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Solutions to Exercises

Chapter 1

1.1. First, take an infinite sequence A1, A2, . . . ∈ F . By de Morgan’s law,
∞⋂

i=1

Ai = Ω \

∞⋃
i=1

(Ω \ Ai).

By Definition 1.10, Ω is in F , all the Ω \ Ai are in F , their union is
in F , and finally, its complement is in F .

Now for a finite sequence A1, . . . , An ∈ F , put An+i = Ω for i =

1, 2, . . . . Since Ω ∈ F , we have
n⋂

i=1

Ai =

∞⋂
i=1

Ai ∈ F .

1.2. Fix 0 ≤ a < b ≤ 1. We show that the open interval (a, b) is in F .
For each n = 1, 2, . . . large enough so that 1

2n < b − a we can find
rationals rn < sn with a < rn < a + 1

n and b − 1
n < sn < b. Now

(a, b) =
⋃∞

n=1(rn, sn), and as F is a σ-field containing all (rn, sn), we
have (a, b) ∈ F .

1.3. (1) We first show that if {F j} j∈J is any collection of σ-fields defined
on the same set Ω, then their intersection

⋂
j∈J F j is also a σ-field.

We have Ω ∈ F j for all j, so Ω ∈
⋂

j∈J F j. Next, take A ∈
⋂

j∈J F j.
Then A ∈ F j, so Ω \ A ∈ F j for all j ∈ J; hence, Ω \ A ∈

⋂
j∈J F j.

Finally, suppose that A1, A2, . . . ∈
⋂

j∈J F j. Then Ai ∈ F j for all i
and j, so that

⋃∞
i=1 Ai ∈ F j for all j. Thus,

⋃∞
i=1 Ai ∈

⋂
j∈J F j.

Apply this with Ω = R and {F j} j∈J = {F : F is a σ-field on R and
I ⊂ F } to see that B(R) is a σ-field containing I.
(2) Since F is a σ-field on R containing I, it appears in the intersec-
tion defining B(R), which means that B(R) ⊂ F .

1.4. For any singleton {a}, where a ∈ R, we have m({a}) = 0. Indeed,
by definition, m({a}) is the infimum of the sum of the lengths of any
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countable covering. Given any ε > 0 we can cover {a} by the open
intervals In =

(
a − ε

2n+2 , a + ε
2n+2

)
for n = 1, 2, . . . . Then

∑∞
n=1 l(In) =

ε
2 < ε. Hence m({a}) = 0.

It follows that m([ 1
2 , 2)) = m({ 12 }) + m(( 1

2 , 2)) = 0 + (2 − 1
2 ) = 3

2
since the union is disjoint and { 12 } is a singleton.

Write [−2, 3]∪ [3, 8] = {−2} ∪ (−2, 3)∪ {3} ∪ (3, 8)∪ {8} to obtain
a disjoint union, and use the additivity of m to obtain, similarly, that
m([−2, 3] ∪ [3, 8]) = 10.

1.5. By countable additivity, and since m
({

1
n

})
= 0 for each n = 1, 2, . . . ,

we have

m

 ∞⋃
n=2

(
1

n + 1
,

1
n

] =

∞∑
n=2

m
((

1
n + 1

,
1
n

])
=

∞∑
n=2

(
1
n
−

1
n + 1

)
=

1
2
.

1.6. Any countable subset ofR has Lebesgue measure 0. To see this, write
A = {an : n ≥ 1} as a disjoint union of singletons and use countable
additivity:

m(A) = m

 ∞⋃
n=1

{an}

 =

∞∑
n=1

m({an}) = 0.

Therefore the countable sets N,Q and {x ∈ R : sin x = cos x} have
Lebesgue measure 0. Since m(R) = ∞, we have m(R\Q) = m(R) −
m(Q) = ∞.

1.7. First, we show that the Cantor set C is uncountable. We adapt the
proof of the uncountability of R. Each x ∈ [0, 1] can expressed in
ternary form as

x =

∞∑
k=1

ak

3k = 0.a1a2 . . .

with coefficients ak = 0, 1 or 2. We have a one-to-one correspon-
dence between C and ternary expansions of the form 0.a1a2 . . . with
each ak equal 0 or 2.

Suppose that C is countable, so that it can be arranged into a se-
quence: C = {x1, x2, x3, . . .}. By the diagonal procedure, we define
a number x in the following way: if the nth digit in the ternary ex-
pansion of xn is equal to 0 (or 2), then we take the nth digit in the
ternary expansion of x to equal to 2 (or 0, respectively). That is, we
simply interchange 0 and 2 at the nth position. Hence the ternary ex-
pansion of x contains only 0 or 2 in any position, but differs from the
ternary expansion of each xn in at least one position, so x < C. The
contradiction shows that C is uncountable.
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All that remains is to check that m(C) = 0. By definition, C =⋂∞
n=1 Cn and Cn consists of 2n disjoint closed intervals, each of length(

1
3

)n
. The total length of this sequence of intervals equals

(
2
3

)n
. Since

Cn ⊃ Cn+1 for each n, we have

m(C) = lim
n→∞

m(Cn) = lim
n→∞

(
2
3

)n

= 0.

1.8. First note that l((a, b)) = l((a + x, b + x)) = b − a. If a sequence of
open intervals (Ik)∞k=1 covers A ∈ B(R), that is, if

A ⊂
∞⋃

k=1

Ik,

then the sequence of intervals (Ik + x)∞k=1 covers A + x,

A + x ⊂
∞⋃

k=1

(Ik + x).

So we have a one-one correspondence between the interval coverings
of A and A+x. Moreover, the total length of a family of intervals does
not change when we shift each by x,

∞∑
k=1

l(Ik) =

∞∑
k=1

l(Ik + x).

This implies that the collections of total lengths of such coverings
satisfy  ∞∑

k=1

l(Ik) : A ⊂
∞∑

k=1

Ik

 =

 ∞∑
k=1

l(Ĩk) : A + x ⊂
∞⋃

k+1

Ĩk


were Ik and Ĩk are open intervals. So their infima are equal, which
proves that m(A) = m(A + x).

1.9. We use the Riemann integral and standard calculus techniques in
solving this exercise, as the integrands are continuous. Clearly, f (x) ≥
0 for all x ∈ R. We need to verify that the integral from −∞ to +∞
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of f (x) is 1. Let us begin with µ = 0 and σ = 1. Then

(∫ ∞

−∞

1
√

2π
exp

(
−

x2

2

)
dx

)2

=
1

2π

∫ ∞

−∞

∫ ∞

−∞

exp
(
−

x2 + y2

2

)
dxdy

=
1

2π

∫ ∞

0

∫ 2π

0
r exp

(
−

r2

2

)
dϕdr

=

∫ ∞

0
r exp

(
−

r2

2

)
dr = − exp

(
−

r2

2

)∣∣∣∣∣∣∞
0

= 1

To compute the above integral, we substituted the polar coordinates:
x = r cosϕ, y = r sinϕ.

Now, for any µ and σ,

∫ ∞

−∞

1

σ
√

2π
exp

(
−

(x − µ)2

2σ2

)
dx =

∫ ∞

−∞

1
√

2π
exp

(
z2

2

)
dz = 1,

where the substitution µ+σz = x is used. If follows that
∫ ∞
−∞

f (x)dx =

1, as required.
1.10 As a simple consequence of Exercise 1.9 we have

∫ ∞

0

1

xσ
√

2π
exp

(
−

(ln x − µ)2

2σ2

)
dx =

∫ ∞

−∞

1

σ
√

2π
exp

(
−

(z − µ)2

2σ2

)
dz = 1,

where the substitution z = ln x is used.
1.11. Let

r =

m∑
i=1

ri1Ai , s =

n∑
j=1

s j1B j ,

where A1, . . . , Am ∈ F , Ai ∩ A j = ∅ for i , j,
⋃m

i=1 Ai = Ω and
B1, . . . , Bn ∈ F , Bi ∩ B j = ∅ for i , j,

⋃n
j=1 B j = Ω.

For any a, b ≥ 0 we have

ar + bs =

m∑
i=1

n∑
j=1

(ari + bs j)1Ei j ,

where Ei j = Ai ∩ B j, for i = 1, . . . ,m , j = 1, . . . , n. Thus ar + bs is a



Solutions to Exercises 5

simple function. By Definition 1.25∫
Ω

(ar + bs)dµ =

m∑
i=1

n∑
j=1

(ari + bs j)µ(Ei j)

=

m∑
i=1

n∑
j=1

ariµ(Ei j) +

m∑
i=1

n∑
j=1

bs jµ(Ei j)

=

m∑
i=1

ari

n∑
j=1

µ(Ei j)

 +

n∑
j=1

bs j

m∑
i=1

µ(Ei j)

 = I1 + I2.

We apply additivity of the measure µ to find

n∑
j=1

µ(Ei j) = µ

 n⋃
j=1

(Ai ∩ B j)

 = µ

Ai ∪

 n⋃
j=1

B j


 = µ(Ai).

Similarly,

m∑
i=1

µ(Ei j) = µ

 m⋃
i=1

(Ai ∩ B j)

 = µ

 m⋃
i=1

Ai

 ∩ B j

 = µ(B j).

As a consequence,

I1 + I2 = a
m∑

i=1

riµ(Ai) + b
n∑

j=1

s jµ(B j) = a
∫

Ω

rdµ + b
∫

Ω

sdµ.

1.12. Let

r =

m∑
i=1

ri1Ai , s =

n∑
j=1

s j1B j ,

where A1, . . . , Am ∈ F , Ai ∩ A j = ∅ for i , j,
⋃m

i=1 Ai = Ω and
B1, . . . , Bn ∈ F , Bi∩B j = ∅ for i , j,

⋃n
j=1 B j = Ω. By the additivity

of the measure µ we get∫
Ω

rdµ =

m∑
i=1

riµ(Ai) =

m∑
i=1

n∑
j=1

riµ(Ai ∩ B j).

Similarly, ∫
Ω

sdµ =

n∑
j=1

s jµ(B j) =

m∑
i=1

n∑
j=1

s jµ(Ai ∩ B j).

Since for any ω ∈ Ω, r(ω) ≤ s(ω), it follows that ri ≤ s j on Ai ∩ B j.
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This implies that riµ(Ai ∩ B j) ≤ s jµ(Ai ∩ B j), which yields

∫
Ω

rdµ ≤
∫

Ω

sdµ.

1.13. The ‘only if’ part of the statement is obvious: (a,∞) ∈ B(R), so
{ f > a} = { f ∈ (a,∞)} ∈ F when f is measurable.

The ‘if’ part is based on the fact the σ-field of Borel sets is gener-
ated by intervals.

First, the family C of all sets A ⊂ R such that { f ∈ A} ∈ F
is a σ-field. Let us verify the conditions of Definition 1.10. Since
{ f ∈ R} = Ω ∈ F , it follows that R ∈ C. Suppose A ∈ C. Then
{ f ∈ R \ A} = Ω \ { f ∈ A} also lies in C because F is a σ-field. Now,
let A1, A2, . . . ∈ C, then { f ∈

⋃∞
i=1 Ai} =

⋃∞
i=1{ f ∈ Ai} ∈ F . It follows

that
⋃∞

i=1 Ai ∈ C.
Second,C contains the familyI of all open intervals: since (a,∞) ∈

C, it follows that (−∞, a] = R\(a,∞) ∈ C, (a, b] = (a,∞)∩(−∞, b] ∈
C, [a, b] =

⋂∞
n=1(a− 1

n , b] ∈ C and finally (a, b) =
⋃∞

n=1[a+ 1
n , b−

1
n ] ∈

C. By part (2) of Exercise 1.3, we obtain B(R) ⊂ C.
1.14. Let s =

∑n
i=1 si1Ai , where A1, . . . , An ∈ F are pairwise disjoint with⋃n

i=1 Ai = Ω. For any a ∈ R, by Exercise 1.13, it suffices to show that
{s > a} ∈ F . But {s > a} =

⋃
Ai, where union extends over all i such

that si > a. This yields {s > a} ∈ F .
1.15. By Exercise 1.13, it is enough to show that {g ◦ f > a} ∈ F for any

a ∈ R. Let A = (a,∞). Then by the continuity of g, the inverse image
g−1(A) = {g ∈ A} is an open subset of R. We claim that any open
set U in R is a union of countably many open intervals. To see this,
consider all open intervals contained in U with rational endpoints.
Their union is clearly contained in U. In fact, it is equal to U since
for any x ∈ U, we have (x − ε, x + ε) ⊂ U for some ε, and we can
find rational numbers a and b such that x ∈ (a, b) ⊂ (x − ε, x + ε).
This proves that U ∈ B(R). As a consequence, we have g−1((a,∞)) =

{g > a} ∈ B(R). By Exercise 1.13, it follows that

{g ◦ f > a} = f −1(g−1(a,∞)) ∈ F .

This proves that g ◦ f is a measurable function.
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1.16. We observe that the following are measurable sets for any a ∈ R:

{max{ f1, . . . , fn} > a} =

n⋃
k=1

{ fk > a},

{min{ f1, . . . , fn} > a} =

n⋂
k=1

{ fk > a}.

By Exercise 1.13 we obtain the conclusion.
1.17. Analogously to Exercise 1.16, the following are measurable sets for

any a ∈ R:

{sup
n≥1

fn > a} =

∞⋃
n=1

{ fn > a},

{inf
n≥1

fn > a} =

∞⋂
n=1

{ fn > a}.

1.18. By Exercise 1.16, supn≤k fn and infn≤k fn are measurable functions. It
is now immediate from Exercise 1.17 that

lim
n→∞

sup fn = inf
k≥1

(sup
n≤k

fn),

lim
n→∞

inf fn = sup
k≥1

(inf
n≤k

fn)

are measurable functions.
1.19. This is immediate since

lim
n→∞

fn = lim sup
n→∞

fn = lim inf
n→∞

fn,

so that we can apply Exercise 1.18.
1.20. In order to prove sn ≤ sn+1 for n = 1, 2, . . . it is sufficient to observe

that

Ai,n =

{
i

2n ≤ f <
i + 1
2n

}
=

{
2i

2n+1 ≤ f <
2i + 1
2n+1

}
∪

{
2i + 1
2n+1 ≤ f <

2i + 2
2n+1

}
= A2i,n+1 ∪ A2i+1,n+1.

By definition, sn is constant on Ai,n and its value is i
2n . Similarly

sn+1(ω) =


i

2n for ω ∈ A2i,n+1,

2i+1
2n+1 for ω ∈ A2i+1,n+1.
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This shows that sn(ω) ≤ sn+1(ω) and sn(ω) ≤ f (ω) for all ω ∈ Ω,
n = 1, 2, . . . . Now we show that f = limn→∞ sn pointwise, which
means that f (ω) = limn→∞ sn(ω) for any ω ∈ Ω.

Letω ∈ Ω and ε > 0. There exists an integer N such that f (ω) < N
and 1

2N < ε. Choose i ∈ {1, 2, . . . ,N2N} such that

i
2N ≤ f (ω) <

i + 1
2N .

This implies that f (ω)−sN (ω) < 1
2N < ε. Since sn is a non-decreasing

sequence, we have f (ω) − sn (ω) < ε for all n ≥ N.
1.21. By Proposition 1.28, there are non-decreasing sequences {sn}, {tn} of

simple functions such that f = limn→∞ sn and g = limn→∞ tn. This
immediately gives a f + bg = limn→∞(asn + btn). Since asn + btn

is a simple function for n = 1, 2, . . . , by Exercise 1.14 it is also
measurable. It follows by Exercise 1.19 that limn→∞(asn + btn) =

a limn→∞ sn + b limn→∞ tn = a f + bg is measurable.
1.22. We can repeat the argument of Exercise 1.21. Namely, by Proposi-

tion 1.28 there are two non-decreasing sequences {sn}, {tn} of sim-
ple functions such that f = limn→∞ sn and g = limn→∞ tn. Obvi-
ously, limn→∞ sntn = limn→∞ sn limn→∞ tn = f g. Since sntn is a sim-
ple function, by Exercise 1.14 it is measurable, and by Exercise 1.19,
limn→∞ sntn = f g is measurable.

1.23. For any simple function r, Exercise 1.12 implies that Definitions 1.25
and 1.29 give the same result since

sup
{∫

Ω

sdµ : s is a simple function such that s ≤ r
}

=

∫
Ω

rdµ.

For any measurable functions f , g : Ω → [0,∞) such that f ≤ g we
have the inclusion{∫

Ω

sdµ : s is a simple function such that s ≤ f
}

⊂

{∫
Ω

sdµ : s is a simple function such that s ≤ g
}
,

and the supremum of the bigger set is larger. It follows that∫
Ω

f dµ ≤
∫

Ω

gdµ.

1.24. By Proposition 1.28 (see also Exercise 1.20), there are non-decreasing
sequences {sn} and {tn} of simple measurable functions such that
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limn→∞ sn = f1 and limn→∞ tn = f2. Then limn→∞(sn + tn) = f1 + f2,
and this implies that f1 + f2 is a measurable function. The monotone
convergence theorem (Theorem 1.31) combined with Exercise 1.11
shows that ∫

Ω

( f1 + f2)dµ =

∫
Ω

f1dµ +

∫
Ω

f2dµ.

Next, define gn = f1 + · · · + fn. By Exercise 1.21, gn is a measurable
function, and limn→∞ gn =

∑∞
n=1 fn. By Exercise 1.19,

∑∞
n=1 fn is a

non-negative measurable function. Applying induction, we have∫
Ω

gndµ =

n∑
i=1

∫
Ω

fidµ.

Using the monotone convergence theorem once again, we have∫
Ω

 ∞∑
n=1

fn

 dµ =

∞∑
n=1

∫
Ω

fndµ.

1.25. We have | f | = f + + f −. For an integrable f the functions f +, f −

are measurable by Exercise 1.16, and both
∫

Ω
f +dµ and

∫
Ω

f −dµ are
finite. By Proposition 1.32,∫

Ω

| f |dµ =

∫
Ω

f +dµ +

∫
Ω

f −dµ

and the integral on the left is finite, hence so is the right-hand side.
If | f | is integrable, then by Exercise 1.23 both

∫
Ω

f +dµ and
∫

Ω
f −dµ

are integrable since f + ≤ | f | and f − ≤ | f |. Therefore f is integrable.
1.26. Using f = f + − f − and | f | = f + + f −, we have∣∣∣∣∣∫

Ω

f dµ
∣∣∣∣∣ =

∣∣∣∣∣∫
Ω

f +dµ −
∫

Ω

f −dµ
∣∣∣∣∣

≤

∫
Ω

f +dµ +

∫
Ω

f −dµ =

∫
Ω

| f |dµ.

1.27. Let f , g be arbitrary integrable functions. Note that by Exercise 1.23
and Proposition 1.32∫

Ω

| f + g|dµ ≤
∫

Ω

| f | + |g|dµ =

∫
Ω

| f |dµ +

∫
Ω

|g|dµ,

so the left-hand side is finite. By Exercise 1.25, f + g is integrable.
We can write

( f + g)+ − ( f + g)− = f + g = ( f + − f −) + (g+ − g−).
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Rearranging to have only non-negative functions on either side, we
get

( f + g)+ + f − + g− = f + + g+ + ( f + g)−.

