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Solutions to Exercises

Chapter 1

1.1.

1.2.

1.3.

1.4.

First, take an infinite sequence A, A,, ... € ¥. By de Morgan’s law,

ﬁAi =Q\ O(Q\Ai)-
i=1 i=1

By Definition 1.10, Q is in ¥, all the Q \ A; are in , their union is
in F, and finally, its complement is in ¥ .

Now for a finite sequence Aj,...,A, € F,put A,,; = Qfori =
1,2,....Since Q € ¥, we have

ﬁA,» = ﬁA, eF.
i=1 i=1

Fix 0 < a < b < 1. We show that the open interval (a, b) is in .
For each n = 1,2,... large enough so that ﬁ < b —a we can find
rationals r, < s, witha < r, < a + }l and b — ,1_1 < s, < b. Now
(a,b) = U, (ra, sn), and as F is a o-field containing all (r,, s,,), we
have (a,b) € F.
(1) We first show that if {F}c; is any collection of o-fields defined
on the same set Q, then their intersection (1, ¥; is also a o-field.
We have Q € F; for all j, so Q € (), F;. Next, take A € (e, F;.
Then A € F,50 Q\ A € F; forall j € J; hence, Q\ A € (;; F;.
Finally, suppose that A;,As, ... € (;e; ;. Then A; € F; for all i
and j, so that | J;2, A; € F; for all j. Thus, U2, Ai € Nje; F)-
Apply this with Q = R and {F}je; = {F : ¥ isao-field on R and
I c ¥} to see that B(R) is a o-field containing 7.
(2) Since ¥ is a o-field on R containing 7, it appears in the intersec-
tion defining B(R), which means that B(R) C 7.
For any singleton {a}, where a € R, we have m({a}) = 0. Indeed,
by definition, m({a}) is the infimum of the sum of the lengths of any
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L.5.

1.6.

1.7.
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countable covering. Given any & > 0 we can cover {a} by the open
intervals I, = (a — 55,4+ 2%) forn =1,2,....Then )7, I(I,) =
% < &. Hence m({a}) = 0.

It follows that m([4,2)) = m({3) + m((},2)) =0+ (2 - 1) = 2
since the union is disjoint and {%} is a singleton.

Write [-2,3]U[3,8] = {-2} U (-2,3) U {3} U (3, 8) U {8} to obtain
a disjoint union, and use the additivity of m to obtain, similarly, that
m([-2,3]U[3,8]) = 10.
By countable additivity, and since m ({%}) =0foreachn=1,2,...,
we have

11 - 11 > (1 1 1

’"(U(m’;D—Zm((n+r;])—2(;‘ 1)

n=2 n=2 n=2

Any countable subset of R has Lebesgue measure 0. To see this, write
A = {a, : n > 1} as a disjoint union of singletons and use countable
additivity:

m(A) = m(o{an}] = i m({a,}) = 0.

=1 -1
Therefore the countable sets N, Q and {x € R : sinx = cos x} have
Lebesgue measure 0. Since m(R) = oo, we have m(R\Q) = m(R) —
m(Q) = co.

First, we show that the Cantor set C is uncountable. We adapt the
proof of the uncountability of R. Each x € [0, 1] can expressed in

ternary form as
> a
x:Z3—k =0.a1a;...

with coefficients a; = 0,1 or 2. We have a one-to-one correspon-
dence between C and ternary expansions of the form 0.a;a; ... with
each a; equal O or 2.

Suppose that C is countable, so that it can be arranged into a se-
quence: C = {xy, X2, x3,...}. By the diagonal procedure, we define
a number x in the following way: if the nth digit in the ternary ex-
pansion of x, is equal to O (or 2), then we take the nth digit in the
ternary expansion of x to equal to 2 (or 0, respectively). That is, we
simply interchange O and 2 at the nth position. Hence the ternary ex-
pansion of x contains only 0 or 2 in any position, but differs from the
ternary expansion of each x, in at least one position, so x ¢ C. The
contradiction shows that C is uncountable.



1.8.

1.9.

Solutions to Exercises 3

All that remains is to check that m(C) = 0. By definition, C =
My~ C, and C, consists of 2" disjoint closed intervals, each of length
(%)n The total length of this sequence of intervals equals (%)n Since
C, D C,41 for each n, we have

2 n
m(C) = lim m(C,) = lim (5) =0.

First note that [((a, b)) = {((a + x,b + x)) = b — a. If a sequence of
open intervals (I;),2, covers A € B(R), that is, if

ACQ[k,

then the sequence of intervals (/; + x);7 | covers A + x,

A+xCU(Ik+x).
k=1

So we have a one-one correspondence between the interval coverings
of A and A+x. Moreover, the total length of a family of intervals does
not change when we shift each by x,

00 00

Z (L) = Z I(L, + x).

k=1 k=1

This implies that the collections of total lengths of such coverings
satisfy

00

{il(lk):Acilk}={Zl(fk):A+xc0fk}
k=1

k=1 k=1 k+1

were I, and I, are open intervals. So their infima are equal, which
proves that m(A) = m(A + x).

We use the Riemann integral and standard calculus techniques in
solving this exercise, as the integrands are continuous. Clearly, f(x) >
0 for all x € R. We need to verify that the integral from —co to 400



1.10
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of f(x)is 1. Let us begin with u = 0 and o = 1. Then

(ool 5o - 7 o5
:ﬂj:ﬁﬂfm«%VWFQ
[ renl ZJor= ool 2)

To compute the above integral, we substituted the polar coordinates:
X =rcosg,y=rsing.
Now, for any ¢ and o,

fw ! exp(—(x_'u)z) f exp( )dz
—0 O V21 202 \/gr

where the substitution u+oz = xis used. If follows that L 0:0 f)dx =
1, as required.
As a simple consequence of Exercise 1.9 we have

> 1 (mx—uf) j“ 1 ( &—ﬂf)
exp|- dx = exp |- dz=1,
~f0 xo V2 P ( 2072 o O \21 P 202

where the substitution z = In x is used.

=1
0

. Let

=Zm:r1A, S—Zs,lg,
i=1

where Ay,...,A, € T, A NA; = @fori # j, UL A = Q and
Bl,...,BnET,B,-ﬂBj=®f0ri¢j, U?:lBjZQ'
For any a, b > 0 we have

ar + bs = Zml i(a”i +bsplg,,

i=1 j=1

where E;; = A;,NB;,fori=1,...,m,j=1,...,n. Thusar+bsisa
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simple function. By Definition 1.25

f(ar +bs)du = Z Z(ar, + bsu(E;j)

i=1 j=1

We apply additivity of the measure u to find
Zﬂ(Eij) = [U(Ai n Bj)] = [Ai U { Bj]] = u(A)).
=1 =1 =1

Similarly,
> uE =p [U(A,» n B»] = p [[U Ai] n Bj] = u(B;).
i-1 =1 i

As a consequence,

Il+12:aZri,u(A,-)+szj,u(Bj)=afrd/4+bfsd
= Q Q

i=1

. Let

m n
r= Zr,-lAl,, s = ZS]'IB/.,
J=1

i=1

where Ay,...,A, € F,ANA; = @fori# j, UL A = Qand
By,...,B, e F,BNB;=ofori+ j, U?Zl B; = Q. By the additivity
of the measure u we get

frdu Zw(A)-ZZw(A N B)).
=1 j=1
Similarly,
fgsdy Z ,u(B)—ZZsju(A N B).
i=1 j=1

Since for any w € Q, r(w) < s(w), it follows that r; < 5; on A; N B;.
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This implies that r;u(A; N B;) < s;u(A; N B;), which yields

frdusfsd,u.
Q Q

The ‘only if” part of the statement is obvious: (a, ) € B(R), so
{f >a} ={f € (a,©)} € F when f is measurable.

The ‘if” part is based on the fact the o-field of Borel sets is gener-
ated by intervals.

First, the family C of all sets A C R such that {f € A} € F
is a o-field. Let us verify the conditions of Definition 1.10. Since
{f €e R} = Q e 7, it follows that R € C. Suppose A € C. Then
{f eR\A} = Q\{f € A} also lies in C because ¥ is a o-field. Now,
let Ay, Az, ... € C, then {f € U, Ai} = U {f € A;} € F. It follows
that | J2, A; € C.

Second, C contains the family J of all open intervals: since (a, c0) €
C, it follows that (—co, a] = R\(a, =) € C, (a, b] = (a, )N (-0, b] €
C.la,b] = Ny (a—1,b] € Cand finally (a,b) = UL [a+1,b-1] €
C. By part (2) of Exercise 1.3, we obtain B(R) c C.

Let s = X1, s;14,, where Aj,...,A, € ¥ are pairwise disjoint with
UL, A; = Q. For any a € R, by Exercise 1.13, it suffices to show that
{s > a} € F.But{s > a} = | JA;, where union extends over all i such
that s; > a. This yields {s > a} € F.

By Exercise 1.13, it is enough to show that {g o f > a} € ¥ for any
a € R.Let A = (a, 00). Then by the continuity of g, the inverse image
g '(A) = {g € A} is an open subset of R. We claim that any open
set U in R is a union of countably many open intervals. To see this,
consider all open intervals contained in U with rational endpoints.
Their union is clearly contained in U. In fact, it is equal to U since
for any x € U, we have (x — &,x + &) C U for some ¢, and we can
find rational numbers a and b such that x € (a,b) C (x — &, x + &).
This proves that U € B(R). As a consequence, we have g7!((a, o)) =
{g > a} € B(R). By Exercise 1.13, it follows that

{gof>a)=f"(g"(ax)eF.

This proves that g o f is a measurable function.
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We observe that the following are measurable sets for any a € R:

n

(max(fi,.... fu} > a) = |_Jifi > a,
k=1

(min{fi,.... fu} > ab = (|(fi > ab.

k=1

By Exercise 1.13 we obtain the conclusion.

. Analogously to Exercise 1.16, the following are measurable sets for

any a € R:

{sup fu > a} = _J{fu > al,

n>1

$ 1

finf f, > a) = [\ > a).

n=1

By Exercise 1.16, sup,,; f, and inf, < f, are measurable functions. It
is now immediate from Exercise 1.17 that

lim sup f;, = inf(sup f;),

n—oco k>1 n<k

lim inf f, = sup(inf f,)

n—co k>1 n<k
are measurable functions.
This is immediate since

lim f, = limsup f, = liminf f,,

n—oo

so that we can apply Exercise 1.18.
In order to prove s, < 5,41 forn = 1,2,... it is sufficient to observe
that

i i+1
Ain= — <
NN
2i 2i+ 1 2i+1 2i+2
={st< 2n+l}u{2n+l Sf< 2n+l}

= Agips1 U Agivi a1

By definition, s, is constant on A;, and its value is 2L Similarly

% for w € A2i,n+l s

Sn+1 (0-)) =

2i+1
ST for w € A1 41
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This shows that s,(w) < §,41(w) and s,(w) < f(w) for all w € Q,
n =1,2,.... Now we show that f = lim,_,. s, pointwise, which
means that f(w) = lim, . s,(w) for any w € Q.

Letw € Qand & > 0. There exists an integer N such that f(w) < N
and 57 < €. Choose i € {1,2,..., N2V} such that

ZLN < flw) < ’;—Nl

This implies that f(w)—sy (w) < 2%, < &. Since s, is a non-decreasing
sequence, we have f(w) — s, (w) < eforalln > N.
By Proposition 1.28, there are non-decreasing sequences {s,}, {#,} of
simple functions such that f = lim,_. s, and g = lim,_ #,. This
immediately gives af + bg = lim,_(as, + bt,). Since as, + bt,
is a simple function for n = 1,2,... , by Exercise 1.14 it is also
measurable. It follows by Exercise 1.19 that lim,_,.(as, + bt,) =
alim, . s, + blim, . t, = af + bg is measurable.
We can repeat the argument of Exercise 1.21. Namely, by Proposi-
tion 1.28 there are two non-decreasing sequences {s,}, {t,} of sim-
ple functions such that f = lim,. s, and g = lim,_ #,. Obvi-
ously, lim, e S,t, = lim, e 5, lim, o £, = fg. Since 5,1, is a sim-
ple function, by Exercise 1.14 it is measurable, and by Exercise 1.19,
lim,_, $,t, = fg is measurable.
For any simple function r, Exercise 1.12 implies that Definitions 1.25
and 1.29 give the same result since

sup { f sdu : s is a simple function such that s < r} = f rdu.
Q Q

For any measurable functions f, g : Q — [0, o) such that f < g we
have the inclusion

{ f sdu : s is a simple function such that s < f }
Q

c { f sdu : s is a simple function such that s < g},
Q

and the supremum of the bigger set is larger. It follows that

fQ fdu < fg gdyu.

By Proposition 1.28 (see also Exercise 1.20), there are non-decreasing
sequences {s,} and {t,} of simple measurable functions such that
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lim, s, = fi and lim,_,, £, = f>. Then lim, (s, + t,) = fi + />,
and this implies that f; + f> is a measurable function. The monotone
convergence theorem (Theorem 1.31) combined with Exercise 1.11

shows that
f(fl + f)du = fﬁdu+ff2dy.
Q Q Q

Next, define g, = f1 + - -+ + f,. By Exercise 1.21, g, is a measurable
function, and lim, . g, = Y., fo- By Exercise 1.19, 77, f, is a
non-negative measurable function. Applying induction, we have

n(i = v’“ iCi .
ngu ;qu

Using the monotone convergence theorem once again, we have

fg (iﬁz)du=g fg fudp.

n=1

We have |f| = f* + f~. For an integrable f the functions f*, f~
are measurable by Exercise 1.16, and both fQ f*du and fg f~du are
finite. By Proposition 1.32,

LWW=LfW+LfW

and the integral on the left is finite, hence so is the right-hand side.
If |f] is integrable, then by Exercise 1.23 both [, f*du and [, f~du
are integrable since f* < |f] and f~ < |f]. Therefore f is integrable.
Using f = f* — f~and |f| = f* + f~, we have

[ s =| [ = [ ra
< [ raur [ rau= | 1w

Let f, g be arbitrary integrable functions. Note that by Exercise 1.23
and Proposition 1.32

LD%&WSLMHMW=LWW+LMW

so the left-hand side is finite. By Exercise 1.25, f + g is integrable.
We can write

(f+e —(f+g =f+g=("-H+E -g).
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Rearranging to have only non-negative functions on either side, we
get

(f+ +f +g =f+g +(f+g).

