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A Student’s Guide to the Navier-Stokes
Equations: A Supplement on the Use of the Del
Operator in Non-Cartesian Coordinates

The book used mostly used Cartesian coordinates when discussing the equa-
tions. In doing so, we performed the various operations using a “Cartesian-
friendly” approach. Such an approach is fine to get your feet wet but the vector
operations get somewhat more involved when non-Cartesian coordinates are
used. This document serves as an introduction for applying some of the del
operations we learned about in the book to a non-Cartesian coordinate system.
Seeing these operations in detail may help you later on as you continue in your
studies of fluid mechanics. One reason for this is that many times the fluid me-
chanics equations are written in what is called tensor notation. Tensor notation
is a nice, succinct way to deal with the operations using the del operation (as
well as other vector and tensor operations) without having to perform lines and
lines of computations.

To start understanding how the operations can sometimes be different for
non-Cartesian coordinate systems, it is best to first consider an example using
Cartesian coordinates. For example, when taking the divergence of two vectors
in Cartesian coordinates, we simply treated the operation in some ways like
matrix multiplication. Thus, taking the divergence of the velocity vector, V=
ul + vJj + wk, in Cartesian coordinates was simply the following operation:
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You would perform this operation much like you would matrix multiplica-
tion except that you would be applying the derivatives of the row vector to the
column vector as opposed to multiplying. This approach worked well in Carte-
sian coordinates. However, the correct way to perform the divergence opera-



2 Del Operations

tion is to “foil” through the derivatives to all of the velocity terms. Therefore,
written in full, the divergence operation should be written as:
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Notice how there are nine terms (as opposed to three). The derivatives of
the individual velocity components multiplied by their base vectors need to be
taken. We can do that for the first three terms here (utilizing the product rule
from calculus):
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All we are doing here is utilizing the product rule with an added wrinkle, the
dot product between base vectors (i.e. i, j, and k) is taken in each term. Since a
Cartesian coordinate system is an orthogonal coordinate system (i.e. all of the
base vectors are perpendicular to each other), then the base vectors dotted with
each other are zero if we are dotting two different base vectors and one if the
base vectors being dotted are the same. We can continue with this trend for the
next six terms in the divergence:
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We can add Equations 1.1 and 1.2 to get the divergence in Cartesian coordi-
nates:
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That is a lot of computations just to get a result we already knew. However,
for non-Cartesian coordinate systems, this more extensive operation is usually
neeeded. We can see this by performing the divergence in cylindrical coordi-
nates using the del operator. In cylindrical coordinates, the velocity vector is
defined as:

V=V ++Veey+ Ve, (1.3)

The del in cylindrical coordinates is defined as the following:
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To take the the divergence of Vin cylindrical coordinates, you should avoid
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taking the “matrix algebra” approach and instead write it out with the base
vectors included, i.e.:
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Now, the key thing here is that the derivatives of the base vectors are not
going to be zero in all cases, unlike Cartesian coordinates. In particular, we
have the following relationships:

All other derivatives of the base vectors are zero. With this information, the
nine terms can be written out in full (using the product rule of calculus):
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We can plug all of these values into our divergence calculation to get:
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This was a considerable amount of calculations for the cylindrical coordi-
nates. However, this is what is necessary in order to fully calculate the diver-
gence using the del operator.

We can do a similar operation for the advective term in cylindrical coordi-
nates. For starters, the advective operator is:
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Foiling through for this case is relatively straightforward since all of the dot
products are zero except when the base vectors are the same. This is always
the case for orthogonal coordinate systems (such as a cylindrical coordinate
system). Applying Equation 1.6 to the velocity vector gives us:
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We can apply the advective term operator to each velocity coordinate term
separately (again, taking advantage of the product rule):
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Notice that two of the terms “switch” to another direction, namely the Vg% V.éy

from the V, advective term and the —1

r

Vgé, from the Vj advective term. Adding

up Equations 1.7, 1.8, and 1.9 leads to the following for the material derivative
in cylindrical coordinates:
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The first row of Equation 1 is the r—direction, the second row is the 8-
direction, and the third row is the z—direction.

coordinates:

The same procedure can be done for the Laplacian operator in cylindrical
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We can go term by term now with the reminder that the only base vectors
affected by the derivatives are the 6-derivatives of &y and é,:
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We can add up the terms to get the Laplacian in cylindrical coordinates:
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(1.11)

Sometimes the r— derivatives are “grouped” into a single term to get an
alternative for the Laplacian in cylindrical coordinates:
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Going over these mathematical manipulations for some sample operations
(divergence, material derivative, and the Laplacian) in cylindrical coordinates
hopefully gives you a taste of how to use to del operator in its various forms
for non-Cartesian coordinate systems. The examples used in this supplemental
document used cylindrical coordinates, which is still an orthogonal coordinate
system. Even greater computations are required for non-orthogonal coordinate
systems. Luckily, much of these computations can be encapsulated and written
more succinctly with the help of tensor notation. A great book on tensors can
be found in the collection of Cambridge’s students guides, namely: A Student’s
Guide to Vectors and Tensors by Daniel Fleisch.

In general, however, when using cylindrical or spherical coordinates, you
normally can just “look” up the operations involving the del symbol.

The governing equations are given below in cylindrical coordinate systems.

Continuity (conservation form):

@ + 6(,()‘/,) +er + la(PVH) + a(pvz) =0
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Compressible Navier-Stokes (non-conservation form):
r—coordinate:
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6-coordinate:
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Energy Equation (non-conservation form):
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