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Figure 3 | Superfluid behaviour across the BKT transition. a, The critical
velocities vc obtained from the curves as in Fig. 2 plotted versus the single
parameter µloc/kB¯T, which is the relevant quantity due to the scale
invariance of the weakly-interacting 2D Bose gas. Our data show a
threshold between critical velocities compatible with zero and clearly
non-zero critical velocities. It is located at µloc/kB¯T⇡ 0.24 (dashed line),
somewhat above the prediction (µloc/kBT)c = 0.15 for the BKT transition in
an infinite uniform system16 (the grey shaded area indicates the normal
state by this prediction). The inset to a shows the critical velocity plotted
versus the stirring radius r. Owing to the different atom numbers and
temperatures of the clouds, we can find superfluid or normal behaviour for
the same radius. b, The heating coefficient  as a function of µloc/kB¯T for
the normal data (red circles) and the superfluid data (blue circles). The red
solid line shows a fit of  linear in the normal density, as expected from a
single-particle model. The blue dashed line shows an empirical fit quadratic
in the superfluid density. The calculation for the densities assumes
¯

T= 90 nK and the densities are averaged over the size of the stirring beam.
The x error bars indicate the region of µloc/kB¯T that is traced by the stirring
beam due to its size (using the 1/

p
e width of the beam) and due to the

‘background heating’. The y error bars are fitting errors.

attributed to the non-zero width of the stirring beam. The range
of µloc/kB ¯T corresponding to the extent of this beam is indicated
by the horizontal error bars in Fig. 3a. Note that the finite size
of our trapped atomic clouds might also shift the BKT transition,
but the effect is expected to be small (a few per cent) and in
the opposite direction16.

We limit the presented stirring radii to r � 10 µm such that the
stirring frequencies!=v/r for the relevant velocities v⇠vc are well
below !

r

. Indeed, smaller radii correspond to a larger centripetal
acceleration. This could lead to additional heating via the phonon
analog of synchrotron radiation, as observed in the formally similar
context of capillary waves generated by a rotating object18.

For a homogeneous system, the value of the critical velocity
is limited by two dissipation mechanisms, the excitation of
phonons or vortices. For a point-like obstacle15, phonon excitation
dominates and vc is equal to the speed of sound, given in
the zero-temperature limit by cs = ¯h

p
g̃ n/m (⇡1.6mm s�1 for

n = 50 atoms µm�2) (this situation is described by the celebrated
Landau criterion7). When the obstacle size w0 increases and

becomes comparable to ⇠ , dissipation via the nucleation of vortex–
antivortex pairs (vortex rings in 3D) becomes significant19–21.
The corresponding vc is then notably reduced with respect to
cs. In the limit of very large obstacles (w0 � ⇠), an analytical
analysis of the superfluid flow stability yields vc ⇠ ¯h/mw0 ⌧ cs
(see refs 22,23). With an obstacle size w0 ⇠> ⇠ , our experimental
situation is intermediate between these two asymptotic regimes.
For a non-homogeneous system such as ours with the stirring
obstacle close to the border of the expected superfluid regime,
one can also excite surface modes24,25, which constitute a further
dissipation mechanism.

Our measured critical velocities are in the range 0.5–1.0mm s�1,
that is, vc/cs = 0.3–0.6. By contrast, previous experiments in 3D
clouds found lower fractions, vc/cs ⇠ 0.1 (see ref. 9). The difference
may be due to the larger size of the obstacles that were used,
and to the average along the axis of the stirring beam of the
density distribution in the 3D gas26. The dominant dissipation
mechanism could be revealed, for example, by directly observing the
created vortex pairs as in ref. 12 or interferometrically detecting the
Cerenkov-like wave pattern for v > cs as in experiments with a non-
equilibrium2D superfluid of exciton–polariton quasi-particles27.

Figure 3b shows the fitted heating coefficients  for the normal
(red circles) and superfluid data (blue circles). In the normal region,
we expect the heating to scale linearly with the normal density
nno (see ref. 10). Using the prediction of ref. 16 for n̄no (averaged
over the size of the stirring beam) we fit  = a1 · n̄no and obtain
a1 ⇡ 3⇥10�6 nK s. This value is in reasonable agreement with the
prediction of a model10 of a single particle with a thermal velocity
distribution of mean v̄ =p

⇡kBT/2m colliding with a moving hard
wall of width L= w0, yielding a1 = 16mLv̄/⇡NkB ⇠ 6⇥ 10�6 nK s
(for N = 65,000 and T = 90 nK). In particular our data nicely
reproduce the maximum of n̄no around the expected superfluid
transition point. In the superfluid case and v > vc, we empirically
fit a quadratic scaling of the heating with density  = a2 ·n2SF and
find a2 = 8⇥ 10�9 nK s µm2. In principle, one could develop a
more refined model to describe the superfluid region, by taking
into account the coexistence of the normal and superfluid states
via the sum of two heating terms. However, within the accuracy
of our data, we did not find any evidence for the need of such a
more refined description.