By Proposition 1.32,

f (f+g) du+ f Fdut f gy = f Frdus f gdut f (F+e)du,
Q Q Q Q Q Q

hence

f (f+8) du— f (f+8) du = f frdu— f fdu+ f g du~ f g du.
Q Q Q Q Q Q

By Definition 1.33, this shows that

\fﬁ+@¢wifﬂw+jéﬂt
Q Q Q

Next, for any integrable function f and any ¢ € R we have (cf)* =
c*f*+c fTand (c¢f)” = ¢ f*+c* f~. By Definition 1.33 and Propo-
sition 1.32, cf is integrable and

[esau= [ @nrau- [ eprau

[@rverage [ @ree
HLf@+6Lf@—€Lﬁ@—HLf@
{Lﬂm

Finally, for any integrable functions f, g and for any a,b € R the
above results show that af, bg are integrable and therefore af + bg is
also integrable, and

f(af+bg)d,u:fafdu+fbgdu:affdu+bfgdp.
Q Q Q Q Q

If f < g, then f* < g" and f~ > g~. These inequalities imply

fﬁWSffw
Q Q
f{WSffW
Q Q

by Exercise 1.23. Adding and rearranging gives the result.

and
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Let f = lim,_,« f,,- We show that

lim | fdu = f fdp.
Q Q

n—oo

The limit exists and satisfies

lim fnd,usffd,u
Q Q

n—oo

because fg f»du is a non-decreasing sequence bounded above by
fgfd,u by Exercise 1.28. Consider g, = f, — fi = 0. It is a non-
decreasing sequence of non-negative integrable functions such that
lim, .. g, = f — fi- Applying the monotone convergence Theo-
rem 1.31 and Exercise 1.27, we get

lim | g,dy = lim (f Sfudu — ffld#) = f(f—fl)d#-
n—oo Q n—oo Q Q Q
This implies that

lim | fidu= f fdu.
n—o00 Q Q

The integral is defined as long as at least one of fﬂ f*du and j;z fdu
is finite. So if fg fdu = 0 we know that both are finite, hence f is in-
tegrable (else its integral is +00). Hence u({f = +o0}) = u({f = —oo})
0, so f is u-a.e. finite. Now suppose that fodu =0forall Be ¥.
As f is measurable, {f > 0},{f < 0} € ¥, and we have

o= [ sau= [ frdu- f Od,
{f>0} (>0} {f>0}

0= f fdu = f 0du — f fdu.
{f<0} {f<0} {f<0}

Proposition 1.36 now shows that the non-negative measurable func-
tions f*, f~ are both 0 p-a.e. Since {f # 0} = {f* > 0} U (f~ > 0},
we have u({f #0}) = 0. Conversely, if f = 0 u-a.e., then 0 =
udf # 0 =u(f > 0}) + u({f < 0}), and u takes only non-negative
values, so u({f* > 0}) = u({f~ > 0}) = 0. Proposition 1.36 thus ap-
plies to both functions, hence fQ ffdu = fQ f~du = 0. This means
that for any B € ¥ we have foJ’d,u = fo‘du = 0, hence fod,u =
0.

We have

F) = ) a0,
k=1
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where A; is the union of the 2*~! intervals of length 37* each that are
removed from [0, 1] at the kth stage of constructing the Cantor set.
Let us define the nth partial sum of the series

rax) = ) Ky, (3.
k=1

Since r,(x) is a non-decreasing sequence converging to f(x) for each
x € [0, 1], by Theorem 1.31

n k 1 1 ) o) k—1
fdm = lim r,dm = hmZk = 5;]‘(5) .

[0,1] n—oo [0,1] n—oo

Since Y2, & = = if o] < 1, differentiation term-by-term with
respect to @ shows that

- 1
k-1 _
E ka/ —(1_0)2.

k=1
. _ 2 _
With @ = £ we get f[o’]] fdm = 3.

In order to show that the Riemann integral fol f(x)dx does not
exist, we define two sequences of approximating sums with different
limits. For any n € N let us take a partition of [0, 1] given by

1 2 3" -1
0<—<—x<...< <1.
3n 3n 3n
For eachi = 1,...,3" we have elther(3,, , 3’) c Ay for some k =
1,. nor(3,,,3n)CC If<?,§)cAkf0rsomek—l , N, WE

take any x;,y; € ( > 3) so f(x;) = f(y;) = k. If, on the other hand,

(i;,l, 3,1) c C,, then there are points x;,y; € ( 3,,1, 3,,) such that x; € C

and y; € Az, so that f(x;) = 0 and f(y;) = 3". Now consider the
approximating sums

3" 3" k-1
= S5 5) = D = R
3" 3" o ok-l 7\
= o35 - Do - e (3)

We have already seen that lim, ., @, = 3. But lim,_,., 3, = 0. This

. . 1 .
means that the Riemann integral fo f(x)dx does not exist.
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By assumption, both f* and f~ are integrable. By Definition 1.29,

R

ff*dm = sup {f sdm : s is a simple function such that s < f+} .
R

Let s = X, si1a, where Ay,...,A, € B(R) are pairwise disjoint
sets with [ J.;A; = Rand s; > Ofori = 1,...,n such that s < f*.
Consider the simple function r(x) = s(x — a). We have

n n

)= sila(x—a)= ) sy < ff(x-a) = g ().

i=1 i=1
By Definition 1.25 and Exercise 1.8, we have

n n

fsdm = Z sim(A;) = Z sim(A; + a) = frdm.

R i=1 i=1 R
This implies that the sets

{ f sdm : s is a simple function such that s < f+},
R

{ f rdm : ris a simple function such that r < g+}
R

are the same, so their suprema are equal, which means that & frdm =

k g*dm. For the same reason fRf‘dm = & g dm.
Apply the first Fatou lemma with f, = 1, , so that

P(U ﬂAk]z fQ liminf 1,, dP

n>1 k>n

n—oo

= liminf P(A,).

n—oo

< liminf f 1,, dP
Q

First note that for any sequence g, of non-negative measurable func-
tions, the partial sums h, = Y_, g are non-decreasing and that
lim, e hy = D50 k> SO by monotone convergence

fngdP = f lim h, dP = lim | h,dP
Q k:1 Q n—oo n—oo

Q

= lim fgde=ngde.
TS Ve =1 ve
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For the given sequence f;, apply this result to g = |fi|, which non-
negative and measurable. Letting ¢ = X7, |fi|, we obtain

L‘Pdﬂ=k2:f|ﬁc|dll-

The right-hand side is finite by hypothesis, so ¢ is integrable. There-
fore ¢ is finite p-a.s. So the series Y., |fil converges u-a.s., and
therefore the series ) ;- fi converges (since it converges absolutely)
p-a.s. Let f = Y02, fi (put f = 0 on the set of y-measure 0 for which
the series diverges). For all partial sums we have

>
k=1

so we can apply the dominated convergence theorem to find

ffdy:flimekdyzlimfokdy
Q Q n—0oo k=1 n—oo Q k=1
:limefkdu=fokd#,
n—oo k:] Q k:l Q

<,

as required.
If x>0, we have e ™ € (0, 1), so

N —X\1 _ e _ 1
;(6 )= l—e* e -1

Hence the integrand can be written as 2~ = >, xe™"*. Integration
e¥—1 n
1

by parts shows that f[o o) xe " dm(x) = fom xe"dx = -5 for each
n=1,2....By Exercise 1.34,

00

© X X - 1
dx = dm(x) = dm(x) = Y —,
fo‘ 1 by f[o,m) 1 m(x) nZ:; f[o’m) xe "“dm(x) Z P

n=1

and the last sum is well-known to be %2.

Suppose that w — f(w, s) is integrable for some s € [a, b] and define
I, = fQ f(w, $)du(w). It is obvious that lim,_,, I; = I, if and only if
lim, . I;,, = I, for any sequence s, such that lim,_,. s, = . For
any such s, we are given that lim,_ f(w, s,) = f(w,t) for each
w € Q. Moreover, |f(w, s,)| < g(w) for each n and each w € Q. By
Theorem 1.43, w — f(w,s,) and w — f(w,?) are integrable and
lim, . I, = I,. It follows that lim,_,, I, = I,.
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Chapter 2

2.1.

2.2.

2.3.

24.

Denote by D the set of all points of discontinuity of F'. For each point
a € D there exists a rational number ¢, such that

F(a-) <q, < F(a)

If a, b are discontinuity points of " and a < b then g, # g, because
F(a) < F(b—). So we have a one-one correspondence between a sub-
set of rational numbers and the set D, which is therefore countable.
The definition of P shows that

P(Q) = ]Zola’kpk(g) = ]Zolalk.

So Yo, ar = 1 is a necessary condition for P to be a probability
measure. This condition is also sufficient. Suppose that 3,7, oy = 1
holds. We show that P is countably additive. Let A;,A;,... € ¥ be a
sequence of pairwise disjoint events. Then

i iam(fx) = Z P(A)).

i=1 k= i=1

The family o(X) trivially contains Q and the empty set. Take A, €
oc(X)forn =1,2,..... Then A, = {X € B,} = X"'(B,) for some
B, € B(R). Using the properties of the inverse image, we get

0 A, = O X '(B,)=Xx" (0 B,,] € o(X).
n=1 n=1 n=1

For A € o(X) we also have A = X~ '(B) for some B € B(R) and
Q\A=Q\X'(B)=X"'R\ B) € c(X).

Suppose at first Y is a simple function and let yy, ..., y,, be its differ-
ent possible values.

Since A; = {Y = y;} € 0(X), we have A; = {X € B;} for some B; €
B(R). Define h = 3", y;1p,. Thus his a Borel function. We show that
for each w € Q, X(w) belongs to only one B;. For if X(w) € B;NB; for
somei # j,wehave w € X"'(B;NB;) c X' (BH)NX'(B;) = AiNA,,
which is impossible since A; N A; = @ for i # j. For X(w) € B;
observe that i(X(w)) = y; = Y(w) since {X € B;} = A; = {Y = y;}.

For a general random variable Y, applying Proposition 1.28 to the
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positive and negative parts Y* and Y~ of Y, we find a sequence of
simple random variables Y, such that ¥, (w) — Y(w) for each w € Q.
By the first part, for each n there is a Borel function 4, : R — R such
that Y, (w) = h,(X(w)), w € Q.

Let B be the set of x € R for which {A,(x)} converges. By Exer-
cise 1.18, B is a Borel set since B = {x € R : liminf,_ h,(x) —
limsup,_,. h,(x) = 0}. Let h(x) = lim,_ h,(x) for x € B and
let i(x) = O for x € R\ B. Since h,15 is measurable, it follows
by Exercise 1.19 that & = lim,_,. h,1p is measurable. For each w,
Y(w) = lim,5 h,(X(w)); this implies that X(w) € B and conse-
quently Y(w) = lim, . h,(X(w)) = (X (w)).

The opposite implication is trivial.

2.5. If x < =1, then P({X < x}) = 0.If -1 < x < 1, then P({X < x}) = 1.
If x > 2, then P({X < x} = 1. The result is the distribution function

0 ifx<-1,
Fx(x) = % if-1<x<1,

1 ifl<x.
This function is shown in Figure S.1. The dots represent the values
of Fx(x) at x = —1, 1, where the distribution function has disconti-
nuities.

2.6. Forn = 1,2,... the probability that the nth toss of the coin is the first

to yield ‘heads’ is P({X = n}) = zl We can see that }, 7, P({X =
ny) =" zl = 1. Thus the distribution function F is given by

Fx(x) = Px((—00,x]) = P(X < x}) = ) P(X =n})

n<x

_{0 if x <1,

=) 1.1 L =
s+3+..+5 ifn<x<n+1,n=1273,. ..
_ 0 if.x<1a

- 1—% ifn<x<n+1,n=12,3,...

2.77. Suppose that each X, forn = 1,2,3,... is a random variable having
the binomial distribution with parameters n, p (see Example 2.2),
where p = 4 for some A > 0. Then

rein= == ) (-3
)
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A Fz
1o @)

y &

-1 0 1

Figure S.1 Distribution function in Excercise 2.5.

since (n_';j)!nk =(1-Ha-3-...-d-H>1,0-H* > land
(1-4y > etasn — co.

2.8. The event {Y = n} occurs exactly when the number of trading dates
is n. It is the intersection of two independent events, requiring that
the first n — 1 trading dates record r — 1 upward price moves and
that the price also moves up on the nth date. These events have prob-
abilities given by ("})p""'(1 — p)"" and p, respectively. Multiply
these probabilities (which is justified formally in Chapter 3), to find
PUY =n}) = (7))p (1 = pyr~.

The discrete random variable Y has distribution Py = | @,0y,,
where x, = nand @, = ('r’:;)p’(l -p)y"=0forn=rr+1,r+2,....
We verify that «,, add up to 1.

i%:iCijwW

o (n—1 1
— ]_ n—r _ r—=1.
p;(ﬂ_r)( p) P

The sum is computed by using x = 1 — p in the Taylor expansion
D (’::;)x"” of (1 — x)™" around 0.

2.9. Using the density of the normal distribution and making a change of
variables in the integral, for any y € R we have

P(ng):Pw+aXSy)=P(X§¥)

% 1 2
= e Tdx
j:oo \Y 2

Yol e o
= f e dz (substituting z = y + ox),
—oo O 27T

which shows that Y has the normal distribution N(u, o?).
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2.10.

2.11.

2.12.

2.13.

Solutions to Exercises

For any Borel set B € B(R),

P({b+aX eB})=P({Xe(B-b)/a}) = f Jx(x)dx.

(B-b)/a

Using the substitution y = ax + b, we can transform the last integral
into [, & f(5)dy.
For any Borel set B € B(R) we define B* = {y e R : % € B}. Thus,

B € B(R),0 ¢ B* and % € B & X € B*. We calculate the density

function of Y = %:

5 2

1 1
:f—1[—1,0)m3*(x)+f—1(0,1]m3*(x)dx-
R 2 R 2

Substituting y = i in both integrals, we get

1 1
fRzl[_l’O)mB*(X)dX:fRz_yzl(—m,—]]ﬁB(y)dy’

1 1
-1 (x)dx = f—l 0 dy.
11;2 ©,11n8+ (X) et yne(Y)dy

1 1 1
Pl—eB|=PX¢€ B*) = f —1[_1,1](x)dx = f —1[_1’1]QB*(X)d.X
X 2 *

Finally,

1 1
Pl=€B|= | —SLjo-11u[l.c d
(X ) L2y2 {(—co—1]u[1Leo)nB)Y

1
= fz; z—ﬁl(_m,—l]u[l,m)(ﬁd)’-

The assumptions on g ensure that it is an invertible function. For any
Borel set BC R

P(g(X)e B)=P(X € g '(B) = Jx(x)dx
g '(B)
-1

where we make the substitution x = g~!(y) in the integral.
For a put option written on a log-normally distributed stock, the dis-
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) 3 —
0.6 1
04+
02F . ﬂ
----- T L

4 -2 0 2 4 6 K=8 10 12 14 16 18 20
Figure S.2 Distribution function for the put option payoff in Exercise 2.13.

tribution function of the payoff H = (K — S(T'))* can be written as
Fu(x) = P{(K - S(T))" < x}

B 0 if x<0,
T P{K—x<S(T)} if x>0,
B 0 it x<O0,
- 1 —FS(T)(K_)C) if x>0.

