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Coloured figures for Chapter 2

Fig. 2.2 The two-dimensional surface defined by Equation (2.12), when evaluated over the
ball in R3 of radius 3, centred at the origin. The inner box is the unit cube [0, 1]3 .

(a) (b)

Fig. 2.3 Intersection of the surface defined by Equation (2.12) with the unit cube [0, 1]3 ,
different views obtained using surf in (a) and MATLAB in (b).
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370 Coloured figures for Chapter 2

Fig. 2.4 Projection of the non-identifiable spaces corresponding to the first and second
and third MLE from Table 2.2 (a) into the three-dimensional unit cube where λ1 , α11 and
β21 take values.

Fig. 2.5 Projection of the non-identifiable spaces the first MLE in Table 2.2 (a), the first
three local maxima and the last local maxima in Table 2.2 (b) into the three-dimensional
unit cube where λ1 , α11 and β11 take values. In this coordinate system, the projection
of non-identifiable subspaces for the first three local maxima in Table 2.2 (b) results in
the same surface; in order to obtain distinct surfaces, it would be necessary to change the
coordinates over which the projections are made.
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Fig. 2.6 The plot of the profile likelihood as a function of α11 and α21 when α31 is fixed
to 0.2. There are seven peaks: the three black points are the MLEs and the four grey
diamonds are the other local maxima.
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Fig. 2.7 The contour plot of the profile likelihood as a function of α11 and α21 when α31
is fixed. There are seven peaks: the three black points are the MLEs and the four grey
points are the other local maxima.
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Fig. 2.8 The contour plot of the profile likelihood as a function of α11 and α21 when α31
is fixed for the data (2.8) multiplied by 10 000. As before, there are seven peaks: three
global maxima and four identical local maxima.
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22.1 Algebraic Geometry

22.1.1 Polynomial Ring, Ideal and Variety

In this section, we review some basic concepts and definitions in algebraic geometry
and we draw connections between algebraic geometry and statistics. We begin with
some concepts in abstract algebra. In mathematics, a ring is an algebraic structure
in which addition and multiplication are defined and have some properties.

Definition 22.1 (Ring) A ring is a set R equipped with two binary operations
+ : R×R → R and · : R×R → R, called addition and multiplication, such that:

• (R,+) is an abelian group with identity element 0, so that ∀a, b, c ∈ R, the
following axiom hold:

- a + b ∈ R
- (a + b) + c = a + (b + c)
- 0 + a = a + 0 = a

- a + b = b + a

- ∃ − a ∈ R such that a + (−a) = (−a) + a = 0

• (R, ·) is a monoid with identity element 1, so that ∀a, b, c ∈ R, the following
axioms hold:

- a · b ∈ R
- (a · b) · c = a · (b · c)
- 1 · a = a · 1 = a

• Multiplication distributes over addition:

- a · (b + c) = (a · b) + (a · c)
- (a + b) · c = (a · c) + (b · c)

The set of integer numbers Z, the set of real numbers R, and the set of rational
numbers Q all are rings with the common addition and multiplication defined for
numbers. Algebraic geometry is interested in polymonials and hence the polymonial
rings. A polynomial ring is the set of polynomials in one or more unknowns with
coefficients in a ring, for example, the set of polynomials with one variable in real
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numbers R[x] or the set of polynomials with two variables in rational numbers
Q[x, y].

An ideal is a special subset of a ring. The ideal concept generalizes in an appro-
priate way some important properties of integers like “even number” or “multiple
of 3”.

Definition 22.2 (Ideal, generating set) An ideal I is a subset of a ring R
satisfying:

• f + g ∈ I if f ∈ I and g ∈ I, and
• pf ∈ I if f ∈ I and p ∈ R is an arbitrary element.

In other words, an ideal is a subset of a ring which is closed under addition and
multiplication by elements of the ring. Let I = 〈A〉 denote the ideal I generated by
the set A, this means any f ∈ I is of the form f = a1r1 + · · · + anrn where each
ai ∈ A and ri ∈ R. If A is finite then I is a finitely generated ideal and if A is a
singleton then I is called a principal ideal.

From now on, we only talk about the polynomial rings and ideals in the poly-
nomial rings. For an ideal, we can consider the generating set of the ideal and a
particular kind of generating set is called Gröbner basis. Roughly speaking, a poly-
nomial f is in the ideal if and only if the reminder of f with respect to the Gröbner
basis is 0. But here, the division algorithm requires a certain type of ordering on the
monomials. So Gröbner basis is stated relative to some monomial order in the ring
and different orders will result in different bases. Later, we will give some examples
of the Gröbner basis.

The following terms and notation are present in the literature of Gröbner basis
and will be useful later on.

Definition 22.3 (degree, leading term, leading coefficient, power product)

A power product is a product of indeterminants
{

xβ1
1 · · ·xβn

n : βi ∈ N, 1 ≤ i ≤ n
}
.

The degree of a term of polynomial f is the sum of exponents of the term’s power
product. The degree of a polynomial f , denoted deg(f), is the greatest degree of
terms in f . The leading term of f , denoted lt(f), is the term with the greatest
degree. The leading coefficient of f is the coefficient of the leading term in f while
the power product of the leading term is the leading power product, denoted lp(f).

But sometimes there are many terms in the polynomial which all have the greatest
degree, therefore to make the leading term well-defined, we need a well-defined term
order. Below is one kind of term ordering.

Definition 22.4 (Degree Reverse Lexicographic Ordering) Let x > y > z

be a lex ordering and uα = xα1 yα2 zα3 . Then uα < uβ if and only if one of the
following is true:

• α1 + α2 + α3 < β1 + β2 + β3

• α1 + α2 + α3 = β1 + β2 + β3 and the first coordinates αi and βi from the
right which are different satisfy αi > βi.
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For example, consider the polynomial f = x3z − 2x2y2 + 5y2z2 − 7yz. Then the
degree reverse lexicographic ordering produces x2y2 > x3z > y2z2 > yz. So the
leading term of f is lt(f) = −2x2y2 and the leading power product is lp(f) = x2y2 .
Now we can introduce the definition of Gröbner basis.

Definition 22.5 (Gröbner basis) A set of polynomials G contained in an ideal I
is called a Gröbner basis for I if the leading term of any polynomial in I is divisible
by some polynomial in G.

Equivalent definitions for Gröbner basis can be given according to the below
theorem.

Theorem 22.1 Let I be an ideal and G be a set contained in I. Then the following
statements are equivalent:

(a) G is a Gröbner basis of I.
(b) The ideal given by the leading terms of polynomials in I is itself generated

by the leading terms of G.
(c) The reminder of the division of any polynomial in the ideal I by G is 0.
(d) The reminder of the division of any polynomial in the ring in which the ideal

I is defined by G is unique.

Now that we can obtain a Gröbner basis, we would like to obtain a simple and
probably unique basis. The concept of minimal Gröbner basis ensures the simplicity
of the basis in some sense.

Definition 22.6 (Minimal Gröbner basis) A Gröbner basis G is minimal if for
all g ∈ G, the leading coefficient of g is 1 and for all g1 �= g2 ∈ G, the leading power
product of g1 does not divide the leading power product of g2 .

A minimal Gröbner basis has the least number of polynomials among the Gröbner
bases. But a minimal Gröbner basis is not unique. For example if our basis is
{y2 +yx+x2 , y +x, y, x2 , x} for the ideal {y2 +yx+x2 , y +x, y} with the lex y > x

term order then both {y, x} and {y + x, x} are minimal Gröbner bases. To obtain
a unique Gröbner basis, we need to put further restrictions on the basis.

Definition 22.7 (Reduced Gröbner basis) A Gröbner basis is reduced if for g ∈
G the leading coefficient of g is 1 and g is reduced with respect to other polynomials
in G.

By the definition, in our previous example {y, x} is a reduced Gröbner basis. Ev-
ery non-zero ideal I has a unique reduced Gröbner basis with respect to a fixed term
order. In algebraic geometry, Buchberger’s algorithm is the most commonly used
algorithm computing the Gröbner bases and it can be viewed as a generalization
of the Euclidean algorithm for univariate Greatest Common Divisor computation
and of Gaussian elimination for linear systems. The basic version of Buchberger’s
algorithm does not guarantee the resulting basis to be minimal and reduced, but
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there are many variants of the basic algorithm to produce a minimal or reduced
basis.

Now let’s talk about varieties. A variety is indeed a hyper-surface or a manifold
in the enveloping space where it is defined. It is essentially a finite or infinite set
of points where a polynomial in one or more variables attains, or a set of such
polynomials all attain, a value of zero. The ideal arising from a variety is just
the set of all polynomials attaining zero on the variety. For example, the surface of
independence for the 2×2 table is a variety, and the ideal of this variety is generated
by the set {p11p22 − p12p21} (Gröbner basis). As a geometric object, we can consider
the dimension of a variety. The dimension of a variety and the dimension of its ideal
is the same thing, as the ideal dimension is the dimension of the intersection of its
projective topological closure with the infinite hyperplane. As we will show later the
way we compute the dimension of a variety is by computing the dimension of the
ideal arising from it. The dimension of a variety may be less than the dimension
of its enveloping space. Again, take the surface of independence as an example.
The dimension of this variety is 2 while the dimension of the enveloping space, the
probability simplex, is 3.

Definition 22.8 (Variety) A variety is the zero set of systems of polynomial
equations in several unknowns.

Definition 22.9 (Ideal of variety) The ideal of an variety is the set of polyno-
mials vanishing on the variety.

Algebraic geometry studies polynomials and varieties. And the models we are
working on, the traditional log-linear models and the latent class models, are all
stated with polynomials! That’s why concepts in statistics and concepts in algebraic
geometry connects with each other. For example, in (Pachter and Sturmfels 2005),
drawed the connections between some basic concepts of statistics and algebraic
geometry, and we summarized them in table 22.1.

Statistics Algebraic Geometry
independence = Segre variety

log-linear model = toric variety
curved exponential family = manifold

mixture model = joint of varieties
MAP estimation = tropicalization

. . . . . . = . . . . . .

Table 22.1 A glimpse of the statistics - algeobraic geometry dictionary.

Algebraic geometry views statistical models as varities, for example, the model
of independence is related to the surface of independence. And here we like to
refer to another figure in (Pachter and Sturmfels 2005), which we show here in
Figure 22.1, to illustrate the connection between models and varieties. The model
of interest here corresponds to the polynomial mapping f and the image of f which is
a variety in the probability simplex. The observed data is a point in the probability
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Fig. 22.1 The geometry of maximum likelihood estimation.

simplex. Thus, maximum likelihood estimation is to find a point p̂ in the image
of the mapping f, which maps back to θ̂ in the parameter space, closest to the
observed data point.

