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Fire detection algorithms, 1985–1995

The 1980s saw a number of studies that used AVHRR MIR (band 3) data to detect, track
and measure the spatial and temporal occurrence of natural (wild) fires and anthropo-
genic hot spots, i.e., those associated with oil platforms and industry. In her review, Fire
from space: Global fire evaluation using infrared remote sensing, Robinson (1991) listed
14 papers that focused on such efforts using AVHRR data between 1980 and 1989, to
which a 15th can be added: the study of Dozier (1980) (Table S8.1). In addition, two
studies showed how SWIR data collected by Landsat’s Thematic Mapper could be used
to detect the hot spot associated with the April 1986 accident at the Chernobyl nuclear
power plant (Richter et al., 1986), and to estimate its temperature and size (Rothery,
1989). Later studies showed how TM TIR data could be used to detect underground fires
at coal mines (Prakash et al., 1995), and to estimate the associated ground temperature
and fire depth (Saraf et al., 1995). In addition, using images acquired during the first gulf
war, studies showed how AVHRR and TM data in both the VIS and TIR could be used to
detect fires and to map their associated smoke plumes (Al-Hinai, 1991; Khazenie and
Richardson, 1993; Stephens and Matson, 1993), with Meteosat VIS data being used to
confirm model-based predictions for the extent of smoke plumes from burning oil wells
in Kuwait (Bakan et al., 1991). Later studies also used AVHRR VIS and TIR data to
assess and map fire risk on the basis of vegetation dryness (e.g., Paltridge and Barber,
1988; Vidal et al., 1994).

As part of these efforts, the decade spanning 1985 to 1995 saw the development of a
number of algorithms to detect wild fires in AVHRR, as well as GOES-Imager, data, with
Table S8.1 flagging the paper of Flannigan and Vonder Haar (1986), Forest fire monitoring
using NOAA satellite AVHRR, as the first publication of an automated fire detection
algorithm. In Table 5.2 of Chapter 5 I tabulated 11 different fire detection algorithms
developed during these ten years. As indicated in Table 5.2, seven of these algorithms
were fixed threshold. The remaining four were contextual, and included the first algorithm
published: that of Flannigan and Vonder Haar (1986). These fire detection algorithms, and
their physical basis, underpinned many of the volcanic hot spot detection algorithms that
followed, and so are reviewed here.
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Table S8.1. Brief details of AVHRR fire studies as reviewed by Robinson (1991) [modified
from Table 4 of Robinson (1991)].

Study Details Reference

Dozier (1980) Specifications of algorithms to
estimate the size and temperature of
sub-pixel hot spots using two bands
of infrared (AVHRR) data (i.e.,
definition of the “dual-band
method” of Chapter 4).
Atmospheric correction methods
also considered.

NOAA Technical Memorandum,
NOAA-81021710, Washington,
DC

Dozier (1981) Ditto Remote Sensing of Environment, 11,
221–229.

Matson & Dozier
(1981)

The Dozier (1980; 1981) algorithm
applied to subpixel hot spots
associated with oil flares in the
Persian Gulf. Industrial hot spots
around Detroit identified.

Photogrammetric Engineering &
Remote Sensing, 47, 1311–1318.

Wan (1985) Simulation of smoke interference
with fire signal reception using
multiple scattering radiative
transfer model linked to model of
AVHRR response.

PhDDissertation, University of Santa
Barbara (CA).

Matson et al.
(1984)

Case study of LAC fire imagery
described for various sites; fire
sightings in western U.S. compared
to hot spots appearing in nighttime
(2 am) HRPT images.

NOAA Technical Report, NESDIS 7,
Washington, DC.

Muirhead &
Cracknell
(1984)

Rectification accuracy tested by
comparing hot spot locations on
rectified LAC (channel 3) images
containing gas flare locations of
known location and associated with
North Sea drilling rigs.

International Journal of Remote
Sensing, 5, 199–212.

Muirhead &
Cracknell
(1985)

Hot spots counted on three rectified
LAC channel 3 images of U.K. to
assess straw burning and extent of
compliance with bans on burning
on certain days.

International Journal of Remote
Sensing, 6, 827–833.

Malingreau et al.
(1985)

Hot spot chronology and NDVI
studied across Borneo and
E. Kalimantan during immense
fires of 1983.