The graph of Fy is shown in Figure S.2 in the case of a put option
with expiry time 7' = 1 and strike price K = 8, and a log-normally
distributed stock with parameters y and o as in Example 1.24. The
dot indicates the value Fy(0) = 1 — Fg ) (K) at x = 0, where F has
a discontinuity. For comparison, the log-normal distribution function
Fg1y is shown as a dotted line.

2.14. Let X be arandom variable with values x,, = (=2)" forn =1,2,3, ...

and corresponding probabilities p, = P({X = x,}) = % for n =

1,2,3,....Then
2N-1 2N
Z XnPn = —1, anpn =1
n=1 n=1

foreach N = 1,2,.... Hence B(X) = X7, x,p, is undefined because
the series does not converge.
2.15. By definition,

o AT o A
_ 3,1 -1 A Y
= lde Z(k—l)!_ﬂe Z()!—/le e’ = A
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2.16. First consider the case of g(x) = 13(x) for a Borel set B C R,

2.17.

E(go X) = L 1;(X(w)dP(w) = fg Lixwes(w)dP(w)

=P({XeB)) = f Jx(x)dm(x) = f 15(x) fx(x)dm(x).
B R

Then by linearity we have the result for simple functions. A non-
negative g can be written as the limit of some s, T g (see Exer-
cise 1.20). By the monotone convergence theorem (Theorem 1.31)
we have

f g(X(w))dP(w) = lim f sn(X(w))dP(w)
Q Q

= lim f $n(X) fx (xX)dm(x) = f 8(x) fx(x)dm(x)
R R

since s, o X T go X and s,fx T gfx. For a general integrable g
such that g o X is integrable we consider positive and negative parts
separately.

First we prove that fR |x| fx(x)dx is finite:

« 1 G-p? o0 1 2
[x] e 2 dx = f loy + e 2dy
foo V2no? —o0 V2

0 1 \'2 o0 1 "2 2
<o | Dl—=eTdy+ul e Tdy = —— + |yl
—00 V27T —00 V27T V27T

e‘§+ 2 )_ 2
\2n

= lim

M(- % Var

0 l \'2
e 7dy=1
%

since

a

and

0 1 2 | _2 . 2 2
f:oolylme 2dy=2£ mye 2a’y=31_}1101c ) Eye zdy.
Now

o 1 =p)? e 1 2
E(X) = f x e ¥ dx= f (oy+p) e rdy=p
—o V2102 —00 V2n

since, by Example 2.34,

<1 2
yve 7dy = 0.
|
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In the case of the Cauchy distribution we have

0 <1 1 1 " 2x
d e dx=- | =4
Ioo X fx(x)dx f_m |x|7r 1+2 "7 j; T+

1 ) 1
—limf Y dx= = limIn(l + a?) = oo,
0

T a0 1+ x2 T a0

which means that the expectation is undefined.
Suppose that a random variable X has distribution Py = ido + %P,
where P is the exponential distribution with density (2.1). Then

1 3 3 (™ 3
X)=—. = 1 - —Ax . —-Ax = =
B(X) =5 0+7 L e de™dm(x) = 7 fo A3 Vdx =

If X has the Poisson distribution with parameter A, then
2 NI AN 2
E(X?) = ;k e ;[k(k— D+k

00

= et i A + et A
= (k-2)! = (k-1

= Le et + detet = 22 + A
Since E(X) = A by Exercise 2.15, it follows that
Var(X) = E(X?) - E(X)* = .

Suppose that X ~ N(u,0?). By Exercise 2.17, E(X) = u. Let us
compute Var(X):

1 _mw?

e 2 dx
V2no?
o’ fw ) 2 2
= — ye zdy=o0o
V21 J-o

since & [~ y%e~dy = V2. The last integral is found by integrat-
7= J_o ¥y € 7dy = V2r. The last integral is found by integra
ing by parts.

(1) For a random variable X with exponential distribution we com-
pute

Var(X) = L (x -y

00 00 1
E(X) = f xfx(x)dx = f x/le_dxl[o,m)(x)dx = f xde ™ Ydx = 7
R —00 0

Obviously, the integral is absolutely convergent. In order to compute
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2.23.

2.24.

Solutions to Exercises

Var(X) we first calculate

E(X?) = fw xzfx(x)dx = fw XleYdx = 3

Then

2 1 1
Var(X) = E(X?) - E(X)* = T ECE

(2) For a random variable X with log-normal density (see (1.7)) we
have

E(X) = f xfx(x)dx
R

> 1 (nx—p? > 1 (nx—p?
= e 27 1jpey(x)dx = f e 22 dx.
foo oN2r 0o oV2or

By substituting y = In x, we obtain

<1 o=
E(X) = f e 2 dy
oo

o O N21

1.2 0 1 “b-(ra)? 2
- e}l+§(1' e'Tdy - eﬂ+(7'

—0 O N21

00
1 b=+

f e 22 dy=1.
—0 V21
Next, we compute

0 X (nx-p? 0 X (In x—p)?
E(X?) = f e 27 1jge(X)dx = f e dx
- o V21 (0 0o o\2r

<1 2y —0m? | _ b2 2u+o?)
= eYe 27 dy = e 202 e dy
-0 O V21 -0 O V21

= Qutoh)

since

As above, we substituted y = In x. Finally,
Var(X) = E(X?) — B(X)? = Xi+07) — o240 = g2ut0% (00" _ 1),

(1) ¢x(0) =E() =1.
(2) lpx (D] = [E(e"™)] < E(le™]) = E(1) = 1.
Let X have the Poisson distribution with parameter 4 > 0. Then

¢ is a discrete random variable with values ¢ and corresponding
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probabilities e‘”% fork=0,1,2,....It follows that

= Ak - - Aeit k it it
dx(t) = Zeilﬁe”k = A Z ( k') = oAt = D).
! =y !

k=0

2.25. If Xisa random Varlable with the standard normal distribution N(O, 1),

then fy(x) = = 7. It follows that
ox(t) = foo "™ fy(x)dx = foo 1 e Ty
oo o V27
= ! e’é e 2@ gy = o2

Vo Jes

since f_ o; e 260’ gy = \2r.
2.26. If Y = aX + b, then

¢Y(t) — E(eitY) — E(eit(aX+b)) — eith(eiaIX) — eitb¢x(at).

When Y has the normal distribution N(u,0?), we can write ¥ =
oX + u, where X has the standard normal distribution N(0, 1). By
Exercise 2.25, it follows that

Py(t) = M3,

2.27. Since Var(X) = E(X?) — E(X)?, Theorem 2.42 shows that Var(X) =
v (0) + ¢;((O)2. But ¢x(0) = 1, hence simple transformations show
that Var(X) = —(In ¢x)”(0).
2.28. Suppose that X ~ N(0, o?). By (2.3) (see Exercise 2.16),

1 f _2
xX'e 22 dx.
o V2 Jr

For odd n we have E(X") = 0 since we integrate an odd function. Let
n=2kk=1,2,3,.... Then

1
E(X*) = —fx e de
oV2n

Integrate by parts with u = x**! and v = xe i to get

E(X") =

(o el 1
B(X*) = ———x* 1732 |2 + 022k — 1) f %2455
Var o2

1 f 262 -
X TCe 02 dx
o V2r Jr

=02k -1)
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since first term vanishes. By repeating integration by parts, we can
prove that E(X*) =1-3-5-...- 2k - 1)o**.

In the general case, when X ~ N(u, 02), we have ¢y (1) = ™27 +ikt
by Exercise 2.26. The derivatives of ¢x(#) with respect to ¢ are

qﬁ;((t) = (—0’2t + l'lu)e—%rrzt%im’
BY(0) = (07 + (=02t + ip)P)e 27
By (1) = [-302 (=01 + ip) + (=02t + i) Je 2 HM
BL(1) = [B0 — 602(—0t + i) + (0t + i) ]e 27
Substituting ¢ = 0, we obtain
1 /
1 "
BOC) = S 4(0) =+ 0,
1
E(X’) = =¥ (0) = 1 + 3uo”,
E

1,
E(x*Y) = i_4¢x(0) = u* + 6’0 + 30*.

Chapter 3

3.1.

3.2.

Take two subsets A, B ¢ R? of the form A = A; X Ay, B = B; X By,
where Ay, A,, B, B, are non-empty Borel sets and Ay N By = @,
Ay N By = @. Assume further that (A; X Ay) U (B X By) = C; X Cs,
where C,, C, are Borel sets.

Since Ay XA, C Cy X C,, By X B, C C; XxCy, we have Ay, B; C C;
and A,, B, € C,. Hence (A; U B)) X (A, U By) C Cy X Cs.

Now, taking x € A; and y € B,, we have (x,y) € C; X C, but
(x,y) ¢ (A X Ay) U (B X By), which is a contradiction.
First note that for any A; € ¥, and A, € ¥, we have {Pr; € A} =
A1 X Q; and {Pr, € Ay} = Q; X A,. Define the family of sets (‘cylin-
ders’)

C:{A]ng:A]e?']}U{Q[XAz:Aze%}.

By construction, the projections are measurable with respect o (C).
Further, since C is contained in the family consisting of all finite
unions of elements of R, it follows that o-(C) C o (R).
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We also have
Al XAy = (A1 X Q) N(Q XAy) € a(C).

Thus, o"(R) C o(c(C)) = 0(C), and 0(C) = o(R) = F1 ® F>.
Denote by ¥ the smallest o-field on R? containing the family

I ={l; X I, : I}, I, are open intervals in R}.

Since 7 ¢ B(R?), it follows that o-(7) ¢ B(R?). In order to show that
B(R?) C o(I) we first prove that for any A, B € B(R) we have A X R
and Rx B e o(1).

Let us consider two families

D ={AcR:AxReo(l)}, D,={BCR:RXxBeo(l)}.

We verify that D; and D, are o-fields. We do this for D; (for D, the
proof is identical). Of course R € D;. If A € D, then A X R € o(J)
and R?\ (A xR) = (R\ A) xR € o(I), which means that R\ A € D;.
Finally, if A|,A;,... € D, then A; xRe o(J) fori=1,2,...,and

O(Ai X R) = [O A,-] xR € o(]).
i=1

i=1

Hence, |2, A; € Dy.

It follows D; N D, is a o-field. Moreover, since D and D, contain
all open intervals, so does D; N D,. Hence, by Exercise 1.3, B(R) c
D, N D,. This implies that B(R?) = B(R) ® B(R) ¢ D; ® D,. To
show that D; ® D, = o(J) take any A; € D; and A, € D,. Then
Al XA =(A XR)N(R XAy) € (Z), and so D; ® D, C o(1).

For a measurable rectangle B = B; X B, with B € #; and B, € %>,
we obtain B, = B, if w; € By and B,,, = @ otherwise, hence

BixB,eH={HeF %, : H, €%, forall w; € Q;}.

We need to show that H is a o-field. To verify that take H € H.
Then

(Q\ H), = {w; : (wy,wr) € (Q\ H)}
=W \{w; : (w1, wr) € H} = \ H,,
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and Q \ H € H. Now take H|, H,, ... such that H; € H. We have

() =fors nm ()

i=1 ' i=1

= J1wr 1 i w2) € HY = JH,.
i=1 i=1
Since H is a o-field containing any measurable rectangles B = B} X
B,, we have ¥ ® F, c H. By the definition of HH, this implies that
A, € Frforany A € 1 ® F, and w; € Q,. The proof for A, is
identical.

First we show that the limit in Definition 3.9 (iii) exists. By (3.4)
(Theorem 3.5 (iii)) and Definition 3.9, we have

1”@ ul(C N (A, % B,)) = f (€ X (Ay X B (@)

Q

_ f 1(Co, 1 By (w))dpts (@1)
Q

Sfﬂz(CwlﬂBn+|)1A,M(wl)dM1(wl)
Q

(n+1

= 1"V @y (€ N (Apir X Byir))

since
C, NB, ifw €A,
(CN(Ay X By, = .
2 otherwise.
Hence ,u(l") ® ,u(z")(C N (A, X B,)) is a non-decreasing sequence of

non-negative numbers. This implies that the limit exists.

In order to prove that this limit does not depend on the choice of
the sequences A,, B, take two other sequences of events A, € F
with u1(A,) < oo and A, C A,,,, and B, € F> with u»(B,) < o
and B, c B,,, forn =1,2,3,...such that Q, = |J, A, and Q, =
Uz, B,.. Denote by i the restriction of y; to A, and by il the
restriction of y; to B,. For the same reason as above,

B @A N Gy x B = [

w2(Co, N B (w1)dpy (w)).
Q

By Theorem 3.5 (i), for any C € F1®% the functions w; = u(C,, N
B)1,,(w1), w1 = (a(Cy, N E’,,)lgn(a)l) are measurable with respect
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to F foralln =1,2,3,.... Moreover, for any w; € Q; we have
ry_{g#Z(le N Bn)lAn(wl) = }HgﬂZ(Cw] N Bn)lAn(wl) = IuZ(Cwl)-

Then, by Exercise 1.19, the function: w; — (C,,) is measurable
with respect to 7. Using the monotone convergence theorem, we
have

lim 1" ® 13”(C N (A, X B,)) = lim f ur(Co, N By (wy)
n—00 n—00 QI

_ f 112(Co ) ()dpty (1)
Q

n—oo

= limf p2(Co, N B)1; (w1)dp (w)
Q
= lim 4" ® @(C N (A, x B,)).

