Appendix SA8.1 Alternative Additive Decompositions of x = LBf

Alternative views of an input-output equation like $\mathbf{x} = \mathbf{LBf}$ will generate somewhat different additive decompositions. We explore three variations in this Appendix.

1. Using (8.10) directly on $\mathbf{x} = \mathbf{LBf}$ gives

$$\Delta \mathbf{x} = \underbrace{(1/2)(\Delta \mathbf{L})(\mathbf{B}^{0}\mathbf{f}^{0} + \mathbf{B}^{1}\mathbf{f}^{1})}_{\text{Effect of }\Delta \mathbf{L}} + \underbrace{(1/2)[(\mathbf{L}^{0}\Delta \mathbf{B})\mathbf{f}^{1} + \mathbf{L}^{1}(\Delta \mathbf{B})\mathbf{f}^{0}]}_{\text{Effect of }\Delta \mathbf{B}} + \underbrace{(1/2)(\mathbf{L}^{0}\mathbf{B}^{0} + \mathbf{L}^{1}\mathbf{B}^{1})(\Delta \mathbf{f})}_{\text{Effect of }\Delta \mathbf{f}}$$
(A8.1.1)

2. If we combine L and B, so that M = LB and x = Mf, and then use (8.7),

$$\Delta \mathbf{x} = (1/2)(\Delta \mathbf{M})(\mathbf{f}^0 + \mathbf{f}^1) + (1/2)(\mathbf{M}^0 + \mathbf{M}^1)(\Delta \mathbf{f})$$

Since $\mathbf{M} = \mathbf{L}\mathbf{B}$,

$$\Delta \mathbf{M} = (1/2)(\Delta \mathbf{L})(\mathbf{B}^{0} + \mathbf{B}^{1}) + (1/2)(\mathbf{L}^{0} + \mathbf{L}^{1})(\Delta \mathbf{B})$$

so that

$$\Delta \mathbf{x} = (1/2)(1/2)(\Delta \mathbf{L})(\mathbf{B}^{0} + \mathbf{B}^{1}) + (1/2)(\mathbf{L}^{0} + \mathbf{L}^{1})(\Delta \mathbf{B})(\mathbf{f}^{0} + \mathbf{f}^{1})$$

$$+ (1/2)(\mathbf{M}^{0} + \mathbf{M}^{1})(\Delta \mathbf{f})$$

$$= \underbrace{(1/4)(\Delta \mathbf{L})(\mathbf{B}^{0} + \mathbf{B}^{1})(\mathbf{f}^{0} + \mathbf{f}^{1})}_{\text{Effect of } \Delta \mathbf{L}} + \underbrace{(1/4)(\mathbf{L}^{0} + \mathbf{L}^{1})(\Delta \mathbf{B})(\mathbf{f}^{0} + \mathbf{f}^{1})}_{\text{Effect of } \Delta \mathbf{F}}$$

$$+ \underbrace{(1/2)(\mathbf{M}^{0} + \mathbf{M}^{1})(\Delta \mathbf{f})}_{\text{Effect of } \Delta \mathbf{f}}$$
(A8.1.2)

And, again since $\mathbf{M} = \mathbf{LB}$, the last term is $\underbrace{(1/2)(\mathbf{L}^0\mathbf{B}^0 + \mathbf{L}^1\mathbf{B}^1)(\Delta \mathbf{f})}_{\text{Effect of }\Delta \mathbf{f}}$, as in (A8.1.1).

3. If we combine **B** and **f**, so that $\mathbf{y} = \mathbf{B}\mathbf{f}$ and $\mathbf{x} = \mathbf{L}\mathbf{y}$, and then use (8.7),

 $\Delta \mathbf{x} = (1/2)(\Delta \mathbf{L})(\mathbf{y}^{0} + \mathbf{y}^{1}) + (1/2)(\mathbf{L}^{0} + \mathbf{L}^{1})(\Delta \mathbf{y})$

Since $\mathbf{y} = \mathbf{B}\mathbf{f}$,

$$\Delta \mathbf{y} = (1/2)(\Delta \mathbf{B})(\mathbf{f}^0 + \mathbf{f}^1) + (1/2)(\mathbf{B}^0 + \mathbf{B}^1)(\Delta \mathbf{f})$$

so that

$$\Delta \mathbf{x} = (1/2)(\Delta \mathbf{L})(\mathbf{y}^{0} + \mathbf{y}^{1}) + (1/2)(\mathbf{L}^{0} + \mathbf{L}^{1})[(1/2)(\Delta \mathbf{B})(\mathbf{f}^{0} + \mathbf{f}^{1}) + (1/2)(\mathbf{B}^{0} + \mathbf{B}^{1})(\Delta \mathbf{f})] = \underbrace{(1/2)(\Delta \mathbf{L})(\mathbf{y}^{0} + \mathbf{y}^{1})}_{\text{Effect of } \Delta \mathbf{L}} + \underbrace{(1/4)(\mathbf{L}^{0} + \mathbf{L}^{1})(\Delta \mathbf{B})(\mathbf{f}^{0} + \mathbf{f}^{1})}_{\text{Effect of } \Delta \mathbf{B}}$$
(A8.1.3)
$$+ \underbrace{(1/4)(\mathbf{L}^{0} + \mathbf{L}^{1})(\mathbf{B}^{0} + \mathbf{B}^{1})(\Delta \mathbf{f})}_{\text{Effect of } \Delta \mathbf{f}}$$

and since $\mathbf{y} = \mathbf{B}\mathbf{f}$, the first term is $\underbrace{(1/2)(\Delta \mathbf{L})(\mathbf{B}^0\mathbf{f}^0 + \mathbf{B}^1\mathbf{f}^1)}_{\text{Effect of }\Delta \mathbf{L}}$, again as in (A8.1.1).