Ambio, 14, 314–315.
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Table S8.1. (cont.)

Study Details Reference

Malingreau
(1984)

Ditto 8th International Symposium on
Remote Sensing of Environment,
held in Paris (France), 1–4 October
1984. Ann Arbor: Environmental
Research Institute of Michigan.

Flannigan
(1985)

Fire reports from severe fire outbreak
in Alberta compared to fires
detected by AVHRR. Dual-band
algorithm used to estimate fire size
and temperature. Cloud screening
applied to reject cloud
contaminated pixels.

MSc. Thesis, Colorado State
University, Fort Collins
(Colorado).

Flannigan &
Vonder Haar
(1986)

Ditto Canadian Journal of Forest
Research, 16, 975–982.

Matson & Holben
(1987)

Hot spots and vegetation studied on
one LAC image for a 3 × 6 ° box
over Manaus, Brazil. Dual-band
algorithm applied.

International Journal of Remote
Sensing, 8, 509–516.

Malingreau &
Tucker
(1987)

Fire points in Southern Amazon Basin
studied on a daily basis over two
years in conjunction with studies of
NDVI. Inference drawn about
penetration of settlement into
remote areas.

Proceedings of IGARSS ’87 held in
Ann Arbor, Michigan, 18–21 May
1987. IEEE 87CH2434–9 (New
York: IEEE), pp. 484–489.

Pereira (1988) Fire counts and analysis of smoke
trajectories with estimates of areas
burned and mass combusted based
on Brazilian HRPT data of
Amazonia. Landsat TM compared
to AVHRR.

INPE-4503-tdl/325, Inst. Nactional
de Pesquisas Espacias, 12.201 Sao
Jose dos Campos, SP, Brazil.

Setzer et al.
(1988)

Ditto INPE-4534-RPE/565, Inst. Nactional
de Pesquisas Espacias, 12.201 Sao
Jose dos Campos, SP, Brazil.

Acronyms:
HRPT: High Resolution Picture Transmission (direct read-out of AVHRR data to ground stations).
GAC: Global Area Coverage.
LAC: Local Area Coverage.
NDVI: Normalized Difference Vegetation Index
[see Cracknell (1997) for full definition of GAC + LAC data format]
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Fixed threshold algorithms applied for fire detection: 1985–1995

Fixed threshold tests designed to detect fire-related hot spots in satellite data developed by
the fire community between 1985–1995 tended to use MIR and TIR data to determine
whether a pixel was hot or not. Plus, occasionally, VIS and NIR data to determine whether
there were cloud or reflection problems. As detailed in Chapter 5, up to five fixed threshold
tests could be applied to determine:

(1) Was the pixel hot?
(2) Was the pixel hot due to solar heating?
(3) Was there cloud contamination?
(4) Were there high levels of reflection?

Note, here, that the last two tests were designed to determine whether anomalously high
brightness temperatures in theMIR, and hence also elevated ΔT (see Chapter 5 for definition
and use), were due to high levels of reflection in the MIR. The pixel would have to pass all
tests to be flagged as a fire pixel, and to then be used for fire counting or area mapping.

Generally tested on AVHRR data (all but one of the algorithms listed in Table 5.2 are
designed to run on AVHRR), the algorithms also had to work with relatively low saturation
levels (50 to 70 °C), so that most (if not all) fire-related hot spots tended to saturate the MIR.
Solar heated and highly reflective surfaces could also saturate AVHRR’s MIR band (see
Electronic Supplement 1). Sunglint from water (ocean and lake) surfaces, for example, has
frequently been observed to cause saturation of AVHRR band 3.

Kaufman et al. (1990)

The first fixed threshold algorithm for hot spot detection in satellite data was that of
Kaufman et al (1990). Designed to run on AVHRR data to detect forest burning in Brazil,
it was later applied by Kennedy et al. (1994) for fire detection in AVHRR data for West
Africa. Using AVHRR channel 3 and 4 brightness temperature data (TMIR and TTIR), the
algorithm applied three tests:

TMIR ≥ 316 K
ΔT > 10K
TTIR > 250 K ðcloud testÞ

where ΔT was equal to TMIR-TTIR. The first test was designed to determine whether the pixel
was close to saturation (i.e., greater that or equal to 43 °C, this being within 4 °C of the 320 K
saturation level given by Kaufman et al (1990). However, because solar heated soil or dry grass
in the tropics may be as hot as 43 °C, the next test required that theMIR brightness temperature
had to bemuch greater than theTIR brightness temperature, indicative that the pixel contained a
fire rather than a solar-heated surface. The third test checked that the pixel did not contain highly
reflective cloud, which would also elevate the MIR brightness temperature relative to that in

4 Electronic Supplement 8



the TIR. Clouds are normally quite cold, so if the brightness temperature in the TIR was
relatively high (more that –23 °C), then it probably did not contain cloud.