In Table 22.1, we can see that specific models are corresonded to specific varieties.
Here we want to talk more about the Segre variety and the secant variety because
they are related to the log-linear models and the latent class models.

22.1.2 Segre Variety and Secant Variety

Let’s begin by setting up the basic notations and concepts. let Rn+1 be a (n + 1)-
dimensional vector space on the real field. Then the n-dimensional projective space
Pn = P(Rn+1) of Rn+1 is a set of elements constructed from Rn+1 such that a
distinct element of the projective space consists of all non-zero vectors which are
equal up to a multiplication by a non-zero scalar. The projective space Pn is iso-
morphic to the n-dimensional simplex.

Definition 22.10 (Segre map) The Segre map σ is a map from the product
space of two projective space Pn × Pm to a higher dimensional projective space
P(n+1)(m+1)−1 , such that for all x = (x0 , x1 , . . . , xn ) ∈ Pn , all y = (y0 , y1 , . . . , ym ) ∈
Pm ,

σ : (x, y) �→


x0

x1
...

xn

(
y0 , y1 , · · · , ym

)

The Segre varieties are the varieties Pn1 × · · · × Pnt embedded in PN , N =∏
(ni +1)−1, by Segre mapping, and the Segre embedding is based on the canonical

multilinear map:

Rn1 × · · · × Rnt → Rn1 ⊗ · · · ⊗ Rnt



378 Y. Zhou

where ⊗ is the tensor product, a.k.a. outer product. Now we denote the enveloping
space P(Rn1 ⊗· · ·⊗Rnt ) by PN and denote the embedded Segre variety Pn1 ⊗· · ·⊗Pnt

as Xn . Then, with this point of view:

• the Segre variety Xn is the set of all classes of decomposable tensors, i.e. classes
of tensors (i.e. multi-dimensional arrays) in P(Rn1 ⊗ · · · ⊗ Rnt ) of the form
v1 ⊗ · · · ⊗ vt .

• the secant variety, Secr (Xn ), is the closure of the set of classes of those tensors
which can be written as the sum of ≤ r + 1 decomposable tensors.

Now let’s consider the 2-dimensional tensors, which are actually matrices. In
such case, Pn1 is the set of (n1 + 1)-dimensional vectors, Pn2 is the set of (n2 + 1)-
dimensional vectors, and PN is the set of (n1 +1)× (n2 +1) matrices, all under the
projective equivalence. Then, the Segre variety Pn1 ⊗ Pn2 consists of all the rank
1 matrices in PN . And the r-secant variety Secr (Pn1 ⊗ Pn2 ) is the set of matrices
having rank ≤ r + 1 because a matrix has rank ≤ r + 1 if and only if it is a sum of
≤ r + 1 matrices of rank 1.

For example, consider the embedding of P2 ⊗P2 in P8 , where P8 is the projective
space of 3×3 matrices under projective equivalence. The ideal of 2×2 minors of the
generic matrix of size 3×3 defines P2⊗P2 and the determinant of the generic matrix
gives the equation of Sec1(P2 ⊗P2). The Segre variety P2 ⊗P2 corresponds to the no
2nd-effect log-linear model for the 3× 3 table and the secant variety Sec1(P1 ⊗ P2)
corresponds to the 2-level latent class model for the 3 × 3 table.

Back to the former notations, we have Xn = Pn1 ⊗ · · · ⊗ Pnt . What is the
dimension of the secant variety Secr (Xn )? There is an expected dimension by
counting parameters:

min{N, (r + 1)
∏

i

ni + r}

which is only an upper bound of the actual dimension of Secr (Xn ). If the actual
dimension is different from the expected dimension, the secant variety is deficient.
Computing the dimension of secant varieties has been a challenge problem in alge-
braic geometry. We summarize some results in the following theorems.

For the case of two factors, we have a complete answer for the actual dimension
of the secant variety.

Theorem 22.2 (Proposition 2.3 in Catalisano etc.’s (Catalisano et al. 2002)) For
the case of two factors, for all r, 1 ≤ r < min(n1 , n2) the secant varieties Secr (Xn )
all have dimension less than the expected dimension. Moreover, the least integer
for which Secr (Xn ) fills its enveloping space is r = n1 .

When it comes to the case of three factors, the dimension of the secant variety is
still an open problem in general. But for some special varieties, there are beautiful
results. The below two theorems are for n = (n1 , n2 , n3).

Theorem 22.3 (Proposition 2.3 in Catalisano etc.’s (Catalisano et al. 2002)) If n =
(n1 , n2 , n3) and r ≤ min(n1 , n2 , n3), then Secr (Xn ) has the expected dimension.
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As a direct proposition from theorem 22.3, we have a complete answer for 2-level
latent class model for 3 × 3 tables.

Theorem 22.4 When n = (n1 , n2 , n3), the secant line variety for any Segre variety
has the expected dimension.

Remark 22.1 Theorem 22.3 and 22.4 says that 2-level and “small” latent class
models for 3 × 3 tables have the dimension

min{(n1 + 1)(n2 + 1)(n3 + 1) − 1, (r + 1)(n1 + n2 + n3) + r}

Note that the first term is the free dimension of the observed table and the second
term is the dimension of underlining parameter space. And obviously, Theorem 22.4
can be directly applied to our conjecture about 2×2×K models.

For more factors, the dimension of some special varieties can still be derived.

Theorem 22.5 (Proposition 3.7 in (Catalisano et al. 2002)) Let n = (n1 , . . . , nt)
and let t ≥ 3, n1 ≤ n2 ≤ · · · ≤ nt ,[

n1 + n2 + · · · + nt + 1
2

]
≥ max(nt + 1, r + 1)

Then dim Secr (Xn ) = (r + 1)(n1 + n2 + · · · + nt) + r.

Another result concerning about higher secant varieties is from coding theory
when the dimensions of the Segre varieties are equal, that is, n1 = n2 = · · · = nt =
q − 1.

Theorem 22.6 (Example 2.4 in (Catalisano et al. 2002))

(i) Let k be any positive integer, q = 2, t = 2k −1, r = 2t−k . For these numbers
the Segre embedding

Xt = P1 × · · · × P1︸ ︷︷ ︸ → P2t −1

t

we have Secr−1(Xt) = P2t −1 and these secant varieties fit ”exactly” into
their enveloping space.

(ii) We can make families of similar examples for products of P2 , P3 , P4 , P7 ,
P8 , . . ., Pq−1 where q is a prime power. Given such a q, for any integer
k ≥ 1 we take t = (qk − 1)/(q − 1) copies of Pq−1 , which gets embedded in
Pq t −1 . Then for r = qt−k we get

Secr−1(Pq−1 × · · · × Pq−1︸ ︷︷ ︸) = Pq t −1

t-times
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22.2 Symbolic Software of Computational Algebra

Unlike many numerical softwares we use in machine learning, by which we get the
answer for a particular set of values of the variables of interest, symbolic softwares
provide us an algebraic answer for all possible values of the variables. The symbolic
computation can fill up the machine very quickly. So current symbolic softwares
can only deal with limited-scale problems. Here we use some examples to show
some symbolic computations relevant to the problems we have been discussed so
far. We have been using various symbolic softwares for different purposes and here
we will talk about the software Singular because it is the software we need to do
the computations related to our problems in this paper.

22.2.1 Computing the dimension of the image variety

Let’s take the 2 × 2 × 3 table with 2 latent classes as an example, to see how to
compute the dimension of the image variety defined by the polynomial mapping f :

f : ∆1 × ∆1 × ∆1 × ∆2 → ∆11

(at , xit , yjt , zkt) �→ pijk =
∑

t atxityjtzkt

where ∆n is the n-dimensional probability simplex. The first step is to get the
ideal arising from the model that is only defined on the probabilities {pijk}. In
Singluar, we define a polynomial ring r on the unknowns pijk which stand for
cell probabilities and the unknowns at, xit , yjt , zkt which stand for the conditional
probabilities. The ideal I on the ring r is defined by the model equalities (the first
12 polynomials) and sum 1 constraints of the probabilties (the last 7 polynomials).

ring r=0, (a1,x11,x21,y11,y21,z11,z21,z31,a2,x12,x22,
y12,y22,z12,z22,z32,p111,p112,p113,p121,p122,p123,p211,
p212,p213,p221,p222,p223), lp;
ideal I=p111-a1*x11*y11*z11-a2*x12*y12*z12,
p112-a1*x11*y11*z21-a2*x12*y12*z22,
p113-a1*x11*y11*z31-a2*x12*y12*z32,
p121-a1*x11*y21*z11-a2*x12*y22*z12,
p122-a1*x11*y21*z21-a2*x12*y22*z22,
p123-a1*x11*y21*z31-a2*x12*y22*z32,
p211-a1*x21*y11*z11-a2*x22*y12*z12,
p212-a1*x21*y11*z21-a2*x22*y12*z22,
p213-a1*x21*y11*z31-a2*x22*y12*z32,
p221-a1*x21*y21*z11-a2*x22*y22*z12,
p222-a1*x21*y21*z21-a2*x22*y22*z22,
p223-a1*x21*y21*z31-a2*x22*y22*z32,
a1+a2-1,
x11+x21-1,
x12+x22-1,
y11+y21-1,
y12+y22-1,
z11+z21+z31-1,
z12+z22+z32-1;

But the ideal I defined as above is on all the unknowns, including both the cell
probabilities and the conditional probabilities. So the next step is to eliminate the
unknowns at, xit , yjt , zkt and then to get the image variety where pijk lies. To use
the elimination functions in Singular, we need to include the library “ELIM.LIB”.
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LIB "elim.lib";
ideal J=elim1(I, a1*x11*x21*y11*y21*z11*z21*z31*a2*x12*x22
*y12*y22*z12*z22*z32);
J;
===>
J[1]=p121*p212*p223-p121*p213*p222-....;
J[2]=p112*p211*p223+p112*p212*p223-p112*p213*p221-....;
J[3]=p112*p121*p223+p112*p122*p223-p112*p123*p221-....;
J[4]=p112*p121*p213+p112*p121*p223+p112*p122*p213+....;
J[5]=p111+p112+p113+p121+p122+p123+p211+p212+p213+p221+p222+p223-1;

Now we can see the image variety is defined by five polynomials of ideal J . And
the first four polynomials are the determinants in Equation (22.1) and the last
one corresponds to the sum 1 constant. We can also get the five polynomials by
computing Gröbner basis.