3.6. Take A, B, as in Definition 3.9 (i). We have A, X B, C A,;1 X B4
forallm=1,2,3,...and

leﬂzz[OA,,]x(OBn]= ) A, X B,.
n=1

n=1 n=1

Fix any n = ny. By Theorem 3.5 (iii), we have
(k1 ® p2)(Any X Byy) = 1im 1" ® 1157 ((An, X Byy) 0 (Ay X By))
= 1" ® 1" (Ay, X By,)

since (A,, X B,)) N (A, X B,) = A,, X B,, for n > ny. On the other
hand,

0 @ U Aoy X B = [ Ay X B i )
Q

= f 15 (B ), (w1)dp™ (wy)
Q

= 1A, (B,,)
= lul(Ano)MZ(Bno) < oo,

3.7. By m™ we denote the restriction of the Lebesgue measure m to
(—=n,n). In order to apply Definition 3.9 (iii) to the Lebesgue mea-
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sure m on R, we compute
m™ @ m"™(((a, b) X (c,d)) N ((=n,n) X (-n,n)))

= f m"((a,b) X (e, d)) O (=n, 1) X (=1, ), )dm ™ (x)

R

= f m™((c, d) O (=1, W) @ py-nm(0)dm™ (x)
R

= fm((c, d) N (=n, 1)1 g pyn(nm (X)dm(x)

R

=m((c,d) N (—n,n))m((a,b) N (-n,n)) = (b —a)(c — d)

for all n such that (a, b) and (c, d) are contained in (—n, n). We have
applied the simple observation that

(((a, b) x (¢, d)) N ((=n,n) X (=n,n)));
~ {(c, d) N (=n,n)  if x € (a,b) N (=n,n),

@ otherwise.

This gives the conclusion.

Suppose that (X, Y) : Q — R? is a random vector on (Q, 7). Let B

be a Borel set in R. Then Bx R € B(R?) and {X € B} = {(X,Y) €

BxR} € F. This implies that X is a random variable. Similarly for Y.
To prove the converse consider the family

H ={BeBR>:{(X,Y)e B eF).

Any measurable rectangle B; X B, with By, B, € B(R) belongs to H
since {(X,Y) € By XxB,) = {X € Byn{Y € B} e F.If B €
H, then the complement R? \ B belongs to H since {(X,Y) € R?\
B} = Q\{(X,Y) € B} € . Now, suppose that B, € H for n =
1,2,3,....Since {(X,Y) € U,_, B,} = U, {(X,Y) € B,} € F, the
union |2, B, is also in H. Hence H is a o-field and B(R?) C H.
This implies that (X, Y) is a random vector.

The random vector (Xi, Y;) takes values (X, Y1)(w;) = (110,60)
and (X1, Y1)(w>) = (90,40) with probabilities § and 5. Then for any
B € B(R?) we have

0 if {(90,40),(110,60)} N B = @,
Px, v, (B) =41 if{(90,40),(110,60)} C B,
% otherwise.

If we denote by 6,, the Dirac measure on B(R?) concentrated at a
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point (x,y), then the joint distribution of (Xi, Y1) can be written in
the form

a4 = =9 + —0 .
XY, ) 110,60 ) 90,40
Similarly, for (Xz, Yz)

1
Px,y, = 55110,40 + 5590,60-

Hence, Py, y, # Px,.y,- For the marginal distributions we have
1 1
Px, = Py, = 5590 + 55110,

1 1
Py, = Py, = z640 + =060
Y v = 5040+ 5060
If < s, then (=00, ] C (o0, 5] and
Fyy(t,y) = PX <1,Y <y) S P(X < 5,Y <y) = Fxy(s,y).

This means that Fyy(x,y) is non-decreasing in x. Similarly for y.
Now, by Theorem 1.11 (v), we have

lim Fyy(a,y) = lim Fxy(a,n)
y—)OO n—oo

= }ng Px y((—00, a] X (—oo,n])

= Pyy((=00,al x |_J(=e0,n])
n=1
= Pxy((—00,a] XR) = P(X € (—00,a]) = Fx(a).

The proof that lim,_,., Fxy(x, b) = Fy(D) is similar.
Since

Fx(a)=P(X <a,Y >b)+ Fxy(a,b),
Fy(b)=P(X >a,Y <b)+ Fxy(a,b),

and so

1=PX>a,Y>b)+P(X<aY>Dhb)
+P(X>aY<b)+ Fxy(a,b)
=PX >a,Y>Db)+ Fx(a)+ Fy(b) — Fxy(a,b),

it follows that

P(X>a,Y>b)=1-Fx(a)— Fy(b) + Fxy(a,b).
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3.12. First we show that fxy given by (3.5) is a density. Observe that

1_—p2(x% - 2pX]X2 + X%) = X% +

1 2
1_—p2(3€2 - px1)°.

By Fubini’s theorem and since the bivariate density is a continuous
function, we have

f —1 exXp (_—x% — 2o X%)dmz(xl X2)
R 2141 — p? 2(1-p?) ,

2
<l 1 43 1 1 xz—pxl]
= —e 2 —eXp|—= dx; |dx;
L{@ —o \2r(1 = p?) [ Z(ﬁ—pz
R B
= e 2dx; =1
L, Nors ‘

since integrating by substitution with y =

22PY oives
Vi
o 1 1 ? ©
X2 — pX1 _2
—exp|—= dx; =f e Tdy=1.
Lo \27(1 = p?) [ 2(\/1—,)2)] —o V21

Now, by (3.6), we have

= - 1 x> = 2pxy +y*
Jx(x) = ffo,Y(x, ydm(y) = fRzﬂ— T exp (——)dy

1-p?
1 0 1
= — erexpl-—=——0O- x)z)d
PN fw p( 21-p2) > PV

_ie_% f"" ! ex (—(y_pX)z)d
BN Y =y s S W T Y b
1 x?
mexp(—;).

ol

The proof that fy(y) = \/4271 exp (—}72) is similar.
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3.13. Let Bbe aBorel setin R and let A = {(x,y) € R?> : x + y € B}. Then
Py.y(B)= P(X+Y € B) = P(X,Y) € A)
- [ [ st ydmaiy)

_ f ( f 1A<x,y>fx,y<x,y>dm(y))dm(x)
R R

by Fubini’s theorem

- f ( f 15 iy (.2 - x)dm(z)) dm(x)
R \JR
by the substitution z = x + y and by Exercise 1.32

= f(ffx,Y(X,Z—X)dm(z))dm(x)
r\JB

= f(ffx,Y(X,Z—X)dm(x))dm(z)
B\Jr

by Fubini’s theorem.

Hence fR Jxy(x,z — x)dm(x) is the density for X + Y.
3.14. Suppose that random variables X, Y have joint density

Sy () = € g k0,000

To find the density of X/Y we compute the distribution function
Fx/y. Let z > 0. Then

Fyy(@ = PXX/Y < 2) = Pyy(i(x,y) : );‘ <zxy>0)

= f €_(X+y) 1(0,oo)><(0,oo) ()C, )’)dmz(x, y)
{(xy): 5 <z}

by Fubini’s theorem and since e"**” is continuous

:f [f e_xe_ydy]dxz‘[ [e_xf e_ydy)dx
o \J: 0 .

« Z
= f e e idx = ——.
0 ] +Z

Since Fx,y(z) is a differentiable function for all z € (0, o), we have
Fy (@ = fir@ = g

3.15. The proof is similar to that for n = 2 (Exercise 3.3). Since 7, C R,,
we have o(Z,) c B(R"). To show the reverse inclusion define

™

D;={AcCR:RI'XxAXR" " eo(I,)) fori=1,2,73,...,n.
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3.16.

3.17.

Solutions to Exercises

We verify in the same way as in Exercise 3.3 that D;, i = 1,...,n
are o-fields. Hence, by Exercise 1.3 we have B(R) c D; for i =
1,2,3,...,n. This implies that BR") = BR)® ... B(R) c D; ®
...®D,. Inorder to show that D, ®...® D, = 0({,), take any A; € D;
fori=1,2,3,...,n. By the definition of D;, we have
Arx Ay x - x Ay = [ R XA xR} € (7).
i=1
It follows that
D ®...®D, Cco(l,).

The proof is similar as in the case n = 2 (Exercise 3.8). Suppose that
X =(X,...,X,) is arandom vector on (2, ). Let B be a Borel set
in R. Then R™! x BxR"" € B(R") fori = 1,...,n, and {X; € B} =
{X € R™! x Bx R""} € . This implies that X; is a random variable
fori=1,...,n.

To prove the converse, consider the family H = {B € BR") :

{X € B} € ¥}. Any measurable rectangle B, X B, X - -- X B, belongs
toH for Bie B(R)andi=1,...,nsince {X € By X By, X---XB,} =
NL{X; € B} e F.1f B e H, then R"\ B € H since {X € R"\
B} = Q\{X € B} € ¥. Finally, if B; € H fori = 1,2,3,..., then
{X e U2, Bi} = UZ{X € B;} € F. This implies that | J2, B; € H.
Hence H is a o-field and B(R") c H. This proves that X is a random
vector.
To verify that fy given by (3.7) is a density, we need the following
well-known result in linear algebra: For any non-singular positive
definite symmetric n X n matrix X there is an n X n matrix A which is
orthogonal (i.e. AAT = I, s0 A™! = AT and |detA| = 1) and such that
B = A'XA, where B is a diagonal matrix with b; > 0,i=1,2,...,n
being the eigenvalues of X. Clearly, ¥ = ABA™!, X! = AB'A~! and
detZ = detB.

Now, making the substitution Ay = x — u and remembering that
AT = A7!, we have

(x =)' (x—p) = yTATAB'A'Ay = yT B!y,
If we put b; = o7, then detZ = detB = 03 - - 02 and
0

-

B =

S

1
2
Ty



Solutions to Exercises 33

We are now ready to calculate

! Lo s )
T ——=(x - Y —
jl;n (27T)”det2 €xp ( 2 (X /J) ()C /l) dmn(x)

- We"p(‘é(’“‘“)Tz1“‘“))"”“"’“
1
f f \/(27r)”0' ( TB y)dy1 A
1

3
5,2
e dyl o 'dyn

oL

[ \/ﬂon Z%dyl]' (f \/_0',,62 dy")_

3.18. Let X : Q — R be a continuous random variable with density fx.
Put Y = X. Suppose that the vector (X, Y) has a density fx y(x,y), i.e.
that X, Y are jointly continuous. By Fubini’s theorem

P({X < Y}) = ff 1{(x,_y):x<y}f(x9y)dmZ(x’ J’)
R2

f ( f Lieyyaeytf (x,y)dm(X)) dm(y)
f (f fx, y)dm(x)) dm(y).

Similarly,

X > Y = f ll(Ay) x>y}f(x y)dmZ(x y)
R

f (f ll(x,y):»y}f(x,y)dm(x)) dm(y)

oo

f . ( f fx, y)dm(X)) dm(y).

Now, define B = {(x, x) : x € R}. We have
0=PUX#YH=P{X,Y)¢B)=PUX<Y)H+PEX>Y}

00 y 00 00
= f ( f f(x,y)dm(X))dm(yH f ( f f(x,y)dm(x))dm(y)
—oco0 —00 —00 y
=ff fx,y)dmy(x,y) =1,
RZ

which gives a contradiction.
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3.19. If p = 0 in (3.5), then by Proposition 3.20

1 _x5+3
Sx(x) = 7€ T dm(xy)
R
f‘” IS S G
= —e 2e Xy = ——e 5
o 2T \2rn

2
since [ J=e 7 dx; = 1. Similarly,

1
Vo

St

e

fr(x) =

Then fxy(x1,x2) = fx(x1)fr(x2). For any By, B, € B(R),

Pxy(B1 X By) = Sxy(x, y)dmy(x, y)

B XB;

= Fx() fr()dma(x, y)

B XB;

f ( f fx(X)fy(y)dm(y))dm(X)
By B,

: ( fx(x)dm(x)) ( | fy(y)dm(y))
B By
= P(X1 € BI)P(Y € BQ)

by Fubini’s theorem. Hence X and Y are independent.
3.20. Let B be a Borel set in R. Then

Py.y(B)=P(X+Y e B)=P(X,Y) € {(x,y) €eR: x+y€ B}

= [ B o)
R2

= f Lsyen) (X)) fr(0)dma(x, ), by (3.9)
]R2

_ f ( f Lo () f (O fy 0)dm(y) | dm(x)
R R

by Fubini’s theorem. Next, by the substitution z = x + y and by
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Exercise 1.32,

Pyx.y(B) = f ( f Ve (x, 2 = ) fx () fr(z - X)dm(y)) dm(x)
R \JR

= f ( f fx(x)fY(Z—x)dm(z)) dm(x)
r \JB

= f(ffx(x)fY(Z—x)dm(x))dm(z)
s \J=

again by Fubini’s theorem.

First we prove Theorem 3.31. We follow the arguments used in the
proof of Theorem 3.27. Since intervals are Borel sets, the necessity is
obvious. For sufficiency, we use induction on n = 2,3,... . Forn =
2 this has been proved in Theorem 3.27. The induction hypothesis
states that if

FX[ ,,,,, X”(xh .. '9xn) = FX[(xl). . 'FXn(xn)

for each xy,...,x, € R, then Xj,..., X, are independent. Suppose
that for any xq,...,x,;; € R

Fx . x.(xi,... s Xnal) = Fxl(xl) e Fy (Xns). (S.1)

LetX = (X1,...,X,), Y = X,;1. We show that for any B € B(R") and
H € B(R)

Pxy(Bx H) = Px(B)Py(H). (8.2)

In order to prove this consider the class C of all Borel sets A € B(R")
such that for eachy e R

P(X €A Y<y)=PXe€APY <y),
and the class D of all Borel sets H € B(R) such that for each A € C
P(XeA YeH)=PXeAPY € H).

Our aim is to show that C and D are equal to the o-fields B(R")
and B(R), respectively. By the induction hypothesis, C contains the
collection of all sets (—oo, x{]X- - -X (=00, x,,] with x1, ..., x, € R, and
this collection is closed under intersection; we only need to check
that C is a d-system, which will mean that it contains the o-field
B(R™). This in turn will mean that 9 contains all intervals (—oo, y],
hence to show that it contains B(R) we need to show that D is a
d-system.

Now we check that C satisfies the conditions for a d-system. The
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proof for D is almost identical. We have Q X --- X Q € C since for
anyy € R

PXeQX- - xQY<y)=PY <y)=PXeQX---xXQP(Y <y).
IfAl,Az S CandA1 C A,, then
P(X € (A \A), Y <y) = P(X €AY <y)~ P(X €AY <)

=P(X € Ay)P(Y <y)-P(X € A)P(Y <)
= P(X € (A2 \ A))P(Y < ).

Finally, if Ay C Agyy WithAg € Cforallk = 1,2,...and ;2 Ax = A,
then

PX€AY<y) = P[U{XeAk,YSy}]
k=1
= lim P(X € A, Y <) = lim P(X € AQP(Y <)

= P(U Ak) P(Y <y).
k=1

Thus C is a d-system. By Proposition 3.56, C is a o-field containing
all sets of the form (—oo, x;]X- - - X(—00, x,,], and so it contains B(R").
This ends the proof of (S.2).