Setzer and Pereira (1991)

Also designed to detect forest burning in Brazil in AVHRR data, the method of Setzer and
Pereira (1991) was somewhat more simple, involving a single test that used AVHRR
channel 3 data, the pixel being flagged as hot if

TMIR > 319 K

Manual detection of smoke plumes with their source at the detected hot spot was then used
to determine if the detection was real (i.e., associated with an active fire) or not (i.e.,
associated with solar heating). Another algorithm was published with a similar basis, but
using DN criteria by Pereira and Setzer (1993). In this case, the pixel was flagged as hot if

DN 5 10 or 8

That is, if DN was close saturation, saturation in AVHRR theoretically being 0 (although see
Electronic Supplement 1).

Brustet et al. (1991)

Designed to detect wild fires in West Africa using AVHRR (channel 3 and 4) data, the
approach of Brustet et al. (1991) used scatter plots and frequency distributions of MIR
versus TIR brightness temperatures to set thresholds on a case-by-case basis. As in the
examples given in Figure 5.7 (for the scatter plot approach) and Figure 5.8 (for the histogram
approach) of chapter 5, the scatter plots and histograms were used to define the cluster of
values related to ambient surfaces, and outliers due to fires. The outliers could then be
flagged as fire-containing pixels.

Kennedy et al. (1994)

Again designed to run on AVHRR data to detect wild fires burning in West Africa, the
algorithm was essentially that of Kaufman et al. (1990), with a slightly higher TMIR and ΔT
threshold, plus an extra reflection test:

TMIR > 320 K
ΔT > 15 K

TTIR > 250 K
RNIR 5 16 %

The final test used reflection in the NIR (AVHRR channel 2) to determine whether or not
there were high levels of reflection. Presence of highly reflective surfaces could result in
anomalously high TMIR and ΔT, meaning that the pixel would pass the first two “hot tests”
without necessarily containing a fire. This last test was thus designed to filter out such cases.

Fixed threshold algorithms applied for fire detection: 1985–1995 5



Chuvieco and Martin (1994)

Developed to detect forest fires in Spain using AVHRR data, the method of Chuvieco and
Martin (1994) used a simple threshold applied to AVHRR channel 3 data to determine
whether a pixel was hot or not:

Day: TMIR > 317 K
Night: TMIR > 295 K

The nighttime threshold level was reduced because the absence of reflection and solar
heating by night meant that surface temperatures were lower. To avoid false detections
due to solar heated soil, a forest mask was applied. This was obtained through “classification
of several AVHRR normalized difference vegetation index (NDVI) images recorded prior to
the fire”, with the test only being applied to forest pixels, i.e., pixels within the forest mask.

Arino and Melinotte (1995)

The algorithm of Arino andMelinotte (1995) was designed to allow generation of a monthly
atlas of fire index over Africa between July 1992 and June 1994. Developed at EAS/ESRIN,
the algorithm ran on AVHRR data and involved five tests:

TMIR > 320 K
TMIR > TTIR þ 15 ði:e:; ΔT > 15 KÞ
TTIR > 245 K
RVIS 5 25 %
RVIS � RNIR > 1%

These are the tests of Kaufman et al (1990), as modified by Kennedy et al. (1994) and with
the extra (reflection) test of Kennedy et al. (1994) added. However, also added was a fifth
test that used reflection in AVHRR bands 1 and 2 RVIS and RNIR to check for sunglint, which
could supply band 3 with unwanted levels of reflected radiance, hence allowing the TMIR

and ΔT tests to be passed.