By Proposition 1.32,∫
Ω

( f +g)+dµ+

∫
Ω

f −dµ+

∫
Ω

g−dµ =

∫
Ω

f +dµ+

∫
Ω

g+dµ+

∫
Ω

( f +g)−dµ,

hence∫
Ω

( f +g)+dµ−
∫

Ω

( f +g)−dµ =

∫
Ω

f +dµ−
∫

Ω

f −dµ+

∫
Ω

g+dµ−
∫

Ω

g−dµ.

By Definition 1.33, this shows that∫
Ω

( f + g)dµ =

∫
Ω

f dµ +

∫
Ω

gdµ.

Next, for any integrable function f and any c ∈ Rwe have (c f )+ =

c+ f + +c− f − and (c f )− = c− f + +c+ f −. By Definition 1.33 and Propo-
sition 1.32, c f is integrable and∫

Ω

c f dµ =

∫
Ω

(c f )+ dµ −
∫

Ω

(c f )− dµ

=

∫
Ω

(
c+ f + + c− f −

)
dµ −

∫
Ω

(
c− f + + c+ f −

)
dµ

= c+

∫
Ω

f +dµ + c−
∫

Ω

f −dµ − c−
∫

Ω

f +dµ − c+

∫
Ω

f −dµ

= c
∫

Ω

f dµ.

Finally, for any integrable functions f , g and for any a, b ∈ R the
above results show that a f , bg are integrable and therefore a f + bg is
also integrable, and∫

Ω

(a f + bg) dµ =

∫
Ω

a f dµ +

∫
Ω

bgdµ = a
∫

Ω

f dµ + b
∫

Ω

gdµ.

1.28. If f ≤ g, then f + ≤ g+ and f − ≥ g−. These inequalities imply∫
Ω

f +dµ ≤
∫

Ω

g+dµ

and ∫
Ω

g−dµ ≤
∫

Ω

f −dµ

by Exercise 1.23. Adding and rearranging gives the result.
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1.29. Let f = limn→∞ fn. We show that

lim
n→∞

∫
Ω

fndµ =

∫
Ω

f dµ.

The limit exists and satisfies

lim
n→∞

∫
Ω

fndµ ≤
∫

Ω

f dµ

because
∫

Ω
fndµ is a non-decreasing sequence bounded above by∫

Ω
f dµ by Exercise 1.28. Consider gn = fn − f1 ≥ 0. It is a non-

decreasing sequence of non-negative integrable functions such that
limn→∞ gn = f − f1. Applying the monotone convergence Theo-
rem 1.31 and Exercise 1.27, we get

lim
n→∞

∫
Ω

gndµ = lim
n→∞

(∫
Ω

fndµ −
∫

Ω

f1dµ
)

=

∫
Ω

( f − f1)dµ.

This implies that

lim
n→∞

∫
Ω

fndµ =

∫
Ω

f dµ.

1.30. The integral is defined as long as at least one of
∫

Ω
f +dµ and

∫
Ω

f −dµ
is finite. So if

∫
Ω

f dµ = 0 we know that both are finite, hence f is in-
tegrable (else its integral is±∞). Hence µ({ f = +∞}) = µ({ f = −∞}) =

0, so f is µ-a.e. finite. Now suppose that
∫

B
f dµ = 0 for all B ∈ F .

As f is measurable, { f > 0}, { f < 0} ∈ F , and we have

0 =

∫
{ f>0}

f dµ =

∫
{ f>0}

f +dµ −
∫
{ f>0}

0dµ,

0 =

∫
{ f<0}

f dµ =

∫
{ f<0}

0dµ −
∫
{ f<0}

f −dµ.

Proposition 1.36 now shows that the non-negative measurable func-
tions f +, f − are both 0 µ-a.e. Since { f , 0} = { f + > 0} ∪ ( f − > 0},
we have µ ({ f , 0}) = 0. Conversely, if f = 0 µ-a.e., then 0 =

µ({ f , 0}) = µ({ f > 0}) + µ({ f < 0}), and µ takes only non-negative
values, so µ({ f + > 0}) = µ({ f − > 0}) = 0. Proposition 1.36 thus ap-
plies to both functions, hence

∫
Ω

f +dµ =
∫

Ω
f −dµ = 0. This means

that for any B ∈ F we have
∫

B
f +dµ =

∫
B

f −dµ = 0, hence
∫

B
f dµ =

0.
1.31. We have

f (x) =

∞∑
k=1

k1Ak (x),
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where Ak is the union of the 2k−1 intervals of length 3−k each that are
removed from [0, 1] at the kth stage of constructing the Cantor set.
Let us define the nth partial sum of the series

rn(x) =

n∑
k=1

k1Ak (x).

Since rn(x) is a non-decreasing sequence converging to f (x) for each
x ∈ [0, 1], by Theorem 1.31∫

[0,1]
f dm = lim

n→∞

∫
[0,1]

rndm = lim
n→∞

n∑
k=1

k
2k−1

3k =
1
3

∞∑
k=1

k
(
2
3

)k−1

.

Since
∑∞

k=1 α
k = 1

1−α if |α| < 1, differentiation term-by-term with
respect to α shows that

∞∑
k=1

kαk−1 =
1

(1 − α)2 .

With α = 2
3 we get

∫
[0,1]

f dm = 3.

In order to show that the Riemann integral
∫ 1

0
f (x)dx does not

exist, we define two sequences of approximating sums with different
limits. For any n ∈ N let us take a partition of [0, 1] given by

0 <
1
3n <

2
3n < . . . <

3n − 1
3n < 1.

For each i = 1, . . . , 3n we have either
(

i−1
3n ,

i
3n

)
⊂ Ak for some k =

1, . . . , n or
(

i−1
3n ,

i
3n

)
⊂ Cn. If

(
i−1
3n ,

i
3n

)
⊂ Ak for some k = 1, . . . , n, we

take any xi, yi ∈
(

i−1
3n ,

i
3n

)
, so f (xi) = f (yi) = k. If, on the other hand,(

i−1
3n ,

i
3n

)
⊂ Cn, then there are points xi, yi ∈

(
i−1
3n ,

i
3n

)
such that xi ∈ C

and yi ∈ A3n , so that f (xi) = 0 and f (yi) = 3n. Now consider the
approximating sums

αn =

3n∑
i=1

f (xi)
(

i
3n −

i − 1
3n

)
=

3n∑
i=1

1
3n f (xi) =

n∑
k=1

k
2k−1

3k ,

βn =

3n∑
i=1

f (yi)
(

i
3n −

i − 1
3n

)
=

3n∑
i=1

1
3n f (yi) =

n∑
k=1

k
2k−1

3k + 3n

(
2
3

)n

.

We have already seen that limn→∞ αn = 3. But limn→∞ βn = ∞. This
means that the Riemann integral

∫ 1

0
f (x)dx does not exist.



Solutions to Exercises 13

1.32. By assumption, both f + and f − are integrable. By Definition 1.29,∫
R

f +dm = sup
{∫
R

sdm : s is a simple function such that s ≤ f +

}
.

Let s =
∑n

i=1 si1Ai , where A1, . . . , An ∈ B(R) are pairwise disjoint
sets with

⋃n
i=1 Ai = R and si ≥ 0 for i = 1, . . . , n such that s ≤ f +.

Consider the simple function r(x) = s(x − a). We have

r(x) =

n∑
i=1

si1Ai (x − a) =

n∑
i=1

si1Ai+a ≤ f +(x − a) = g+(x).

By Definition 1.25 and Exercise 1.8, we have∫
R

sdm =

n∑
i=1

sim(Ai) =

n∑
i=1

sim(Ai + a) =

∫
R

rdm.

This implies that the sets{∫
R

sdm : s is a simple function such that s ≤ f +

}
,{∫

R

rdm : r is a simple function such that r ≤ g+

}
are the same, so their suprema are equal, which means that

∫
R

f +dm =∫
R

g+dm. For the same reason
∫
R

f −dm =
∫
R

g−dm.
1.33. Apply the first Fatou lemma with fn = 1An , so that

P

⋃
n≥1

⋂
k≥n

Ak

 =

∫
Ω

lim inf
n→∞

1An dP

≤ lim inf
n→∞

∫
Ω

1An dP

= lim inf
n→∞

P(An).

1.34. First note that for any sequence gn of non-negative measurable func-
tions, the partial sums hn =

∑n
k=1 gk are non-decreasing and that

limn→∞ hn =
∑∞

k=1 gk, so by monotone convergence∫
Ω

∞∑
k=1

gk dP =

∫
Ω

lim
n→∞

hn dP = lim
n→∞

∫
Ω

hn dP

= lim
n→∞

n∑
k=1

∫
Ω

gk dP =

∞∑
k=1

∫
Ω

gk dP.
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For the given sequence fk, apply this result to gk = | fk| , which non-
negative and measurable. Letting ϕ =

∑∞
k=1 | fk| , we obtain∫

Ω

ϕ dµ =

∞∑
k=1

∫
| fk| dµ.

The right-hand side is finite by hypothesis, so ϕ is integrable. There-
fore ϕ is finite µ-a.s. So the series

∑∞
k=1 | fk| converges µ-a.s., and

therefore the series
∑∞

k=1 fk converges (since it converges absolutely)
µ-a.s. Let f =

∑∞
k=1 fk (put f = 0 on the set of µ-measure 0 for which

the series diverges). For all partial sums we have∣∣∣∣∣∣∣
n∑

k=1

fk

∣∣∣∣∣∣∣ ≤ ϕ,
so we can apply the dominated convergence theorem to find∫

Ω

f dµ =

∫
Ω

lim
n→∞

n∑
k=1

fk dµ = lim
n→∞

∫
Ω

n∑
k=1

fk dµ

= lim
n→∞

n∑
k=1

∫
Ω

fk dµ =

∞∑
k=1

∫
Ω

fk dµ,

as required.
1.35. If x > 0, we have e−x ∈ (0, 1), so

∞∑
n=1

(e−x)n =
e−x

1 − e−x =
1

ex − 1
.

Hence the integrand can be written as x
ex−1 =

∑∞
n=1 xe−nx. Integration

by parts shows that
∫

[0,∞)
xe−nxdm(x) =

∫ ∞
0

xe−nxdx = 1
n2 for each

n = 1, 2 . . . . By Exercise 1.34,∫ ∞

0

x
ex − 1

dx =

∫
[0,∞)

x
ex − 1

dm(x) =

∞∑
n=1

∫
[0,∞)

xe−nxdm(x) =

∞∑
n=1

1
n2 ,

and the last sum is well-known to be π2

6 .
1.36. Suppose that ω 7→ f (ω, s) is integrable for some s ∈ [a, b] and define

Is =
∫

Ω
f (ω, s)dµ(ω). It is obvious that lims→t Is = It if and only if

limn→∞ Isn = It for any sequence sn such that limn→∞ sn = t. For
any such sn we are given that limn→∞ f (ω, sn) = f (ω, t) for each
ω ∈ Ω. Moreover, | f (ω, sn)| ≤ g(ω) for each n and each ω ∈ Ω. By
Theorem 1.43, ω 7→ f (ω, sn) and ω 7→ f (ω, t) are integrable and
limn→∞ Isn = It. It follows that lims→t Is = It.
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Chapter 2

2.1. Denote by D the set of all points of discontinuity of F. For each point
a ∈ D there exists a rational number qa such that

F(a−) < qa < F(a)

If a, b are discontinuity points of F and a < b then qa , qb because
F(a) ≤ F(b−). So we have a one-one correspondence between a sub-
set of rational numbers and the set D, which is therefore countable.

2.2. The definition of P shows that

P(Ω) =

∞∑
k=1

αkPk(Ω) =

∞∑
k=1

αk.

So
∑∞

k=1 αk = 1 is a necessary condition for P to be a probability
measure. This condition is also sufficient. Suppose that

∑∞
k=1 αk = 1

holds. We show that P is countably additive. Let A1, A2, . . . ∈ F be a
sequence of pairwise disjoint events. Then

P

 ∞⋃
i=1

Ai

 =

∞∑
k=1

αkPk

 ∞⋃
i=1

Ai

 =

∞∑
k=1

αk

∞∑
i=1

Pk(Ai)

=

∞∑
i=1

∞∑
k=1

αkPk(Ai) =

∞∑
i=1

P(Ai).

2.3. The family σ(X) trivially contains Ω and the empty set. Take An ∈

σ(X) for n = 1, 2, . . .. . Then An = {X ∈ Bn} = X−1(Bn) for some
Bn ∈ B(R). Using the properties of the inverse image, we get

∞⋃
n=1

An =

∞⋃
n=1

X−1(Bn) = X−1

 ∞⋃
n=1

Bn

 ∈ σ(X).

For A ∈ σ(X) we also have A = X−1(B) for some B ∈ B(R) and
Ω \ A = Ω \ X−1(B) = X−1(R \ B) ∈ σ(X).

2.4. Suppose at first Y is a simple function and let y1, . . . , ym be its differ-
ent possible values.

Since Ai = {Y = yi} ∈ σ(X), we have Ai = {X ∈ Bi} for some Bi ∈

B(R). Define h =
∑m

i=1 yi1Bi . Thus h is a Borel function. We show that
for eachω ∈ Ω, X(ω) belongs to only one Bi. For if X(ω) ∈ Bi∩B j for
some i , j, we have ω ∈ X−1(Bi∩B j) ⊂ X−1(Bi)∩X−1(B j) = Ai∩A j,
which is impossible since Ai ∩ A j = ∅ for i , j. For X(ω) ∈ Bi

observe that h(X(ω)) = yi = Y(ω) since {X ∈ Bi} = Ai = {Y = yi}.
For a general random variable Y , applying Proposition 1.28 to the
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positive and negative parts Y+ and Y− of Y , we find a sequence of
simple random variables Yn such that Yn(ω)→ Y(ω) for each ω ∈ Ω.
By the first part, for each n there is a Borel function hn : R→ R such
that Yn(ω) = hn(X(ω)), ω ∈ Ω.

Let B be the set of x ∈ R for which {hn(x)} converges. By Exer-
cise 1.18, B is a Borel set since B = {x ∈ R : lim infn→∞ hn(x) −
lim supn→∞ hn(x) = 0}. Let h(x) = limn→∞ hn(x) for x ∈ B and
let h(x) = 0 for x ∈ R \ B. Since hn1B is measurable, it follows
by Exercise 1.19 that h = limn→∞ hn1B is measurable. For each ω,
Y(ω) = limn→∞ hn(X(ω)); this implies that X(ω) ∈ B and conse-
quently Y(ω) = limn→∞ hn(X(ω)) = h(X(ω)).

The opposite implication is trivial.
2.5. If x < −1, then P({X ≤ x}) = 0. If −1 ≤ x < 1, then P({X ≤ x}) = 1

2 .
If x ≥ 2, then P({X ≤ x} = 1. The result is the distribution function

FX(x) =


0 if x < −1,
1
2 if −1 ≤ x < 1,
1 if 1 ≤ x.

This function is shown in Figure S.1. The dots represent the values
of FX(x) at x = −1, 1, where the distribution function has disconti-
nuities.

2.6. For n = 1, 2, . . . the probability that the nth toss of the coin is the first
to yield ‘heads’ is P({X = n}) = 1

2n . We can see that
∑∞

n=1 P({X =

n}) =
∑∞

n=1
1
2n = 1. Thus the distribution function FX is given by

FX(x) = PX((−∞, x]) = P({X ≤ x}) =
∑
n≤x

P({X = n})

=

{
0 if x < 1,
1
2 + 1

4 + . . . + 1
2n if n ≤ x < n + 1, n = 1, 2, 3, . . .

=

{
0 if x < 1,
1 − 1

2n if n ≤ x < n + 1, n = 1, 2, 3, . . .

2.7. Suppose that each Xn for n = 1, 2, 3, . . . is a random variable having
the binomial distribution with parameters n, p (see Example 2.2),
where p = λ

n for some λ > 0. Then

PXn (k) = P({Xn = k}) =

(
n
k

) (
λ

n

)k (
1 −

λ

n

)n−k

=
n!

(n − k)!nk

(
1 −

λ

n

)−k (
1 −

λ

n

)n λk

k!
→ e−λ

λk

k!
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Figure S.1 Distribution function in Excercise 2.5.

since n!
(n−k)!nk = (1 − 1

n )(1 − 2
n ) · . . . · (1 − k

n ) → 1, (1 − λ
n )−k → 1 and

(1 − λ
n )n → e−λ as n→ ∞.

2.8. The event {Y = n} occurs exactly when the number of trading dates
is n. It is the intersection of two independent events, requiring that
the first n − 1 trading dates record r − 1 upward price moves and
that the price also moves up on the nth date. These events have prob-
abilities given by

(
n−1
r−1

)
pr−1(1 − p)n−r and p, respectively. Multiply

these probabilities (which is justified formally in Chapter 3), to find
P({Y = n}) =

(
n−1
r−1

)
pr(1 − p)n−r.

The discrete random variable Y has distribution PY =
∑
αnδxn ,

where xn = n and αn =
(

n−1
r−1

)
pr(1− p)n−r ≥ 0 for n = r, r +1, r +2, . . ..

We verify that αn add up to 1.
∞∑

n=r

αn =

∞∑
n=r

(
n − 1
r − 1

)
pr(1 − p)n−r

= pr
∞∑

n=r

(
n − 1
n − r

)
(1 − p)n−r = pr 1

pr = 1.

The sum is computed by using x = 1 − p in the Taylor expansion∑∞
n=r

(
n−1
r−1

)
xn−r of (1 − x)−r around 0.

2.9. Using the density of the normal distribution and making a change of
variables in the integral, for any y ∈ R we have

P(Y ≤ y) = P(µ + σX ≤ y) = P
(
X ≤

y − µ
σ

)
=

∫ y−µ
σ

−∞

1
√

2π
e−

x2
2 dx

=

∫ y

−∞

1

σ
√

2π
e−

(z−µ)2

2σ2 dz (substituting z = µ + σx),

which shows that Y has the normal distribution N(µ, σ2).
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2.10. For any Borel set B ∈ B(R),

P({b + aX ∈ B}) = P({X ∈ (B − b)/a}) =

∫
(B−b)/a

fX(x)dx.

Using the substitution y = ax + b, we can transform the last integral
into

∫
B

1
|a| f ( y−b

a )dy.
2.11. For any Borel set B ∈ B(R) we define B∗ = {y ∈ R : 1

y ∈ B}. Thus,
B∗ ∈ B(R), 0 < B∗ and 1

X ∈ B ⇔ X ∈ B∗. We calculate the density
function of Y = 1

X :

P
(

1
X
∈ B

)
= P(X ∈ B∗) =

∫
B∗

1
2

1[−1,1](x)dx =

∫
B∗

1
2

1[−1,1]∩B∗(x)dx

=

∫
R

1
2

1[−1,0)∩B∗(x) +

∫
R

1
2

1(0,1]∩B∗(x)dx.