Further, observe that from (S.1) it follows that

Fx(X1,...,xn) = P(Xl < )C],...,Xn < xn>Xn+1 € R)
= P[Xl < -xly---,Xn an’XrHl € U(_Oo’k]
k=1

= lim P(X; < X1, Xy < X, Xyt <K)
= lim Fy, (1) Fy, () Fx,., (0

= Fx,(x1) -+ Fx,(x,) lim Fy, (k)

= Fx,(x1) - Fx,(x,).

Substituting B = B; X -+ X B, with B; € B(R), i = 1,2...,n
into (S.2), we have

Pxy(By X ---X B, x H) = Px(B| X -+ X B,)Py(H).
By the induction hypothesis, we obtain

Py, . x,.(By X+ XB,xH)= Py (By)--- Px,(B,)Px

n+l1

(H),
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so X1, ..., X,+ are independent.

We turn to the proof of Theorem 3.32. If the random vector X =
(X1, ..., X,) has joint density fy, then each X; has a density of the
form

Jx(x) = f Jx(X s x, xXydmy (X, x7)
Rn-1
for all x € R. Here (¥, x”) € R™! x R"™ has been identified with a

point in R""!, and (x’, x, x””) € R™! x R x R"~ with a point in R”. For
any By, ..., B, € B(R) we have

Px(By X -+ X By) = f Sx(x)dm,(x),
By x--xB,

while

Px,(By) - Px,(B,) = ( f fx (xl)dm(xl))“'( f fx”(xn)dm(xn))
B B,

= (f Ix (xl)dm(xl))"'(f fX,,z(xn—Z)dm(-xn—Z))
B] Bn—Z
(f (f fX,,1(xn—l)fX,,(xn)dm(xn))dm(xn—l))
B B,
= (f fx (xl)dm(xl))"‘(f fX,,_z(an)dm(an))
B] Bn—Z

f P, (o) i, (oGt )
B,_2%XB,

= f le (xl) te fX,, (xn)dmn(xla ey xn)
B Xx--xB,
by Fubini’s theorem. If fx(x) = fx,(x1)--- fx,(x,), then
Px(By X -+ X B,) = Px,(By) -+ Px,(B,)
Conversely, if
Px(By X -+ X B,) = Px,(By) - Px,(B,)
then, proceeding as above, we have

f Jx()dm,(x) = f Fa(xn) -+ fx, ()dmy(xi, ..., Xp)
Bix--XB, B X-XB,

for any Borel sets By,..., B, € B(R). It follows from Lemma 3.58
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that
ffx(X)dmn(X)= ffxl(n)-~-fx,,(xn)dmn(x1,...,xn)
B B

for any Borel set B € B(R") because, by Theorem 1.35, the inte-
grals on both sides of the last equality are measures when regarded
as functions of B € B(R"). By Exercise 1.30, this implies fx(x) =

S () -+ fx, (x), my-a.e.
Suppose that the random vector X = (Xi,...,X,) has joint den-
sity (3.7). Then each X; has density

fx,(x) = fx(&, x, Xdmy, (X, X7)
Rnfl

for any x € R, where (x’, x”") € R™! x R"" is identified with a point
in R"!, and (x,x,x”) € R™! x R x R" with a point in R". By
Exercise 2.16, the expectation of X; can be computed as

E(X;) = f X; fx, (x)dm(x;).
R

Then, by Fubini’s theorem we have

E(Xi)zf(xi fX(-x,s-xi»x")dmnl(x,»x"))dm(xi)
R R~

1 1 Ty-1 )
[— PR — — d n
f}l X (\/_)n — exp( 2(x W' T (x = )| dmy,(x)

1 | )
= ;= U)——————— ——x' X dm,(x).
Ln(x 'u)(\/271)” detX exp( 2x x| dma)

We recall (see the solution to Exercise 3.17) that there is an orthogo-
nal n X n matrix A = [a;;] such that B = A~'ZA is a diagonal matrix,
B! has the form

B! = .

1
0 p

and detZ = detB = o - - - 0,. Now, making the substitution Ay + u =
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x, we have

- 1 1
E(X) = > aijy; + pi | ———=———exp|-5)" By | dm,
o fw[j-lajyj+ﬂ] Qnuy'oy - oy, exp( 2’ y) o)

J=1

1
exXp (__yTB y) dmn(y)

' Qmyroy -0,

1 1 7o )
— exp[-=yB Ym0 =
o (NQ2RYos - o p( 2

since by Exercise 3.17

1 | )
———exp|-5)" By |dm, () = 1
jl;“ (V2m)'ory - - - oy ( 2

and forany i =1,2,...,n
Lo
yi— Xp{—3Y ylamy,
Rt (V2m)'oy - 2
1 " 1 -4
Vi "’ dm(y, *kdm(yy) =
R V2no, k:ll—J([;&i R \/27r0'k

Here we have used Fubini’s theorem and the two equalities

1 -4
)’i e *idm(y;) =0
V2ro;

" dm(yk) =1

\/_

If X is a diagonal matrix, then £ = B, and it follows that

= 1 I )
MO e o, eXp[ PN )
n 1 l l
) 1;:_1[ \/ZTO',' exp( - 20 2 ) fX (x1) - an(xn)-

By Exercise 3.21, this means that X, ..., X,, are independent.
3.23. Suppose that A}, A, € ¥ are independent. Then
P(A1 N (Q\ Ay)) = P(A1 \ (A1 NAy))
= P(A)) — P(A; N Ay) = P(A)) — P(A1)P(Ay)
= P(A1)(1 — P(Ay)) = P(A))P(Q\ Ay).
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So A; and Q \ A, are independent. Conversely, if A; and Q \ A, are
independent, then

P(A; NAy) = P(A1\ (A1 N (Q\ A2)))

= P(A) = P(A; N (Q\ Ap)) = P(Ay) — P(ADP(Q\ Ay)

= P(A))(1 — P(Q\ Ay)) = P(A)P(Ay).
By symmetry, Q \ A;, A, are independent and Q \ A;, Q \ A, are
independent.

For any events A, A, € ¥ and for every choice of Borel sets By, B, €
B(R) we have

Ai lf()éB, and 1 GB,',
Q\A;, if0eB;and1 ¢ B,
{14, € Bi} = ! 1 ad e
if0e B;and 1 € B;,
(%) otherwise,
so{ls, € B} €{A,Q\ A, Q, @} fori=1,2.
If A}, A, are independent events, from the solution of Exercise 3.23

we therefore know that {14, € B}, {14, € B,} are independent events,
and so

P11, (Bi X By) = P(14, € By, 14, € By)

= P(14, € B))P(1,, € By) = PIAI(BI)PIAZ(BZ)

s,

for any Borel sets By, B, € B(R). This means that 1,,,1,, are inde-
pendent random variables.

Conversely, suppose that 14,14, are independent random vari-
ables. Taking B; = {1} and B, = {1}, we get

P(A; NAy) = P(14, € By, 14, € By)
= P, 1,,(B1 X By) = Py, (B1)P1,,(B>)
= P(14, € B))P(14, € By) = P(A)P(Ay),
so Aj, A, are independent events.

Consider the following closed intervals: A = [
[%, 1]. We have

15

—rl 3 —
§’§]’B_ Z’Z]’C_

PANBNC) = é = P(A)P(B)P(C),

but A, B are not independent since P(A N B) = % # P(A)P(B) = i.
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Let us now consider the following subsets of [0, 1]:

[ 1] [1 3] [1 5] [37
=[0,-|u|=.2|u|=z. 2 |ul=, =
¢ »0’8 4’8] [2’8] [4’8]’
(1 3] [1 5] [7
D=|=>|u|z 2|ul=, 1],

»88] [28 8}
[ 1] [3
E=|0,-|U|>,1].
,4 4:|

Then C, D, E are pairwise independent, but (3.12) fails.
Consider the events A, B in Example 3.34 and a third event C defined
as follows:

C=1{(1,2),2,1),3,2),41),(5,2),(6,1),
(1,4),(2,3),(3,4),(4,3),(5,4), (6, 3),
(1,6),(2,5),(3,6),(4,5),(5,6),(6,5)}.

Then each pair of these events is independent, but (3.12) fails since

ANBNC =0Q.
Since AUB=(A\(ANB))UBand (A\ (AN B))N B = @, we have

P(AUB) = P(A\ (AN B)) + P(B) = P(A) — P(A N B) + P(B)

for any events A, B.
When A, B, C are independent events, we use this property to ob-
tain

P(AUB)NC)=P(ANC)U(BNC))
=PANC)+PBNC)-PAANBNC)

= P(A)P(C) + P(B)P(C) — P(A)P(B)P(C)

= P(C)(P(A) + P(B) - P(A)P(B))

= P(C)(P(A) + P(B) — P(AN B)) = P(C)P(A U B).

Thus, A U B and C are independent.
For any events A, B we know from Exercise 3.23 that A, B are inde-
pendent if and only if A,Q \ B are independent. Moreover, if A is
an event, then A, @ are independent. It follows that if A,,..., A, are
independent events and C; € {@,A;,Q\ A;,Q} fori = 1,...,n, then
Cy,...,C, are independent.

Now suppose that Ay, . .., A, are independent events. Then for any
Borel sets By, ..., B, € B(R) the events {14, € B;},...,{14, € By}
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3.30.

3.31.
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are also independent because {14, € B;} € {@,A;, Q\ A;, Q} for each
i=1,...,n. This, in turn, means that

(Bl X"'XB”):P(IAl GBI,...,IA” EBn)
= P(1,, € B))--P(1,, € B,)
= Py, (B))--- Py, (By).

,,,,, Tan

We have shown that 1, ,...,1,, are independent random variables.
Conversely, suppose that1,,, ..., 1,4, are independent random vari-
ables. For any subsequence iy, . .., i; of the sequence 1, ...,n we take

B = {1} lflE{ll,,lk}
Tl RO ifig i, ..., i)

so that
_ A; 1fl€{l],,lk}
tla € B} ‘{ Q ifi¢ ..., i)
foreachi=1,...,n. Then
P(A,'l ﬁ---ﬁA,-k) =P(1A1 EBI,...,IAn EBn)
= P1,,,.1,,(B1 X - X By)
= Py, (B)-+~ P1,,(B,)
= P4, € By)---P(1,4, € By)
= P(A;)--- P(A,).
This proves that Ay, ..., A, are independent events.

By Exercise 3.23, A, B are independent events if and only if C, D are
independent for any C € {g,A,Q\ A,Q}and D € {@,B,Q\ B,Q},
which in turn means that {@,A,Q\ A,Q} and {@, B,Q \ B, Q} are
independent o-fields.

If a o-field G is independent of itself, it means that any event A € G
is independent of itself, so P(A) = P(A N A) = P(A)P(A). It follows
that P(A)(1 — P(A)) = 0, which means that P(A) = 1 or 0.

First suppose that the random variables X, ..., X, are independent.
For any choice A; € o(X)),...,A, € 0(X,) we have A; = {X| €
Bi},...,A, = {X, € B,} for some Borel sets By, ...,B, € B(R). For
any subsequence 1 < i} < i, < ... < iy < n we define C; = B; for
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iefiy,....,ijtand C; =R forie{l,...,n}\{i1,...,i}. Then

P(Ail ﬁA,»z n--- ﬁA,-k) = P(Xl'] € Bi]""7Xik € Bik)
=PX,€Cy,....X,€C)=PX,€Cy)---PX,€C))
=P(X; €B;)---P(X,, € B;,) = P(A;))P(A;,)--- P(A;,),

so that Ay,...,A, are independent events. This means that the o-
fields o(X,), ..., 0(X,) are independent.

Conversely, suppose that the o-fields o(X,),...,o0(X,) are inde-
pendent. For any choice of Borel sets By, Bs, ..., B, € B(R) we have

P(X, €B,,....X,€B,) = P(X, €By,....X, €B,)
=P(X1 EBI)"'P(XnGBn)

since {X; € B} € 0(Xy),...,{X, € B} € o(X,). It follows that
X1, ..., X, are independent random variables.

Note that (see the solution of Exercise 3.28) Ay, ..., A, are indepen-
dent events if and only if By, ..., B, are independent for any choice
of B, € G;, where G; = {©0,A;,Q\ A;,Q} fori = 1,...,n, which in
turn is equivalent to G, . . . , G, being independent o--fields.

Define the family of sets

G ={B e BR") : {X € B}, D are independent for each D € o (Y)}.

We have R" € G because {X € R"} = Q and Q, D are independent for
each D € o(Y). Moreover, if B € G, then R"\ B € G by Exercise 3.23.
Finally, if B; € Gfori = 1,2, ... and the B; are pairwise disjoint, then

P((Ul (X e Bi}) n D] - P[g({x € BN D)]

P({X € B} N D)

M-

]
—_

P(X € B)P(D) = P[U X e B,.}] P(D).
i=1

™

1l
—

1

This means that G is a o-field on R". In addition, since Xi,...,X,,Y
are independent, and so {X € B; X --- X B,} and D are independent
for any By,...,B, € BR) and for any D € o(Y), it follows that
By x---xB, € Gforany By,..., B, € B(R). This proves that B(R") C
G, which, in turn, implies that Y is independent of the o-field o-(X)
generated by the random vector X = (Xi,...,X,).
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3.34. We prove the assertion by induction on n. By Theorem 3.42, for

3.35.

n = 2 we know that X, X; is integrable and E(X;X;) = E(X)E(X3).
Suppose that for some n = 2,3, ... the product []%, X; is integrable
and

E {1—1 X,-] = ]_[ E(X)).
1 i=1

i=

Moreover, suppose that Xy, ..., X,,; are independent random vari-
ables. By Exercise 3.33, X, is independent of the o-field o-(X) gen-
erated by the random vector X = (Xi,..., X,), which by definition
consists of all events of the form {X € B} with B € B(R").

Define f : R" —- R by f(xy,...,x,) = x1 -+ x,. Since f is contin-
uous, it is a Borel function. The function f(X;,...,X,) = X;--- X, is
measurable with respect to the o-field o(X) since {f € B} € B(R")
for any B € B(R) and

{f(Xy,...,Xy) € B} ={(Xy,...,X,) €{f € B}} € 0(X).