Table A8.1.1 summarizes these results. Terms that do not appear in (A8.1.1) are boxed. For example, in Equation (A8.1.2), ΔL appears in two terms – (ΔL) ($\mathbf{B}^0 \mathbf{f}^0 + \mathbf{B}^1 \mathbf{f}^1$) and (ΔL)($\mathbf{B}^0 \mathbf{f}^1 + \mathbf{B}^1 \mathbf{f}^0$) – but each is weighted by (1/4) instead of the (1/2) in Equation (A8.1.1). The amount by which (1/2)(ΔL)($\mathbf{B}^0 \mathbf{f}^0 + \mathbf{B}^1 \mathbf{f}^1$) differs from (1/4)[(ΔL)($\mathbf{B}^0 \mathbf{f}^0 + \mathbf{B}^1 \mathbf{f}^1$) + (ΔL)($\mathbf{B}^0 \mathbf{f}^1 + \mathbf{B}^1 \mathbf{f}^0$)] depends entirely on the difference between ($\mathbf{B}^0 \mathbf{f}^0 + \mathbf{B}^1 \mathbf{f}^1$) and ($\mathbf{B}^0 \mathbf{f}^1 + \mathbf{B}^1 \mathbf{f}^0$). Similar observations can be made for the weightings on $\Delta \mathbf{B}$ in Equations (A8.1.2) and (A8.1.3) vs. Equation (A8.1.1) and on the weighting on $\Delta \mathbf{f}$ in Equations (A8.1.3) vs. Equations (A8.1.2).

Eq.	Effect of $\Delta \mathbf{L}$	Effect of $\Delta \mathbf{B}$	Effect of $\Delta \mathbf{f}$
(8.1.1)	$(1/2)(\Delta \mathbf{L})(\mathbf{B}^{0}\mathbf{f}^{0}+\mathbf{B}^{1}\mathbf{f}^{1})$	$(1/2)[\mathbf{L}^{0}(\Delta \mathbf{B})\mathbf{f}^{1}+\mathbf{L}^{1}(\Delta \mathbf{B})\mathbf{f}^{0}]$	$(1/2)(\mathbf{L}^{0}\mathbf{B}^{0}+\mathbf{L}^{1}\mathbf{B}^{1})(\Delta\mathbf{f})$
(8.1.2)	$(1/4)(\Delta \mathbf{L})(\mathbf{B}^{0}+\mathbf{B}^{1})(\mathbf{f}^{0}+\mathbf{f}^{1}) =$	$(1/4)(\mathbf{L}^{0}+\mathbf{L}^{1})(\Delta \mathbf{B})(\mathbf{f}^{0}+\mathbf{f}^{1}) =$	$(1/2)(\mathbf{M}^{\circ} + \mathbf{M}^{\circ})(\Delta \mathbf{f}) =$
	$(1/4)(\Delta \mathbf{L})(\mathbf{B}^{0}\mathbf{f}^{0}+\mathbf{B}^{1}\mathbf{f}^{1})+$	$(1/4)[\mathbf{L}^{0}(\Delta \mathbf{B})\mathbf{f}^{1} + \mathbf{L}^{1}(\Delta \mathbf{B})\mathbf{f}^{0}] +$	$(1/2)(\mathbf{L}^{0}\mathbf{B}^{0}+\mathbf{L}^{1}\mathbf{B}^{1})(\Delta\mathbf{f})$
	$(1/4)(\Delta \mathbf{L})(\mathbf{B}^{0}\mathbf{f}^{1}+\mathbf{B}^{1}\mathbf{f}^{0})$	$(1/4)[\mathbf{L}^{0}(\Delta \mathbf{B})\mathbf{f}^{0}+\mathbf{L}^{1}(\Delta \mathbf{B})\mathbf{f}^{1}]$	
(8.1.3)	$(1/2)(\Delta \mathbf{L})(\mathbf{y}^{0}+\mathbf{y}^{1}) =$	$(1/4)(\mathbf{L}^{0}+\mathbf{L}^{1})(\Delta \mathbf{B})(\mathbf{f}^{0}+\mathbf{f}^{1}) =$	$(1/4)(\mathbf{L}^{0}+\mathbf{L}^{1})(\mathbf{B}^{0}+\mathbf{B}^{1})(\Delta \mathbf{f}) =$
	$(1/2)(\Delta \mathbf{L})(\mathbf{B}^{0}\mathbf{f}^{0}+\mathbf{B}^{1}\mathbf{f}^{1})$	$(1/4)[\mathbf{L}^{0}(\Delta \mathbf{B})\mathbf{f}^{1} + \mathbf{L}^{1}(\Delta \mathbf{B})\mathbf{f}^{0}] +$	$(1/4)(L^0B^0 + L^1B^1)(\Delta f) +$
		$(1/4)[\mathbf{L}^{0}(\Delta \mathbf{B})\mathbf{f}^{0}+\mathbf{L}^{1}(\Delta \mathbf{B})\mathbf{f}^{1}]$	$(1/4)(\mathbf{L}^{0}\mathbf{B}^{1}+\mathbf{L}^{1}\mathbf{B}^{0})(\Delta\mathbf{f})$

Table A8.1.1	Alternative Decom	positions of	$\mathbf{x} = \mathbf{LBf}$
--------------	-------------------	--------------	-----------------------------