Substituting y = 1
x in both integrals, we get∫

R

1
2

1[−1,0)∩B∗(x)dx =

∫
R

1
2y2 1(−∞,−1]∩B(y)dy,∫

R

1
2

1(0,1]∩B∗(x)dx =

∫
R

1
2y2 1[1,∞)∩B(y)dy.

Finally,

P
(

1
X
∈ B

)
=

∫
R

1
2y2 1{(−∞,−1]∪[1,∞)}∩B(y)dy

=

∫
B

1
2y2 1(−∞,−1]∪[1,∞)(y)dy.

2.12. The assumptions on g ensure that it is an invertible function. For any
Borel set B ⊂ R

P(g(X) ∈ B) = P(X ∈ g−1(B)) =

∫
g−1(B)

fX(x)dx

=

∫
B

fX(g−1(y))
|g′−1(y))|

1g(R)(y)dy,

where we make the substitution x = g−1(y) in the integral.
2.13. For a put option written on a log-normally distributed stock, the dis-
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Figure S.2 Distribution function for the put option payoff in Exercise 2.13.

tribution function of the payoff H = (K − S (T ))+ can be written as

FH(x) = P
{
(K − S (T ))+

≤ x
}

=

{
0 if x < 0,

P {K − x ≤ S (T )} if x ≥ 0,

=

{
0 if x < 0,

1 − FS (T )(K − x) if x ≥ 0.

The graph of FH is shown in Figure S.2 in the case of a put option
with expiry time T = 1 and strike price K = 8, and a log-normally
distributed stock with parameters µ and σ as in Example 1.24. The
dot indicates the value FH(0) = 1 − FS (T )(K) at x = 0, where FH has
a discontinuity. For comparison, the log-normal distribution function
FS (1) is shown as a dotted line.

2.14. Let X be a random variable with values xn = (−2)n for n = 1, 2, 3, . . .
and corresponding probabilities pn = P({X = xn}) = 1

2n for n =

1, 2, 3, . . . . Then
2N−1∑
n=1

xn pn = −1,
2N∑
n=1

xn pn = 1

for each N = 1, 2, . . . . Hence E(X) =
∑∞

n=1 xn pn is undefined because
the series does not converge.

2.15. By definition,

E(X) =

∞∑
k=0

kP({xk = k}) =

∞∑
k=0

ke−λ
λk

k!

= λe−λ
∞∑

k=1

λk−1

(k − 1)!
= λe−λ

∞∑
k=0

λk

(k)!
= λe−λeλ = λ.
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2.16. First consider the case of g(x) = 1B(x) for a Borel set B ⊂ R,

E(g ◦ X) =

∫
Ω

1B(X(ω))dP(ω) =

∫
Ω

1{X(ω)∈B}(ω)dP(ω)

= P({X ∈ B}) =

∫
B

fX(x)dm(x) =

∫
R

1B(x) fX(x)dm(x).

Then by linearity we have the result for simple functions. A non-
negative g can be written as the limit of some sn ↑ g (see Exer-
cise 1.20). By the monotone convergence theorem (Theorem 1.31)
we have∫

Ω

g(X(ω))dP(ω) = lim
∫

Ω

sn(X(ω))dP(ω)

= lim
∫
R

sn(x) fX(x)dm(x) =

∫
R

g(x) fX(x)dm(x)

since sn ◦ X ↑ g ◦ X and sn fX ↑ g fX . For a general integrable g
such that g ◦ X is integrable we consider positive and negative parts
separately.

2.17. First we prove that
∫
R
|x| fX(x)dx is finite:∫ ∞

−∞

|x|
1

√
2πσ2

e−
(x−µ)2

2σ2 dx =

∫ ∞

−∞

|σy + µ|
1
√

2π
e−

y2

2 dy

≤ σ

∫ ∞

−∞

|y|
1
√

2π
e−

y2

2 dy + |µ|

∫ ∞

−∞

1
√

2π
e−

y2

2 dy =
2σ
√

2π
+ |µ|

= lim
a→∞

(
−

2
√

2π
e−

a2
2 +

2
√

2π

)
=

2
√

2π
since ∫ ∞

−∞

1
√

2π
e−

y2

2 dy = 1

and∫ ∞

−∞

|y|
1
√

2π
e−

y2

2 dy = 2
∫ ∞

0

1
√

2π
ye−

y2

2 dy = lim
a→∞

∫ a

0

2
√

2π
ye−

y2

2 dy.

Now

E(X) =

∫ ∞

−∞

x
1

√
2πσ2

e−
(x−µ)2

2σ2 dx =

∫ ∞

−∞

(σy + µ)
1
√

2π
e−

y2

2 dy = µ

since, by Example 2.34,∫ ∞

−∞

1
√

2π
ye−

y2

2 dy = 0.
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2.18. In the case of the Cauchy distribution we have∫ ∞

−∞

|x| fX(x)dx =

∫ ∞

−∞

|x|
1
π

1
1 + x2 dx =

1
π

∫ ∞

0

2x
1 + x2 dx

=
1
π

lim
a→∞

∫ a

0

2x
1 + x2 dx =

1
π

lim
a→∞

ln(1 + a2) = ∞,

which means that the expectation is undefined.
2.19. Suppose that a random variable X has distribution PX = 1

4δ0 + 3
4 P,

where P is the exponential distribution with density (2.1). Then

E(X) =
1
4
· 0 +

3
4

∫
R

x1[0,∞)λe−λxdm(x) =
3
4

∫ ∞

0
λx3−λxdx =

3
4λ
.

2.20. If X has the Poisson distribution with parameter λ, then

E(X2) =

∞∑
k=0

k2e−λ
λk

k!
= e−λ

∞∑
k=0

[k(k − 1) + k]
λk

k!

= λ2e−λ
∞∑

k=2

λk−2

(k − 2)!
+ λe−λ

∞∑
k=1

λk−1

(k − 1)!

= λ2e−λeλ + λe−λeλ = λ2 + λ.

Since E(X) = λ by Exercise 2.15, it follows that

Var(X) = E(X2) − E(X)2 = λ.

2.21. Suppose that X ∼ N(µ, σ2). By Exercise 2.17, E(X) = µ. Let us
compute Var(X):

Var(X) =

∫
R

(x − µ)2 1
√

2πσ2
e−

(x−µ)2

2σ2 dx

=
σ2

√
2π

∫ ∞

−∞

y2e−
y2

2 dy = σ2

since 1
√

2π

∫ ∞
−∞

y2e−
y2

2 dy =
√

2π. The last integral is found by integrat-
ing by parts.

2.22. (1) For a random variable X with exponential distribution we com-
pute

E(X) =

∫
R

x fX(x)dx =

∫ ∞

−∞

xλe−λx1[0,∞)(x)dx =

∫ ∞

0
xλe−λxdx =

1
λ
.

Obviously, the integral is absolutely convergent. In order to compute
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Var(X) we first calculate

E(X2) =

∫ ∞

−∞

x2 fX(x)dx =

∫ ∞

−∞

x2λe−λxdx =
2
λ2 .

Then

Var(X) = E(X2) − E(X)2 =
2
λ2 −

1
λ2 =

1
λ2 .

(2) For a random variable X with log-normal density (see (1.7)) we
have

E(X) =

∫
R

x fX(x)dx

=

∫ ∞

−∞

1

σ
√

2π
e−

(ln x−µ)2

2σ2 1[0,∞)(x)dx =

∫ ∞

0

1

σ
√

2π
e−

(ln x−µ)2

2σ2 dx.

By substituting y = ln x, we obtain

E(X) =

∫ ∞

−∞

1

σ
√

2π
eye−

(y−µ)2

2σ2 dy

= eµ+ 1
2σ

2
∫ ∞

−∞

1

σ
√

2π
e
−[y−(µ+σ2)]2

2σ2 dy = eµ+σ2

since ∫ ∞

−∞

1

σ
√

2π
e
−[y−(µ+σ2)]2

2σ2 dy = 1.

Next, we compute

E(X2) =

∫ ∞

−∞

x

σ
√

2π
e−

(ln x−µ)2

2σ2 1[0,∞)(x)dx =

∫ ∞

0

x

σ
√

2π
e−

(ln x−µ)2

2σ2 dx

=

∫ ∞

−∞

1

σ
√

2π
e2ye−

(y−µ)2

2σ2 dy =

∫ ∞

−∞

1

σ
√

2π
e−

[y−(µ+2σ2)]2

2σ2 e2(µ+σ2)dy

= e2(µ+σ2).

As above, we substituted y = ln x. Finally,

Var(X) = E(X2) − E(X)2 = e2(µ+σ2) − e2µ+σ2
= e2µ+σ2

(eσ
2
− 1).

2.23. (1) φX(0) = E(e0) = 1.
(2) |φX(t)| = |E(eitX)| ≤ E(|eitX |) = E(1) = 1.

2.24. Let X have the Poisson distribution with parameter λ > 0. Then
eitX is a discrete random variable with values eitk and corresponding
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probabilities e−λ λ
k

k! for k = 0, 1, 2, . . . . It follows that

φX(t) =

∞∑
k=0

e−λ
λk

k!
eitk = e−λ

∞∑
k=0

(λeit)k

k!
= e−λeλeit

= eλ(eit−1).

2.25. If X is a random variable with the standard normal distribution N(0, 1),
then fX(x) = 1

√
2π

e−
x2
2 . It follows that

φX(t) =

∫ ∞

−∞

eitx fX(x)dx =

∫ ∞

−∞

1
√

2π
e−

x2
2 +itxdx

=
1
√

2π
e−

t2
2

∫ ∞

−∞

e−
1
2 (x−it)2

dx = e−
1
2 t2

since
∫ ∞
−∞

e−
1
2 (x−it)2

dx =
√

2π.
2.26. If Y = aX + b, then

φY(t) = E(eitY) = E(eit(aX+b)) = eitbE(eiatX) = eitbφX(at).

When Y has the normal distribution N(µ, σ2), we can write Y =

σX + µ, where X has the standard normal distribution N(0, 1). By
Exercise 2.25, it follows that

φY(t) = eitµ− 1
2σ

2t2
.

2.27. Since Var(X) = E(X2) − E(X)2, Theorem 2.42 shows that Var(X) =

−φ′′X(0) + φ′X(0)2. But φX(0) = 1, hence simple transformations show
that Var(X) = −(ln φX)′′(0).

2.28. Suppose that X ∼ N(0, σ2). By (2.3) (see Exercise 2.16),

E(Xn) =
1

σ
√

2π

∫
R

xne−
x2

2σ2 dx.

For odd n we have E(Xn) = 0 since we integrate an odd function. Let
n = 2k, k = 1, 2, 3, . . . . Then

E(X2k) =
1

σ
√

2π

∫
R

x2ke−
x2

2σ2 dx.

Integrate by parts with u = x2k−1 and v = xe−
x2

2σ2 to get

E(X2k) = −
σ
√

2π
x2k−1e−

x2

2σ2
∣∣∣∞
−∞ + σ2(2k − 1)

1

σ
√

2π

∫
R

x2k−2e−
x2

2σ2 dx

= σ2(2k − 1)
1

σ
√

2π

∫
R

x2k−2e−
x2

2σ2 dx
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since first term vanishes. By repeating integration by parts, we can
prove that E(X2k) = 1 · 3 · 5 · . . . · (2k − 1)σ2k.

In the general case, when X ∼ N(µ, σ2), we have φX(t) = e−
1
2σ

2t2+iµt

by Exercise 2.26. The derivatives of φX(t) with respect to t are

φ′X(t) = (−σ2t + iµ)e−
1
2σ

2t2+iµt,

φ′′X(t) = (σ2 + (−σ2t + iµ)2)e−
1
2σ

2t2+iµt,

φ′′′X (t) = [−3σ2(−σ2t + iµ) + (−σ2t + iµ)3]e−
1
2σ

2t2+iµt,

φ′vX (t) = [3σ4 − 6σ2(−σ2t + iµ)2 + (−σ2t + iµ)4]e−
1
2σ

2t2+iµt.

Substituting t = 0, we obtain

E(X) =
1
i
φ′X(0) = µ,

E(X2) =
1
i2φ

′′
X(0) = µ + σ2,

E(X3) =
1
i3φ

′′′
X (0) = µ3 + 3µσ2,

E(X4) =
1
i4φ

′v
X (0) = µ4 + 6µ2σ2 + 3σ4.

Chapter 3

3.1. Take two subsets A, B ⊂ R2 of the form A = A1 × A2, B = B1 × B2,
where A1, A2, B1, B2 are non-empty Borel sets and A1 ∩ B1 = ∅,
A2 ∩ B2 = ∅. Assume further that (A1 × A2) ∪ (B1 × B2) = C1 × C2,
where C1,C2 are Borel sets.

Since A1 × A2 ⊂ C1 ×C2, B1 × B2 ⊂ C1 ×C2, we have A1, B1 ⊂ C1

and A2, B2 ⊂ C2. Hence (A1 ∪ B1) × (A2 ∪ B2) ⊂ C1 ×C2.
Now, taking x ∈ A1 and y ∈ B2, we have (x, y) ∈ C1 × C2 but

(x, y) < (A1 × A2) ∪ (B1 × B2), which is a contradiction.
3.2. First note that for any A1 ∈ F1 and A2 ∈ F2 we have {Pr1 ∈ A1} =

A1 ×Ω2 and {Pr2 ∈ A2} = Ω1 × A2. Define the family of sets (‘cylin-
ders’)

C = {A1 ×Ω2 : A1 ∈ F1} ∪ {Ω1 × A2 : A2 ∈ F2}.

By construction, the projections are measurable with respect σ(C).
Further, since C is contained in the family consisting of all finite
unions of elements of R, it follows that σ(C) ⊂ σ(R).
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We also have

A1 × A2 = (A1 ×Ω2) ∩ (Ω1 × A2) ∈ σ(C).

Thus, σ(R) ⊂ σ(σ(C)) = σ(C), and σ(C) = σ(R) = F1 ⊗ F2.
3.3. Denote by FI the smallest σ-field on R2 containing the family

I = {I1 × I2 : I1, I2 are open intervals in R}.

Since I ⊂ B(R2), it follows that σ(I) ⊂ B(R2). In order to show that
B(R2) ⊂ σ(I) we first prove that for any A, B ∈ B(R) we have A×R
and R × B ∈ σ(I).

Let us consider two families

D1 = {A ⊂ R : A × R ∈ σ(I)}, D2 = {B ⊂ R : R × B ∈ σ(I)}.

We verify that D1 and D2 are σ-fields. We do this for D1 (for D2 the
proof is identical). Of course R ∈ D1. If A ∈ D1, then A × R ∈ σ(I)
and R2 \ (A×R) = (R \A)×R ∈ σ(I), which means that R \A ∈ D1.
Finally, if A1, A2, . . . ∈ D1, then Ai × R ∈ σ(I) for i = 1, 2, . . . , and

∞⋃
i=1

(Ai × R) =

 ∞⋃
i=1

Ai

 × R ∈ σ(I).

Hence,
⋃∞

i=1 Ai ∈ D1.
It follows D1∩D2 is a σ-field. Moreover, since D1 and D2 contain

all open intervals, so does D1 ∩ D2. Hence, by Exercise 1.3, B(R) ⊂
D1 ∩ D2. This implies that B(R2) = B(R) ⊗ B(R) ⊂ D1 ⊗ D2. To
show that D1 ⊗ D2 = σ(I) take any A1 ∈ D1 and A2 ∈ D2. Then
A1 × A2 = (A1 × R) ∩ (R × A2) ∈ σ(I), and so D1 ⊗ D2 ⊂ σ(I).

3.4. For a measurable rectangle B = B1 × B2 with B1 ∈ F1 and B2 ∈ F2,
we obtain Bω1 = B2 if ω1 ∈ B1 and Bω1 = ∅ otherwise, hence

B1 × B2 ∈ H = {H ∈ F1 ⊗ F2 : Hω1 ∈ F2 for all ω1 ∈ Ω1}.

We need to show that H is a σ-field. To verify that take H ∈ H .
Then

(Ω \ H)ω1 = {ω2 : (ω1, ω2) ∈ (Ω \ H)}

= Ω2 \ {ω2 : (ω1, ω2) ∈ H} = Ω2 \ Hω1
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and Ω \ H ∈ H . Now take H1,H2, . . . such that Hi ∈ H . We have ∞⋃
i=1

Hi


ω1

=

ω2 : (ω1, ω2) ∈

 ∞⋃
i=1

Hi




=

∞⋃
i=1

{ω2 : (ω1, ω2) ∈ Hi} =

∞⋃
i=1

(Hi)ω1 .

SinceH is a σ-field containing any measurable rectangles B = B1 ×

B2, we have F1 ⊗ F2 ⊂ H . By the definition of H , this implies that
Aω1 ∈ F2 for any A ∈ F1 ⊗ F2 and ω1 ∈ Ω1. The proof for Aω2 is
identical.

3.5. First we show that the limit in Definition 3.9 (iii) exists. By (3.4)
(Theorem 3.5 (iii)) and Definition 3.9, we have

µ(n)
1 ⊗ µ

(n)
2 (C ∩ (An × Bn)) =

∫
Ω1

µ(n)
2 ((C × (An × Bn))ω1 )dµ

(n)
1 (ω1)

=

∫
Ω1

µ2(Cω1 ∩ Bn)1An (ω1)dµ1(ω1)

≤

∫
Ω1

µ2(Cω1 ∩ Bn+1)1An+1 (ω1)dµ1(ω1)

= µ(n+1)
1 ⊗ µ(n+1)

2 (C ∩ (An+1 × Bn+1))

since

(C ∩ (An × Bn))ω1 =

Cω1 ∩ Bn if ω1 ∈ An

∅ otherwise.

Hence µ(n)
1 ⊗ µ

(n)
2 (C ∩ (An × Bn)) is a non-decreasing sequence of

non-negative numbers. This implies that the limit exists.
In order to prove that this limit does not depend on the choice of

the sequences An, Bn take two other sequences of events Ãn ∈ F1

with µ1(Ãn) < ∞ and Ãn ⊂ Ãn+1, and B̃n ∈ F2 with µ2(B̃n) < ∞
and B̃n ⊂ B̃n+1 for n = 1, 2, 3, . . . such that Ω1 =

⋃∞
n=1 Ãn and Ω2 =⋃∞

n=1 B̃n. Denote by µ̃(n)
1 the restriction of µ1 to Ãn and by µ̃(n)

2 the
restriction of µ2 to B̃n. For the same reason as above,

µ̃(n)
1 ⊗ µ̃

(n)
2 (C ∩ (Ãn × B̃n)) =

∫
Ω1

µ2(Cω1 ∩ B̃n)1Ãn
(ω1)dµ1(ω1).

By Theorem 3.5 (i), for any C ∈ F1⊗F2 the functionsω1 7→ µ2(Cω1∩

Bn)1An (ω1), ω1 7→ µ2(Cω1 ∩ B̃n)1Ãn
(ω1) are measurable with respect
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to F1 for all n = 1, 2, 3, . . . . Moreover, for any ω1 ∈ Ω1 we have

lim
n→∞

µ2(Cω1 ∩ Bn)1An (ω1) = lim
n→∞

µ2(Cω1 ∩ B̃n)1Ãn
(ω1) = µ2(Cω1 ).