∣∣∣∣∣∣
p121 p211 p221

p122 p212 p222

p123 p213 p223

∣∣∣∣∣∣
∣∣∣∣∣∣

p1+1 p211 p221

p1+2 p212 p222

p1+3 p213 p223

∣∣∣∣∣∣
∣∣∣∣∣∣

p+11 p121 p221

p+12 p122 p222

p+13 p123 p223

∣∣∣∣∣∣
∣∣∣∣∣∣

p111 p121 + p211 p221

p112 p122 + p212 p222

p113 p123 + p213 p223

∣∣∣∣∣∣
(22.1)

ideal J=groebner(I);

Using the above command “GROEBNER”, we will get an ideal J defined by
184 polynomials. Among them, the first five polynomials only involve the vari-
able pijk and they are the five polynomials we have got before. When using the
“GROEBNER” command, please be aware that the resulting basis is subject to the
monomial ordering you choose for defining the ring.

To compute the dimension of the ideal, we need to define another ring r1 only
with unknowns pijk and then an ideal (which we also call J) defined by the above
five polynomials. Note that the dimension of the ideal and the size of the Gröbner
basis for the ideal are different things.

ring r1=0, (p111,p112,p113,p121,p122,p123,p211,p212,p213,p221,p222,
p223), lp;
ideal J;
J[1]=p121*p212*p223-p121*p213*p222-....;
J[2]=p112*p211*p223+p112*p212*p223-p112*p213*p221-....;
J[3]=p112*p121*p223+p112*p122*p223-p112*p123*p221-....;
J[4]=p112*p121*p213+p112*p121*p223+p112*p122*p213+....;
J[5]=p111+p112+p113+p121+p122+p123+p211+p212+p213+p221+p222+p223-1;
dim(groebner(J));
===> 7

Table 22.2 lists the effective dimenions of some latent class models which have
been considered so far. (Kocka and Zhang 2002) have showed that the maximal
numerical rank of the Jacobian of polynomial mapping equals the symbolic rank
and the numerical rank reaches the maximal rank almost surely. Therefore, although
it is impossible to compute the symbolic rank of the Jacobian or to compute the
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dimension of the image variety, we can calculate the numerical rank of the Jacobian
at many points to find the possible maximal rank.

Latent class model Effective dimension

dim of table num of dim of max numerical rank
latent class image variety of Jacobi

2 × 2 r = 2 3 3
3 × 3 r = 2 7 7
4 × 5 r = 3 17 17

2 × 2 × 2 r = 2 7 7
2 × 2 × 2 r = 3 7 7
2 × 2 × 2 r = 4 7 7
3 × 3 × 3 r = 2 N/A 13
3 × 3 × 3 r = 3 N/A 20
3 × 3 × 3 r = 4 N/A 25
3 × 3 × 3 r = 5 N/A 26
3 × 3 × 3 r = 6 N/A 26
5 × 2 × 2 r = 3 N/A 17
4 × 2 × 2 r = 3 N/A 14
3 × 3 × 2 r = 5 N/A 17
6 × 3 × 2 r = 5 N/A 34
10 × 3 × 2 r = 5 N/A 54

2 × 2 × 2 × 2 r = 2 N/A 9
2 × 2 × 2 × 2 r = 3 N/A 13
2 × 2 × 2 × 2 r = 4 N/A 15
2 × 2 × 2 × 2 r = 5 N/A 15
2 × 2 × 2 × 2 r = 6 N/A 15

Table 22.2 Effective dimensions of some latent class models. ’N/A’ means it is
computationally infeasible.

22.2.2 Solving Polynomial Equations

Singular can also be used to solve polynomial equations. For example, in the
100 Swiss Franks Problem, we need to solve the optimization problem in Equa-
tion (22.2).

�(p) =
∑
i,j

nij log pij , p ∈ ∆15 , det(p∗
ij ) = 0 all i, j ∈ [4], (22.2)

where p∗
ij is the 3× 3 sub-matrix of p obtained by erasing the ith row and the jth

column. Using Lagrange multipliers method, the objective becomes finding all the
local extrema of the below function H(·)

H(pij , h0 , hij ) =
∑
i,j

nij log pij + h0

∑
i,j

pij − 1

 + hij detp∗
ij (22.3)

Taking the derivative of H(·) with respect to pij , h0 and hij , we get a system of 33
polynomial functions. In Singular, we can define the ideal generated by these 33
polynomials.



Maximum likelihood estimation in latent class models 383

ring r=0, (p11,p21,p31,p41,p12,p22,p32,p42,p13,p23,p33,p43,p14,p24,p34,p44,
h11,h21,h31,h41,h12,h22,h32,h42,h13,h23,h33,h43,h14,h24,h34,h44,h0), lp;
ideal I=4+h0*p11+h23*p11*p32*p44-h23*p11*p34*p42+h24*p11*p32*p43 ...,
2+h0*p21+h13*p21*p32*p44-h13*p21*p34*p42+h14*p21*p32*p43 ...,
2+h0*p31-h13*p31*p22*p44+h13*p31*p24*p42-h14*p31*p22*p43 ...,
2+h0*p41+h13*p41*p22*p34-h13*p41*p24*p32+h14*p41*p22*p33 ...,
2+h0*p12-h23*p31*p12*p44+h23*p41*p12*p34-h24*p31*p12*p43 ...,
4+h0*p22-h13*p22*p31*p44+h13*p41*p22*p34-h14*p22*p31*p43 ...,
2+h0*p32+h13*p32*p21*p44-h13*p41*p24*p32+h14*p32*p21*p43 ...,
2+h0*p42-h13*p42*p21*p34+h13*p42*p31*p24-h14*p42*p21*p33 ...,
2+h0*p13+h24*p42*p31*p13-h24*p41*p13*p32-h21*p32*p13*p44 ...,
2+h0*p23+h14*p42*p31*p23-h14*p41*p23*p32-h11*p32*p23*p44 ...,
4+h0*p33-h14*p42*p21*p33+h14*p41*p22*p33+h11*p22*p33*p44 ...,
2+h0*p43+h14*p32*p21*p43-h14*p22*p31*p43-h11*p22*p34*p43 ...,
2+h0*p14+h23*p31*p14*p42-h23*p41*p14*p32+h21*p32*p14*p43 ...,
2+h0*p24+h13*p42*p31*p24-h13*p41*p24*p32+h11*p32*p24*p43 ...,
2+h0*p34-h13*p42*p21*p34+h13*p41*p22*p34-h11*p22*p34*p43 ...,
4+h0*p44+h13*p32*p21*p44-h13*p22*p31*p44+h11*p22*p33*p44 ...,
p22*p33*p44-p22*p34*p43-p32*p23*p44+p32*p24*p43+p42*p23*p34-p42*p24*p33,
p12*p33*p44-p12*p34*p43-p32*p13*p44+p32*p14*p43+p42*p13*p34-p42*p14*p33,
p12*p23*p44-p12*p24*p43-p22*p13*p44+p22*p14*p43+p42*p13*p24-p42*p14*p23,
p12*p23*p34-p12*p24*p33-p22*p13*p34+p22*p14*p33+p32*p13*p24-p32*p14*p23,
p21*p33*p44-p21*p34*p43-p31*p23*p44+p31*p24*p43+p41*p23*p34-p41*p24*p33,
p11*p33*p44-p11*p34*p43-p31*p13*p44+p31*p14*p43+p41*p13*p34-p41*p14*p33,
p11*p23*p44-p11*p24*p43-p21*p13*p44+p21*p14*p43+p41*p13*p24-p41*p14*p23,
p11*p23*p34-p11*p24*p33-p21*p13*p34+p21*p14*p33+p31*p13*p24-p31*p14*p23,
p21*p32*p44-p21*p34*p42-p31*p22*p44+p31*p24*p42+p41*p22*p34-p41*p24*p32,
p11*p32*p44-p11*p34*p42-p31*p12*p44+p31*p14*p42+p41*p12*p34-p41*p14*p32,
p11*p22*p44-p11*p24*p42-p21*p12*p44+p21*p14*p42+p41*p12*p24-p41*p14*p22,
p11*p22*p34-p11*p24*p32-p21*p12*p34+p21*p14*p32+p31*p12*p24-p31*p14*p22,
p21*p32*p43-p21*p33*p42-p31*p22*p43+p31*p23*p42+p41*p22*p33-p41*p23*p32,
p11*p32*p43-p11*p33*p42-p31*p12*p43+p31*p13*p42+p41*p12*p33-p41*p13*p32,
p11*p22*p43-p11*p23*p42-p21*p12*p43+p21*p13*p42+p41*p12*p23-p41*p13*p22,
p11*p22*p33-p11*p23*p32-p21*p12*p33+p21*p13*p32+p31*p12*p23-p31*p13*p22,
p11+p21+p31+p41+p12+p22+p32+p42+p13+p23+p33+p43+p14+p24+p34+p44-1;

By using the routine ’SOLVE’ in Singular we can find the numerical solutions
to the system of polynomial equations.

LIB ’solve.lib’;
solve(I, 6, 0 , ’nodisplay’);

Unfortunately, the system we want to solve is beyond what Singular can handle.
But we can check whether a given table {pij} is a solution to the system or not, by
substituting the values of pij into the ideal I. And if the resulting ideal is not an
empty set, then {pij} is a solution to the system.

LIB "poly.lib"
ideal v=p11,p21,p31,p41,p12,p22,p32,p42,p13,p23,p33,p43,p14,p24,p34,p44;
ideal p=3/40,3/40,2/40,2/40,3/40,3/40,2/40,2/40,2/40,2/40,3/40,3/40,
2/40,2/40,3/40,3/40;
ideal J=substitute(I,v,p);
dim(std(J));
===> 28

It should be noted that the reason we get a dimension 28 is that the ideal v and
p are defined on the ring r which has additional 17 unknowns other than pij . No
matter what the number is, the positiveness of the number means p is a solution
for pij . Otherwise, if it is zero, p is not a solution for pij .
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22.2.3 Plotting Unidentifiable Space

For the 100 Swiss Franks problem, we know that

1
40


3 3 2 2
3 3 2 2
2 2 3 3
2 2 3 3


is one MLE for the 2-level latent class model, that is, the MLE maximizing Equa-
tion (22.2). And we also know there is a 2-dimensional subspace in the parameter
space of conditional probabilities corresponding to this MLE. Now we show how to
find the equations defining this unidentifiable space. In the below code, wt ’s are
the marginal probabilities of the latent variable, ait ’s and bjt ’s are the conditional
probabilities of the observed variables given the latent variable. Then we define an
ideal I, in which the first 5 polynomials corresponds to the sum 1 constraints and
the last 16 polynomials corresponds to the model equalities pij =

∑
t wtaitbjt for

the MLE.