It follows that the random variables f(Xi,...,X,) = X;---X, and
X,+1 are independent. Applying Theorem 3.42 and the induction hy-
pothesis, we can see that f(Xy,..., X)X,y = X; -+ X, X4 1S inte-
grable and

E(f(Xl’ e an)XrHl) = E(Xl o 'Xan+1)
n n+1

= E(]‘[ X,-) B(X,n) = [ [ BCGO.
i=1 i=1

Suppose that a, b # 0. If X, Y are independent random variables, then
so are aX, bY. Suppose that By, B, € B(R). Then

P((ClX,bY) € By X Bz) = P(aX € B;,bY € Bz)
1 1 1 1
—P(X€-B,Ye-B)=PXe-B)PY ¢ ~B,)
a b a b
= P(aX € B,)P(bY € B,).

It follows that aX, bY are independent. By Corollary 3.45 and Exer-
cise 2.25, we have

Gax+by (D) = Pax(DPpy (1) = dx(at)py(bt)

— e—%uztze—%bzlz — e—%(cﬂ#—bz)lz

The case when a = 0 or b = 0 is trivial.
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We prove the statement by induction. By Proposition 3.46, for n = 2
Var(X; + Xz) = Var(Xl) + Var(Xz)

if X1, X, are independent integrable random variables.
Suppose that for some n = 2,3, ...

Var(X; + ...+ X,) = Var(X;) + - - - + Var(X,)

if X1, ..., X, are independent integrable random variables. Also sup-
pose that Xi,...X,, X, are independent integrable random vari-
ables. By Exercise 3.33, X, is independent of the o-field o-(X) gen-
erated by the random vector X = (Xi,...,X,). Define f : R" —» R by
f(x1,...,x,) = X1 + -+ + Xx,. Since the function is continuous, it is a
Borel function. Moreover, the function f(X;,...,X,) = X; +...+ X,
is measurable with respect to o-field o-(X) and integrable. It follows
that X; + --- + X,, and X, are independent random variables. By
Proposition 3.46 and the induction hypothesis,

Var((X; + -+ X,,) + X,,41) = Var(X; + -+ - + X)) + Var(X,,,1)
= Var(X;) + - - - + Var(X,,,1).

Suppose that X, Y have the bivariate normal distribution with den-
sity (3.5). To compute Cov(X, Y) it suffices to compute E(XY) since,
by Exercise 3.12, E(X) = E(Y) = 0.

In order to compute E(XY) we extend (2.3) to random vectors.
Suppose that X = (X3, ..., X,) is a random vector whose joint distri-
bution Py has density fx, and g : R — R is an integrable function
with respect to Px. Then

E(g(X)) = f 8(x0) fx(x)dm,(x). (8.3)
Rll

For g = 13(x) with B € B(R") we have

E(15(X)) = P(X € B) = f Jx(x)dm,(x) = f 15(x) fx(x)dm,(x).
B R"

If g = X' ,alp with B, € BR") and a; € R fori = 1,...,n,
then (S.3) follows by linearity. When g is a non-negative measurable
function, by Proposition 1.28 there is a non-decreasing sequence of
non-negative simple functions s,,n = 1,2, ..., such thatlim, ., s, =
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g. By the monotone convergence theorem it follows that
fg 8X(w)dP(w) = lim fg $n(X(w))dP(w)
= lim fR a0 fixdm, (2) = fR 8 f(x)dm, ().
If g is an integrable function, then (S.3) follows from the result for

gtand g”.
Now put g(x1, x2) = x1x3. Then

E(XY)Zf x1x2fX,Y(xl,x2)dm2(x19x2)
Rn

1 X3 = 20px1 X + X2
:f X1X exp(— i 22 Z)dxldxz
R# 2 l—p2 2(1-p%)

X (o —pxy)?
——l—z—pi)dxldxz

¢— ( 2 20 -p)
_ f [_lxl exp(_ﬁ) f Lexp(_w)m]%
=\ V2r 2 ) J= \2r(1 = p?) 2(1-p?)

by Fubini’s theorem. To compute

= xlxz

:f X2 exp ( (xz—le)z)
® 27(1 - p?) 2(1-p?)

make the substitution z = x, — px;. Then
1 f 7
]= —— (z+px1)exp( )
\/271(1 —p?) Jr 2(1-p?)

Wf (m) o

since

Wf (2(1 )) =
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Finally,

E(XY) f 2 1 ep( x%)d
=p | x xp|—=|dx1 =p
= Van 2™
Hence Cov(X,Y) =p
By Exercise 3.37, Cov(X, Y) = p for random variables X, Y with den-
sity (3.5). By Exercise 3.12, fy and fy are standard normal densities.
Hence
_ Cov(X,Y)
alre——

Px.y

If X and Y are uncorrelated, then pxy = p = 0. By Exercise 3.19,
they are independent.
Consider a quadratic expression

n(t) = B(Xo + tYy)* = E(X3) + 2(E(XoY,) + *E(Y3)

for t € R, where Xy = X — E(X) and Yy, = Y — E(Y). Since n(¢) = 0
for each t € R, the discriminant satisfies

A = 4E(XoYy))* — 4E(XDE(Y?) < 0.

Moreover, A = 0 if and only if there is 7y € R such that 0 = n(t)
E((Xo+1Y,)?). By Proposition 1.36, this is equivalent to P(Xy+1,Y,
0) = 1. On the other hand |pxy| = 1 if and only if A = 0. It follows
that

P(X —E(X) + 1,(Y —E(Y)) = 0) = 1.

In other words, X = aY + b, P-a.e. for some a,b € R.
When 71, 7, are o-fields on Q, Q,, respectively, the family of mea-
surable rectangles is defined as

RZ{A1XA2ZA1€7‘~1,A2€7‘~2}.

Suppose that A| X Ay, By X B, € Rfor some Ay, B; € ¥, and A,, B, €
F,. Then

(A1 XA)N (B X By) =(A1NB) X (AN By),

where AiNB; € F1and A, N By € 5,50 (A; X Ay) N (B X By) € R.
This means that R is closed under intersection.

This is a very simple consequence of Proposition 3.56 since the fam-
ily I of open intervals in R is closed under intersection.
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Let D be the family of all Borel sets A C [0, 1] such that

fde=O.
A

Observe that D is a d-system. Also denote by C the family of inter-
vals (£, 2| such that n = 0,1,...and i, j = 0,1,...,2" with i < j,
and observe that C is closed under intersections. It follows by Propo-
sition 3.56 that d(C) = o(C). Moreover, since C C D and o(C) is the
o-field of Borel sets on [0, 1], we have D C o(C) = d(C) € D, so D
contains all Borel subsets in [0, 1].

We have shown that fA X dm = 0 for each Borel set A c [0, 1]. For
eachn=1,2,...let A, = {X > 1}. Then

0= f Xdm > lm(A,Z),
A n

which means that m(A,) = 0. Since {X >0} = |J,~, A, and A, C
A, for each n, it follows that m ({X > 0}) = lim,_,, m(A,) = 0. In
the same manner we can show that m ({X < 0}) = 0, and therefore
deduce that X = 0, m-a.s.

Chapter 4

4.1.

4.2.

Suppose that ¥ is the family of all possible countable unions of sets
belonging to = {By, B,, ...}. (Recall that countable’ means finite
or countably infinite.) Clearly, Q € F.If A € F, then A = U, B;
for some / C Nand Q\ A = U;qn; Bi» so Q\ A € . Further, if
Ap € F fork = 1,2,..., then Ay = (J;, Bi, for some I; C N and
A = Ul A = Uieu, 1, Bi € F. Hence ¥ is a o-field. This implies
that o(P) C F.

Now suppose that A € F, but A ¢ o(P). Then Q\ A ¢ o(P). This
implies that Q ¢ o(#), a contradiction. So 7 C o (P).
Suppose that the family A = {A},A,,...} of all atoms in F is a
partition of Q. Of course, o(A) C F. To prove the inverse inclusion
take any A € ¥ . For every A; € A such that A; N A # @ we have
A; C A. Otherwise A; = (A, NAUA, N(Q\A)and A, NA # @,
A; N (Q\ A) # @, which is impossible by the definition of an atom.
Since A € U2, A; = Q, it follows that A is the union of some atoms,
A = s Ai, where I € {1,2,...} and A; € A for each i € [. This
implies that A € o(A) and F C o (A).
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Suppose that P(B) > 0 and let ¥ be the o-field consisting of all
events A € ¥ such that A ¢ B. We show that Pg is a probability on
F. First, Pg(B) = b iffgf) = 1. Let A; € 3 be a sequence of pairwise
disjoint events. Then

~ ) PUS A)
Py (U AIJ P(Bl)
- PLZN] i((— =3 Py,
i=1 i=1 i

Suppose that X has the Poisson distribution with parameter A. First
we calculate

P(X is 0dd) = 1 — P(X is even)}) (UX Zk)
k=0
:1—; PUX =2k) =1- ;(Zk)!e —1—¢"coshA

By (4.1), we have

1
E(X|{X is odd}) = m E(1ix is 0aayX)

1 2k+1 ,—A

= U —ecosh) ;Qk T

00

A A% Acosh A

et —coshd & (2k)! et —coshd’

By Definition 4.10, if Z is a discrete random variable, then the con-
ditional expectation E(X|Z) is the conditional expectation of X with
respect to the partition # generated by Z. The partition generated by
Z consists of two subsets of the interval [0, 1], namely B; = [0, %)
and B, = [%, 1]. Hence E(X|Z) is constant on B; and on B,. By (4.1),
we have

E1zX) 1
E(XIB)) = —anX) fm: ,
0

PB)) 1

1

4
CEdgXx) 1 (3
BBy = s ‘Ef wdx =2,

2
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4.7.
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It follows that

if we[0,1),

E(X|Z)(w):{ ifwell 1]
L.

ENTINTN

Similarly as in Exercise 4.5, we have

_BApX) 1P 3
E(X|By) = P(B)) —%fo(l X)dX—4,
E(1,X) 1f1 1
EX|By) = —="2 =~ | (1-x)dx=-
PBy 1 4
Hence
2 ifwel0,3),
EXZ)w) =1° 2
(@) {i ifwell 1],

Take Q) = [0, 1] with its Borel subsets and Lebesgue measure. Let V
be the random variable equal to 0 on [0, %) and 1 on [%, 1]. Further-
more, let W be the random variable with three values, —1 on [0, %),
0 on [3, 2) and 1 on [%, 1], and let X be the random variable defined
as X(w) = 2w — 1 for w € [0, 1].

First we calculate E(X|V). Put A; = {V = 0} = [0, %) and A, =
{(v=1}= [%, 1]. The conditional expectation E(X|V) is constant on
A; and A,, and

E(l, X
E(X|A,) = 1(3(2{)) f(Zx—l)dx———

E(X|A,) = E(IAZX) f (2x —l)dx——

It follows that

ifwel0,2),
ifwel2,1].

EX|V)(w) = {

1
4
3
4

Next we compute E(X|W). The random variable W generates the par-
tition consisting of three sets: B; = {W = -1} = [0,3), B, = {W =
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)and B; = {W = 1} = [3, 1]. Moreover,

BX|B)) = cdeX) f(Zx—l)dx_ i

P(A)
E(1z X 2

BB = s = If @x - = -1,
E(1z X

E(X|B3) = ;)(Z )) f (2x — D)dx =

It follows that

-2 ifwel0,1),
EX|W)w) =4-% ifwell ),
% 1fa)€[2,1],

and E(X|V) # E(X|W).

4.8. Since Y(n) = (—1)" takes only two values —1 and 1, it generates
the partition P = {A, B} consisting of two sets, A = {Y = -1} =
{odd numbers} and B = {Y = 1} = {even numbers}. We calculate
P(A) and P(B) as follows:

P(A) = P(Y = -1}) =  P((2k—1}) = » 2.3 %D = -
k=1 k=1
PB)=P{Y=1})= > P({2 Z 2.32% - 2
k=1

It follows that E(X|Y) has only two values

E(IAX) N 921 —(2k-1) 16
E - -2-3 = —,
(XI4) = =55 ikz s
E(1X) _ 1 X1 x 32
E - 27.2.3"7 ,
(XIB) = =5 ikz 5
and so
15—6 if n is odd,
EXIV)(m) =13 .
2 if n is even.

4.9. Suppose that the discrete random variable Y has pairwise distinct
values yi,yz,...,and let B; = {Y = y;} foreachi = 1,2,....1If
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P(B;) # 0, then

E(15EX]Y)) = E(15E(X|B))) = E(X|B)E(3,)
= E(X|B)P(B;) = E(15,X).
If P(B;) = 0, then we also have E(15E(X|Y)) = E(15X) since both
sides of the equality are equal to 0. Every set B € o(Y) can be written
as B = | Jg Bi forsome I C {1,2,...}. Let [, = In{l,2,...}. Since
the B; are disjoint,
1 = IUielBi = lim 1Uiel,, B = lim Z 131‘
n—oo n—oo ieln

Because X is integrable, so is E(X]Y). By the dominated convergence
theorem, we therefore get

E(15X) = lim E(1y,, 5,X) = lim »" B(15X),

iel,

E(1:E(X|Y)) = lim E(1,, 5E(XIY))

= lim " E(15E(X|Y)) = lim )" E(15X),

i€l, i€l,
so E(13E(X]Y)) = E(13E(X|Y)).
Suppose £, and P, are partitions of some set Q. Consider the parti-
tion
P={C=ANB:A€P,and B € P,}.

We show that P refines #; and P,. Take any A € P,. Since
UBePz B=Q,

A:An[UB: ) ans

BeP, BeP, , ANB+2

Similarly, for any B € P, we have

B=BO(UB = |J Bna
AP, AP ANB#D

Now consider any partition #” which refines $; and P,. Take any
C € P. Then there are sets A € $ and B € P, such that C = AN B.
Because %’ refines P, we have A = | J,.; A; for a countable family of
sets A; € Py, i € I. Moreover, Because #’ refines $, and B € P, we
have A; C Bor A; C Q\ B for each i € I. Similarly, B = | J,.; B; for
a countable family of sets B; € P,, j€ J,and B; CAor B; CQ\ A
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for each j € J. It follows that C = AN B = (J jex Ai N B, where
K ={@G,j)eIxJ:A; CB,B; CA}. This means that #’ refines P.
We have shown that # is the coarsest partition that refines £,
and 7)2.
By Exercise 3.31, X, Y are independent if and only if their gener-
ated o-fields o(X), o(Y) are independent. For Y discrete with values
Y1, Y2, - . ., the o-field o(Y) is generated by the partition P = {B; : i =
1,2,...}, where B; = {Y = y;}. Since o(15,) = {Q,B;,Q\ B;, @}, it
follows that o(15,) C o(Y). This implies that X and 15, are indepen-
dent forevery i = 1,2,.... By Definition 4.10, E(X|Y) is constant on
each B;,i = 1,2,..., so the equality E(X|Y) = E(X) suffices on B;.
By Theorem 3.42, we have

E(15,X) = E(15)E(X) = P(B)E(X)
and

E(sX) _ P(B)E(X)

EX|B) = — =
(B;) P(B;)

= E(X).