Then, by Exercise 1.19, the function: ω1 7→ µ2(Cω1 ) is measurable
with respect to F1. Using the monotone convergence theorem, we
have

lim
n→∞

µ(n)
1 ⊗ µ

(n)
2 (C ∩ (An × Bn)) = lim

n→∞

∫
Ω1

µ2(Cω1 ∩ Bn)dµ1(ω1)

=

∫
Ω1

µ2(Cω1 )1An (ω1)dµ1(ω1)

= lim
n→∞

∫
Ω1

µ2(Cω1 ∩ B̃n)1Ãn
(ω1)dµ1(ω1)

= lim
n→∞

µ̃(n)
1 ⊗ µ̃

(n)
2 (C ∩ (Ãn × B̃n)).

3.6. Take An, Bn as in Definition 3.9 (i). We have An × Bn ⊂ An+1 × Bn+1

for all n = 1, 2, 3, . . . and

Ω1 ×Ω2 =

 ∞⋃
n=1

An

 ×  ∞⋃
n=1

Bn

 =

∞⋃
n=1

An × Bn.

Fix any n = n0. By Theorem 3.5 (iii), we have

(µ1 ⊗ µ2)(An0 × Bn0 ) = lim
n→∞

µ(n)
1 ⊗ µ

(n)
2 ((An0 × Bn0 ) ∩ (An × Bn))

= µ(n0)
1 ⊗ µ(n0)

2 (An0 × Bn0 )

since (An0 × Bn0 ) ∩ (An × Bn) = An0 × Bn0 for n ≥ n0. On the other
hand,

µ(n0)
1 ⊗ µ(n0)

2 ((An0 × Bn0 ) =

∫
Ω1

µ(n0)
2 (An0 × Bn0 )ω1 )dµ

(n0)
1 (ω1)

=

∫
Ω1

µ(n0)
2 (Bn0 )1An0

(ω1)dµ(n0)
1 (ω1)

= µ(n0)
1 (An0 )µ

(n0)
2 (Bn0 )

= µ1(An0 )µ2(Bn0 ) < ∞.

3.7. By m(n) we denote the restriction of the Lebesgue measure m to
(−n, n). In order to apply Definition 3.9 (iii) to the Lebesgue mea-
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sure m on R, we compute

m(n) ⊗ m(n)(((a, b) × (c, d)) ∩ ((−n, n) × (−n, n)))

=

∫
R

m(n)((((a, b) × (c, d)) ∩ ((−n, n) × (−n, n))x)dm(n)(x)

=

∫
R

m(n)((c, d) ∩ (−n, n))1(a,b)∩(−n,n)(x)dm(n)(x)

=

∫
R

m((c, d) ∩ (−n, n))1(a,b)∩(−n,n)(x)dm(x)

= m((c, d) ∩ (−n, n))m((a, b) ∩ (−n, n)) = (b − a)(c − d)

for all n such that (a, b) and (c, d) are contained in (−n, n). We have
applied the simple observation that

(((a, b) × (c, d)) ∩ ((−n, n) × (−n, n)))x

=

(c, d) ∩ (−n, n) if x ∈ (a, b) ∩ (−n, n),
∅ otherwise.

This gives the conclusion.
3.8. Suppose that (X,Y) : Ω → R2 is a random vector on (Ω,F ). Let B

be a Borel set in R. Then B × R ∈ B(R2) and {X ∈ B} = {(X,Y) ∈
B×R} ∈ F . This implies that X is a random variable. Similarly for Y .

To prove the converse consider the family

H = {B ∈ B(R2) : {(X,Y) ∈ B} ∈ F }.

Any measurable rectangle B1 × B2 with B1, B2 ∈ B(R) belongs toH
since {(X,Y) ∈ B1 × B2} = {X ∈ B1} ∩ {Y ∈ B2} ∈ F . If B ∈
H , then the complement R2 \ B belongs to H since {(X,Y) ∈ R2 \

B} = Ω \ {(X,Y) ∈ B} ∈ F . Now, suppose that Bn ∈ H for n =

1, 2, 3, . . . . Since {(X,Y) ∈
⋃∞

n=1 Bn} =
⋃∞

n=1{(X,Y) ∈ Bn} ∈ F , the
union

⋃∞
n=1 Bn is also in H . Hence H is a σ-field and B(R2) ⊂ H .

This implies that (X,Y) is a random vector.
3.9. The random vector (X1,Y1) takes values (X1,Y1)(ω1) = (110, 60)

and (X1,Y1)(ω2) = (90, 40) with probabilities 1
2 and 1

2 . Then for any
B ∈ B(R2) we have

PX1,Y1 (B) =


0 if {(90, 40), (110, 60)} ∩ B = ∅,
1 if {(90, 40), (110, 60)} ⊂ B,
1
2 otherwise.

If we denote by δx,y the Dirac measure on B(R2) concentrated at a
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point (x, y), then the joint distribution of (X1,Y1) can be written in
the form

PX1,Y1 =
1
2
δ110,60 +

1
2
δ90,40.

Similarly, for (X2,Y2)

PX2,Y2 =
1
2
δ110,40 +

1
2
δ90,60.

Hence, PX1,Y1 , PX2,Y2 . For the marginal distributions we have

PX1 = PX2 =
1
2
δ90 +

1
2
δ110,

PY1 = PY2 =
1
2
δ40 +

1
2
δ60.

3.10. If t < s, then (−∞, t] ⊂ (−∞, s] and

FX,Y(t, y) = P(X ≤ t,Y ≤ y) ≤ P(X ≤ s,Y ≤ y) = FX,Y(s, y).

This means that FX,Y(x, y) is non-decreasing in x. Similarly for y.
Now, by Theorem 1.11 (v), we have

lim
y→∞

FX,Y(a, y) = lim
n→∞

FX,Y(a, n)

= lim
n→∞

PX,Y((−∞, a] × (−∞, n])

= PX,Y((−∞, a] ×
∞⋃

n=1

(−∞, n])

= PX,Y((−∞, a] × R) = P(X ∈ (−∞, a]) = FX(a).

The proof that limy→∞ FX,Y(x, b) = FY(b) is similar.
3.11. Since

FX(a) = P (X ≤ a,Y > b) + FX,Y(a, b),

FY(b) = P (X > a,Y ≤ b) + FX,Y(a, b),

and so

1 = P (X > a,Y > b) + P (X ≤ a,Y > b)

+ P (X > a,Y ≤ b) + FX,Y(a, b)

= P (X > a,Y > b) + FX(a) + FY(b) − FX,Y(a, b),

it follows that

P (X > a,Y > b) = 1 − FX(a) − FY(b) + FX,Y(a, b).
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3.12. First we show that fX,Y given by (3.5) is a density. Observe that

1
1 − ρ2 (x2

1 − 2ρx1x2 + x2
2) = x2

1 +
1

1 − ρ2 (x2 − ρx1)2.

By Fubini’s theorem and since the bivariate density is a continuous
function, we have

∫
R2

1

2π
√

1 − ρ2
exp

(
−

x2
1 − 2ρx1x2 + x2

2

2(1 − ρ2)

)
dm2(x1, x2)

=

∫ ∞

−∞

 1
√

2π
e−

x2
1
2

∫ ∞

−∞

1√
2π(1 − ρ2)

exp

−1
2

 x2 − ρx1√
1 − ρ2

2 dx2

 dx1

=

∫ ∞

−∞

1
√

2π
e−

x2
1
2 dx1 = 1

since integrating by substitution with y =
x2−ρx1√

1−ρ2
gives

∫ ∞

−∞

1√
2π(1 − ρ2)

exp

−1
2

 x2 − ρx1√
1 − ρ2

2 dx2 =

∫ ∞

−∞

1
√

2π
e−

y2

2 dy = 1.

Now, by (3.6), we have

fX(x) =

∫
R

fX,Y(x, y)dm(y) =

∫
R

1

2π
√

1 − ρ2
exp

(
−

x2 − 2ρxy + y2

1 − ρ2

)
dy

=
1

2π
√

1 − ρ2

∫ ∞

−∞

e−
x2
2 exp

(
−

1
2(1 − ρ2)

(y − ρx)2
)

dy

=
1

2π
e−

x2
2

∫ ∞

−∞

1√
2π(1 − ρ2)

exp
(
−

(y − ρx)2

2(1 − ρ2)

)
dy

=
1
√

2π
exp

(
−

x2

2

)
.

The proof that fY(y) = 1
√

2π
exp

(
−

y2

2

)
is similar.
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3.13. Let B be a Borel set in R and let A = {(x, y) ∈ R2 : x + y ∈ B}. Then

PX+Y(B) = P(X + Y ∈ B) = P((X,Y) ∈ A)

=

∫ ∫
R2

1A(x, y) fX,Y(x, y)dm2(x, y)

=

∫
R

(∫
R

1A(x, y) fX,Y(x, y)dm(y)
)

dm(x)

by Fubini’s theorem

=

∫
R

(∫
R

1B(z) fX,Y(x, z − x)dm(z)
)

dm(x)

by the substitution z = x + y and by Exercise 1.32

=

∫
R

(∫
B

fX,Y(x, z − x)dm(z)
)

dm(x)

=

∫
B

(∫
R

fX,Y(x, z − x)dm(x)
)

dm(z)

by Fubini’s theorem.

Hence
∫
R

fX,Y(x, z − x)dm(x) is the density for X + Y .
3.14. Suppose that random variables X,Y have joint density

fX,Y(x, y) = e−(x+y)1(0,∞)×(0,∞).

To find the density of X/Y we compute the distribution function
FX/Y . Let z > 0. Then

FX/Y(z) = P(X/Y ≤ z) = PX,Y({(x, y) :
x
y
≤ z, x, y > 0}

=

∫
{(x,y): x

y≤z}
e−(x+y)1(0,∞)×(0,∞)(x, y)dm2(x, y)

by Fubini’s theorem and since e−(x+y) is continuous

=

∫ ∞

0

∫ ∞

x
z

e−xe−ydy

 dx =

∫ ∞

0

e−x
∫ ∞

x
z

e−ydy

 dx

=

∫ ∞

0
e−xe−

x
z dx =

z
1 + z

.

Since FX/Y(z) is a differentiable function for all z ∈ (0,∞), we have
F′X/Y(z) = fX/Y(z) = 1

(1+z)2 .
3.15. The proof is similar to that for n = 2 (Exercise 3.3). Since In ⊂ Rn,

we have σ(In) ⊂ B(Rn). To show the reverse inclusion define

Di = {A ⊂ R : Ri−1 × A × Rn−i ∈ σ(In)} for i = 1, 2, 3, . . . , n.
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We verify in the same way as in Exercise 3.3 that Di, i = 1, . . . , n
are σ-fields. Hence, by Exercise 1.3 we have B(R) ⊂ Di for i =

1, 2, 3, . . . , n. This implies that B(Rn) = B(R) ⊗ . . . ⊗ B(R) ⊂ D1 ⊗

. . .⊗Dn. In order to show that D1⊗ . . .⊗Dn = σ(In), take any Ai ∈ Di

for i = 1, 2, 3, . . . , n. By the definition of Di, we have

A1 × A2 × · · · × An =

n⋂
i=1

{Ri−1 × Ai × R
n−i} ∈ σ(In).

It follows that

D1 ⊗ . . . ⊗ Dn ⊂ σ(In).

3.16. The proof is similar as in the case n = 2 (Exercise 3.8). Suppose that
X = (X1, . . . , Xn) is a random vector on (Ω,F ). Let B be a Borel set
in R. Then Ri−1 × B × Rn−i ∈ B(Rn) for i = 1, . . . , n, and {Xi ∈ B} =

{X ∈ Ri−1 × B × Rn−i} ∈ F . This implies that Xi is a random variable
for i = 1, . . . , n.

To prove the converse, consider the family H = {B ∈ B(Rn) :
{X ∈ B} ∈ F }. Any measurable rectangle B1 × B2 × · · · × Bn belongs
toH for Bi ∈ B(R) and i = 1, . . . , n since {X ∈ B1 × B2 × · · · × Bn} =⋂n

i=1{Xi ∈ Bi} ∈ F . If B ∈ H , then Rn \ B ∈ H since {X ∈ Rn \

B} = Ω \ {X ∈ B} ∈ F . Finally, if Bi ∈ H for i = 1, 2, 3, . . . , then
{X ∈

⋃∞
i=1 Bi} =

⋃∞
i=1{X ∈ Bi} ∈ F . This implies that

⋃∞
i=1 Bi ∈ H .

HenceH is a σ-field andB(Rn) ⊂ H . This proves that X is a random
vector.

3.17. To verify that fX given by (3.7) is a density, we need the following
well-known result in linear algebra: For any non-singular positive
definite symmetric n× n matrix Σ there is an n× n matrix A which is
orthogonal (i.e. AAT = I, so A−1 = AT and |detA| = 1) and such that
B = A−1ΣA, where B is a diagonal matrix with bii > 0, i = 1, 2, . . . , n
being the eigenvalues of Σ. Clearly, Σ = ABA−1, Σ−1 = AB−1A−1 and
detΣ = detB.

Now, making the substitution Ay = x − µ and remembering that
AT = A−1, we have

(x − µ)T Σ−1(x − µ) = yT AT AB−1A−1Ay = yT B−1y.

If we put bii = σ2
i , then detΣ = detB = σ2

1 · · ·σ
2
n and

B−1 =


1
σ2

1
0

. . .

0 1
σ2

n

 .
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We are now ready to calculate∫
Rn

1
√

(2π)ndetΣ
exp

(
−

1
2

(x − µ)T Σ−1(x − µ)
)

dmn(x)

=

∫ ∞

−∞

· · ·

∫ ∞

−∞

1
√

(2π)nσ1 · · ·σn
exp

(
−

1
2

(x − µ)T Σ−1(x − µ)
)

dx1 · · · dxn

=

∫ ∞

−∞

· · ·

∫ ∞

−∞

1
√

(2π)nσ1 · · ·σn
exp

(
1
2

yT B−1y
)

dy1 · · · dyn

=

∫ ∞

−∞

· · ·

∫ ∞

−∞

1
√

2πσ1

e
−

y2
1

2σ2
1 · · ·

1
√

2πσn

e
−

y2
n

2σ2
n dy1 · · · dyn

=

∫ ∞

−∞

1
√

2πσ1

e
−

y2
1

2σ2
1 dy1

 · · · (∫ ∞

−∞

1
√

2πσn

e
−

y2
n

2σ2
n dyn

)
= 1.

3.18. Let X : Ω → R be a continuous random variable with density fX .
Put Y = X. Suppose that the vector (X,Y) has a density fX,Y(x, y), i.e.
that X,Y are jointly continuous. By Fubini’s theorem

P({X < Y}) =

∫ ∫
R2

1{(x,y):x<y} f (x, y)dm2(x, y)

=

∫ ∞

−∞

(∫ ∞

−∞

1{(x,y):x<y} f (x, y)dm(x)
)

dm(y)

=

∫ ∞

−∞

(∫ y

−∞

f (x, y)dm(x)
)

dm(y).

Similarly,

P({X > Y}) =

∫ ∫
R2

1{(x,y):x>y} f (x, y)dm2(x, y)

=

∫ ∞

−∞

(∫ ∞

−∞

1{(x,y):x>y} f (x, y)dm(x)
)

dm(y)

=

∫ ∞

−∞

(∫ ∞

y
f (x, y)dm(x)

)
dm(y).

Now, define B = {(x, x) : x ∈ R}. We have

0 = P({X , Y}) = P({(X,Y) < B}) = P({X < Y}) + P({X > Y})

=

∫ ∞

−∞

(∫ y

−∞

f (x, y)dm(x)
)

dm(y) +

∫ ∞

−∞

(∫ ∞

y
f (x, y)dm(x)

)
dm(y)

=

∫ ∫
R2

f (x, y)dm2(x, y) = 1,

which gives a contradiction.
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3.19. If ρ = 0 in (3.5), then by Proposition 3.20

fX(x1) =

∫
R

1
2π

e−
x2
1+x2

2
2 dm(x2)

=

∫ ∞

−∞

1
2π

e−
x2
1
2 e−

x2
2
2 dx2 =

1
√

2π
e−

x2
1
2 ,

since
∫ ∞
−∞

1
√

2π
e−

x2
2
2 dx2 = 1. Similarly,

fY(x2) =
1
√

2π
e−

x2
2
2 .

Then fX,Y(x1, x2) = fX(x1) fY(x2). For any B1, B2 ∈ B(R),

PX,Y(B1 × B2) =

∫
B1×B2

fX,Y(x, y)dm2(x, y)

=

∫
B1×B2

fX(x) fY(y)dm2(x, y)

=

∫
B1

(∫
B2

fX(x) fY(y)dm(y)
)

dm(x)

=

(∫
B1

fX(x)dm(x)
) (∫

B2

fY(y)dm(y)
)

= P(X1 ∈ B1)P(Y ∈ B2)

by Fubini’s theorem. Hence X and Y are independent.
3.20. Let B be a Borel set in R. Then

PX+Y(B) = P(X + Y ∈ B) = P((X,Y) ∈ {(x, y) ∈ R2 : x + y ∈ B})

=

∫
R2

1{x+y∈B}(x, y) fX,Y(x, y)dm2(x, y)

=

∫
R2

1{x+y∈B}(x, y) fX(x) fY(y)dm2(x, y), by (3.9)

=

∫
R

(∫
R

1{x+y∈B}(x, y) fX(x) fY(y)dm(y)
)

dm(x)

by Fubini’s theorem. Next, by the substitution z = x + y and by
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Exercise 1.32,

PX+Y(B) =

∫
R

(∫
R

1{z∈B}(x, z − x) fX(x) fY(z − x)dm(y)
)

dm(x)

=

∫
R

(∫
B

fX(x) fY(z − x)dm(z)
)

dm(x)

=

∫
B

(∫
R

fX(x) fY(z − x)dm(x)
)

dm(z)

again by Fubini’s theorem.
3.21. First we prove Theorem 3.31. We follow the arguments used in the

proof of Theorem 3.27. Since intervals are Borel sets, the necessity is
obvious. For sufficiency, we use induction on n = 2, 3, . . . . For n =

2 this has been proved in Theorem 3.27. The induction hypothesis
states that if

FX1,...,Xn (x1, . . . , xn) = FX1 (x1) · · · FXn (xn)

for each x1, . . . , xn ∈ R, then X1, . . . , Xn are independent. Suppose
that for any x1, . . . , xn+1 ∈ R

FX1,...,Xn+1 (x1, . . . , xn+1) = FX1 (x1) · · · FXn+1 (xn+1). (S.1)

Let X = (X1, . . . , Xn), Y = Xn+1. We show that for any B ∈ B(Rn) and
H ∈ B(R)

PX,Y(B × H) = PX(B)PY(H). (S.2)

In order to prove this consider the class C of all Borel sets A ∈ B(Rn)
such that for each y ∈ R

P(X ∈ A,Y ≤ y) = P(X ∈ A)P(Y ≤ y),

and the classD of all Borel sets H ∈ B(R) such that for each A ∈ C

P(X ∈ A,Y ∈ H) = P(X ∈ A)P(Y ∈ H).

