eq.(9.64b)

T̂ T̂ †up =

∫
d3r χ∗

n(r) < χ∗
n′(r), up >Hf

= σ2
pup.

We can write the inner product in the above equation as

< χ∗
n′(r), up >Hf

=

N∑

n′=1

χn′(r)up(n
′)
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which then yields

∫
d3r χ∗

n(r)

N∑

n′=1

χn′(r)up(n
′) =

N∑

n′=1

up(n
′)

∫
d3r χ∗

n(r)χn′(r)

=

N∑

n′=1

< χn, χn′ >HV
up(n

′) = σ2
pup(n),

which completes the derivation.

9.17 Derive Eq.(9.74).

We start with the LS equation for the Green function G+(r, r′) given in

Eq.(9.45b):

G+(r, r′) = G0+(r, r′) +

∫
d3r′′G+(r, r′′)V (r′′)G0+(r′′, r′).

For point transmitters and receivers this equation reduces to Eq.(9.71) which

then yields the expression for the multistatic data matrices given in Eq.(9.72).

For an extended transmitter and extended receiver we need to convolve the

above Green function with the transmitter and receiver transmission functions

according to Eqs.(9.73). We then find that

Kj,k(ω) =

∫
d2r

∫
d2r′Rr(r,βj)Rt(r′,αk)[G+(r, r′)−G0+(r, r′)]

=

∫
d3r′′V (r′′)

∫
d2r

∫
d2r′G+(r, r′′)Rr(r,βj)G0+(r′′, r′)Rt(r′,αk)

=

∫
d3r′′ψr(βj, r

′′)V (r′′)ψt(r
′′,αk)

where we have made use of Eqs.(9.73).