ring r=0, (w1,a11,a21,a31,a41,b11,b21,b31,b41,
w2,a12,a22,a32,a42,b12,b22,b32,b42), lp;
ideal I=w1+w2-1,
a11+a21+a31+a41-1,
a12+a22+a32+a42-1,
b11+b21+b31+b41-1,
b12+b22+b32+b42-1,
w1*a11*b11+w2*a12*b12-3/40,
w1*a11*b21+w2*a12*b22-3/40,
w1*a11*b31+w2*a12*b32-2/40,
w1*a11*b41+w2*a12*b42-2/40,
w1*a21*b11+w2*a22*b12-3/40,
w1*a21*b21+w2*a22*b22-3/40,
w1*a21*b31+w2*a22*b32-2/40,
w1*a21*b41+w2*a22*b42-2/40,
w1*a31*b11+w2*a32*b12-2/40,
w1*a31*b21+w2*a32*b22-2/40,
w1*a31*b31+w2*a32*b32-3/40,
w1*a31*b41+w2*a32*b42-3/40,
w1*a41*b11+w2*a42*b12-2/40,
w1*a41*b21+w2*a42*b22-2/40,
w1*a41*b31+w2*a42*b32-3/40,
w1*a41*b41+w2*a42*b42-3/40;
dim(std(I));
===> 2

Now we can see the dimension of the ideal I is really 2. Then we can eliminate the
unknowns other than w1 , a11 , b11 from the ideal I, thus we get the equation for the
projection of the 2-dimensional unidentifiable subspace in (w1 , a11 , b11) coordinates.

ideal J=elim1(I, a21*a31*a41*b21*b31*b41*w2*a12*a22*a32*a42
*b12*b22*b32*b42);
J;
===> J[1]=80*w1*a11*b11-20*w1*a11-20*w1*b11+6*w1-1;

The resulting ideal J has a one-to-one correspondence to the identifiable space.
This is because the unidentifiable space is 2-dimensional, thus once the values of
w1 , a11 and b11 are known so do the other paramters.
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Fig. 22.2 The surface that the ideal J is vanishing.

the vanishing surface
(a) intersected with the unit cube (b) inside the unit cube

Fig. 22.3 The intersection of the vanishing surface for ideal J and the [0, 1]3 cube.

LIB "surf.lib";
ring r2=0, (w1, a11, b11), lp;
ideal J=80*w1*a11*b11-20*w1*a11-20*w1*b11+6*w1-1;
plot(J);

Singular calls the programme surf to draw real pictures of plane curves and
surfaces in 3-D space. If you load library “SURF.LIB” in Singular and execute
the “PLOT” command to show the vanishing surface of the ideal J , you will get a
picture in Figure (22.2).

But the surface showed in figure 22.2 doesn’t guarantee w1 , a11 , b11 to be within
0 and 1. If we want to plot more sophisticated surfaces, we can use the stand-
alone programme surf. The unidentifiable space is the intersection of the vanishing
surface and the [0, 1]3 cube, which is shown in Figure (22.3). We include the script
used in surf to draw the pictures in the next section.
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22.2.4 Surf Script

Below is the script used in surf to draw the pictures in figure 22.3-(b).

width = 500; height = 500; double pi = 3.1415926; double ss = 0.15;
origin_x = -0.5; origin_y = -0.5; origin_z = 0;
clip = cube;radius = 0.5;center_x = 0.5;center_y = 0.5;center_z = 0.5;
scale_x = ss;scale_y = ss;scale_z = ss;
rot_x = pi / 180 * 10;rot_y = - pi / 180 * 20;rot_z = pi / 180 * 0;
antialiasing = 4;antialiasing_threshold = 0.05;antialiasing_radius = 1.5;
surface2_red = 255;surface2_green = 0;surface2_blue = 0;
inside2_red = 255;inside2_green = 0;inside2_blue = 0;
transparence = 0;transparence2 = 70;
illumination = ambient_light + diffuse_light + reflected_light + transmitted_light;
surface = 80*x*y*z - 20*x*z - 20*y*z + 6*z -1;
surface2 = (x-0.500)^30 + (y-0.500)^30+(z-0.500)^30 - (0.499)^30;
clear_screen;
draw_surface;

22.3 Proof of the Fixed Points for 100 Swiss Franks Problem

In this section, we show that when maximizing the log-likelihood function of 2-level
latent class model for the 100 Swiss Franks problem, the table

f =
1
40


3 3 2 2
3 3 2 2
2 2 3 3
2 2 3 3

 (22.4)

is a fixed point in the Expectation Maximization algorithm. Here the observed
table is

p =
1
40


4 2 2 2
2 4 2 2
2 2 4 2
2 2 2 4


Under the conditional independence of the latent structure model, we have

fij =
∑

t∈{0,1}
λtαitβjt

where
∑

t λt =
∑

i αit =
∑

j βjt = 1, λt ≥ 0, αit ≥ 0 and βjt ≥ 0.
Now, we show that if we start with the values such that

α1t = α2t , α3t = α4t

β1t = β2t , β3t = β4t∑
t λtα1tβ1t =

∑
t λtα3tβ3t = 3/40∑

t λtα1tβ3t =
∑

t λtα3tβ1t = 2/40

(22.5)

then the EM will stay in these values and the fitted table is right the one in Equation
(22.4). In fact, in the E step, the posterior probability is updated by

πABX̄
ijt = P (X = t|A = i, B = j) =

λtαitβjt

fij
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Then in the M step, the parameters are updated by

λ̂t =
∑

i,j pij π
ABX̄
ijt

=
∑

i,j pij
λt αi t βj t

fi j

= λt + 1
3 [α1tβ1t + α2tβ2t + α3tβ3t + α4tβ4t ]

− 1
3 [α1tβ2t + α2tβ1t + α3tβ4t + α4tβ3t ] = λt

α̂it =
∑

j pij π
ABX̄
ijt /λ̂t

= αit

∑
j pij βjt/fij

=


αit [1 + 1

3 β1t − 1
3 β2t ], i = 1

αit [1 + 1
3 β2t − 1

3 β1t ], i = 2
αit [1 + 1

3 β3t − 1
3 β4t ], i = 3

αit [1 + 1
3 β4t − 1

3 β3t ], i = 4

= αit

β̂jt =
∑

i pij π
ABX̄
ijt /λ̂t

= βjt

∑
i pijαit/fij

=


βjt [1 + 1

3 α1t − 1
3 α2t ], j = 1

βjt [1 + 1
3 α2t − 1

3 α1t ], j = 2
βjt [1 + 1

3 α3t − 1
3 α4t ], j = 3

βjt [1 + 1
3 α4t − 1

3 α3t ], j = 4

= βjt

Thus, we have proved that the starting point given by Equation (22.5) is a fixed
point in the EM algorithm. And this fixed point will give us the fitted table f in
Equation (22.4). However, this is not the only fixed points for the EM. In fact,
according to the above, we can also show that the points

α1t = α3t , α2t = α4t , β1t = β3t , β2t = β4t

and

α1t = α4t , α2t = α3t , β1t = β4t , β2t = β3t

are fixed points too. And the two points will lead to the tables

1
40


3 2 3 2
2 3 2 3
3 2 3 2
2 3 2 3

 and 1
40


3 2 2 3
2 3 3 2
2 3 3 2
3 2 2 3


Similarly, we can show that the table

1
40


4 2 2 2
2 8/3 8/3 8/3
2 8/3 8/3 8/3
2 8/3 8/3 8/3


and its permutations are also the fixed points in the EM algorithm.

22.4 Matlab Codes

Here we include the two matlab subroutines which are used to compute the Jacobian
of the polynomial mapping f : ∆d1 −1 × · · · ×∆dk −1 ×∆r−1 → ∆d−1 (d =

∏
i di) in
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Equation (22.6) and its numerical rank for latent class models

(p1(i1) . . . pk (ik ), λh) �→
∑
h∈[r ]

p1(i1) . . . pk (ik )λh. (22.6)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [J,f,x,w,a] = jacob_lcm(T, I)
% -------------------------------------------------------------------------
% JACOB_LCM computes the Jacobian of the latent class model.
% For example:
% [J, f, x, w, a] = jacob_lcm(2, [3,3,3]);
%
w = sym(’’, ’real’);
a = sym(’’, ’real’);
for t=1:T

w(end+1) = sym([’w’, int2str(t)], ’real’);
for k=1:length(I)

for i=1:I(k)
a{k}(i,t) = sym([’a’, int2str(i), int2str(t), int2str(k)], ’real’);

end
end

end
w(end) = 1 - sum(w(1:end-1));
x = w(1:end-1);
for k=1:length(I)

for t=1:T
a{k}(end,t) = 1 - sum(a{k}(1:end-1,t));
x = [x, a{k}(1:end-1,t)’];

end
end
% get the mapping from parameters to table
f = sym(’’, ’real’);
for idx=1:prod(I)

subv = ind2subv(I, idx);
val = sym(’0’);
for t=1:T

temp = w(t);
for k=1:length(I)

temp = temp * a{k}(subv(k),t);
end
val = val + temp;

end
f(end+1) = val;

end
% get the Jacobian
J = jacobian(f, x);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function r = rank_lcm(J, w, a)
% ------------------------------------------------------------------------
% RANK_LCM computes the numberical rank of the sybotical matri ’J’, which
% is a function of ’w’ and ’a’. It is used after calling the funtion JACOB_LCM.
% For example,
% [J,f,x,w,a] = jacob_lcm(2, [2,2,2,2]);
% rank_lcm(J,w,a);
%
T = length(w);
I = zeros(1, length(a));
for k=1:length(a)

I(k) = size(a{k},1);
end
% compute the numberical rank
v = unifrnd(0,1,1,T);
v = v ./ sum(v);
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for t=1:T
for k=1:length(I)

b{k}(:,t) = unifrnd(0,1,I(k),1);
b{k}(:,t) = b{k}(:,t) ./ sum(b{k}(:,t));

end
end
JJ = zeros(size(J));
for i=1:size(J,1)

for j=1:size(J,2)
cc = char(J(i,j));
for t=1:T

cc = strrep(cc, char(w(t)), num2str(v(t)));
for k=1:length(I)

for p=1:I(k)
cc = strrep(cc, char(a{k}(p,t)), num2str(b{k}(p,t)));

end
end

end
JJ(i,j) = eval(cc);

end
end
r = rank(JJ);