Our aim is to show that C and D are equal to the σ-fields B(Rn)
and B(R), respectively. By the induction hypothesis, C contains the
collection of all sets (−∞, x1]×· · ·×(−∞, xn] with x1, . . . , xn ∈ R, and
this collection is closed under intersection; we only need to check
that C is a d-system, which will mean that it contains the σ-field
B(Rn). This in turn will mean that D contains all intervals (−∞, y],
hence to show that it contains B(R) we need to show that D is a
d-system.

Now we check that C satisfies the conditions for a d-system. The
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proof for D is almost identical. We have Ω × · · · × Ω ∈ C since for
any y ∈ R

P(X ∈ Ω×· · ·×Ω,Y ≤ y) = P(Y ≤ y) = P(X ∈ Ω×· · ·×Ω)P(Y ≤ y).

If A1, A2 ∈ C and A1 ⊂ A2, then

P(X ∈ (A2 \ A1),Y ≤ y) = P(X ∈ A2,Y ≤ y) − P(X ∈ A1,Y ≤ y)

= P(X ∈ A2)P(Y ≤ y) − P(X ∈ A1)P(Y ≤ y)

= P(X ∈ (A2 \ A1))P(Y ≤ y).

Finally, if Ak ⊂ Ak+1 with Ak ∈ C for all k = 1, 2, . . . and
⋃∞

k=1 Ak = A,
then

P(X ∈ A,Y ≤ y) = P

 ∞⋃
k=1

{X ∈ Ak,Y ≤ y}


= lim

k→∞
P(X ∈ Ak,Y ≤ y) = lim

k→∞
P(X ∈ Ak)P(Y ≤ y)

= P

 ∞⋃
k=1

Ak

 P(Y ≤ y).

Thus C is a d-system. By Proposition 3.56, C is a σ-field containing
all sets of the form (−∞, x1]×· · ·×(−∞, xn], and so it containsB(Rn).
This ends the proof of (S.2).

Further, observe that from (S.1) it follows that

FX(x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn, Xn+1 ∈ R)

= P

X1 ≤ x1, . . . , Xn ≤ xn, Xn+1 ∈

∞⋃
k=1

(−∞, k]


= lim

k→∞
P(X1 ≤ x1, . . . , Xn ≤ xn, Xn+1 ≤ k)

= lim
k→∞

FX1 (x1) · · · FXn (xn)FXn+1 (k)

= FX1 (x1) · · · FXn (xn) lim
k→∞

FXn+1 (k)

= FX1 (x1) · · · FXn (xn).

Substituting B = B1 × · · · × Bn with Bi ∈ B(R), i = 1, 2 . . . , n
into (S.2), we have

PX,Y(B1 × · · · × Bn × H) = PX(B1 × · · · × Bn)PY(H).

By the induction hypothesis, we obtain

PX1,...,Xn+1 (B1 × · · · × Bn × H) = PX1 (B1) · · · PXn (Bn)PXn+1 (H),
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so X1, . . . , Xn+1 are independent.

We turn to the proof of Theorem 3.32. If the random vector X =

(X1, . . . , Xn) has joint density fX , then each Xi has a density of the
form

fXi (x) =

∫
Rn−1

fX(x′, x, x′′)dmn−1(x′, x′′)

for all x ∈ R. Here (x′, x′′) ∈ Ri−1 × Rn−i has been identified with a
point in Rn−1, and (x′, x, x′′) ∈ Ri−1 ×R×Rn−i with a point in Rn. For
any B1, . . . , Bn ∈ B(R) we have

PX(B1 × · · · × Bn) =

∫
B1×···×Bn

fX(x)dmn(x),

while

PX1 (B1) · · · PXn (Bn) =

(∫
B1

fX1 (x1)dm(x1)
)
· · ·

(∫
Bn

fXn (xn)dm(xn)
)

=

(∫
B1

fX1 (x1)dm(x1)
)
· · ·

(∫
Bn−2

fXn−2 (xn−2)dm(xn−2)
)

(∫
Bn−1

(∫
Bn

fXn−1 (xn−1) fXn (xn)dm(xn)
)

dm(xn−1)
)

=

(∫
B1

fX1 (x1)dm(x1)
)
· · ·

(∫
Bn−2

fXn−2 (xn−2)dm(xn−2)
)

∫
Bn−2×Bn

fXn−1 (xn−1) fXn (xn)dm2(xn−1, xn)

=

∫
B1×···×Bn

fX1 (x1) · · · fXn (xn)dmn(x1, . . . , xn)

by Fubini’s theorem. If fX(x) = fX1 (x1) · · · fXn (xn), then

PX(B1 × · · · × Bn) = PX1 (B1) · · · PXn (Bn)

Conversely, if

PX(B1 × · · · × Bn) = PX1 (B1) · · · PXn (Bn)

then, proceeding as above, we have∫
B1×···×Bn

fX(x)dmn(x) =

∫
B1×···×Bn

fX1 (x1) · · · fXn (xn)dmn(x1, . . . , xn)

for any Borel sets B1, . . . , Bn ∈ B(R). It follows from Lemma 3.58
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that ∫
B

fX(x)dmn(x) =

∫
B

fX1 (x1) · · · fXn (xn)dmn(x1, . . . , xn)

for any Borel set B ∈ B(Rn) because, by Theorem 1.35, the inte-
grals on both sides of the last equality are measures when regarded
as functions of B ∈ B(Rn). By Exercise 1.30, this implies fX(x) =

fX1 (x1) · · · fXn (xn), mn-a.e.
3.22. Suppose that the random vector X = (X1, . . . , Xn) has joint den-

sity (3.7). Then each Xi has density

fXi (x) =

∫
Rn−1

fX(x′, x, x′′)dmn−1(x′, x′′)

for any x ∈ R, where (x′, x′′) ∈ Ri−1 × Rn−i is identified with a point
in Rn−1, and (x′, x, x′′) ∈ Ri−1 × R × Rn−i with a point in Rn. By
Exercise 2.16, the expectation of Xi can be computed as

E(Xi) =

∫
R

xi fXi (xi)dm(xi).

Then, by Fubini’s theorem we have

E(Xi) =

∫
R

(
xi

∫
Rn−1

fX(x′, xi, x′′)dmn−1(x′, x′′)
)

dm(xi)

=

∫
Rn

xi
1

(
√

2π)n
√

detΣ
exp

(
−

1
2

(x − µ)T Σ−1(x − µ)
)

dmn(x)

=

∫
Rn

(xi − µi)
1

(
√

2π)n
√

detΣ
exp

(
−

1
2

xT Σ−1x
)

dmn(x).

We recall (see the solution to Exercise 3.17) that there is an orthogo-
nal n × n matrix A = [ai j] such that B = A−1ΣA is a diagonal matrix,
B−1 has the form

B−1 =


1
σ2

1
0

. . .

0 1
σ2

n

 ,
and detΣ = detB = σ1 · · ·σn. Now, making the substitution Ay + µ =
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x, we have

E(Xi) =

∫
Rn

 n∑
j=1

ai jy j + µi

 1
√

(2π)nσ1 · · ·σn
exp

(
−

1
2

yT B−1y
)

dmn(y)

=

n∑
j=1

ai j

∫
Rn

yi
1

√
(2π)nσ1 · · ·σn

exp
(
−

1
2

yT B−1y
)

dmn(y)

+µi

∫
Rn

1
(
√

(2π)nσ1 · · ·σn
exp

(
−

1
2

yT B−1y
)

dmn(y) = µi

since by Exercise 3.17∫
Rn

1

(
√

2π)nσ1 · · ·σn

exp
(
−

1
2

yT B−1y
)

dmn(y) = 1

and for any i = 1, 2, . . . , n∫
Rn

yi
1

(
√

2π)nσ1 · · ·σn

exp
(
−

1
2

yT B−1y
)

dmn(y)

=

∫
R

yi
1

√
2πσi

e
−

y2
i

2σ2
i dm(yi)

n∏
k=1,k,i

∫
R

1
√

2πσk

e
−

y2
k

2σ2
k dm(yk) = 0.

Here we have used Fubini’s theorem and the two equalities∫
R

yi
1

√
2πσi

e
−

y2
i

2σ2
i dm(yi) = 0,∫

R

1
√

2πσk

e
−

y2
k

2σ2
k dm(yk) = 1.

If Σ is a diagonal matrix, then Σ = B, and it follows that

fX(x) =
1

(
√

(2π)n)σ1 · · ·σn
exp

−1
2

n∑
i=1

(xi − µi)2

σ2
i


=

n∏
i=1

1
√

2πσi

exp
(
−

(xi − µi)2

2σ2
i

)
= fXi (x1) · · · fXn (xn).

By Exercise 3.21, this means that X1, . . . , Xn are independent.
3.23. Suppose that A1, A2 ∈ F are independent. Then

P(A1 ∩ (Ω \ A2)) = P(A1 \ (A1 ∩ A2))

= P(A1) − P(A1 ∩ A2) = P(A1) − P(A1)P(A2)

= P(A1)(1 − P(A2)) = P(A1)P(Ω \ A2).
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So A1 and Ω \ A2 are independent. Conversely, if A1 and Ω \ A2 are
independent, then

P(A1 ∩ A2) = P(A1 \ (A1 ∩ (Ω \ A2)))

= P(A1) − P(A1 ∩ (Ω \ A2)) = P(A1) − P(A1)P(Ω \ A2)

= P(A1)(1 − P(Ω \ A2)) = P(A1)P(A2).

By symmetry, Ω \ A1, A2 are independent and Ω \ A1, Ω \ A2 are
independent.

3.24. For any events A1, A2 ∈ F and for every choice of Borel sets B1, B2 ∈

B(R) we have

{1Ai ∈ Bi} =


Ai if 0 < Bi and 1 ∈ Bi,

Ω \ Ai if 0 ∈ Bi and 1 < Bi,

Ω if 0 ∈ Bi and 1 ∈ Bi,

∅ otherwise,

so {1Ai ∈ B1} ∈ {Ai,Ω \ Ai,Ω,∅} for i = 1, 2.
If A1, A2 are independent events, from the solution of Exercise 3.23

we therefore know that {1A1 ∈ B1}, {1A2 ∈ B2} are independent events,
and so

P1A1 ,1A2
(B1 × B2) = P(1A1 ∈ B1, 1A2 ∈ B2)

= P(1A1 ∈ B1)P(1A2 ∈ B2) = P1A1
(B1)P1A2

(B2)

for any Borel sets B1, B2 ∈ B(R). This means that 1A1 , 1A2 are inde-
pendent random variables.

Conversely, suppose that 1A1 , 1A2 are independent random vari-
ables. Taking B1 = {1} and B2 = {1}, we get

P(A1 ∩ A2) = P(1A1 ∈ B1, 1A2 ∈ B2)

= P1A1 ,1A2
(B1 × B2) = P1A1

(B1)P1A2
(B2)

= P(1A1 ∈ B1)P(1A2 ∈ B2) = P(A1)P(A2),

so A1, A2 are independent events.
3.25. Consider the following closed intervals: A = [ 1

8 ,
5
8 ], B = [ 1

4 ,
3
4 ], C =

[ 1
2 , 1]. We have

P(A ∩ B ∩C) =
1
8

= P(A)P(B)P(C),

but A, B are not independent since P(A ∩ B) = 3
8 , P(A)P(B) = 1

4 .
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Let us now consider the following subsets of [0, 1]:

C =

[
0,

1
8

]
∪

[
1
4
,

3
8

]
∪

[
1
2
,

5
8

]
∪

[
3
4
,

7
8

]
,

D =

[
1
8
,

3
8

]
∪

[
1
2
,

5
8

]
∪

[
7
8
, 1

]
,

E =

[
0,

1
4

]
∪

[
3
4
, 1

]
.

Then C,D, E are pairwise independent, but (3.12) fails.
3.26. Consider the events A, B in Example 3.34 and a third event C defined

as follows:

C = {(1, 2), (2, 1), (3, 2), (4, 1), (5, 2), (6, 1),

(1, 4), (2, 3), (3, 4), (4, 3), (5, 4), (6, 3),

(1, 6), (2, 5), (3, 6), (4, 5), (5, 6), (6, 5)}.

Then each pair of these events is independent, but (3.12) fails since
A ∩ B ∩C = ∅.

3.27. Since A ∪ B = (A \ (A ∩ B)) ∪ B and (A \ (A ∩ B)) ∩ B = ∅, we have

P(A ∪ B) = P(A \ (A ∩ B)) + P(B) = P(A) − P(A ∩ B) + P(B)

for any events A, B.
When A, B,C are independent events, we use this property to ob-

tain

P(A ∪ B) ∩C) = P((A ∩C) ∪ (B ∩C))

= P(A ∩C) + P(B ∩C) − P(A ∩ B ∩C)

= P(A)P(C) + P(B)P(C) − P(A)P(B)P(C)

= P(C)(P(A) + P(B) − P(A)P(B))

= P(C)(P(A) + P(B) − P(A ∩ B)) = P(C)P(A ∪ B).

Thus, A ∪ B and C are independent.
3.28. For any events A, B we know from Exercise 3.23 that A, B are inde-

pendent if and only if A,Ω \ B are independent. Moreover, if A is
an event, then A,∅ are independent. It follows that if A1, . . . , An are
independent events and Ci ∈ {∅, Ai,Ω \ Ai,Ω} for i = 1, . . . , n, then
C1, . . . ,Cn are independent.

Now suppose that A1, . . . , An are independent events. Then for any
Borel sets B1, . . . , Bn ∈ B(R) the events

{
1A1 ∈ B1

}
, . . . ,

{
1An ∈ Bn

}
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are also independent because
{
1Ai ∈ Bi

}
∈ {∅, Ai,Ω \ Ai,Ω} for each

i = 1, . . . , n. This, in turn, means that

P1A1 ,...,1An (B1 × · · · × Bn) = P(1A1 ∈ B1, . . . , 1An ∈ Bn)

= P(1A1 ∈ B1) · · · P(1An ∈ Bn)

= P1A1
(B1) · · · P1An (Bn).

We have shown that 1A1 , . . . , 1An are independent random variables.
Conversely, suppose that 1A1 , . . . , 1An are independent random vari-

ables. For any subsequence i1, . . . , ik of the sequence 1, . . . , n we take

Bi =

{
{1} if i ∈ {i1, . . . , ik}

R if i < {i1, . . . , ik}

so that

{1Ai ∈ Bi} =

{
Ai if i ∈ {i1, . . . , ik}

Ω if i < {i1, . . . , ik}

for each i = 1, . . . , n. Then

P(Ai1 ∩ · · · ∩ Aik ) = P(1A1 ∈ B1, . . . , 1An ∈ Bn)

= P1A1 ,...,1An (B1 × · · · × Bn)

= P1A1
(B1) · · · P1An (Bn)

= P(1A1 ∈ B1) · · · P(1An ∈ Bn)

= P(Ai1 ) · · · P(Aik ).

This proves that A1, . . . , An are independent events.
3.29. By Exercise 3.23, A, B are independent events if and only if C,D are

independent for any C ∈ {∅, A,Ω \ A,Ω} and D ∈ {∅, B,Ω \ B,Ω},
which in turn means that {∅, A,Ω \ A,Ω} and {∅, B,Ω \ B,Ω} are
independent σ-fields.

3.30. If a σ-field G is independent of itself, it means that any event A ∈ G
is independent of itself, so P(A) = P(A ∩ A) = P(A)P(A). It follows
that P(A)(1 − P(A)) = 0, which means that P(A) = 1 or 0.

3.31. First suppose that the random variables X1, . . . , Xn are independent.
For any choice A1 ∈ σ(X1), . . . , An ∈ σ(Xn) we have A1 = {X1 ∈

B1}, . . . , An = {Xn ∈ Bn} for some Borel sets B1, . . . , Bn ∈ B(R). For
any subsequence 1 ≤ i1 < i2 < . . . < ik ≤ n we define Ci = Bi for
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i ∈ {i1, . . . , ik} and Ci = R for i ∈ {1, . . . , n} \ {i1, . . . , ik}. Then

P(Ai1 ∩ Ai2 ∩ · · · ∩ Aik ) = P(Xi1 ∈ Bi1 , . . . , Xik ∈ Bik )

= P(X1 ∈ C1, . . . , Xn ∈ Cn) = P(X1 ∈ C1) · · · P(Xn ∈ Cn)

= P(Xi1 ∈ Bi1 ) · · · P(Xik ∈ Bik ) = P(Ai1 )P(Ai2 ) · · · P(Aik ),

so that A1, . . . , An are independent events. This means that the σ-
fields σ(X1), . . . , σ(Xn) are independent.

Conversely, suppose that the σ-fields σ(X1), . . . , σ(Xn) are inde-
pendent. For any choice of Borel sets B1, B2, . . . , Bn ∈ B(R) we have

P(X1 ∈ B1, . . . , Xn ∈ Bn) = P(X1 ∈ B1, . . . , Xn ∈ Bn)

= P(X1 ∈ B1) · · · P(Xn ∈ Bn)

since {X1 ∈ B1} ∈ σ(X1), . . . , {Xn ∈ B1} ∈ σ(Xn). It follows that
X1, . . . , Xn are independent random variables.

3.32. Note that (see the solution of Exercise 3.28) A1, . . . , An are indepen-
dent events if and only if B1, . . . , Bn are independent for any choice
of Bi ∈ Gi, where Gi = {∅, Ai,Ω \ Ai,Ω} for i = 1, . . . , n, which in
turn is equivalent to G1, . . . ,Gn being independent σ-fields.

3.33. Define the family of sets

G = {B ∈ B(Rn) : {X ∈ B} ,D are independent for each D ∈ σ(Y)}.

We have Rn ∈ G because {X ∈ Rn} = Ω and Ω,D are independent for
each D ∈ σ(Y). Moreover, if B ∈ G, thenRn\B ∈ G by Exercise 3.23.
Finally, if Bi ∈ G for i = 1, 2, . . . and the Bi are pairwise disjoint, then

P

 ∞⋃
i=1

{X ∈ Bi}

 ∩ D

 = P

 ∞⋃
i=1

({X ∈ Bi} ∩ D)


=

∞∑
i=1

P({X ∈ Bi} ∩ D)

=

∞∑
i=1

P(X ∈ Bi)P(D) = P

 ∞⋃
i=1

{X ∈ Bi}

 P(D).