Franca et al. (1995)

The final fixed threshold algorithm of the 1985–1995 period was published by Franca et al.
(1995) to detect West African wild fires in AVHRR data. It involved five steps:

TMIR > 320 K
ΔT > 15 K
TTIR > 287 K
RVIS 5 9 %
0 � T10μm � T12μm ≥ 5 K

T10μm and T12μm being the brightness temperature in AVHRR TIR channels 4 and 5.
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The first four steps are now familiar, being the algorithm of Kaufman et al (1990), as
modified by Kennedy et al. (1994), however, the final test was new. This test used the
difference in temperature in AVHRR’s 10 μm and 12 μm channels (i.e., channels 4 and 5)
and checked that they were within the range 0 to 5 °C. This was a further cloud test, where in
clear-sky conditions the T10μm − T12μm difference is usually lower than 1 °C, although
sometimes up to 2.5 °C. Thus, taking only pixels in this range meant that cloud-contaminated
pixels were likely filtered out.

Contextual algorithms applied for fire detection: 1985–1995

While fixed threshold algorithms are quick to apply and require relatively little processing,
contextual algorithms are a little more complex and require higher degrees of image
processing. Four were applied for fire detection between 1985 and 1995, three being used
with AVHRR data and one with GOES-VAS data. A further algorithm was used by NASA
Goddard, as reported in the IGBP-DIS Satellite Fire Detection Algorithm Workshop
Technical Report (Justice and Dowty, 1994), with a sixth algorithm being published in
1996. Generally such algorithms tended to use a 3 × 3 pixel kernel, such as that defined in
Figure S8.1, to determine whether the central pixel in the kernel was anomalous when
compared to the surrounding eight “background” pixels.

Flannigan and Vonder Haar (1986)

The first algorithm of the contextual type was that of Flannigan and Vonder Haar (1986). It
was also the first algorithm to use ΔT. The algorithm, designed to detect forest fires in
AVHRR data, followed four steps and applied four tests:

Step 1: Implement cloud-screening to mask and exclude cloud-contaminated pixels.
Step 2: Estimate the mean TMIR and TTIR for cloud-free background pixels from the eight

pixels in a 9 × 9 pixel box centered on the target pixel (see Figure S8.1a).
Step 3: Locate fire-containing pixels by applying the following three tests:

Test (i) TMIR of target pixel > mean TMIR for the background
Test (ii) TTIR of target pixel > mean TTIR for the background
Test (ii) Target pixel ΔT > 8 K (nighttime) or ΔT > 10 K (daytime)
Pixels passing all three tests were flagged as fire-containing.

Step 4: Apply the two-component dual-band method, using the mean temperature
estimated for the background pixels and the scan-angle-dependent pixel area, to
estimate fire area and temperature (see Chapter 4).

By moving across the entire image, applying the same series of tests to each pixel in turn, the
whole image could be checked for hot spots, with a different threshold being defined for
each pixel depending on local background conditions.

Contextual algorithms applied for fire detection: 1985–1995 7
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Figure S8.1 Kernel types used to apply contextual hot spot algorithms. In each case, the hot spot
pixel(s) (black) are compared with statistics taken from the ambient background pixels (white).
(a) Classic, where a 3 × 3 pixel box is centered on the hot target pixel (T), and background statistics
are taken from the eight surrounding pixels (B). (b) Lee and Tag (1990) modification, whereby we
distinguish between background pixels in the cardinal directions (side pixels: S) and corner pixels
(C). (c) and (d) give solutions for cases whereby the target pixel is fully, or partially, surrounded by
other hot spot pixels. (c) Langaas (1993) solution: whereby statistics are taken from the closest non-
hot background pixels in the cardinal directions (B), or we can use the closest pixel (in this case
corner pixel, C). (d) NASA/Goddard solution: whereby the size of the kernel is increased until at
least 25 % of the background pixels are non-hot. In this case, this situation is reached for a 5 × 5 box
centered on the target pixel (T). In this case, 11 of the 25 pixels in the kernel are hot, and 14 (56 %)
are cold (valid) background pixels. Background statistics are now taken from those pixels marked B.
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Lee and Tag (1990)

Designed to detect natural and anthropogenic fires in AVHRR data, Lee and Tag’s (1990)
approach was contextual in that it split each group of nine pixels into a target pixel, to be
tested, and background pixels whose temperature statistics would be used to test for an
anomaly in the central target pixel (see Figure S8.1b). However, rather than using the
background pixels to set thresholds, it used their values to apply the dual-band method to
the central pixel and assess whether the solution was compatible with the pixel containing a
hot spot or not. The algorithm applied the following six steps:

Step 1: Apply a low temperature screen:
IF TTIR for the target pixel < 263 K (−10 °C) THEN: Pixel is eliminated.
This acts as a crude cloud filter. Such a filter will need to be reduced in polar
regions, at high altitudes, or over ice and snow covered terrain where surface
temperatures (even anomaly temperatures) may be lower than –10 °C.