Here are the EM and Newton-Raphson codes for maximum likelihood estimation
in latent class models.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [nhat,m,b,se,llk,retcode,X] = LCM_newton(n,T,maxiter,eps,m,X,verbose)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% INPUT:
% n(required): observed table, a multi-dimensional array
% T(required): number of latent classes
% maxiter(required): maximum number of iterations
% eps(required): converge threshold
% m(optional): initial value for the mean vector
% X(optional): design matrix
% verbose(optional): display results if true
% OUTPUT:
% nhat: estimated observed table
% m: estimated probability for the full table
% b: estimated parameter
% se: standard error of mle
% llk: log-likelihood values in iterations
% retcode: 1, if the algorithm terminates normally; 0, otherwise
% X: design matrix
%
dbstop if warning;
dbstop if error;
%
% 1. initialize
y = n(:); % observed table
k = length(y); % number of cells
dim = size(n); % dimensions of observed table
s = catrep(2, T, [1:k]);
S = zeros(T*k, k); % scatter matrix ===> S’m = nhat
for i=1:k

idx = find( s==i );
S(idx, i) = 1;

end
z = S * inv(S’*S) * y; % observed full table ===> S’z = y
fulldim = [dim, T]; % dimensions of full table
if nargin < 7 verbose = 1; end
if nargin < 6 X = []; end
if nargin < 5 m = []; end
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if isempty(X)
X = zeros(T*k, 1+(T-1)+sum(dim-1)+sum((T-1)*(dim-1))); % design matrix
for idx=1:prod(fulldim)

% for main effect
xrow = 1;
% for first order effect
G = {};
subv = ind2subv(fulldim, idx);
for i=1:length(subv)

if subv(i)==fulldim(i)
G{i} = - ones(fulldim(i)-1, 1);

else
G{i} = zeros(fulldim(i)-1, 1);
G{i}(subv(i)) = 1;

end
xrow = [xrow, G{i}’];

end
% for second order effect
for i=1:length(subv)-1

temp = G{end} * G{i}’;
xrow = [xrow, temp(:)’];

end
%
if length(xrow)~=size(X,2)

keyboard;
end
X(idx,:) = xrow;

end
end
if isempty(m)

b = unifrnd(-1, 1, size(X,2), 1); % initial value of the parameter
m = exp(X*b); % estimated mean counts

else
b = inv(X’*X) * (X’ * log(m));
m = exp(X*b);

end
%
% 2. newton-raphson
llk = sum(y .* log(S’ * m ./ sum(m)));
retcode = 1;
for i=1:maxiter

% Jacobi
A = S’*diag(m)*S;
if min(diag(A))<eps % A is diagonal

disp(’maxtrix A for the Jacobi is singular.’);
disp(’the algorithm stops without converging.’);
retcode = 0;
break;

end
A = inv(A);
P = S * A * S’;
J = (z-m)’ * P * diag(m) * X;

% Hessian
C = X’ * (diag(z’ * P) * diag(m) - diag(m) *

(S * diag(y) * (A^2) * S’) * diag(m)) * X;
D = X’ * diag(m) * X;
H = C - D;
if max(eig(H)) >= 0

H = -D;
end
[eigvec, eigval] = eig(H);
eigval = diag(eigval);
if min(eigval) >= 0

disp(’the hessian matrix is non-negative definite.’);
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retcode = 0;
break;

end
eigval(find(eigval<0)) = 1 ./ eigval(find(eigval<0));
eigval(find(eigval>=0)) = 0;
db = eigvec * diag(eigval) * eigvec’ * J’;
ss = 1;
b = b - ss * db;
m = exp(X*b);
% log-likelihood
llk(end+1) = sum(y .* log(S’ * m ./ sum(m)));
%if abs(llk(end)-llk(end-1))<eps
if max(abs(J)) < eps

disp([’algorithm convergs in ’, int2str(i), ’ steps.’]);
break;

end
end
% log-likelihood
llk = llk;
% fitted table
nhat = S’* (m ./ sum(m)) * sum(n(:));
% standard errors
se = sqrt(-diag(inv(H)));
%
% 3. show results
if verbose

disp(’the fitted and observed counts:’);
disp([nhat, n(:)]);
disp(’mle and stand error of the parameter:’);
disp([b, se]);
plot(llk);
axis tight;
xlabel(’iteration’);
ylabel(’log-likelihood’);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [f,m,llk,llr,df,c,p,devbuf,c00,p00]=em_lsm(n,T,maxiter,eps,c0,p0)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% EM algorithm for latent class model
%
% input:
% n(required): obserbed table. multi-dimensional array
% T(required): number of latent classes
% maxiter(required): maximum number of iterations
% eps(required): converge threshold
% c0(optional): initial value for class probabilities
% p0(optional): initial value for conditional probabilities
% output:
% f: fitted table
% m: expected mean vector
% llk: log-likelihoods
% llr: likelihood ratio statistic
% df: degree of freedoms
% c: class probabilities
% p: conditional probabilities
% devbuf: maximum deviations of the estimates in iterations
% c00: initial class probabilties
% p00: initial conditional probabilities
%
dbstop if warning;
f0 = n;
n = n / sum(n(:));
sz = size(n);
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if nargin < 6
p0 = cell(1, length(sz));
for i=1:length(p0)

A = rand(sz(i), T);
A = A ./ kron(ones(sz(i),1), sum(A, 1));
p0{i} = A;

end
end
if nargin < 5

c0 = rand(1,T);
c0 = c0 ./ sum(c0);

end
c00 = c0;
p00 = p0;
nn = zeros([sz, T]);
c = c0;
p = p0;
iter = 0;
devbuf = [];
llk = 0;
while iter < maxiter

% E step
for idx=1:prod(size(nn))

subv = ind2subv(size(nn), idx);
nn(idx) = c(subv(end));
for i=1:length(sz)

nn(idx) = nn(idx) * p{i}(subv(i), subv(end));
end

end
nnhat = sum(nn, length(sz)+1);
nnhat = catrep(length(sz)+1, T, nnhat);
nnhat = nn ./ nnhat;

% M step
for t=1:T

A = subarray(length(sz)+1, t, nnhat);
A = n .* A;
c(t) = sum(A(:));
for i=1:length(sz)

for k=1:sz(i)
B = subarray(i, k, A);
p{i}(k, t) = sum(B(:)) / c(t);

end
end

end
% mle of counts

f = zeros([sz, T]);
for idx=1:prod(size(f))

subv = ind2subv(size(f), idx);
f(idx) = c(subv(end));
for i=1:length(sz)

f(idx) = f(idx) * p{i}(subv(i), subv(end));
end

end
f = sum(f, length(sz)+1);
llk(end+1) = sum( f0(:) .* log(f(:)) );

% if converged
maxdev = max(abs(c-c0));
for i=1:length(p)

A = abs(p{i}-p0{i});
maxdev = max(maxdev, max(A(:)));

end
devbuf = [devbuf, maxdev];
if maxdev < eps

disp([’algorithm converges in ’, int2str(iter), ’ steps.’]);



Maximum likelihood estimation in latent class models 393

break;
end
c0 = c;
p0 = p;
iter = iter + 1;

end
% frequencies estimation
f = zeros([sz, T]);
for idx=1:prod(size(f))

subv = ind2subv(size(f), idx);
f(idx) = c(subv(end));
for i=1:length(sz)

f(idx) = f(idx) * p{i}(subv(i), subv(end));
end

end
m = f; % full table
f = sum(f, length(sz)+1);
f = f .* sum(f0(:));
% likelihood ratio test statistics
f0 = f0(:);
f1 = f(:);
llr = f0./f1;
llr( find(llr==0) ) = 1;
llr = 2 * sum( f0.*log(llr) );
% degree of freedom
df = (prod(size(n))-1) - (T-1+T*sum(size(n)-1));
llk = llk(2:end);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function C = catrep(dim, n, A) str = [’C = cat(’, int2str(dim), ’,’]; for i=1:n

str = [str, ’A,’];
end
str = [str(1:end-1), ’);’];
eval(str);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function subv = ind2subv(siz, idx) fn = ’[’;
for k=1:length(siz)

fn = [fn, ’subv(’, num2str(k), ’),’];
end
fn = [fn(1:length(fn)-1), ’] = ind2sub(siz, idx);’];
eval(fn);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function ind = subv2ind(siz, subv)
fn = ’ind = sub2ind(siz, ’;
for k=1:length(siz)

fn = [fn, ’subv(’, num2str(k), ’),’];
end
fn = [fn(1:length(fn)-1), ’);’];
eval(fn);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function C = subarray(dim, idx, A)
str = ’C = A(’;
for i=1:length(size(A))

if i==dim
str = [str, int2str(idx), ’,’];

else
str = [str, ’:,’];

end
end
str = [str(1:end-1), ’);’];
eval(str);
squeeze(C);
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On-line Supplement to
The generalized shuttle algorithm

Adrian Dobra

Stephen E. Fienberg

23.1 Proofs

Proposition 8.1 Let n∗ be the count in the (1, 1, . . . , 1) cell. Consider an index
i0 = (i01 , i

0
2 , . . . , i

0
k ) ∈ I. Let {q1 , q2 , . . . , ql} ⊂ K such that, for r ∈ K, we have

i0r =
{

1, if r ∈ K \ {q1 , q2 , . . . , ql},
2, if r ∈ {q1 , q2 , . . . , ql}.

For s = 1, 2, . . . , l, denote Cs := K \ {qs}. Then

n(i0) = (−1)l · n∗ −
l−1∑
s=0

(−1)l+s · nC ( l−s ) (1, . . . , 1, i0q( l−s ) +1 , . . . , i
0
k ). (23.1)

Proof We start from the (1, 1, . . . , 1) cell and go through a sequence of cells n(i)
until we reach n(i0). We can write

n∗ = nCl
(1, . . . , 1, i0ql +1 , . . . , i

0
k ) − n(1, . . . , 1, i0ql

, . . . , i0k ),

n(1, . . . , 1, i0ql
, . . . , i0k ) = nC ( l−1 ) (1, . . . , 1, i0q( l−1 ) +1 , . . . , i

0
k )− n(1, . . . , 1, i0q( l−1 )

, . . . , i0k ),

...

n(1, . . . , 1, i0q2
, . . . , i0k ) = nC1 (1, . . . , 1, i0q1 +1 , . . . , i

0
k )− n(i0).

We add the above equalities to obtain Equation (23.1).