This means that G is a σ-field on Rn. In addition, since X1, . . . , Xn,Y
are independent, and so {X ∈ B1 × · · · × Bn} and D are independent
for any B1, . . . , Bn ∈ B(R) and for any D ∈ σ(Y), it follows that
B1×· · ·×Bn ∈ G for any B1, . . . , Bn ∈ B(R). This proves thatB(Rn) ⊂
G, which, in turn, implies that Y is independent of the σ-field σ(X)
generated by the random vector X = (X1, . . . , Xn).
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3.34. We prove the assertion by induction on n. By Theorem 3.42, for
n = 2 we know that X1X2 is integrable and E(X1X2) = E(X1)E(X2).
Suppose that for some n = 2, 3, . . . the product

∏n
i=1 Xi is integrable

and

E

 n∏
i=1

Xi

 =

n∏
i=1

E(Xi).

Moreover, suppose that X1, . . . , Xn+1 are independent random vari-
ables. By Exercise 3.33, Xn+1 is independent of the σ-field σ(X) gen-
erated by the random vector X = (X1, . . . , Xn), which by definition
consists of all events of the form {X ∈ B} with B ∈ B(Rn).

Define f : Rn → R by f (x1, . . . , xn) = x1 · · · xn. Since f is contin-
uous, it is a Borel function. The function f (X1, . . . , Xn) = X1 · · · Xn is
measurable with respect to the σ-field σ(X) since { f ∈ B} ∈ B(Rn)
for any B ∈ B(R) and

{ f (X1, . . . , Xn) ∈ B} = {(X1, . . . , Xn) ∈ { f ∈ B}} ∈ σ(X).

It follows that the random variables f (X1, . . . , Xn) = X1 · · · Xn and
Xn+1 are independent. Applying Theorem 3.42 and the induction hy-
pothesis, we can see that f (X1, . . . , Xn)Xn+1 = X1 · · · XnXn+1 is inte-
grable and

E( f (X1, . . . , Xn)Xn+1) = E(X1 · · · XnXn+1)

= E

 n∏
i=1

Xi

E(Xn+1) =

n+1∏
i=1

E(Xi).

3.35. Suppose that a, b , 0. If X,Y are independent random variables, then
so are aX, bY . Suppose that B1, B2 ∈ B(R). Then

P((aX, bY) ∈ B1 × B2) = P(aX ∈ B1, bY ∈ B2)

= P(X ∈
1
a

B1,Y ∈
1
b

B2) = P(X ∈
1
a

B1)P(Y ∈
1
b

B2)

= P(aX ∈ B1)P(bY ∈ B2).

It follows that aX, bY are independent. By Corollary 3.45 and Exer-
cise 2.25, we have

φaX+bY(t) = φaX(t)φbY(t) = φX(at)φY(bt)

= e−
1
2 a2t2

e−
1
2 b2t2

= e−
1
2 (a2+b2)t2

.

The case when a = 0 or b = 0 is trivial.
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3.36. We prove the statement by induction. By Proposition 3.46, for n = 2

Var(X1 + X2) = Var(X1) + Var(X2)

if X1, X2 are independent integrable random variables.
Suppose that for some n = 2, 3, . . .

Var(X1 + . . . + Xn) = Var(X1) + · · · + Var(Xn)

if X1, . . . , Xn are independent integrable random variables. Also sup-
pose that X1, . . . Xn, Xn+1 are independent integrable random vari-
ables. By Exercise 3.33, Xn+1 is independent of the σ-field σ(X) gen-
erated by the random vector X = (X1, . . . , Xn). Define f : Rn → R by
f (x1, . . . , xn) = x1 + · · · + xn. Since the function is continuous, it is a
Borel function. Moreover, the function f (X1, . . . , Xn) = X1 + . . .+ Xn

is measurable with respect to σ-field σ(X) and integrable. It follows
that X1 + · · · + Xn and Xn+1 are independent random variables. By
Proposition 3.46 and the induction hypothesis,

Var((X1 + · · · + Xn) + Xn+1) = Var(X1 + · · · + Xn) + Var(Xn+1)

= Var(X1) + · · · + Var(Xn+1).

3.37. Suppose that X,Y have the bivariate normal distribution with den-
sity (3.5). To compute Cov(X,Y) it suffices to compute E(XY) since,
by Exercise 3.12, E(X) = E(Y) = 0.

In order to compute E(XY) we extend (2.3) to random vectors.
Suppose that X = (X1, . . . , Xn) is a random vector whose joint distri-
bution PX has density fX , and g : Rn → R is an integrable function
with respect to PX . Then

E(g(X)) =

∫
Rn

g(x) fX(x)dmn(x). (S.3)

For g = 1B(x) with B ∈ B(Rn) we have

E(1B(X)) = P(X ∈ B) =

∫
B

fX(x)dmn(x) =

∫
Rn

1B(x) fX(x)dmn(x).

If g =
∑n

i=1 ai1Bi with Bi ∈ B(Rn) and ai ∈ R for i = 1, . . . , n,
then (S.3) follows by linearity. When g is a non-negative measurable
function, by Proposition 1.28 there is a non-decreasing sequence of
non-negative simple functions sn, n = 1, 2, . . . , such that limn→∞ sn =
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g. By the monotone convergence theorem it follows that∫
Ω

g(X(ω))dP(ω) = lim
n→∞

∫
Ω

sn(X(ω))dP(ω)

= lim
n→∞

∫
Rn

sn(x) fX(x)dmn(x) =

∫
Rn

g(x) fX(x)dmn(x).

If g is an integrable function, then (S.3) follows from the result for
g+ and g−.

Now put g(x1, x2) = x1x2. Then

E(XY) =

∫
Rn

x1x2 fX,Y(x1, x2)dm2(x1, x2)

=

∫
Rn

x1x2
1

2π
√

1 − ρ2
exp

(
−

x2
1 − 2ρx1x2 + x2

2

2(1 − ρ2)

)
dx1dx2

=

∫
Rn

x1x2
1

2π
√

1 − ρ2
exp

(
−

x2
1

2
−

(x2 − ρx1)2

2(1 − ρ2)

)
dx1dx2

=

∫
R

 x1
√

2π
x1 exp

(
−

x2
1

2

) ∫
R

x2√
2π(1 − ρ2)

exp
(
−

(x2 − ρx1)2

2(1 − ρ2)

)
dx2

 dx1

by Fubini’s theorem. To compute

I =

∫
R

x2√
2π(1 − ρ2)

exp
(
−

(x2 − ρx1)2

2(1 − ρ2)

)
dx2

make the substitution z = x2 − ρx1. Then

I =
1√

2π(1 − ρ2)

∫
R

(z + ρx1) exp
(
−

z2

2(1 − ρ2)

)
dz

=
1√

2π(1 − ρ2)

∫
R

z exp
(
−

z2

2(1 − ρ2)

)
dz

+
ρx1√

2π(1 − ρ2)

∫
R

exp
(
−

z2

2(1 − ρ2)

)
dz = ρx1

since

1√
2π(1 − ρ2)

∫
R

z exp
(
−

z2

2(1 − ρ2)

)
dz = 0,

1√
2π(1 − ρ2)

∫
R

exp
(
−

z2

2(1 − ρ2)

)
dz = 1.
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Finally,

E(XY) = ρ

∫
R

x2
1

1
√

2π
exp

(
−

x2
1

2

)
dx1 = ρ.

Hence Cov(X,Y) = ρ

3.38. By Exercise 3.37, Cov(X,Y) = ρ for random variables X,Y with den-
sity (3.5). By Exercise 3.12, fX and fY are standard normal densities.
Hence

ρX,Y =
Cov(X,Y)
σXσY

= ρ.

If X and Y are uncorrelated, then ρX,Y = ρ = 0. By Exercise 3.19,
they are independent.

3.39. Consider a quadratic expression

η(t) = E(X0 + tY0)2 = E(X2
0) + 2tE(X0Y0) + t2E(Y2

0 )

for t ∈ R, where X0 = X − E(X) and Y0 = Y − E(Y). Since η(t) ≥ 0
for each t ∈ R, the discriminant satisfies

∆ = 4(E(X0Y0))2 − 4E(X2
0)E(Y2

0 ) ≤ 0.

Moreover, ∆ = 0 if and only if there is t0 ∈ R such that 0 = η(t0) =

E((X0+tY0)2). By Proposition 1.36, this is equivalent to P(X0+t0Y0 =

0) = 1. On the other hand |ρX,Y | = 1 if and only if ∆ = 0. It follows
that

P(X − E(X) + t0(Y − E(Y)) = 0) = 1.

In other words, X = aY + b, P-a.e. for some a, b ∈ R.
3.40. When F1,F2 are σ-fields on Ω1,Ω2, respectively, the family of mea-

surable rectangles is defined as

R = {A1 × A2 : A1 ∈ F1, A2 ∈ F2} .

Suppose that A1 ×A2, B1 × B2 ∈ R for some A1, B1 ∈ F1 and A2, B2 ∈

F2. Then

(A1 × A2) ∩ (B1 × B2) = (A1 ∩ B1) × (A2 ∩ B2) ,

where A1 ∩ B1 ∈ F1 and A2 ∩ B2 ∈ F2, so (A1 × A2)∩ (B1 × B2) ∈ R.
This means that R is closed under intersection.

3.41. This is a very simple consequence of Proposition 3.56 since the fam-
ily I of open intervals in R is closed under intersection.
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3.42. LetD be the family of all Borel sets A ⊂ [0, 1] such that∫
A

X dm = 0.

Observe that D is a d-system. Also denote by C the family of inter-
vals

(
i

2n ,
j

2n

]
such that n = 0, 1, . . . and i, j = 0, 1, . . . , 2n with i ≤ j,

and observe that C is closed under intersections. It follows by Propo-
sition 3.56 that d(C) = σ(C). Moreover, since C ⊂ D and σ(C) is the
σ-field of Borel sets on [0, 1], we haveD ⊂ σ(C) = d(C) ⊂ D, soD
contains all Borel subsets in [0, 1].

We have shown that
∫

A
X dm = 0 for each Borel set A ⊂ [0, 1]. For

each n = 1, 2, . . . let An =
{
X ≥ 1

n

}
. Then

0 =

∫
An

X dm ≥
1
n

m(An),

which means that m(An) = 0. Since {X > 0} =
⋃∞

n=1 An and An ⊂

An+1 for each n, it follows that m ({X > 0}) = limn→∞m(An) = 0. In
the same manner we can show that m ({X < 0}) = 0, and therefore
deduce that X = 0, m-a.s.

Chapter 4

4.1. Suppose that F is the family of all possible countable unions of sets
belonging to P = {B1, B2, . . .}. (Recall that ’countable’ means finite
or countably infinite.) Clearly, Ω ∈ F . If A ∈ F , then A =

⋃
i∈I Bi

for some I ⊂ N and Ω \ A =
⋃

i∈N\I Bi, so Ω \ A ∈ F . Further, if
Ak ∈ F for k = 1, 2, . . . , then Ak =

⋃
i∈Ik

Bi, for some Ik ⊂ N and
A =

⋃∞
k=1 Ak =

⋃
i∈

⋃∞
k=1 Ik

Bi ∈ F . Hence F is a σ-field. This implies
that σ(P) ⊂ F .

Now suppose that A ∈ F , but A < σ(P). Then Ω \ A < σ(P). This
implies that Ω < σ(P), a contradiction. So F ⊂ σ(P).

4.2. Suppose that the family A = {A1, A2, . . .} of all atoms in F is a
partition of Ω. Of course, σ(A) ⊂ F . To prove the inverse inclusion
take any A ∈ F . For every Ai ∈ A such that Ai ∩ A , ∅ we have
Ai ⊂ A. Otherwise Ai = (Ai ∩ A) ∪ (Ai ∩ (Ω \ A)) and Ai ∩ A , ∅,
Ai ∩ (Ω \ A) , ∅, which is impossible by the definition of an atom.
Since A ⊂

⋃∞
i=1 Ai = Ω, it follows that A is the union of some atoms,

A =
⋃

i∈I Ai, where I ⊂ {1, 2, . . .} and Ai ⊂ A for each i ∈ I. This
implies that A ∈ σ(A) and F ⊂ σ(A).
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4.3. Suppose that P(B) > 0 and let FB be the σ-field consisting of all
events A ∈ F such that A ⊂ B. We show that PB is a probability on
FB. First, PB(B) =

P(B∩B)
P(B) = 1. Let Ai ∈ FB be a sequence of pairwise

disjoint events. Then

PB

 ∞⋃
i=1

Ai

 =
P(

⋃∞
i=1 Ai)

P(B)

=
1

P(B)

∞∑
i=1

P(Ai) =

∞∑
i=1

P(Ai)
P(B)

=

∞∑
i=1

PB(Ai).

4.4. Suppose that X has the Poisson distribution with parameter λ. First
we calculate

P(X is odd) = 1 − P(X is even)}) = 1 − P

 ∞⋃
k=0

{X = 2k}


= 1 −

∞∑
k=0

P({X = 2k}) = 1 −
∞∑

k=0

λ2k

(2k)!
e−λ = 1 − e−λ cosh λ.

By (4.1), we have

E(X|{X is odd}) =
1

P(X is odd)
E(1{X is odd}X)

=
1

(1 − e−λ cosh λ)

∞∑
k=0

(2k + 1)
λ2k+1e−λ

(2k + 1)!

=
λ

eλ − cosh λ

∞∑
k=0

λ2k

(2k)!
=

λ cosh λ
eλ − cosh λ

.

4.5. By Definition 4.10, if Z is a discrete random variable, then the con-
ditional expectation E(X|Z) is the conditional expectation of X with
respect to the partition P generated by Z. The partition generated by
Z consists of two subsets of the interval [0, 1], namely B1 = [0, 1

2 )
and B2 = [ 1

2 , 1]. Hence E(X|Z) is constant on B1 and on B2. By (4.1),
we have

E(X|B1) =
E(1B1 X)
P(B1)

=
1
1
2

∫ 1
2

0
xdx =

1
4
,

E(X|B2) =
E(1B2 X)
P(B2)

=
1
1
2

∫ 1

1
2

xdx =
3
4
.
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It follows that

E(X|Z)(ω) =

 1
4 if ω ∈ [0, 1

2 ),
3
4 if ω ∈ [ 1

2 , 1].

4.6. Similarly as in Exercise 4.5, we have

E(X|B1) =
E(1B1 X)
P(B1)

=
1
1
2

∫ 1
2

0
(1 − x)dx =

3
4
,

E(X|B2) =
E(1B2 X)
P(B2)

=
1
1
2

∫ 1

1
2

(1 − x)dx =
1
4
.

Hence

E(X|Z)(ω) =

 3
4 if ω ∈ [0, 1

2 ),
1
4 if ω ∈ [ 1

2 , 1].

4.7. Take Ω = [0, 1] with its Borel subsets and Lebesgue measure. Let V
be the random variable equal to 0 on [0, 3

4 ) and 1 on [ 3
4 , 1]. Further-

more, let W be the random variable with three values, −1 on [0, 1
3 ),

0 on [ 1
3 ,

1
2 ) and 1 on [ 1

2 , 1], and let X be the random variable defined
as X(ω) = 2ω − 1 for ω ∈ [0, 1].

First we calculate E(X|V). Put A1 = {V = 0} = [0, 3
4 ) and A2 =

{V = 1} = [ 3
4 , 1]. The conditional expectation E(X|V) is constant on

A1 and A2, and

E(X|A1) =
E(1A1 X)
P(A1)

=
1
3
4

∫ 3
4

0
(2x − 1)dx = −

1
4
,

E(X|A2) =
E(1A2 X)
P(A2)

=
1
1
4

∫ 1

3
4

(2x − 1)dx =
3
4
.

It follows that

E(X|V)(ω) =

− 1
4 if ω ∈ [0, 3

4 ) ,
3
4 if ω ∈ [ 3

4 , 1].

Next we compute E(X|W). The random variable W generates the par-
tition consisting of three sets: B1 = {W = −1} = [0, 1

3 ), B2 = {W =
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0} = [ 1
3 ,

1
2 ) and B3 = {W = 1} = [ 1

2 , 1]. Moreover,

E(X|B1) =
E(1B1 X)
P(A1)

=
1
1
3

∫ 1
3

0
(2x − 1)dx = −

2
3
,

E(X|B2) =
E(1B2 X)
P(B2)

=
1
1
6

∫ 1
2

1
3

(2x − 1)dx = −
1
6
,

E(X|B3) =
E(1B3 X)
P(B3)

=
1
1
2

∫ 1

1
2

(2x − 1)dx =
1
2
.

It follows that

E(X|W)(ω) =


− 2

3 if ω ∈ [0, 1
3 ) ,

− 1
6 if ω ∈ [ 1

3 ,
1
2 ) ,

1
2 if ω ∈ [ 1

2 , 1],

and E(X|V) , E(X|W).
4.8. Since Y(n) = (−1)n takes only two values −1 and 1, it generates

the partition P = {A, B} consisting of two sets, A = {Y = −1} =

{odd numbers} and B = {Y = 1} = {even numbers}. We calculate
P(A) and P(B) as follows:

P(A) = P({Y = −1}) =

∞∑
k=1

P({2k − 1}) =

∞∑
k=1

2 · 3−(2k−1) =
3
4
,

P(B) = P({Y = 1}) =

∞∑
k=1

P({2k}) =

∞∑
k=1

2 · 3−2k =
1
4
.

It follows that E(X|Y) has only two values

E(X|A) =
E(1AX)

P(A)
=

1
3
4

∞∑
k=1

22k−1 · 2 · 3−(2k−1) =
16
5
,

E(X|B) =
E(1BX)

P(B)
=

1
1
4

∞∑
k=1

22k · 2 · 3−2k =
32
5
,

and so

E(X|Y)(n) =

 16
5 if n is odd,
35
5 if n is even.

4.9. Suppose that the discrete random variable Y has pairwise distinct
values y1, y2, . . . , and let Bi = {Y = yi} for each i = 1, 2, . . . . If
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P(Bi) , 0, then

E(1BiE(X|Y)) = E(1BiE(X|Bi)) = E(X|Bi)E(1Bi )

= E(X|Bi)P(Bi) = E(1Bi X).

If P(Bi) = 0, then we also have E(1BiE(X|Y)) = E(1Bi X) since both
sides of the equality are equal to 0. Every set B ∈ σ(Y) can be written
as B =

⋃
i∈I Bi for some I ⊂ {1, 2, . . .}. Let In = I ∩ {1, 2, . . .}. Since

the Bi are disjoint,

1B = 1⋃
i∈I Bi = lim

n→∞
1⋃

i∈In Bi = lim
n→∞

∑
i∈In

1Bi

Because X is integrable, so is E(X|Y). By the dominated convergence
theorem, we therefore get

E(1BX) = lim
n→∞
E(1⋃

i∈In Bi X) = lim
n→∞

∑
i∈In

E(1Bi X),

E(1BE(X|Y)) = lim
n→∞
E(1⋃

i∈In BiE(X|Y))

= lim
n→∞

∑
i∈In

E(1BiE(X|Y)) = lim
n→∞

∑
i∈In

E(1Bi X),

so E(1BE(X|Y)) = E(1BE(X|Y)).
4.10. Suppose P1 and P2 are partitions of some set Ω. Consider the parti-

tion

P = {C = A ∩ B : A ∈ P1 and B ∈ P2}.