Step 2: Apply an atmospheric correction.
Lee and Tag (1990) used that of McClain et al. (1985) – see Electronic
Supplement 4.

Step 3: Estimate the background temperature using the mean of the four atmospherically-
corrected side pixels (side-pixel locations in relation to the target pixel are given in
Figure S8.1b).

Step 4: Select a threshold hot component temperature (Th) for a two component mixture
model and use this, with the mean TIR background temperature obtained
from the side pixels (= Tc), to estimate the size of the fire required to yield TIR
pixel-integrated temperature for the target pixel, i.e., apply Equation 4.6c of
Chapter 4:

p ¼ Mðλ; T intÞ �Mðλ; TcÞ
Mðλ; ThÞ �Mðλ; TcÞ

Step 5: Using the Th and Tc input into the mixture model, with the output fire size, to
estimate the corresponding pixel-integrated temperature in the MIR for the same
two component mixture model, i.e., apply Equation 4.5 of Chapter 4:

Mðλ;TintÞ ¼ Mðλ;ThÞ þ ð1‒pÞ Mðλ;TcÞ

This value is then used as the threshold.
Step 6: If the TMIR for target pixel is greater than the threshold, then pixel is flagged as a

‘fire pixel’.

Execution of Step 4 requires assumption of a temperature for the hot component residing in
the pixel. The range of hot component temperatures used by Lee and Tag (1990) to apply this
model is given in Table S8.2. This tabulation shows that, although the incidence of false
detection decreases with temperature selected for the hot component, so too does the number
of hot spots located. We raise the issue here: is it better to detect all hot spots at the expense
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of many false detections, or to have no false detections, but not all of the hot spots? The
answer to this question will depend in the objectives of the user (see Section 5.3.7 of
Chapter 5).

ABBA (Prins and Menzel, 1994)

The Automated Biomass Burning Algorithm (ABBA) of Prins and Menzel (1994) was
developed to detect seasonal variations in forest burning across South America in GOES-
VAS data. Given the size of the region to be monitored, the number of fires to be located,
the number of images available and duration of the study period (seasonal to annual), such
an application required automation. The algorithm used elements of the Flannigan and
Vonder Haar (1986) and Lee and Tag (1990) approaches to determine whether the pixel
contained a hot spot or not. It also used regional statistics, rather than thresholds from local
9 × 9 pixel grids centered on each target pixel, to set image-dependent thresholds, an
operation that reduces processing time. The algorithm followed seven steps and involved
six tests:

Step 1: Implement a cloud-screen to mask and exclude cloud-contaminated pixels.
Step 2: Estimate the mean and standard deviation in TMIR and TTIR for all cloud-free pixels

across a 150 km × 150 km sector. This defines the background values for each band
(TMIR-B and TTIR-B)

Step 3: Within that sector, execute the following two tests:
Test (i) ΔT for the target pixel > mean ΔT for the background.
Test (ii) TMIR for the target pixel minus TMIR-B > 1.5 × TMIR-B standard deviation

or 2 K (whichever is greater).
Pixels passing these tests are passed to the next step.

Step 4: Execute atmospheric, emissivity and reflection corrections to produce corrected
values for each band (TMIR-C and TTIR-C).

Table S8.2. Performance of the Lee and Tag (1990) contextual fire detection algorithm with
increasing assumed hot spot temperature (in the dual-band model used to set fire size). Test
was carried out by Lee and Tag (1990) on a 85 544 pixel image containing 20 hot spots
[modified from Table 2 of Lee and Tag (1990)].