Proposition 8.2 The generalized shuttle algorithm converges to the bounds in
equations

L(n∗) = max

{
l−1∑
s=0

(−1)s · nC ( l−s ) (1, . . . , 1, i0q( l−s ) +1 , . . . , i
0
k ) : l even

}
, (23.2)

and

U(n∗) = min

{
l−1∑
s=0

(−1)s · nC ( l−s ) (1, . . . , 1, i0q( l−s ) +1 , . . . , i
0
k ) : l odd

}
. (23.3)

395
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Proof We write the equalities in the proof of Proposition 8.1 as

t{1}...{1} ⊕ t{1}...{1}{i0
q l
}...{i0

k } = t{1}...{i0
q l −1 }{1,2}{i0

q l + 1 }...{1},

and

t{1}...{1}{i0
q ( s + 1 )

}...{i0
k } ⊕ t{1}...{1}{i0

q s
}...{i0

k } = t{1}...{1}{i0
q s −1 }{1,2}{i0

q s + 1 }...{i0
k },

for s = 1, 2, . . . , l − 1. Hence(
t{1}...{1}, t{1}...{i0

q l −1 }{1,2}{i0
q l + 1 }...{1}, t{1}...{1}{i0

q l
}...{i0

k }

)
∈ Q(T),

and(
t{1}...{1}{i0

q ( s + 1 )
}...{i0

k }, t{1}...{1}{i0
q s −1 }{1,2}{i0

q s + 1 }...{i0
k }, t{1}...{1}{i0

q s
}...{i0

k }

)
∈ Q(T),

for s = 1, 2, . . . , l − 1. Since

T′
0 :=

{
t{1}...{1}{i0

q s −1 }{1,2}{i0
q s + 1 }...{i0

k } : s = 1, 2, . . . , l
}
⊂ T0 ,

the cells in T′
0 have a fixed value

V
(
t{1}...{1}{i0

q s −1 }{1,2}{i0
q s + 1 }...{i0

k }

)
nCs

(1, . . . , 1, i0qs −1 , i
0
qs +1 , . . . , i

0
k ),

for s = 1, 2, . . . , l. GSA sequentially updates the bounds for the cells in T′
0 in the

following way:

L
(
t{1}...{1}

)
= max

{
0, nCl

(1, . . . , 1) − U
(
t{1}...{1}{i0

q l
}...{i0

k }

)}
,

U
(
t...{1}{i0

q l
}...

)
= min

{
nφ, nC ( l−1 ) (. . . , 1, i0q( l−1 ) +1 , . . .)− L

(
t...{1}{i0

q ( l−1 )
}...

)}
,

...

We set the non-negativity constraints

L
(
t{1}...{1}{i0

q s
}...{i0

k }

)
≥ 0, for s = 1, 2, . . . , l, (23.4)

then combine the above equalities to obtain Equation (23.2). In an analogous
manner we obtain the upper bounds in Equation (23.3) from the identities:

U
(
t{1}{1}...{1}

)
= min

{
nφ, nCl

(1, . . . , 1) − L
(
t{1}...{1}{i0

q l
}...{i0

k }

)}
,

L
(
t...{1}{i0

q l
}...

)
= max

{
0, nC ( l−1 ) (. . . , 1, i0q( l−1 ) +1 , . . .) − U

(
t...{1}{i0

q ( l−1 )
}...

)}
,

...

Once GSA reaches the bounds in Equations (23.2) and (23.3), no further changes
are possible.
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Theorem 8.1 Equations 23.5 below are sharp bounds given the marginals nC1 ,
. . ., nCp

:

min
{
nC1 (iC1 ) , . . . , nCp

(
iCp

)}
≥ n(i) ≥ max


p∑

j=1

nCj

(
iCj

)
−

p∑
j=2

nSj

(
iSj

)
, 0


(23.5)

Proposition 8.3 For a subset D0 ⊂ K and an index i0D0
∈ ID0 , the following

inequalities hold:

min
{
nC∩D0

(
i0C∩D0

)
|C ∈ C(G)

}
≥ nD0 (i

0
D0

)

≥ max

0,
∑

C∈C(G)

nC∩D0

(
i0C∩D0

)
−

∑
S∈S(G)

nS∩D0

(
i0S∩D0

) . (23.6)

The upper and lower bounds in Equation (23.6) are defined to be the Fréchet bounds
for the cell entry nD0 (i

0
D0

) given nC1 ,nC2 , . . . ,nCp
.

Proof The subgraph G(D) is decomposable since G is decomposable. Equation
(23.6) follows directly from Theorem 8.1 applied for table nD which has a fixed set of
marginals nC1 ∩D , nC2 ∩D , . . ., nCp ∩D . We clearly have C(G(D)) = {C1 ∩ D,C2 ∩
D, . . . , Cp ∩D} and S(G(D)) = {S2 ∩D, . . . , Sp ∩D}.

Lemma 8.1 Let G = (K,E) be a decomposable independence graph induced by
the marginals nC1 ,nC2 ,. . .,nCp

. Consider a subset D0 ⊂ K and let v ∈ K \ D0

be a simplicial vertex of G. It is known that a simplicial vertex belongs to pre-
cisely one clique, say v ∈ C1 . Then finding bounds for a cell nD0 (i

0
D0

), i0D0
∈

ID0 , given nC1 ,nC2 , . . . ,nCp
is equivalent to finding bounds for nD0 (i

0
D0

) given
nC1 \{v},nC2 , . . . ,nCp

.

Proof If G is complete, i.e. p = 1, we have D0 ⊂ K = C1 , hence every entry
nD0 (i

0
D0

) will be fixed. Otherwise, it is known that ({v}, bd(v), V \ cl(v)) is a proper
decomposition of G. Since bd(v) is a separator of G, Xv is independent of XV \(v )

given Xbd(v ) . Therefore no information is lost if we think about nD0 as being the
marginal of nV \{v}. The table nV \{v} has fixed marginals nC1 \{v},nC2 , . . . ,nCp

.

Lemma 8.2 Assume there are two fixed marginals nC1 and nC2 such that C1∪C2 =
K, but C1 ∩ C2 = ∅. Consider D0 ⊂ K. The Fréchet bounds for nD0 (i

0
D0

) given
nC1 and nC2

min
{
nC1 ∩D0 (i

0
C1 ∩D0

), nC2 ∩D0 (i
0
C2 ∩D0

)
}
≥ nD0 (i

0
D0

)

≥ max
{
0, nC1 ∩D0 (i

0
C1 ∩D0

) + nC2 ∩D0 (i
0
C2 ∩D0

)− nφ

}
(23.7)

are sharp given nC1 and nC2 .
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Proof The induced independence graph is obviously decomposable, and its cliques
C1 and C2 are separated by the empty set. Every vertex v ∈ (C1 \D0) ∪ (C2 \D0)
is simplicial in G, hence we could think about nD0 as being a table with two fixed
non-overlapping marginals nC1 ∩D0 and nC2 ∩D0 . Lemma 8.1 implies that we do
not loose any information about the cell entry nD0 (i

0
D0

) when collapsing across the
variables {Xv : v ∈ (C1 \D0)∪ (C2 \D0)}. Thus the bounds in Equation (23.7) are
indeed sharp.

Lemma 8.3 Let the two fixed marginals nC1 and nC2 be such that C1 ∪ C2 = K.
Consider D0 ⊂ K and denote D1 := (C1 \ C2) ∩ D0 , D2 := (C2 \ C1) ∩ D0 and
D12 := (C1 ∩ C2) ∩ D0 . In addition, we let C12 := (C1 ∩ C2) \ D0 . Then an upper
bound for nD0 (i

0
D0

) given nC1 and nC2 is:∑
i1
C 1 2

∈IC 1 2

min
{
n(C1 ∩D0 )∪C1 2

(
i0C1 ∩D0

, i1C1 2

)
, n(C2 ∩D0 )∪C1 2

(
i0C2 ∩D0

, i1C1 2

)}
, (23.8)

while a lower bound is∑
i1
C 1 2

∈IC 1 2

max
{
0, n(C1 ∩D0 )∪C1 2

(
i0C1 ∩D0

, i1C1 2

)
+ n(C2 ∩D0 )∪C1 2

(
i0C2 ∩D0

, i1C1 2

)
− nD1 2

(
i0D1 2

)}
. (23.9)

Proof We assume that C12 �= ∅. The vertices in C1 \(C2∪D0) and C2 \(C1∪D0) are
simplicial in the independence graph G = (K,E) induced by nC1 and nC2 . From
Lemma 8.1, we deduce that we can restrict our attention to the marginal nD0 ∪C1 2

that has two fixed marginals nD1 ∪(C1 ∩C2 ) = n(C1 ∩D0 )∪C1 2 and nD2 ∪(C1 ∩C2 ) =
n(C2 ∩D0 )∪C1 2 . We choose an arbitrary index i1C1 2

∈ IC1 2 . Consider the hyperplane

n
i1
C 1 2

D0
of nD1 ∪(C1 ∩C2 ) with entries

n
i1
C 1 2

D0
(iD0 ) := nD0 ∪C1 2 (iD0 , i

1
C1 2

), for iD0 ∈ ID0 .

This hyperplane has two fixed marginals

n
i1
C 1 2

C1 ∩D0
=

{
n(C1 ∩D0 )∪C1 2

(
iC1 ∩D0 , i

1
C1 2

)
: iC1 ∩D0 ∈ IC1 ∩D0

}
,

and

n
i1
C 1 2

C2 ∩D0
=

{
n(C2 ∩D0 )∪C1 2

(
iC2 ∩D0 , i

1
C1 2

)
: iC2 ∩D0 ∈ IC2 ∩D0

}
.

We have D0 = D1 ∪ D12 ∪ D2 , hence it is possible to make use of Theorem 8.1 to

obtain the Fréchet bounds for the cell entry n
i1
C 1 2

D0
(i0D0

) = nD0 ∪C1 2 (i
0
D0

, i1C1 2
), i.e.

min
{
n(C1 ∩D0 )∪C1 2

(
i0C1 ∩D0

, i1C1 2

)
, n(C2 ∩D0 )∪C1 2

(
i0C2 ∩D0

, i1C1 2

)}
,

and

max
{
0, n(C1 ∩D0 )∪C1 2

(
i0C1 ∩D0

, i1C1 2

)
+

n(C2 ∩D0 )∪C1 2

(
i0C2 ∩D0

, i1C1 2

)
−nD1 2

(
i0D0 ∩D1 2

)}
. (23.10)
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Since

nD0 (i
0
D0

) =
∑

i1
C 1 2

∈IC 1 2

nD0 ∪C1 2 (i
0
D0

, i1C1 2
),

Equations (23.8) and (23.9) follow from Equation (23.10) by adding over all the

indices i1C1 2
∈ IC1 2 . Although the bounds in every hyperplane n

i1
C 1 2

D are sharp, the
bounds in Equations (23.8) and (23.9) are guaranteed to be sharp only if C12 = ∅.
If C12 �= ∅, there is no reason to believe that Equations (23.8) and (23.9) give sharp
bounds for nD0 (i

0
D0

). We conclude that the Fréchet upper and lower bounds for
nD0 (i

0
D0

) are not necessarily the best bounds possible if C12 �= ∅.

Proposition 8.4 Let n be a k-dimensional table and consider the set of cells
T = T(n) associated with n. The marginals nC1 ,nC2 , . . . ,nCp

induce a decom-
posable independence graph G = (K,E) with C(G) = {C1 , C2 , . . . , Cp} and S(G) =
{S2 , . . . , Sp}. The set of fixed cells T0 ⊂ T(n) is given by the cell entries contained
in the tables

p⋃
r=1

⋃
{C :C⊆Cr }

RD(nC ).