Since Y is symmetric with respect to the line x = % and Y([0,1]) =
[0, 3], we claim that o<(Y) = {BU (1 — B) : B C [0, 5] is a Borel set}.
To verify this, first take any A € B(R). Then {Y € A} N [0, %] = Bis
a Borel set in [0, %] and {Y € A} = BU (1 — B). This implies that

a-(Y)c{BU(l—B):BC

1
0, 5} is a Borel set} .

Now, if B C [0, %] is a Borel set, then A = % — B is a Borel set and
{Y € A} = BU (1 — B). This gives the converse inclusion.

In order to calculate E(X|Y), take BU (1 — B) € o(Y), where B C
[0, %] is a Borel set. If we put X;(w) = X(1 — w), then E(15y1-5X) =
E(IBU(I—B)XI) and

1
E(pua-pX) = 3 [EApua-8X) + Epui-5X1)]
1
=E lBu(l—B)E X+ Xl))-

Since 3(X + X)) is o(¥)-measurable,

EX|Y)(w) = %(X(w) + X1(w)) = %(‘w - %' + 'w - %’)
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First we prove the condition (1) (linearity). By Definition 4.20 (i), the
conditional expectations E(X|G) and E(Y|G) are G-measurable. By
Exercise 1.21, for any a, b € R, aE(X|G) + PE(Y|G) is G-measurable.
Take any B € G. By Definition 4.20 (ii), we have

E(13(aE(X|G) + bE(Y|G))) = E(al3E(X|G) + b13E(Y|G))
= aE(13E(X|G)) + DE(13E(Y|G))
= aB(13X) + bE(13Y) = E(13(aX + bY)).

We have verified conditions (i) and (ii) of Definition 4.20. To prove (2)
(positivity) put B = {E(X|G) < 0}. We have B = |,., B,, where
B, = {(EX|G) < —%} and B,,B € G. The B, form an increasing
sequence of sets in G C ¥, so P(B) = lim,_,. P(B,). The simple
function s, = —%1 B, 1s G-measurable and satisfies

13 E(XIG) < s,
SO
0 < E(1pX) = E(15,E(X|G)) < E(1g,s,) = _%P(Bn) <0,

which means that P(B,) = O for all n, hence P(B) = 0. Therefore
E(X|G) = 0, P-ae.

By Exercise 4.13, the conditional expectations E(X,|G) form a non-
decreasing sequence of integrable random variables: since X,;; —
X, > 0, by linearity and positivity we obtain E(X,,+; — X,,|G) > 0 and

E(Xyr1 = X,lG) = E(X11lG) - E(X,|G) 2 0.

So lim, . B(X,|G) = Y exists P-a.s., and by Exercise 1.19, Y is
measurable with respect to G.

We show that Y = E(X|G). For any B € G we apply the monotone
convergence theorem and the definition of conditional expectation to
get

’}LH(}O (1BEX,1G)) = 113010 (E1pX,) = E1pX) = E(13E(X|G)).
Moreover
lim (1E(X,|6)) = E(15Y).

This implies that E(13E(X|G)) = E(13Y). It follows that E(X|G) = Y,
P-a.s.
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4.15. Theorem 4.27 can be extended as follows:
Let (Q, F, P) be a probability space and let G C F be a o-field.
Suppose that X : Q — R™ is a G-measurable random vector and Y :
Q — R" is a random vector independent of G. If f : R" XxXR" - R
is a bounded Borel measurable function, then g; : R" — R defined
for any x € R™ by

8r(0) = E(f(x,Y)) = f JFCe, )dPy(y)
Rll
is a bounded Borel measurable function, and we have

E(f(X,V)IG) = g¢(X), P-a.s.

Proof 1In fact we can repeat the proof of Theorem 4.27 without any
significant changes.

By Proposition 3.17, g is a Borel measurable function. It follows
that g/(X) is o(X)-measurable. By the definition of conditional ex-
pectation it suffices to show that

E(ef(X,Y)) = E(gs(X)1c)

foreach G € G.

By hypothesis, o(Y) and G are independent o-fields. For any
bounded G-measurable random variable Z we have o(X,Z) C G
since for any B; X -+ X B, X B,+1, B € BR), i = 1,...,.m+ 1
we have

{(X’Z) € le"'XBmXBmH} = {X € le"'XBm}m{Z € Bm+l} € g

Hence Y and (X, Z) are independent. This means (see Remark 3.40)
that their joint distribution is the product measure Py, ® Py.

In order to compute E(f(X, Y)Z) we apply Proposition 1.37, in
which we take

Q,F,u) = (Q,F,P),
(Q,F, 1) = R™™ L BR™™), Py, ® Py),

¢ =(X,Z,Y)and g : R™™! — R such that g(x,z,y) = f(x,y)z for
xeR", yeR", zeR. Hence

E(f(X.Y)Z) = f J(X,Y)ZdP = f f(x,y)zd(Pxz ® Py)(x,z,y).
Q R

m+n+1



56

4.16.

Solutions to Exercises

Applying Fubini’s theorem, we obtain
E(f(X,Y)Z) = f ( f f(x, y)zdPy(y)) dPxz(x,z)
Rm+!1 Rn

= f gr(x)zdPx z(x,2)
Rm+l
by Proposition 1.37 once again
= E(g/(X)2).

If we put Z = 15, we get

E(gf(X,Y)) = E(gr(X)1c).

This completes the proof.
Let fxy(x,y) be the bivariate normal density given in Example 3.16.
Similarly as in Exercise 3.12, fx y(x,y) can be written in the form

_ 1 _y_z) 1 ( (x —py)2)
f"’Y(x’y)‘me"p( 2 ) a2

and fy(y) = \F exp (——) Then, by Definition 4.30, the conditional
density of X given Y is

Jxr(x,y) _ 1 ox (_ (x — P}’)z)
Fr) \27(1 = p?) 20-p»)

Furthermore, by Proposition 4.31, we have

h(x,y) =

E(X|Y)—th(x Y)dm(x)—;fxex ( (x— PY)Z)dx
R i pn Je P 20— )

Substituting z = x — pY, we get
1 2
EX|Y) = ———— | (z+pY)exp|-
\2r(1 = p?) Jr 21 -p?) )

Since
1 f ( z ) I
w/27r(1— 0?) RZeXp 2(1-p?) |
- =1,
\/27r(1— f ( 2(1 - 2)) °°

we have E(X|Y) = pY.
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Suppose that x,y, z € (a,b). We claim that the function y +— w

is non-decreasing. Consider three cases: (i) y < x <z, (i) x <y <z,
and (iii)) y < z < x. Suppose (i) holds. Taking 1 = %‘ we have
x = Ay + (1 — )z, so the convexity of ¢ gives

B(x) S () + ().
Z=y z=y
Rearranging, we get
0) ~ () _ 9) ~ d(x)

y—-x = z—-x

In cases (ii) and (iii) we verify the claim similarly. If 2 > 0 and
x—h,x+ h € (a,b), then we have

$(x—h) —d(x)  d(x) — p(x — h) PChs h) — ¢(x)
—h B h - h ’

By the claim, for 4, > 0, h < tand x + h,x+ t,x — h,x —t € (a,b)
we also get

P+ 1) = 9(x) _ pr+1) = ¢(x)

h t
H(x) — d(x — 1) < ¢(x) — d(x — h)
t - h ’

It follows that the ratio %[qb(x + h) — ¢(x)] decreases as & N\, 0 and
+[#(x) — ¢p(x — h)] increases as h \ 0.
Finally, fix o > O such that x — #y, x + #o € (a, b). Applying the
claim again, we obtain for any 4 > 0 such that x + & € (a, b)
P(x — 1p) — P(x)

_to

1
7600 = dlx - Ml <

1
< E[¢(X +h) — ¢(x)]
Plx +19) — $(x)
o ’

This means that the ratio %[qb(x + h) — ¢(x)] is bounded below by a
constant and %[q&(x) — ¢(x — h)] is bounded above by a constant.
Take any X € L*(P) and a sequence X;,X,,... € L*(P) such that
lim,_, [|X,, — X|l, = 0. For given Y € L*(P), the Schwarz inequality
implies that

(X, ¥) = (X, V)| = (X, = X, V)| < [IXs = X[|Y]]2.

By the hypothesis, lim,,_,« [{X,;, Y) — (X, Y)| = 0. This means that the
map X — (X, Y) is norm continuous.
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Next, using the triangle inequality, we have
1Xall> = 1(X, = X) + Xl < 11X — Xl + [1X]l2,
X1 = (X = X)) + Xalla < 11X — Xl + 11Xl
So we get
Xl = 1X]l2] < 11X, — Xll» = 0 as n — oco.

This implies norm continuity of the L?-norm.

4.19. Let X, X, X, ... € L*(P). Suppose that lim,_,., [|X,, — X|l, = 0, where
X € L*(P). Given ¢ > 0, there is k € N such that ||X, — X|, < £ for
each n > k. By the triangle inequality, for any m,n > k we have

1Xim = Xl = (X = X) + (X = Xpll2 < 1 X = X2 + [1X, — X2 < €.

This implies that
Sup ”Xm - Xn||2 <é&.

mn>k
We have proved that X;, X, ... is a Cauchy sequence.

4.20. Let X,Y € L*(F, P). Using the definition of the norm, we have
IX + Y|l = E(X + Y)*) = E(X?) + 2E(X, Y) + E(Y?)
= IXI5 + 2¢X, Yy + Y15

If (X,Y) = 0, then ||IX + Y5 = [IXI)5 + [IY])5.
4.21. Let X, Y € L*(F, P). Using the definition of the norm, we have
IX + Y15 + 11X = Y} = B(X + Y)*) + E(X - Y))
= E(X?) + 2E(XY) + E(Y?) + E(X?) - 2E(XY) + E(Y?)

= 2IIX115 + 2IIY1l5-
4.22. Let X,(w) = sinnw and Y,,(w) = cos mw. We show that X,,(w), ¥,,(w)
are orthogonal in L?[—r, 7] for any m,n = 1,2,... . Observe that

. 1 . .
Sin nw cos mw = E[sm(n + m)w + sin(n — m)w].
By the definition of the inner product in L*[-n, 7], we can verify that

(Xn,Ym)=f sin nx cos mxdx

vs

= % fﬂ[sin(n + m)x + sin(n — m)x]dx

. =0.

-

2

1 [_ cos(m + m)x cos(n — m)x |

n+m n—m
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Let X € L*(F, P). Suppose that Y € M satisfies (X — ¥,Z) = 0 for
any Z € M. It follows that (X — Y,Y — Z) = O for any Z € M. By
Pythagoras’ theorem, we get

IX=ZI5 =X =Y)+ (Y = 2)I5 = IX = YI; + IY - ZII5.

It follows that || X — Y|, < [|X — Z||, forany Z € M. Since Y € M, we

have ||X — Y|, = inf{||IX - Z||, : Z € M}.

Consider the random variables X(w) = w and Y(w) = 1 — w defined

on the probability space [0, 1] with Borel sets and Lebesgue measure.
We compute || X, [|Y]l1, [|X+Y]|; and || X—Y]|,. By Definition 4.49,

1 1
=, Yl =EqY) = =
7 Y1l = E(Y]) 3

1
X+ Yll; = E(X + YD) = 1, |IX = Y[l = E(X - ¥)) = -

X1l = E(X]) =

The parallelogram law stated in Exercise 4.21 fails in the L'-norm
since in our case |IX + Y|I2 + |IX — Y|} = 3, but 2[|X|12 + 2||Y|I} = 2.
The parallelogram law holds for any norm induced by an inner
product, that is, if H is a real or complex normed vector space with
an inner product such that ||h|[> = (h, h). The proof is the same as
for L. The above example shows that the L'-norm is not induced by
an inner product.
Let the assumptions of Theorem 4.54 be satisfied, so that there exists
a random variable Z € L'(P) such that for each A € &

O(A) = f ZdP.
A

Since Q is a probability measure, we know that Z > 0 on Q and
Ep(Z) = 1. For any B € ¥ we have

Eo(1p) = Q(B) = Ep(152).

By linearity, this extends to Ey(s) = Ep(sZ) for any simple func-
tion s. Approximating any non-negative random variable X by a non-
decreasing sequence of simple functions, we obtain by monotone
convergence that

Eo(X) = Ep(XZ).
Finally, we can extend the last identity to any random variable X

integrable under Q by considering X* and X~ and using linearity
once again.
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4.26. To verify (1) take any A € F with P(A) = 0. For 4 € (0, 1), we have
(A0 + (1 = DR)(A) = 10(A) + (1 - DR(A) =0
since Q <« P and R < P. Write j—g =7, j—f; = U and w =
W. For each A € F we get
deP =10+ (1 - DR)(A) = 10(A) + (1 — DR(A)
A

= f/lZdP+f(1—/l)UdP=f(/lZ+(1—/l)U)dP.
A A A

By Exercise 1.30, W = AZ + (1 — )U, P-a.e.

(2) Suppose that R < Q and Q <« P.Forany A € ¥, P(A) =0
implies Q(A) = 0, and this in turn implies R(A) = 0. It follows
that R < P. Writing & = U, ‘;—IQ, = Z and j—g = V, we have
R(A) = [[UdP = [ VdQ and Q(A) = [, ZdP for any A € F.
By Exercise 4.25, we obtain

R(A) = EQ(IAV) = EP(IAVZ) = Ep(lA U)

By Exercise 1.30, it follows that VZ = U, P-a.e. Thus % = j—gi—IQ).
(3) Suppose that P ~ Q. Write % =Z and % = 5. Since Q(A) =
fA ZdP and P(A) = fA SdQ for any A € 7, using Exercise 4.25 once
again, we get
Ep(14) = Eg(14S5) = Ep(14S 2).

By Exercise 1.30, we have SZ = 1, P-a.e. This implies

ar _ d_Q)‘
dQo \dp|

Chapter 5

51. If X,Y € [*(P) and E|, E,,... € L*(P) is a complete orthonormal
sequence, then (5.5) holds for X and Y, so

(X,Y) = [i(X, E)NE;, i(Y, Ej>Ej) = i(xa E XY, E)

=1 =1 i=1

since (E;, E;) = 1if i = j, and O otherwise.
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5.2. We have

1
IHoll; = (H0)2dm=f dx=1,
[0,1] 0

andany j=0,1,...andk=0,...,2/ -1

1
| Hoiaill3 = f (Hojpi)’dm = 2jf 1 2 2eydx
[0,1] 0

2k +2 2k
:2’(W‘W):1

This proves that each Haar function H, has L*-norm 1.