We show that P refines P1 and P2. Take any A ∈ P1. Since⋃
B∈P2

B = Ω,

A = A ∩

⋃
B∈P2

B

 =
⋃

B∈P2,A∩B,∅

A ∩ B.

Similarly, for any B ∈ P2 we have

B = B ∩

⋃
A∈P1

B

 =
⋃

A∈P1,A∩B,∅

B ∩ A.

Now consider any partition P′ which refines P1 and P2. Take any
C ∈ P. Then there are sets A ∈ P1 and B ∈ P2 such that C = A ∩ B.
Because P′ refines P1, we have A =

⋃
i∈I Ai for a countable family of

sets Ai ∈ P1, i ∈ I. Moreover, Because P′ refines P2 and B ∈ P2 we
have Ai ⊂ B or Ai ⊂ Ω \ B for each i ∈ I. Similarly, B =

⋃
j∈J B j for

a countable family of sets B j ∈ P2, j ∈ J, and B j ⊂ A or B j ⊂ Ω \ A
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for each j ∈ J. It follows that C = A ∩ B =
⋃

(i, j)∈K Ai ∩ B j, where
K = {(i, j) ∈ I × J : Ai ⊂ B, B j ⊂ A}. This means that P′ refines P.

We have shown that P is the coarsest partition that refines P1

and P2.
4.11. By Exercise 3.31, X,Y are independent if and only if their gener-

ated σ-fields σ(X), σ(Y) are independent. For Y discrete with values
y1, y2, . . ., the σ-field σ(Y) is generated by the partition P = {Bi : i =

1, 2, . . .}, where Bi = {Y = yi}. Since σ(1Bi ) = {Ω, Bi,Ω \ Bi,∅}, it
follows that σ(1Bi ) ⊂ σ(Y). This implies that X and 1Bi are indepen-
dent for every i = 1, 2, . . . . By Definition 4.10, E(X|Y) is constant on
each Bi, i = 1, 2, . . . , so the equality E(X|Y) = E(X) suffices on Bi.
By Theorem 3.42, we have

E(1Bi X) = E(1Bi )E(X) = P(Bi)E(X)

and

E(X|Bi) =
E(1Bi X)
P(Bi)

=
P(Bi)E(X)

P(Bi)
= E(X).

4.12. Since Y is symmetric with respect to the line x = 1
2 and Y([0, 1]) =

[0, 1
2 ], we claim that σ(Y) = {B ∪ (1 − B) : B ⊂ [0, 1

2 ] is a Borel set}.
To verify this, first take any A ∈ B(R). Then {Y ∈ A} ∩ [0, 1

2 ] = B is
a Borel set in [0, 1

2 ] and {Y ∈ A} = B ∪ (1 − B). This implies that

σ(Y) ⊂
{

B ∪ (1 − B) : B ⊂
[
0,

1
2

]
is a Borel set

}
.

Now, if B ⊂ [0, 1
2 ] is a Borel set, then A = 1

2 − B is a Borel set and
{Y ∈ A} = B ∪ (1 − B). This gives the converse inclusion.

In order to calculate E(X|Y), take B ∪ (1 − B) ∈ σ(Y), where B ⊂
[0, 1

2 ] is a Borel set. If we put X1(ω) = X(1−ω), then E(1B∪(1−B)X) =

E(1B∪(1−B)X1) and

E(1B∪(1−B)X) =
1
2

[
E(1B∪(1−B)X) + E(1B∪(1−B)X1)

]
= E

(
1B∪(1−B)

1
2

(X + X1)
)
.

Since 1
2 (X + X1) is σ(Y)-measurable,

E(X|Y)(ω) =
1
2

(X(ω) + X1(ω)) =
1
2

(∣∣∣∣∣ω − 1
3

∣∣∣∣∣ +

∣∣∣∣∣ω − 2
3

∣∣∣∣∣) .
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4.13. First we prove the condition (1) (linearity). By Definition 4.20 (i), the
conditional expectations E(X|G) and E(Y |G) are G-measurable. By
Exercise 1.21, for any a, b ∈ R, aE(X|G) + bE(Y |G) is G-measurable.
Take any B ∈ G. By Definition 4.20 (ii), we have

E(1B(aE(X|G) + bE(Y |G))) = E(a1BE(X|G) + b1BE(Y |G))

= aE(1BE(X|G)) + bE(1BE(Y |G))

= aE(1BX) + bE(1BY) = E(1B(aX + bY)).

We have verified conditions (i) and (ii) of Definition 4.20. To prove (2)
(positivity) put B = {E(X|G) < 0}. We have B =

⋃∞
n=1 Bn, where

Bn = {E(X|G) < − 1
n } and Bn, B ∈ G. The Bn form an increasing

sequence of sets in G ⊂ F , so P(B) = limn→∞ P(Bn). The simple
function sn = − 1

n 1Bn is G-measurable and satisfies

1BnE(X|G) < sn,

so

0 ≤ E(1BX) = E(1BnE(X|G)) ≤ E(1Bn sn) = −
1
n

P(Bn) ≤ 0,

which means that P(Bn) = 0 for all n, hence P(B) = 0. Therefore
E(X|G) ≥ 0, P-a.e.

4.14. By Exercise 4.13, the conditional expectations E(Xn|G) form a non-
decreasing sequence of integrable random variables: since Xn+1 −

Xn ≥ 0, by linearity and positivity we obtain E(Xn+1 − Xn|G) ≥ 0 and

E(Xn+1 − Xn|G) = E(Xn+1|G) − E(Xn|G) ≥ 0.

So limn→∞ E(Xn|G) = Y exists P-a.s., and by Exercise 1.19, Y is
measurable with respect to G.

We show that Y = E(X|G). For any B ∈ G we apply the monotone
convergence theorem and the definition of conditional expectation to
get

lim
n→∞

(1BE(Xn|G)) = lim
n→∞

(E(1BXn) = E(1BX) = E(1BE(X|G)).

Moreover

lim
n→∞

(1BE(Xn|G)) = E(1BY).

This implies that E(1BE(X|G)) = E(1BY). It follows that E(X|G) = Y ,
P-a.s.
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4.15. Theorem 4.27 can be extended as follows:
Let (Ω, F, P) be a probability space and let G ⊂ F be a σ-field.
Suppose that X : Ω→ Rm is a G-measurable random vector and Y :
Ω → Rn is a random vector independent of G. If f : Rm × Rn → R

is a bounded Borel measurable function, then g f : Rm → R defined
for any x ∈ Rm by

g f (x) = E( f (x,Y)) =

∫
Rn

f (x, y)dPY(y)

is a bounded Borel measurable function, and we have

E( f (X,Y)|G) = g f (X), P-a.s.

Proof In fact we can repeat the proof of Theorem 4.27 without any
significant changes.

By Proposition 3.17, g f is a Borel measurable function. It follows
that g f (X) is σ(X)-measurable. By the definition of conditional ex-
pectation it suffices to show that

E(1G f (X,Y)) = E(g f (X)1G)

for each G ∈ G.
By hypothesis, σ(Y) and G are independent σ-fields. For any

bounded G-measurable random variable Z we have σ(X,Z) ⊂ G
since for any B1 × · · · × Bm × Bm+1, Bi ∈ B(R), i = 1, . . . ,m + 1
we have

{(X,Z) ∈ B1×· · ·×Bm×Bm+1} = {X ∈ B1×· · ·×Bm}∩{Z ∈ Bm+1} ∈ G.

Hence Y and (X,Z) are independent. This means (see Remark 3.40)
that their joint distribution is the product measure PX,Z ⊗ PY .

In order to compute E( f (X,Y)Z) we apply Proposition 1.37, in
which we take

(Ω,F , µ) = (Ω,F , P),

(Ω̃, F̃ , µ̃) = (Rm+n+1,B(Rm+n+1), PX,Z ⊗ PY),

ϕ = (X,Z,Y) and g̃ : Rm+n+1 → R such that g̃(x, z, y) = f (x, y)z for
x ∈ Rm, y ∈ Rn, z ∈ R. Hence

E( f (X,Y)Z) =

∫
Ω

f (X,Y)ZdP =

∫
Rm+n+1

f (x, y)zd(PX,Z ⊗ PY)(x, z, y).
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Applying Fubini’s theorem, we obtain

E( f (X,Y)Z) =

∫
Rm+1

(∫
Rn

f (x, y)zdPY(y)
)

dPX,Z(x, z)

=

∫
Rm+1

g f (x)zdPX,Z(x, z)

by Proposition 1.37 once again

= E(g f (X)Z).

If we put Z = 1G, we get

E(1G f (X,Y)) = E(g f (X)1G).

This completes the proof.
4.16. Let fX,Y(x, y) be the bivariate normal density given in Example 3.16.

Similarly as in Exercise 3.12, fX,Y(x, y) can be written in the form

fX,Y(x, y) =
1
√

2π
exp

(
−

y2

2

)
1√

2π(1 − ρ2)
exp

(
−

(x − ρy)2

2(1 − ρ2)

)
,

and fY(y) = 1
√

2π
exp

(
−

y2

2

)
. Then, by Definition 4.30, the conditional

density of X given Y is

h(x, y) =
fX,Y(x, y)

fY(y)
=

1√
2π(1 − ρ2)

exp
(
−

(x − ρy)2

2(1 − ρ2)

)
.

Furthermore, by Proposition 4.31, we have

E(X|Y) =

∫
R

xh(x,Y)dm(x) =
1√

2π(1 − ρ2)

∫
R

x exp
(
−

(x − ρY)2

2(1 − ρ2)

)
dx.

Substituting z = x − ρY , we get

E(X|Y) =
1√

2π(1 − ρ2)

∫
R

(z + ρY) exp
(
−

z2

2(1 − ρ2)

)
dz.

Since

1√
2π(1 − ρ2)

∫
R

z exp
(
−

z2

2(1 − ρ2)

)
dz = 0,

1√
2π(1 − ρ2)

∫
R

exp
(
−

z2

2(1 − ρ2)

)
dz = 1,

we have E(X|Y) = ρY .
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4.17. Suppose that x, y, z ∈ (a, b). We claim that the function y 7→ φ(y)−φ(x)
y−x

is non-decreasing. Consider three cases: (i) y < x < z, (ii) x < y < z,
and (iii) y < z < x. Suppose (i) holds. Taking λ = z−x

z−y , we have
x = λy + (1 − λ)z, so the convexity of φ gives

φ(x) ≤
z − x
z − y

φ(y) +
x − y
z − y

φ(z).

Rearranging, we get

φ(y) − φ(x)
y − x

≤
φ(z) − φ(x)

z − x
.

In cases (ii) and (iii) we verify the claim similarly. If h > 0 and
x − h, x + h ∈ (a, b), then we have

φ(x − h) − φ(x)
−h

=
φ(x) − φ(x − h)

h
≤
φ(x + h) − φ(x)

h
.

By the claim, for h, t > 0, h < t and x + h, x + t, x − h, x − t ∈ (a, b)
we also get

φ(x + h) − φ(x)
h

≤
φ(x + t) − φ(x)

t
,

φ(x) − φ(x − t)
t

≤
φ(x) − φ(x − h)

h
.

It follows that the ratio 1
h [φ(x + h) − φ(x)] decreases as h ↘ 0 and

1
h [φ(x) − φ(x − h)] increases as h↘ 0.

Finally, fix t0 > 0 such that x − t0, x + t0 ∈ (a, b). Applying the
claim again, we obtain for any h > 0 such that x + h ∈ (a, b)

φ(x − t0) − φ(x)
−t0

≤
1
h

[φ(x + h) − φ(x)]

1
h

[φ(x) − φ(x − h)] ≤
φ(x + t0) − φ(x)

t0
.

This means that the ratio 1
h [φ(x + h) − φ(x)] is bounded below by a

constant and 1
h [φ(x) − φ(x − h)] is bounded above by a constant.

4.18. Take any X ∈ L2(P) and a sequence X1, X2, . . . ∈ L2(P) such that
limn→∞ ||Xn − X||2 = 0. For given Y ∈ L2(P), the Schwarz inequality
implies that

|〈Xn,Y〉 − 〈X,Y〉| = |〈Xn − X,Y〉| ≤ ||Xn − X||2||Y ||2.

By the hypothesis, limn→∞ |〈Xn,Y〉 − 〈X,Y〉| = 0. This means that the
map X 7→ 〈X,Y〉 is norm continuous.
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Next, using the triangle inequality, we have

||Xn||2 = ||(Xn − X) + X||2 ≤ ||Xn − X||2 + ||X||2,

||X||2 = ||(X − Xn) + Xn||2 ≤ ||Xn − X||2 + ||Xn||2.

So we get

|||Xn||2 − ||X||2| ≤ ||Xn − X||2 → 0 as n→ ∞.

This implies norm continuity of the L2-norm.
4.19. Let X, X1, X2, . . . ∈ L2(P). Suppose that limn→∞ ||Xn−X||2 = 0, where

X ∈ L2(P). Given ε > 0, there is k ∈ N such that ||Xn − X||2 < ε
2 for

each n ≥ k. By the triangle inequality, for any m, n ≥ k we have

||Xm − Xn||2 = ||(Xm − X) + (X − Xn)||2 ≤ ||Xm − X||2 + ||Xn − X||2 < ε.

This implies that

sup
m,n≥k
||Xm − Xn||2 < ε.

We have proved that X1, X2, . . . is a Cauchy sequence.
4.20. Let X,Y ∈ L2(F , P). Using the definition of the norm, we have

||X + Y ||22 = E((X + Y)2) = E(X2) + 2E(X,Y) + E(Y2)

= ||X||22 + 2〈X,Y〉 + ||Y ||22.

If 〈X,Y〉 = 0, then ||X + Y ||22 = ||X||22 + ||Y ||22.
4.21. Let X,Y ∈ L2(F , P). Using the definition of the norm, we have

||X + Y ||22 + ||X − Y ||22 = E((X + Y)2) + E((X − Y)2)

= E(X2) + 2E(XY) + E(Y2) + E(X2) − 2E(XY) + E(Y2)

= 2||X||22 + 2||Y ||22.

4.22. Let Xn(ω) = sin nω and Ym(ω) = cos mω. We show that Xn(ω), Ym(ω)
are orthogonal in L2[−π, π] for any m, n = 1, 2, . . . . Observe that

sin nω cos mω =
1
2

[sin(n + m)ω + sin(n − m)ω].

By the definition of the inner product in L2[−π, π], we can verify that

〈Xn,Ym〉 =

∫ π

−π

sin nx cos mxdx

=
1
2

∫ π

−π

[sin(n + m)x + sin(n − m)x]dx

=
1
2

[
−

cos(n + m)x
n + m

−
cos(n − m)x

n − m

] ∣∣∣π
−π = 0.
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4.23. Let X ∈ L2(F , P). Suppose that Y ∈ M satisfies 〈X − Y,Z〉 = 0 for
any Z ∈ M. It follows that 〈X − Y,Y − Z〉 = 0 for any Z ∈ M. By
Pythagoras’ theorem, we get

||X − Z||22 = ||(X − Y) + (Y − Z)||22 = ||X − Y ||22 + ||Y − Z||22.

It follows that ||X − Y ||2 ≤ ||X − Z||2 for any Z ∈ M. Since Y ∈ M, we
have ||X − Y ||2 = inf{||X − Z||2 : Z ∈ M}.

4.24. Consider the random variables X(ω) = ω and Y(ω) = 1 − ω defined
on the probability space [0, 1] with Borel sets and Lebesgue measure.

We compute ||X||1, ||Y ||1, ||X+Y ||1 and ||X−Y ||1. By Definition 4.49,

||X||1 = E(|X|) =
1
2
, ||Y ||1 = E(|Y |) =

1
2
,

||X + Y ||1 = E(|X + Y |) = 1, ||X − Y ||1 = E(|X − Y |) =
1
2
.

The parallelogram law stated in Exercise 4.21 fails in the L1-norm
since in our case ||X + Y ||21 + ||X − Y ||21 = 3

2 , but 2||X||21 + 2||Y ||21 = 2.
The parallelogram law holds for any norm induced by an inner

product, that is, if H is a real or complex normed vector space with
an inner product such that ||h||2 = 〈h, h〉. The proof is the same as
for L2. The above example shows that the L1-norm is not induced by
an inner product.

4.25. Let the assumptions of Theorem 4.54 be satisfied, so that there exists
a random variable Z ∈ L1(P) such that for each A ∈ F

Q(A) =

∫
A

ZdP.

Since Q is a probability measure, we know that Z ≥ 0 on Ω and
EP(Z) = 1. For any B ∈ F we have

EQ(1B) = Q(B) = EP(1BZ).

By linearity, this extends to EQ(s) = EP(sZ) for any simple func-
tion s. Approximating any non-negative random variable X by a non-
decreasing sequence of simple functions, we obtain by monotone
convergence that

EQ(X) = EP(XZ).

Finally, we can extend the last identity to any random variable X
integrable under Q by considering X+ and X− and using linearity
once again.
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4.26. To verify (1) take any A ∈ F with P(A) = 0. For λ ∈ (0, 1), we have

(λQ + (1 − λ)R)(A) = λQ(A) + (1 − λ)R(A) = 0

since Q � P and R � P. Write dQ
dP = Z, dR

dP = U and d(λQ+(1−λ)R)
dP =

W. For each A ∈ F we get∫
A

WdP = (λQ + (1 − λ)R)(A) = λQ(A) + (1 − λ)R(A)

=

∫
A
λZdP +

∫
A
(1 − λ)UdP =

∫
A
(λZ + (1 − λ)U)dP.

By Exercise 1.30, W = λZ + (1 − λ)U, P-a.e.
(2) Suppose that R � Q and Q � P. For any A ∈ F , P(A) = 0

implies Q(A) = 0, and this in turn implies R(A) = 0. It follows
that R � P. Writing dR

dP = U, dQ
dP = Z and dR

dQ = V , we have
R(A) =

∫
A

UdP =
∫

A
VdQ and Q(A) =

∫
A

ZdP for any A ∈ F .
By Exercise 4.25, we obtain

R(A) = EQ(1AV) = EP(1AVZ) = EP(1AU).

By Exercise 1.30, it follows that VZ = U, P-a.e. Thus dR
dP = dR

dQ
dQ
dP .

(3) Suppose that P ∼ Q. Write dQ
dP = Z and dP

dQ = S . Since Q(A) =∫
A

ZdP and P(A) =
∫

A
S dQ for any A ∈ F , using Exercise 4.25 once

again, we get

EP(1A) = EQ(1AS ) = EP(1AS Z).

By Exercise 1.30, we have S Z = 1, P-a.e. This implies

dP
dQ

=

(
dQ
dP

)−1

.