Assumed fire temperature (K)
(and in °C)

No. of hot spots
correctly detected

% of hot spots
detected

False
detections

350 K (77 °C) 19 95 21
375 K (102 °C) 19 95 5
400 K (127 °C) 19 95 3
500 K (227 °C) 17 85 0
600 K (327 °C) 14 70 0
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Step 5: Execute three more tests:
Test (iii) TMIR-C > 300 K and TTIR-C > 295 K.
Test (iv) TTIR-C for the target pixel minus TTIR-C for the background > 1 K.
Test (v) TMIR-C for the target pixel minus TMIR-C for the background > 5 K.
Pixels passing these tests are passed on to step 6.

Step 6: Apply the two-component dual-band method using the background temperature
and scan-angle-dependent pixel area, to estimate fire area and temperature.

Step 7: Apply a final test:
Test (vi): Estimated fire temperature > 400 K.

This final test was applied to assess whether the dual-band solution was reasonable, and all
pixels passing this final text were flagged as ‘fire’.

We note that step 3 is designed to further reduce processing time by quickly eliminating
pixels that almost certainly do not contain hot spots. The tests following step 3 then
complete further checks to confirm, or reject, the presence of a fire in the remaining
pixels.

Langaas (1993)

Building on the fixed threshold approach of Brustet et al. (1991), which used scatter plots of
TMIR versus TTIR to set single band detection thresholds on an image-to-image basis,
Langaas (1993) applied a semi-automated means by which the operator used the frequency
distribution of temperatures, or digital numbers (DN), for an image (or sub-image) to assess
an appropriate threshold. Like Lee and Tag (1990) and Prins and Menzel (1993), Langaas
(1994) also assessed the output of the dual-band method to determine whether the result was
reasonable, or not. The algorithm followed six steps and involved two tests:

Step 1: Divide the image into ‘thermally homogeneous’ sub-images.
Step 2: For each sub-image, produce a frequency distribution for DN or brightness

temperature in the MIR. Use the distribution to assign a threshold value. Langaas
(1993) did this on the basis of frequency, finding that the DNwith a frequency of 50
was a suitable cut-off between fire pixels and non-fire pixels, so that this point was
used to define the DN threshold. If, for example, the DN bin of 151 had a frequency
of 50, then this was the threshold used for the sub-image case from which the
histogram has been extracted.

Step 3: All pixels with a DN less than, or equal to, the threshold were flagged as potential
fire pixels.
Note that the relation between radiance and DN is negative for AVHRR, so that
lower DNs relate to higher pixel integrated temperatures; hence the requirement
that DN needs to be less than, or equal to, the threshold. For sensors with a positive
calibration, the test will be reversed: the appropriate frequency bin at the high end
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of the distribution will be found and used to set a threshold, where all cases where
DN ≥ the threshold will be defined as ‘potential fire’ pixels.

Step 4. Use the mean TTIR of the four side pixels surrounding each potential fire pixel (or
group of fire pixels) to define a background temperature (Tc).

Step 5: Use this background temperature to solve the two-component dual-band equation
to output a fire temperature and size.

Step 6: Compare the extracted fire temperature with a threshold fire temperature to accept
or reject the pixel: if the modeled temperature is greater than the chosen threshold
fire temperature, then the pixel is a ‘fire’ pixel. A temperature of 470Kwas selected
by Langaas (1993) as an appropriate threshold for Savanna fires.

The algorithm of Langaas (1993) raises two new issues. First, the need to filter hot spots from
the background of the target pixel so that it does not effect the ‘ambient’ threshold. Langaas
(1993) achieved this by grouping his ‘potential fire’ pixels into ‘agglomerates’. Then, for each
target pixel within an agglomerate, he used the values from the nearest non-fire pixels in each of
the cardinal directions, as shown in Figure S8.1c, to define the fire-free background. Second, if
the TIR background temperature is greater than the TTIR for the target pixel, then the dual-band
method will not solve (see Chapter 4). In these cases, methods that rely on solution of the dual-
band will fail and the fire will be missed. Langaas (1993) pointed out that this problem was not
trivial, estimating that it caused 24% of his fire pixels to be missed. For cases where Tc ≥ TTIR,
Langaas (1993) used a modified background (Tc-m) calculated using:

Tc-m ¼ TTIR-t � Tcorr

in which

Tcorr ¼ 1

n

X
ðTTIR�t � Tc�cÞ

Simply, the temperature of the target pixel (TTIR-t) was reduced by a factor depending on the
average of the difference between the target pixel and its background in each of the cardinal
directions (Tc-c). This modified Tc was then used to solve the dual-band, it now being less
than the TTIR for the target pixel, thus allowing solution. It should be stressed that this
correction should only be used to allow pixel detection, and not to extract meaningful
solutions, it being very much a fabricated value: a value of convenience generated simply to
allow the detection algorithm to function.