Next we show that H, is orthogonal to H,;,; for any j = 0,1,...
andk=0,1,...,2/ - 1:

i
(Ho,Hz_f+k> = H0H21+kdm =22 f (1( 2k 2k+l] T 1(2k+1 MJ)dm
[0‘1] [0,1] 2J+1 72 9j+1 2J+1 7 9j+1

22:(2k+1 2k)_2£(2k+2 2k+1)_

271 T

Wl

2j+1 - 2j+1

Now forany i, j = 0,1,...suchthati < jand foranyk = 0,1,...,2/-
land/=0,1,...,2/ -1

(Hyivi, Haigp) = Hyi i Hyiydm
[0,1]
iad
=2222 (1( 2k 2k+1] — 1(2“1 2A+2])(1(L 241 — 1( 2141 2z+2])dm.
[0’1] 2i+1 2 9i+l 2i+1 ? pi+l 2+l 2 9j+l1 2J+1 79 j+l1
Observe that
(2.22) c (. 2%] itk <i<k2 42 o,
(2. 22] c (%8, 22] g2+ 27 << k2 42 -,

20 2042 2% 22 _ .
(2#1’ 57| N (27 S ] =@ otherwise.

Therefore,

<H2i+k,H21+[> = 2%2% f (l(i z/+1] - 1( 20+1 M])dm
2k 2k+l] 2/+179j+1 2+ 7 9j+1

(zm > it

20+ 1 21 2041 2/+1
=222 ((z—‘z—)‘(z—‘z—))=0

[N
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ifk27 <1< k2771 4+ 2771 -,

o

I

<H2i+k,H2j+1> = —2%2% f (1( 2 24+1] - 1( 2041 2(+2])dm
ket 1 zg+z] 2J+1 7o)+l 2/ 241

2i+1 2 pitl

:_2522/'((217"1 _1)_(2?—#1 _2l'+1))=0
2Jj+1 2Jj+1 2j+1 2j+1

if k2771 4+ 271 < [ < k27742777~ 1, and
(Hyis, Hayiyp) = 0

in all other cases. This proves that the H, are orthogonal to one an-
other.

First we prove the following claim:

Suppose that f € LY (Q,F,u). Then for each & > 0 there is 6 > 0
such that fA |fldu < € whenever A € ¥ and u(A) < 6.

Proof Let f, = min(n, |f]) forn = 1,2,....Since f, is non-decreasing
and f, converges to |f|, u-a.e., it follows by the monotone conver-
gence theorem that

lim [ fodu= f fldu.
Q Q

n—oo

For any given € > 0 there is an integer k such that
&
[Lan-sodu <3,
Q
Put 6 = 5. Since fA(IfI — fodu < fQ(IfI — fodu, it follows that

f fldu = f (fl = fodu + f it < &+ k) < o
A A A

whenever p(A) < §. The claim has been proved.

Now we prove the assertion stated in Exercise 5.3. It suffices to
show that ||f — fill, = 0 as h — 0, where f;,(x) = f(x + h). Take any
€ > 0. By Lemma 5.8, there is a continuous function g defined on
[0, 1] such that ||/ — gll» < . Let us define an extension g of g to the
interval [a, b] as follows

g(0) ifxela0],
g(x)=4g(x) ifxel0,1],
g(l)y ifxel[l,b].

So g is continuous on [a,b] and g = 1j9;;8. In the sequel we con-
sider 4 small enough so that [#,1 + h] C [a, b], that is, such that



54.

Solutions to Exercises 63
|h| < min{|al, b — 1}. Applying the triangle inequality, we have

W = fullz < I1f = gl + llg = &all2 + 1131 = full2-

Now, we have to estimate the second and third term of the right hand
side of this inequality. Any continuous function on [0, 1] is uniformly
continuous, so for § > 0 there is 6; > 0 such that [g(x)—g(x+h)| < %,
whenever |h| < 6, and x € [0, 1]. This implies that ||g — gull. < %.
Further, applying Exercise 1.32 for 1j9.11(x)(g(x + h) — f(x + h))?, we
have

1w — Fll2 = f @+ ) — fx+ h)dm(x)
[0,1]
= f Loy (3 + ) — fx + W)Y dm(x)
R
- fR Lo O)EO) = )P dm()

- f/ G0) = fO) () < f &) — FO) dm(y)
[h,1+h]

[=1hl.1+1h]

= [ @)= Fopdme) + f @0) - FO))dm(y)

[0.1] [=171.0]

+ f @)~ fO) dm(y).
[1,1+1]

From the claim proved at the outset, given §—; there is 6, > 0 such
that [ ()~ fO)Pdm(y)and [ | (BO) - f)Vdm(y) are less
then £ if |h] < 6,. Finally, 12, fill} < & and ||f - fyll, < 222 < ¢
for |h| < 6 = min(dy, 65).

From the obvious inequalities

(k)

k k
I — 2l < Ix® = xly < nllx® - xl,

we get the following implications: (2) = (3) = (1). So, it suffices
to show that (1) implies (2). Suppose that (1) holds. Then for any
& > 0 there is an integer K such that for any k£ > K we have

& .
|xf.k)—x,-|<7 fori=1,...,n.
n

n
h® =l = | D I — 5P <.
i=1

Hence
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5.6.

5.7.

5.8.
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Because

limsup 14, = Liimsup, .. A,

n—oo

and all indicator functions are bounded above by 1qg, which is in-
tegrable, we can apply the second Fatou lemma (Lemma 1.41 (ii))
with f, = 1,,. This gives

P (lim sup A,,) = f Limsup, . 4, AP = f limsup 14, dP
Q Q

n—oo n—oo

> lim supf 14, dP = limsup P(A,).
Q

n—oo n—oo

The ‘if” claim follows immediately since for £ = 1 we can find K > 0
such that [ IX|dP < 1. Then

f|X|dP = f |X|dP+f |X|dP < K+ 1 < oo,
Q {IXI<K) {IXI2K}

The opposite implication (‘only if’) is proved as follows: Suppose
that X € LI(P) Then X, = |X|1{|X|2n} — 0, P-a.e., with X, < |X|
Thus by the dominated convergence theorem

lim f IX|dP = lim | X,dP = f lim X, dP = 0.
{1X|>n) Q Q

n—oo n—oo n—oo

So for any given & > 0 there is K > 0 such that

f IX|dP < &.
{IXI>K}

If X;,X,,... is a sequence of random variable such that |X,| < 7Y,
P-a.e. for all n, then the sequence is uniformly integrable.

This is a simple consequence of Exercise 5.6. Since Y is inte-
grable, for any given € > 0 there is a K > 0 such that f[lle K Y] < e.
Because {|X,| > K} c {|Y| > K} forn =1,2,..., we obtain

f [XnldP < f |Y|dP < e.
{IXu[2K} {(IYIzK}

We have the following inequalities for any x € R and & > O:

PY,<x-e)—-P(X,-Y,|>e)<PX,<x)
<PY,<x+e)+P(X,-Y,|>¢).

From Exercise 2.1 we know that there are at most countably many
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& > 0 such that Fy has a discontinuity at x + & or x — &. For any other
e >0 we get

Fy(x — &) <liminf Fx, (x) < limsup Fy, (x) < Fy(x+ &)

n—oo

by letting n — co. Because x can be approached from the left by x—¢&
and from the right by x + & such that £ > 0 does not belong to that
countable set, if x is a continuity point of Fy, then we obtain

lim Fy (x) = Fy(x),

showing that X, = Y.
Observe that for any x € R

F_x(x)=P(=X, < x) > P(=X, < x) = 1-P(X,, < —x) = 1=Fy (-x)

Suppose that x is a continuity point of F_y. It follows that P{-X =
x} = P{X = —x} = 0, which means that —x is a continuity point
of Fy, and therefore

liminf F_x (x) > 1 = Fx(=x) = F_x(x).
On the other hand, for any x e Rand & > 0
Fxx)=P(-X, <x)<P(-X,<x+¢)
=1-PX,<-x—-g&=1-Fx(-x—e¢).

From Exercise 2.1 we know that the set C consisting of all € > 0
such that F_y has a discontinuity at x + & (equivalently, Fx has a
discontinuity at —x — &) is at most countable. For any & > 0 such that
e ¢ C we therefore have

limsup F_x (x) <1 - Fx(—x—¢&) = F_x(x + &).

n—oo

Since € > 0 such that € ¢ C can be arbitrarily small, from the right-
continuity of the distribution function F_x we get

limsup F_x, (x) < F_x(x).

n—oo

‘We have shown that
lim F_x, (x) = F_x(x)

whenever x is a continuity point of F_y, that is, - X, = —-X.
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5.10. Forany xe Rand e > 0

5.11.

{(X,+c<x—-glc{X,+Y, <x}U{lY,—c|>¢&},
(X, +Y, <xjc{X,+c<x+&U{lY,—c|>¢&}.

It follows that

PX,+c<x—e)<PX,+Y,<x)+P(Y,—c|>¢),
PX,+Y,<x)<PX,+c<x+e)+P(Y,—c|>e).

From Exercise 2.1 we know that the set C consisting of all € > 0

such that Fx has a discontinuity at x — ¢ + & or x + ¢ — € is at most

countable. For any & > 0 such that € ¢ C we get

Fx(x—c—-¢) <liminf Fy .y, (x) <limsup Fx ,y, (x) < Fx(x —c+ &)
n—oo

since P (|Y,, — c| > €) = 0asn — oo. Observe that Fy,.(x) = Fx(x—
¢) for any x € R. Hence, if x is a continuity point of Fy,., then x — ¢
is a continuity point of Fy, and because x—c can be approached from
the left by x—c—¢ and from the right by x—c+e& such that 0 < ¢ ¢ C,
we obtain

’}LH; Fx,1v,(x) = Fx(x — ¢) = Fxic(x)
when x is a continuity point of Fy.., which proves that X, + ¥, =
X +ec.
We show that limy_,e fo S“;”d . Consider the function f :
(0,T) x (0,0) — R given f(x, y) = e % sin x. First we show that
f € LY((0,T] x (0, ), B((0, T] x (0, 0)), m,). We calculate the iter-
ated integral

T 00 T 1
f (f le™ sin xldy) dx = f (I sin xl—)dx <T <o
0 0 0 X

since fom e Vdy = }C Then, reasoning as in the proof of Fubini’s
theorem (Theorem 3.18), we obtain that

T 00
ff le™ sin x|dxdy = f (f le™ sin xldy) dx <T.
(0,T)%(0,00) 0 0

We can apply Fubini’s theorem to have

T 0o
f wdx —f sinx(f exydy) dx
0
00 T
:f (f e s1nxdy)dx=f (f eV sinxdx)dy.
0 \Jo 0 0
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Differentiating both sides with respect to 7', we can verify that

T
1
f e Vsinxdx = T (1 —e"(ysinT + cos T)).
0

+ 32
Then
T - 00 00 -T
sin x 1 eV
—dx = dy — sinT + cos T)dy.
fo E xf01+y2yf01+y2(y )dy
. 00 dy (o) s
Since fo e = arctany|® = 7 and
00 e—Ty 00 e—Ty
——((ysinT + cos T)dy| < ——|ysinT + cos T|d
l:1+ﬁ@ \dy l:1+ﬁw dy

“1+y f T+y f‘” 1+y
< — e Py = — e My + — e g
_fo 1+y2e Y 0 1+yze Y | 1+yze Y

1 1 1
< max( +y)(—(1—e-T))+— -0,
T T

yelo.1\ 1 + y?
if T — oo, we have
lim ' Siﬂcdx = J—T.
T—oo 0 X 2
5.12. Let a < b be continuity points of Fx. With
Jx = 7 fem¢x(t) dm(t),
JT

R
we have

b
f fx(x)dx = fx(x) dm(x)
a [a,b]

— i (f e it dm(x)) ox(t) dm(t)
2 Jr [a,b]

1 b
= lim — (f e dx) ox (1) dm(t)
T 27 Ji_7.71\Ja

1 —ita __ ,—ith
ﬂm—f e pewdm)
[-T.T] it
= Fx(b) — Fx(a)
by Fubini’s theorem and the inversion formula. In fact fa b fx(x)dx =
Fx(b) — Fx(a) holds for all a,b € R since Fy is right-continuous

and the integral on the left is continuous with respect to a and b. It
follows that f is indeed the density of X.
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5.13. Suppose that X is an integer-valued random variable. Then e

Solutions to Exercises

itX iS a
discrete random variable with values ™ for n € Z. Put p, = P(X =
n). By the definition of ¢x(#), we get

¢X(t) — E(eifX) — Z eitnpn'

nez

Fix k € Z. Then

27 ] 27 )
f e oy (t)dt = f Z "R p dt.
0 0 ez
In order to calculate the last integral we show that

27 ) 21 )
f Z £1n=h) padt = Z Pn f P
0 0

nez nez

Put

27 )
5= f Z e p dt
0

nez

m 2 o2r m
S = Z Dn f " Rdr = f Z "0 p dt.
0 0 ="

n=—m

It suffices to verify that s,, — s as m — co. The follows because

21 ) 27 ]
f Z elt(n—k)pndt < f Z elt(n—k)pn
0 0

|n|>m |n|>m

2
< > e padt =27 Y py >0
<f0 (e (p t Ve DPn —

[n|>m In|>m

dt

|Sm—S| =

asn — oo since ez P = 1.
Finally, we have

2 2
f e " px(t)dt = Z Dn f "t = 27p,
0

nez 0

o o 27
f 1R gy = f cos(n — k)tdt + i f sin(n — k)tdt
0 0 0

_{277 ifn =k

since

0 ifn#k.
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It follows that

2
PX =k = % f ey (t)dt.
0

Let S be the number of ‘heads’ obtained in n = 10000 tosses of a
fair coin. Then S = 32" X;, where X;, i = 1,...,10000 are i.i.d.
random variables with P(X; = 1) = P(X; = 0) = % Furthermore,
Var(S) = \/np(l —p) = V10000/4 = 50. By Corollary 5.53, we
have

S =500 1
P(4900 < § < 5100) = P(IS —500] < 100) = P(! < —)

50 2
1 1 1
~ ¢(§) - ¢(—§) = 2¢(§) -1,

where ¢(x) = \/#27 f_ ); e‘édt. It follows that P(4900 < S < 5100) =~
2-0.6915 -1 = 0.383.