Chapter 5

5.1. If X,Y ∈ L2(P) and E1, E2, . . . ∈ L2(P) is a complete orthonormal
sequence, then (5.5) holds for X and Y , so

〈X,Y〉 =

 ∞∑
i=1

〈X, Ei〉Ei,

∞∑
j=1

〈Y, E j〉E j

 =

∞∑
i=1

〈X, Ei〉〈Y, Ei〉

since 〈Ei, E j〉 = 1 if i = j, and 0 otherwise.
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5.2. We have

||H0||
2
2 =

∫
[0,1]

(H0)2dm =

∫ 1

0
dx = 1,

and any j = 0, 1, . . . and k = 0, . . . , 2 j − 1

||H2 j+k||
2
2 =

∫
[0,1]

(H2 j+k)2dm = 2 j
∫ 1

0
1( 2k

2 j+1 ,
2k+2
2 j+1 ]dx

= 2 j

(
2k + 2
2 j+1 −

2k
2 j+1

)
= 1.

This proves that each Haar function Hn has L2-norm 1.
Next we show that H0 is orthogonal to H2 j+k for any j = 0, 1, . . .

and k = 0, 1, . . . , 2 j − 1:

〈H0,H2 j+k〉 =

∫
[0,1]

H0H2 j+kdm = 2
j
2

∫
[0,1]

(
1(

2k
2 j+1 ,

2k+1
2 j+1

] − 1(
2k+1
2 j+1 ,

2k+2
2 j+1

]) dm

= 2
j
2

(
2k + 1
2 j+1 −

2k
2 j+1

)
− 2

j
2

(
2k + 2
2 j+1 −

2k + 1
2 j+1

)
= 0.

Now for any i, j = 0, 1, . . . such that i ≤ j and for any k = 0, 1, . . . , 2i−

1 and l = 0, 1, . . . , 2 j − 1

〈H2i+k,H2 j+l〉 =

∫
[0,1]

H2i+kH2 j+ldm

= 2
i
2 2

j
2

∫
[0,1]

(
1(

2k
2i+1 ,

2k+1
2i+1

] − 1(
2k+1
2i+1 ,

2k+2
2i+1

]) (1(
2l

2 j+1 ,
2l+1
2 j+1

] − 1(
2l+1
2 j+1 ,

2l+2
2 j+1

]) dm.

Observe that(
2l

2 j+1 ,
2l+2
2 j+1

]
⊂

(
2k

2i+1 ,
2k+1
2i+1

]
if k2 j−i ≤ l ≤ k2 j−i + 2 j−i−1 − 1,(

2l
2 j+1 ,

2l+2
2 j+1

]
⊂

(
2k+1
2i+1 ,

2k+2
2i+1

]
if k2 j−i + 2 j−i−1 ≤ l ≤ k2 j−i + 2 j−i − 1,(

2l
2 j+1 ,

2l+2
2 j+1

]
∩

(
2k

2i+1 ,
2k+2
2i+1

]
= ∅ otherwise.

Therefore,

〈H2i+k,H2 j+l〉 = 2
i
2 2

j
2

∫
(

2k
2i+1 ,

2k+1
2i+1

]
(
1(

2l
2 j+1 ,

2l+1
2 j+1

] − 1(
2l+1
2 j+1 ,

2l+2
2 j+1

]) dm

= 2
i
2 2

j
2

((
2l + 1
2 j+1 −

2l
2 j+1

)
−

(
2l + 1
2 j+1 −

2l + 1
2 j+1

))
= 0
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if k2 j−i ≤ l ≤ k2 j−i + 2 j−i−1 − 1,

〈H2i+k,H2 j+l〉 = −2
i
2 2

j
2

∫
(

2k+1
2i+1 ,

2k+2
2i+1

]
(
1(

2l
2 j+1 ,

2l+1
2 j+1

] − 1(
2l+1
2 j+1 ,

2l+2
2 j+1

]) dm

= −2
i
2 2

j
2

((
2l + 1
2 j+1 −

2l
2 j+1

)
−

(
2l + 1
2 j+1 −

2l + 1
2 j+1

))
= 0

if k2 j−i + 2 j−i−1 ≤ l ≤ k2 j−i + 2 j−i − 1, and

〈H2i+k,H2 j+l〉 = 0

in all other cases. This proves that the Hn are orthogonal to one an-
other.

5.3. First we prove the following claim:
Suppose that f ∈ L1(Ω,F , µ). Then for each ε > 0 there is δ > 0
such that

∫
A
| f |dµ < ε whenever A ∈ F and µ(A) < δ.

Proof Let fn = min(n, | f |) for n = 1, 2, . . . . Since fn is non-decreasing
and fn converges to | f |, µ-a.e., it follows by the monotone conver-
gence theorem that

lim
n→∞

∫
Ω

fndµ =

∫
Ω

| f |dµ.

For any given ε > 0 there is an integer k such that∫
Ω

(| f | − fk)dµ <
ε

2
.

Put δ = ε
2k . Since

∫
A
(| f | − fk)dµ ≤

∫
Ω

(| f | − fk)dµ, it follows that∫
A
| f |dµ =

∫
A
(| f | − fk)dµ +

∫
A

fkdµ <
ε

2
+ kµ(A) < ε

whenever µ(A) < δ. The claim has been proved.
Now we prove the assertion stated in Exercise 5.3. It suffices to

show that || f − fh||2 → 0 as h→ 0, where fh(x) = f (x + h). Take any
ε > 0. By Lemma 5.8, there is a continuous function g defined on
[0, 1] such that || f − g||2 < ε

4 . Let us define an extension g̃ of g to the
interval [a, b] as follows

g̃(x) =


g(0) if x ∈ [a, 0],
g(x) if x ∈ [0, 1],
g(1) if x ∈ [1, b].

So g̃ is continuous on [a, b] and g = 1[0,1]g̃. In the sequel we con-
sider h small enough so that [h, 1 + h] ⊂ [a, b], that is, such that
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|h| < min{|a|, b − 1}. Applying the triangle inequality, we have

|| f − fh||2 ≤ || f − g||2 + ||g − g̃h||2 + ||g̃h − fh||2.

Now, we have to estimate the second and third term of the right hand
side of this inequality. Any continuous function on [0, 1] is uniformly
continuous, so for ε

4 > 0 there is δ1 > 0 such that |g(x)− g̃(x+h)| < ε
4 ,

whenever |h| < δ1 and x ∈ [0, 1]. This implies that ||g − g̃h||2 <
ε
4 .

Further, applying Exercise 1.32 for 1[0,1](x)(g(x + h)− f (x + h))2, we
have

||g̃h − fh||
2
2 =

∫
[0,1]

(g̃(x + h) − f (x + h))2dm(x)

=

∫
R

1[0,1](g̃(x + h) − f (x + h))2dm(x)

=

∫
R

1[h,1+h](y)(g̃(y) − f (y))2dm(y)

=

∫
[h,1+h]

(g̃(y) − f (y))2dm(y) ≤
∫

[−|h|,1+|h|]
(g̃(y) − f (y))2dm(y)

=

∫
[0,1]

(g̃(y) − f (y))2dm(y) +

∫
[−|h|,0]

(g̃(y) − f (y))2dm(y)

+

∫
[1,1+|h|]

(g̃(y) − f (y))2dm(y).

From the claim proved at the outset, given ε2

32 there is δ2 > 0 such
that

∫
[−|h|,0]

(g̃(y)− f (y))2dm(y) and
∫

[1,1+|h|]
(g̃(y)− f (y))2dm(y) are less

then ε2

32 if |h| < δ2. Finally, ||g̃h− fh||
2
2 <

ε2

8 and || f − fh||2 <
(2+
√

2)ε
4 < ε

for |h| < δ = min(δ1, δ2).
5.4. From the obvious inequalities

|x(k)
i − xi| ≤ ||x(k) − x||1 < n||x(k) − x||2

we get the following implications: (2) =⇒ (3) =⇒ (1). So, it suffices
to show that (1) implies (2). Suppose that (1) holds. Then for any
ε > 0 there is an integer K such that for any k ≥ K we have

|x(k)
i − xi| <

ε
√

n
for i = 1, . . . , n.

Hence

||x(k) − x||2 =

√√
n∑

i=1

|x(k)
i − xi|

2 < ε.
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5.5. Because

lim sup
n→∞

1An = 1lim supn→∞ An

and all indicator functions are bounded above by 1Ω, which is in-
tegrable, we can apply the second Fatou lemma (Lemma 1.41 (ii))
with fn = 1An . This gives

P
(
lim sup

n→∞
An

)
=

∫
Ω

1lim supn→∞ An dP =

∫
Ω

lim sup
n→∞

1An dP

≥ lim sup
n→∞

∫
Ω

1An dP = lim sup
n→∞

P(An).

5.6. The ‘if’ claim follows immediately since for ε = 1 we can find K > 0
such that

∫
{|X|≥K}

|X|dP < 1. Then∫
Ω

|X|dP =

∫
{|X|<K}

|X|dP +

∫
{|X|≥K}

|X|dP ≤ K + 1 < ∞.

The opposite implication (‘only if’) is proved as follows: Suppose
that X ∈ L1(P). Then Xn = |X|1{|X|≥n} → 0, P-a.e., with Xn ≤ |X|.
Thus by the dominated convergence theorem

lim
n→∞

∫
{|X|≥n}

|X| dP = lim
n→∞

∫
Ω

Xn dP =

∫
Ω

lim
n→∞

Xn dP = 0.

So for any given ε > 0 there is K > 0 such that∫
{|X|≥K}

|X|dP < ε.

5.7. If X1, X2, . . . is a sequence of random variable such that |Xn| ≤ Y ,
P-a.e. for all n, then the sequence is uniformly integrable.

This is a simple consequence of Exercise 5.6. Since Y is inte-
grable, for any given ε > 0 there is a K > 0 such that

∫
{|Y |≥K}

|Y | < ε.
Because {|Xn| ≥ K} ⊂ {|Y | ≥ K} for n = 1, 2, . . . , we obtain∫

{|Xn |≥K}
|Xn|dP ≤

∫
{|Y |≥K}

|Y |dP < ε.

5.8. We have the following inequalities for any x ∈ R and ε > 0:

P (Yn ≤ x − ε) − P (|Xn − Yn| > ε) ≤ P (Xn ≤ x)

≤ P (Yn ≤ x + ε) + P (|Xn − Yn| > ε) .

From Exercise 2.1 we know that there are at most countably many
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ε > 0 such that FY has a discontinuity at x + ε or x− ε. For any other
ε > 0 we get

FY (x − ε) ≤ lim inf
n→∞

FXn (x) ≤ lim sup
n→∞

FXn (x) ≤ FY (x + ε)

by letting n→ ∞. Because x can be approached from the left by x−ε
and from the right by x + ε such that ε > 0 does not belong to that
countable set, if x is a continuity point of FY , then we obtain

lim
n→∞

FXn (x) = FY(x),

showing that Xn =⇒ Y .
5.9. Observe that for any x ∈ R

F−Xn (x) = P (−Xn ≤ x) ≥ P (−Xn < x) = 1−P(Xn ≤ −x) = 1−FXn (−x)

Suppose that x is a continuity point of F−X . It follows that P{−X =

x} = P{X = −x} = 0, which means that −x is a continuity point
of FX , and therefore

lim inf
n→∞

F−Xn (x) ≥ 1 − FX(−x) = F−X(x).

On the other hand, for any x ∈ R and ε > 0

F−Xn (x) = P (−Xn ≤ x) ≤ P (−Xn < x + ε)

= 1 − P(Xn ≤ −x − ε) = 1 − FXn (−x − ε).

From Exercise 2.1 we know that the set C consisting of all ε > 0
such that F−X has a discontinuity at x + ε (equivalently, FX has a
discontinuity at −x− ε) is at most countable. For any ε > 0 such that
ε < C we therefore have

lim sup
n→∞

F−Xn (x) ≤ 1 − FX(−x − ε) = F−X(x + ε).

Since ε > 0 such that ε < C can be arbitrarily small, from the right-
continuity of the distribution function F−X we get

lim sup
n→∞

F−Xn (x) ≤ F−X(x).

We have shown that

lim
n→∞

F−Xn (x) = F−X(x)

whenever x is a continuity point of F−X , that is, −Xn =⇒ −X.
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5.10. For any x ∈ R and ε > 0

{Xn + c ≤ x − ε} ⊂ {Xn + Yn ≤ x} ∪ {|Yn − c| > ε} ,

{Xn + Yn ≤ x} ⊂ {Xn + c ≤ x + ε} ∪ {|Yn − c| > ε} .

It follows that

P (Xn + c ≤ x − ε) ≤ P (Xn + Yn ≤ x) + P (|Yn − c| > ε) ,

P (Xn + Yn ≤ x) ≤ P (Xn + c ≤ x + ε) + P (|Yn − c| > ε) .

From Exercise 2.1 we know that the set C consisting of all ε > 0
such that FX has a discontinuity at x − c + ε or x + c − ε is at most
countable. For any ε > 0 such that ε < C we get

FX (x − c − ε) ≤ lim inf
n→∞

FXn+Yn (x) ≤ lim sup
n→∞

FXn+Yn (x) ≤ FX (x − c + ε)

since P (|Yn − c| > ε)→ 0 as n→ ∞. Observe that FX+c(x) = FX(x−
c) for any x ∈ R. Hence, if x is a continuity point of FX+c, then x − c
is a continuity point of FX , and because x−c can be approached from
the left by x−c−ε and from the right by x−c+ε such that 0 < ε < C,
we obtain

lim
n→∞

FXn+Yn (x) = FX(x − c) = FX+c(x)

when x is a continuity point of FX+c, which proves that Xn + Yn =⇒

X + c.
5.11. We show that limT→∞

∫ T

0
sin x

x dx = π
2 . Consider the function f :

(0,T ) × (0,∞) → R given f (x, y) = e−xy sin x. First we show that
f ∈ L1((0,T ] × (0,∞),B((0,T ] × (0,∞)),m2). We calculate the iter-
ated integral∫ T

0

(∫ ∞

0
|e−xy sin x|dy

)
dx =

∫ T

0

(
| sin x|

1
x

)
dx ≤ T < ∞

since
∫ ∞

0
e−xydy = 1

x . Then, reasoning as in the proof of Fubini’s
theorem (Theorem 3.18), we obtain that∫ ∫

(0,T )×(0,∞)
|e−xy sin x|dxdy =

∫ T

0

(∫ ∞

0
|e−xy sin x|dy

)
dx ≤ T.

We can apply Fubini’s theorem to have∫ T

0

sin x
x

dx =

∫ T

0
sin x

(∫ ∞

0
e−xydy

)
dx

=

∫ T

0

(∫ ∞

0
e−xy sin xdy

)
dx =

∫ ∞

0

(∫ T

0
e−xy sin xdx

)
dy.
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Differentiating both sides with respect to T , we can verify that∫ T

0
e−xy sin xdx =

1
1 + y2 (1 − eTy(y sin T + cos T )).

Then∫ T

0

sin x
x

dx =

∫ ∞

0

1
1 + y2 dy −

∫ ∞

0

e−Ty

1 + y2 (y sin T + cos T )dy.

Since
∫ ∞

0
dy

1+y2 = arctan y|∞0 = π
2 and∣∣∣∣∣∣

∫ ∞

0

e−Ty

1 + y2 (y sin T + cos T )dy

∣∣∣∣∣∣ ≤
∫ ∞

0

e−Ty

1 + y2 |y sin T + cos T |dy

≤

∫ ∞

0

1 + y
1 + y2 e−Tydy =

∫ 1

0

1 + y
1 + y2 e−Tydy +

∫ ∞

1

1 + y
1 + y2 e−Tydy

≤ max
y∈[0,1]

(
1 + y
1 + y2

) (
1
T

(1 − e−T )
)

+
1
T
→ 0,

if T → ∞, we have

lim
T→∞

∫ T

0

sin x
x

dx =
π

2
.

5.12. Let a ≤ b be continuity points of FX . With

fX =
1

2π

∫
R

e−itxφX(t) dm(t),

we have∫ b

a
fX(x) dx =

∫
[a,b]

fX(x) dm(x)

=
1

2π

∫
R

(∫
[a,b]

e−itx dm(x)
)
φX(t) dm(t)

= lim
T→∞

1
2π

∫
[−T,T ]

(∫ b

a
e−itx dx

)
φX(t) dm(t)

= lim
T→∞

1
2π

∫
[−T,T ]

e−ita − e−itb

it
φX(t) dm(t)

= FX(b) − FX(a)

by Fubini’s theorem and the inversion formula. In fact
∫ b

a
fX(x) dx =

FX(b) − FX(a) holds for all a, b ∈ R since FX is right-continuous
and the integral on the left is continuous with respect to a and b. It
follows that fX is indeed the density of X.
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5.13. Suppose that X is an integer-valued random variable. Then eitX is a
discrete random variable with values eitn for n ∈ Z. Put pn = P(X =

n). By the definition of φX(t), we get

φX(t) = E(eitX) =
∑
n∈Z

eitn pn.

Fix k ∈ Z. Then∫ 2π

0
e−itkφX(t)dt =

∫ 2π

0

∑
n∈Z

eit(n−k) pndt.

In order to calculate the last integral we show that∫ 2π

0

∑
n∈Z

eit(n−k) pndt =
∑
n∈Z

pn

∫ 2π

0
eit(n−k)dt.

Put

s =

∫ 2π

0

∑
n∈Z

eit(n−k) pndt

sm =

m∑
n=−m

pn

∫ 2π

0
eit(n−k)dt =

∫ 2π

0

m∑
n=−m

eit(n−k) pndt.

It suffices to verify that sm → s as m→ ∞. The follows because

|sm − s| =

∣∣∣∣∣∣∣
∫ 2π

0

∑
|n|>m

eit(n−k) pndt

∣∣∣∣∣∣∣ ≤
∫ 2π

0

∣∣∣∣∣∣∣∑
|n|>m

eit(n−k) pn

∣∣∣∣∣∣∣ dt

≤

∫ 2π

0

∑
|n|>m

∣∣∣eit(n−k)
∣∣∣ pndt = 2π

∑
|n|>m

pn → 0

as n→ ∞ since
∑

n∈Z pn = 1.
Finally, we have∫ 2π

0
e−itkφX(t)dt =

∑
n∈Z

pn

∫ 2π

0
eit(n−k)dt = 2πpk

since ∫ 2π

0
eit(n−k)dt =

∫ 2π

0
cos(n − k)tdt + i

∫ 2π

0
sin(n − k)tdt

=

2π if n = k
0 if n , k.
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It follows that

P(X = k) =
1

2π

∫ 2π

0
e−itkφX(t)dt.

5.14. Let S be the number of ‘heads’ obtained in n = 10 000 tosses of a
fair coin. Then S =

∑10 000
i=1 Xi, where Xi, i = 1, . . . , 10 000 are i.i.d.

random variables with P(Xi = 1) = P(Xi = 0) = 1
2 . Furthermore,

Var(S ) =
√

np(1 − p) =
√

10 000/4 = 50. By Corollary 5.53, we
have

P(4900 < S < 5100) = P(|S − 500| < 100) = P
(
|S − 500|

50
<

1
2

)
≈ φ(

1
2

) − φ(−
1
2

) = 2φ(
1
2

) − 1,

where φ(x) = 1
√

2π

∫ x

−∞
e−

t2
2 dt. It follows that P(4900 < S < 5100) ≈

2 · 0.6915 − 1 = 0.383.