We have presented a direct proof of the superfluid character of a
trapped 2DBose gas. An interesting extension of our work would be
the study of superfluidity from the complementary point of view of
persistent currents, by adapting to 2D the pioneering experiments
performed in 3D toroidal traps28–30.
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Superfluid behaviour of a two-dimensional
Bose gas
Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah†, Julian Léonard†, Jérôme Beugnon,
Christof Weitenberg* and Jean Dalibard

Owing to thermal fluctuations, two-dimensional (2D) systems
cannot undergo a conventional phase transition associated
with the breaking of a continuous symmetry1. Nevertheless
they may exhibit a phase transition to a state with quasi-long-
range order via the Berezinskii–Kosterlitz–Thouless (BKT)
mechanism2. A paradigm example is the 2D Bose fluid, such
as a liquid helium film3, which cannot condense at non-zero
temperature although it becomes superfluid above a critical
phase space density. The quasi-long-range coherence and
the microscopic nature of the BKT transition were recently
explored with ultracold atomic gases4–6. However, a direct
observation of superfluidity in terms of frictionless flow is still
missing for these systems. Here we probe the superfluidity
of a 2D trapped Bose gas using a moving obstacle formed by
a micrometre-sized laser beam. We find a dramatic variation
of the response of the fluid, depending on its degree of
degeneracy at the obstacle location.

‘Flow without friction’ is a hallmark of superfluidity7. It
corresponds to a metastable state in which the fluid has a non-zero
relative velocity v with respect to an external body such as the wall of
the container or an impurity. Thismetastable state is separated from
the equilibrium state of the system (v = 0) by a large energy barrier,
so that the flow can persist for a macroscopic time. The height of
the barrier decreases as v increases, and eventually passes below a
threshold (proportional to the thermal energy) for a critical velocity
vc. The microscopic mechanism limiting the barrier height depends
on the nature of the defect and is associated with the creation of
phonons and/or vortices7. Whereas the quantitative comparison
between experiments and theory is complicated for liquid 4He, cold
atomic gases in the weakly interacting regime are well suited for
precise tests of many-body physics. In particular, superfluidity was
observed in 3D atomic gases by stirring a laser beam or an optical
lattice through bosonic8–12 or fermionic13 fluids and by observing
the resulting heating or excitations. Here we transpose this search
for dissipation-less motion to a disc-shaped, non-homogeneous 2D
Bose gas. We use a small obstacle to locally perturb the system.
The obstacle moves at constant velocity on a circle centred on the
cloud, allowing us to probe the gas at a fixed density. We repeat the
experiment for various atom numbers, temperatures and stirring
radii and identify a critical point for superfluid behaviour.

Our experiments are performed with 2D Bose gases of
N = 35,000–95,000 87Rb atoms confined in the vertical direction
by the harmonic potential W (z) and in the horizontal plane
by the radially symmetric harmonic potential V (r) (see ref. 14).
The trap frequencies are !

r

/2⇡ = 25.0(5)Hz in the horizontal
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Figure 1 | Stirring a 2D Bose gas. a, A trapped 2D gas of 87Rb atoms is
perturbed by a focussed laser beam, which moves at constant velocity on a
circle centred on the cloud. The stirring beam has a frequency greater than
the 87Rb resonance frequency (‘blue detuning’ of ⇡2 nm) and thus creates
a repulsive potential which causes a dip in the density profile. b, The stirring
beam is focussed onto the 2D cloud via a microscope objective of
numerical aperture 0.45, which is also used for imaging. We overlap the
two beam paths with a polarizing beam splitter (PBS) cube. The position of
the stirring beam is controlled by a two-axis piezo-driven mirror. c, In situ
false-colour image of the 2D cloud in the presence of the laser beam
(average over six images). From the dip in the density we deduce the waist
of the laser beam as w0 = 2.0(5) µm. In this image, the intensity of the
beam is chosen three times higher than in the stirring experiment to make
the hole clearly visible even in the centre of the cloud. We use similar
images, but with the stirring beam switched off, to determine the
temperature T and the chemical potential µ from a fit of the Hartree–Fock
prediction to the wings of the cloud14.

plane and !
z

/2⇡ = 1.4(1) kHz in the vertical direction. We use
gases with temperature T and central chemical potential µ in
the range 65–120 nK and kB ⇥ (35–60) nK, respectively, where kB
is the Boltzmann constant. The interaction energy per particle
is given by Uint = ( ¯h2g̃/m)n, where n is the 2D spatial density
(typically 100 atoms µm�2 in the centre), m the atomic mass, g̃
the dimensionless interaction strength and ¯h is Planck’s constant
divided by 2⇡ . Here g̃ =

p
8⇡a/l

z

= 0.093, where a = 5.3 nm
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