For every cell t ∈ T, we let n(t)
1 , n(t)

2 , . . ., n(t)
kt

be the tables in RD such that t is

a cell entry in n(t)
r , r = 1, 2, . . . , kt . Under these conditions, GSA converges to an

upper bound Us(t) and to a lower bound Ls(t) such that

max{Lr (t) : r = 1, 2, . . . , kt} ≤ Ls(t), Us(t) ≤ min{Ur (t) : r = 1, 2, . . . , kt},
(23.11)

where Ur (t) and Lr (t) are the Fréchet bounds of the cell t in table n(t)
r .

Proof We prove Proposition 8.4 by sequentially considering several particular cases.
First we show that the shuttle procedure obtains the Fréchet bounds for a 2 × 2
table. Since any two-way table can be reduced to a number of 2×2 tables, it follows
that the Fréchet bounds are also attained for a two-dimensional cross-classification
with fixed one-dimensional totals. By induction on the number of fixed marginals
of an arbitrary k-dimensional table n and by exploiting the fact that, if n has
two marginals fixed, n can be split in several two-way tables with fixed one-way
marginals, we are able to prove in the last subsection that the Fréchet bounds are
attained for decomposable log-linear models with any number of minimal sufficient
statistics.

• The 2 × 2 case.
Consider a 2 × 2 table n = {nij : 1 ≤ i, j ≤ 2} with fixed row totals
{n1+ , n2+} and column totals {n+1 , n+2}. The grand total of the table is
n++. The set T associated with n is given by

T = {n11 , n12 , n21 , n22 , n1+ , n2+ , n+1 , n+2 , n++}, (23.12)
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while the set of cells having a fixed value is T0 = {n1+ , n2+ , n+1 , n+2 , n++}.
There are only six dependencies

Q(T){(n1+ , n++ , n2+), (n+1 , n++ , n+2), (n11 , n1+ , n12),

(n12 , n+2 , n22), (n21 , n2+ , n22), (n11 , n21 , n+1)}. (23.13)

The first two dependencies are redundant because they involve only the cells
in T0 . We show that GSA converges to the Fréchet bounds:

min{ni+ , n+j} ≥ nij ≥ max{0, ni+ + n+j − n++}, for 1 ≤ i, j ≤ 2. (23.14)

We initialize the upper and lower bounds of the four cells in T \T0 :

L(n11) = L(n12) = L(n21) = L(n22) := 0, and

U(n11) = U(n12) = U(n21) = U(n22) := n++ .

We sequentially go through the dependencies in Q(T). When we obtain a
Fréchet bound, we mark it with “♦”. Since the Fréchet bounds are sharp,
once GSA reaches such a bound, it stays at that bound.
First iteration, dependency: n11 ⊕ n12 = n1+ .

L(n11) = max{L(n11), n1+ − U(n12)} = max{0, n1+ − n++} = 0,

U(n11) = min{U(n11), n1+ − L(n12)} = min{n++ , n1+} = n1+ ,

L(n12) = max{L(n12), n1+ − U(n11)} = max{0, n1+ − n1+} = 0.

U(n12) = min{U(n12), n1+ − L(n11)} = min{n++ , n1+} = n1+ .

First iteration, dependency: n12 ⊕ n22 = n+2.

L(n22) = max{L(n22), n+2 − U(n12)},
= max{0, n+2 − n1+} = max{0, n+2 + n2+ − n++}.♦

U(n22) = min{U(n22), n+2 − L(n12)},
= min{n++ , n+2} = n+2 .

L(n12) = max{L(n12), n+2 − U(n22)} = 0.

U(n12) = min{U(n12), n+2 − L(n22)},
= min{n1+ , n+2 + min{0, n1+ − n+2}} = min{n+2 , n1+}.♦

First iteration, dependency: n21 ⊕ n22 = n2+ .

L(n21) = max{L(n21), n2+ − U(n22)},
= max{0, n2+ − n+2} = max{0, n2+ + n+1 − n++}.♦

U(n21) = min{U(n21), n2+ − L(n22)},
= min{0, n2+ + min{0, n1+ − n+2}},
= min{n2+ , n++ − n+2} = min{n2+ , n+1}.♦

U(n22) = min{U(n22), n2+ − L(n21)},
= min{n+2 , n2+ + min{0, n+2 − n2+}} = min{n+2 , n2+}.♦
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First iteration, dependency: n11 ⊕ n21 = n+1.

L(n11) = max{L(n11), n+1 − U(n21)},
= max{0, n+1 + max{−n2+ ,−n+1}},
= max{0, n+1 − n2+} = max{0, n+1 + n1+ − n++}.♦

U(n11) = min{U(n11), n+1 − L(n21)},
= min{n1+ , n+1 + max{−n2+ ,−n+1}},
= min{n+1 , n++ − n2+} = min{n+1 , n1+}.♦

Second iteration, dependency: n11 ⊕ n12 = n1+ .

L(n12) = max{L(n12), n1+ − U(n11)},
= max{0, n1+ + max{−n+1 ,−n1+}},
= max{0, n1+ − n+1} = max{0, n1+ + n+2 − n++}.♦

We see that the Fréchet bounds in Equation (23.14) for all four cells in table
n are obtained before completing the second iteration. Therefore Proposi-
tion 8.4 holds for any 2× 2 table.

• The two-way case.
The next step is to examine a two-dimensional table n = {nij : 1 ≤ i ≤
I1 , 1 ≤ j ≤ I2} for some I1 , I2 ≥ 2. This table has fixed row sums and
column sums:

{ni+ : 1 ≤ i ≤ I1} ∪ {n+j : 1 ≤ j ≤ I2} ∪ {n++} ⊂ T0 . (23.15)

More precisely, the set of fixed cells T0 ⊂ T = T(n) is

T0 =
{
tJ1 {1,2,...,I2 } : ∅ �= J1 ⊆ {1, 2, . . . , I1}

}
∪{

t{1,2,...,I1 }J2 : ∅ �= J2 ⊆ {1, 2, . . . , I2}
}

. (23.16)

We remark that t ∈ T\T0 if and only if t is a cell in a table n′ ∈ RD(n). In
other words, t does not have a fixed value if and only if t is a cell in a table
of dimension 2 that could be obtained from n by table redesign. We show
that the Fréchet bounds from Theorem 8.1 are attained when running GSA
for every cell nij . It is sufficient to prove it for the (1, 1) cell. The Fréchet
inequality for n11 is

min{n1+ , n+1} ≥ n11 ≥ max{0, n1+ + n+1 − n++}. (23.17)

We notice the similarity of Equation (23.17) with Equation (23.14). We
define the 2 × 2 table n′ = {n′

ij : 1 ≤ i, j ≤ 2}, where

n′
11 := n11 , n′

12 :=
∑
j>1

n1j , n′
21 :=

∑
i>1

ni1 , n′
22 :=

∑
i>1

∑
j>1

nij . (23.18)

This table has fixed row totals
{

n1+ ,
∑
i>1

ni+

}
as well as fixed column totals{

n+1 ,
∑
j>1

n+j

}
. The Fréchet bounds for the (1, 1) count in table n′ coincide
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with the Fréchet bounds for the (1, 1) count in table n. Since the four cells in
table n′ are also cells in the set T associated with n, the generalized shuttle
algorithm employed for the table n is equivalent to the shuttle procedure
employed for the table n′ from the perspective of finding sharp bounds for
{n′

11 , n
′
12 , n

′
21 , n

′
22}. We proved before that the generalized shuttle algorithm

will converge to the Fréchet bounds for any 2×2 table, hence GSA finds the
Fréchet bounds for the (1, 1) cell in table n.
Now take an arbitrary cell t = t{i1 ,i2 ,...,il }{j1 ,j2 ,...,js } ∈ T \T0 . Consider the
2 × 2 table n(t) with entries{

t{i1 ,i2 ,...,il }{j1 ,j2 ,...,js }, t{i1 ,i2 ,...,il }(I2 \{j1 ,j2 ,...,js }) ,

t(I1 \{i1 ,i2 ,...,il }){j1 ,j2 ,...,js }, t(I1 \{i1 ,i2 ,...,il })(I2 \{j1 ,j2 ,...,js })
}

.

The Fréchet bounds for the value V (t) of cell t in the above table are

min
{
V (t{i1 ,i2 ,...,il }{1,2,...,I2 }), V (t{1,2,...,I1 }{j1 ,j2 ,...,js })

}
and

max
{
0, V (t{i1 ,...,il }{1,...,I2 }) + V (t{1,...,I1 }{j1 ,...,js }) − V (t{1,...,I1 }{1,...,I2 })

}
.

(23.19)
The table n(t) has fixed one-dimensional totals, hence we know the cell values

V (t{i1 ,i2 ,...,il }{1,2,...,I2 }) =
l∑

r=1

nir + ,

(t{1,2,...,I1 }{j1 ,j2 ,...,js }) =
s∑

r=1

n+jr
,

V (t{1,2,...,I1 }{1,2,...,I2 }) = nφ.

The Fréchet bounds in Equation (23.19) are the Fréchet bounds associated
with cell t in every table n′ ∈ RD such that t is a cell in n′. Again, for every
such table n′, it is true that T(n′) ⊂ T(n) and Q(T(n′)) ⊂ Q(T(n)). When
employing the shuttle procedure for n we also run the shuttle procedure in
n′, thus the bounds in Equation (23.19) are attained by GSA and hence
Proposition 8.4 holds for an arbitrary two-dimensional table.

• Bounds induced by two fixed marginals.
Let n = {n(i)}i∈I be a k-dimensional frequency count table having fixed
marginals nC1 and nC2 such that C1 ∪ C2 = K. The Fréchet bounds for a
cell entry n(i0) are

min
{
nC1

(
i0C1

)
, nC2

(
i0C2

)}
≥ n(i0),

n(i0) ≥ min
{
nC1

(
i0C1

)
+ nC2

(
i0C2

)
− nC1 ∩C2

(
i0C1 ∩C2

)}
.

First we study the case when the fixed marginals are non-overlapping. i.e.
C1 ∩C2 = ∅. We attempt to reduce this case to the case of two-dimensional
tables we studied before for which we know that Proposition 8.4 is true. The
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above inequalities become

min
{

nC1

(
i0C1

)
, nK \C1

(
i0K \C1

)}
≥ n(i0),

n(i0) ≥ min
{
nC1

(
i0C1

)
+ nK \C1

(
i0K \C1

)
− nφ

}
. (23.20)

Without restricting the generality, we can assume that C1 = {1, . . . , l} and
C2 = {l + 1, . . . , k}. To every index iC1 = (i1 , . . . , il) ∈ IC1 we define:

INDC1 (iC1 ) :=
l∑

r=1

[
l∏

s=r+1

Is

]
· (ir − 1) + 1 ∈ {1, . . . , I1 · I2 · . . . · Il}.