The NASA/Goddard (Justice and Dowty, 1994) approach

The problem of fire pixels existing in the background for the target pixel, and thereby
corrupting the background-defined threshold, was further addressed by an algorithm devel-
oped at the NASA/Goddard Space Flight Center. The algorithm, developed for use with
AVHRR data, was reported in Justice and Dowty (1994) and implemented two steps and
four tests:
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Step 1: Identify ‘potential’ fire pixels by completing the following three tests:
Test (i) Target pixel TMIR > 316 K
Test (ii) Target pixel TTIR > 290 K
Test (iii) Target pixel TMIR > TTIR (i.e., ΔT > OK)
If the pixel passed all three tests, it was flagged as a ‘potential’ fire pixel. All
operations now applied to just these pixels, reducing the number of pixels consid-
ered, and hence processing time.

Step 2: Complete a second level of tests on the ‘potential’ fire pixels:
Test (iv) Target pixel ΔT is greater than ΔT mean from the background, plus two

times the standard deviation of the ΔT for the background pixels, or 3 K
(whichever is greater).

Pixels passing this final test were classified as ‘fire’ pixels.

This was much like the Flannigan and Vonder Haar (1986) and ABBA algorithms, but
calculated the mean and standard deviation for the background in a slightly more
complex way, designed to exclude fire pixels from the calculation of the background
statistics:

* A 3 × 3 pixel box was centered on the target pixel, and the background statistics were
calculated using the eight pixels surrounding the central target pixel.

* However, background pixels that were also ‘potential’ fire pixels were excluded.
* Thus, the size of the background box was expanded, up to a maximum size of 21 × 21,
until at least 25 % of the background pixels were ‘non-fire’ and thus available for
calculation of the background statistics.

* There was a requirement that at least three pixels were available, otherwise the pixel was
not classified.

A schematic showing this operation is given in Figure S8.1d.

Flasse and Ceccato (1996)

Flasse and Ceccato (1996) adopted a similar approach in developing their “contextual
algorithm for AVHRR fire detection”. The algorithm involved a pre-test, whereby ‘potential’
fire pixels were selected if:

(i) Target pixel TMIR > 311 K, and
(ii) Target pixel ΔT > 8 K

but rejected if

(iii) Target pixel RNIR ≥ 20 %

RNIR being the reflection recorded in the near-infrared. As with the fixed threshold algo-
rithms, rejection of pixels meeting the third condition reduced problems due to solar-heating
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and highly reflective surfaces (e.g., those experiencing sunglint). Finally, for each potential
fire pixel, the following statistics were calculated:

TMIR-b = TMIR mean for the potential fire pixel background;
σMIR-b = TMIR standard deviation for the potential fire pixel background;
ΔTb = ΔT mean for the potential fire pixel background;
σΔTb = ΔT standard deviation for the potential fire pixel background.

Statistics were taken from a 3 × 3 window centered on the potential fire pixel, from which
other potential fire pixels were excluded. The windowwas expanded to a maximum size of 15
× 15 pixels until the same criteria as the Justice and Dowty (1994) approach was achieved.
Finally, the pixel was classified as a fire pixel if the following two tests were passed:

(iv) Target pixel TMIR minus [TMIR-b – 2σMIR-b] > 3 K

and

(v) Target pixel ΔT > [ΔTb – 2σΔTb]

Summation

This material is placed here to add detail to, and case-study support for, the generic hot spot
detection models presented in Chapter 5. It is also the foundation onwhich most of the chapter
5 volcanic hot spot detection models are based. That is, they define and apply tests capable of
determining whether a pixel is thermally anomalous in a spectral and/or spatial sense. The
detail of fixed threshold algorithms applied for volcano hot spot detection, that could not be
included in Chapter 5, are given in the following supplement (Electronic Supplement 9).
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