INDC1 induces a one-to-one correspondence between the sets IC1 and
{1, . . . , I1 · . . . · Il}. Similarly, to every iC2 = (il+1 , . . . , ik ) ∈ IC2 , we assign

INDC2 (iC2 ) :=
k∑

r= l+1

[
k∏

s=r+1

Is

]
· (ir − 1) + 1 ∈ {1, . . . , Il+1 · . . . · Ik}.

Introduce two new compound variables Y1 and Y2 that take values in the
sets {1, . . . , I1 · I2 · . . . · Il} and {1, . . . , Il+1 · . . . · Ik}, respectively. Consider
a two-way table

n′ = {n′
j1 j2

: 1 ≤ j1 ≤ I1 · I2 · . . . · Il , 1 ≤ j2 ≤ Il+1 · . . . · Ik}

with entries given by

n′
j1 j2

= nK

(
IND−1

C1
(j1), IND−1

C2
(j2)

)
.

The table n′ has fixed row totals

{nj1 + : 1 ≤ j1 ≤ I1 · I2 · . . . · Il} ,

where nj1 +nC1

(
IND−1

C1
(j1)

)
, and column totals

{n+j2 : 1 ≤ j2 ≤ Il+1 · . . . · Ik} ,

where n+j2 nC2

(
IND−1

C2
(j2)

)
. Therefore there is a one-to-one correspon-

dence between the cells in the original k-dimensional table n and the cells
in the two-way table n′. Moreover, there is a one-to-one correspondence
between the fixed cells in n and the set of fixed cells in n′. Running GSA for
n assuming fixed marginals nC1 and nC2 is the same as running the shuttle
procedure for n′ assuming fixed one-dimensional totals. This implies that
the Fréchet bounds in Equation (23.20) are attained.
Consider a cell t ∈ T \ N and let n′ ∈ RD such that t = n′(i0), for some
i0 ∈ I ′

1 ×I ′
2 × . . .×I ′

k . If n′ ∈ RD(n), then the Fréchet bounds for t = n′(i0)
in table n′ are

min
{

n′
C1

(
i0C1

)
, n′

K \C1

(
i0K \C1

)}
≥ n′(i0),

n′(i0) ≥ min
{
n′

C1

(
i0C1

)
+ n′

K \C1

(
i0K \C1

)
− nφ

}
. (23.21)

n′
C1

and n′
K \C1

are fixed marginals of n′ obtained from nC1 and nK \C1



404 A. Dobra and S. E. Fienberg

by the same sequence of “category-join” operations that was necessary to
transform the initial table n in n′. Again, we have T(n′) ⊂ T(n) and
Q(T(n′)) ⊂ Q(T(n)), thus the Fréchet bounds in Equation (23.21) are ob-
tained by employing the shuttle procedure for the same reasons the bounds
in Equation (23.20) were reached.
Now assume that n′ = nD0 , D0 ⊂ K, with t = nD0 (i

0
D0

) for some i0D0
∈ ID0 .

The Fréchet bounds in nD0 are given in Lemma 8.2. The table nD0 has two
fixed non-overlapping marginals nC1 ∩D0 and nC2 ∩D0 , hence GSA reaches the
Fréchet bounds in Equation (23.7) because T(nD 0 ) ⊂ T(n) and Q(T(nD 0 )) ⊂
Q(T(n)). If n′ ∈ RD(nD0 ) n′ has two fixed marginals n′

C1 ∩D0
and n′

C2 ∩D0

obtained from nC1 ∩D0 and nC2 ∩D0 by joining categories associated with
the variables cross-classified in n. It is sufficient to replace nD0 with n′ in
Equation (23.7) to calculate the Fréchet bounds for t in table n′.
If the two fixed marginals are overlapping, we can assume that there exist
q and l with 1 ≤ q ≤ l ≤ k, such that C1 = {1, 2, . . . , l} and C2 =
{q, q + 1, . . . , k}. Then C1 ∩C2 = {q, . . . , l}. We reduce the case of two fixed
overlapping marginals to the case of two fixed non-overlapping marginals by
decomposing the tables n, nC1 and nC2 in a number of hyperplanes. Each
hyperplane of n has two non-overlapping marginals that are hyperplanes of
nC1 and nC2 . Denote

D1 := C1 \C2 = {1, 2, . . . , q − 1}, and D2 := C2 \C1 = {l + 1, l + 2, . . . , k}.

Take the set of contingency tables{
ni0

q ,...,i0
l =

{
ni0

q ,...,i0
l (iD1 ∪D2 ) : iD1 ∪D2 ∈ ID1 ∪D2

}
: i0q ∈ Iq , . . . , i

0
l ∈ Il

}
,

where

ni0
q ,...,i0

l (iD1 ∪D2 ) = ni0
q ,...,i0

l (i1 , . . . , iq−1 , il+1 , . . . , ik )

= n(i1 , . . . , iq−1 , i
0
q , . . . , i

0
l , il+1 , . . . , ik ).

Every table ni0
q ,...,i0

l has two fixed non-overlapping marginals

n
i0
q ,...,i0

l

D1
=

{
ni0

q ,...,i0
l (iD1 ) : iD1 ∈ ID1

}
,

with entries given by

ni0
q ,...,i0

l (iD1 ) = ni0
q ,...,i0

l (i1 , . . . , iq−1) = nC1

(
i1 , . . . , iq−1 , i

0
q , . . . , i

0
l

)
,

and n
i0
q ,...,i0

l

D2
=

{
ni0

q ,...,i0
l (iD2 ) : iD2 ∈ ID2

}
, with entries given by

ni0
q ,...,i0

l (iD2 ) ni0
q ,...,i0

l (il+1 , . . . , ik ) = nC2

(
i0q , . . . , i

0
l , il+1 , . . . , ik

)
.

Notice that the table ni0
q ,...,i0

l is a hyperplane of the original table n, whereas

n
i0
q ,...,i0

l

D1
is a hyperplane of nC1 , and n

i0
q ,...,i0

l

D2
is a hyperplane of nC2 . Em-

ploying the generalized shuttle algorithm for n is equivalent to employing
distinct versions of the shuttle procedure for every hyperplane determined
by an index

(
i0q , . . . , i

0
l

)
∈ IC1 ∩C2 . We already showed that GSA for ni0

q ,...,i0
l
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converges to the Fréchet bounds of the cell entry ni0
q ,...,i0

l
(
i0D1

, i0D2

)
(compare

with Equation (23.20)):

min
{

n
i0
q ,...,i0

l

D1

(
i0D1

)
, n

i0
q ,...,i0

l

D2

(
i0D2

)}
≥

ni0
q ,...,i0

l
(
i0D1

, i0D2

)
≥ max

{
n

i0
q ,...,i0

l

D1

(
i0D1

)
+ n

i0
q ,...,i0

l

D2

(
i0D2

)
− n

i0
q ,...,i0

l

φ

}
,

(23.22)

where n
i0
q ,...,i0

l

φ = nC1 ∩C2

(
i0q , . . . , i

0
l

)
is the grand total of the hyperplane

ni0
q ,...,i0

l . Equation (23.22) can equivalently be written as

min
{
nC1

(
i0D1

, i0q , . . . , i
0
l

)
, nC2

(
i0q , . . . , i

0
l , iD2

)}
≥ n

(
i0D1

, i0q , . . . , i
0
l , i

0
D2

)
≥ max

{
0, nC1

(
i0D1

, i0C1 ∩C2

)
+ nC2

(
i0C1 ∩C2

, i0D2

)
− nC1 ∩C2

(
i0C1 ∩C2

)}
.

These inequalities represent the Fréchet bounds for the cell count

n
(
i0
)

= n
(
i0D1

, i0q , . . . , i
0
l , i

0
D2

)
.

Now we show that any table n′ ∈ RD \
2⋃

r=1

⋃
{C :C⊆Cr }

RD(nC ) can be sepa-

rated in a number of hyperplanes such that the two fixed marginals of every
hyperplane are non-overlapping. Consider an arbitrary cell in n′ specified by
the index (J0

1 , . . . , J0
k ) ∈ I ′

1 × . . . × I ′
k . The hyperplane n′(J 0

q ,...,J 0
l ) of table

n′ has entries{
n′(J1 , . . . , Jq−1 , J

0
q , . . . , J0

l , Jl+1 , . . . , Jk ) : Jr ∈ I ′
r

}
,

for r = 1, . . . , q − 1, l + 1, . . . , k. The fixed overlapping marginals nC1 and
nC2 induce two fixed overlapping marginals n′

C1
and n′

C2
of n′. The index

set of n′
Cr

, r = 1, 2, is I ′
1;Cr

× . . . × I ′
k ;Cr

, where

I ′
s;Cr

=
{

I ′
s , if s ∈ Cr ,

{Is}, if s /∈ Cr .

We define the hyperplanes n′(J
0
q ,...,J 0

l )
C1

of n′
C1

and n′(J
0
q ,...,J 0

l )
C2

of n′
C2

in the

same way we defined the hyperplane n′(J 0
q ,...,J 0

l ) of n′. Therefore n′(J 0
q ,...,J 0

l )

is a table having two fixed non-overlapping marginals n′(J
0
q ,...,J 0

l )
C1

and

n′(J
0
q ,...,J 0

l )
C2

. The Fréchet bounds for n′(J0
1 , . . . , J0

k ) coincide with the Fréchet
bounds for the cell entry

n′(J 0
q ,...,J 0

l )(J0
1 , . . . , J0

q−1 , J
0
l+1 , . . . , J

0
k )

in table n′(J 0
q ,...,J 0

l ) . Therefore Proposition 8.4 holds for any table of counts
with two fixed marginals.

• Calculating bounds in the general decomposable case.
The set of fixed cliques defines a decomposable independence graph G =
(K,E) with cliques C(G) and separators S(G). We prove Proposition 8.4 by
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induction on the number of fixed marginals. Because the notation tends to
be quite cumbersome, we will show that the Fréchet bounds for the cells in
only the initial table n are attained. A similar argument can be made about
every table in

RD \
p⋃

r=1

⋃
{C :C⊆Cr }

RD(nC ).

If G decomposes in p = 2 cliques, we already proved that GSA converges to
the Fréchet bounds in Equation (23.5). We assume that Proposition 8.4 is
true if n has at most (p − 1) fixed marginals that induce a decomposable
independence graph. We want to prove Proposition 8.4 for an independence
graph with p cliques. We take an arbitrary index i0 ∈ I that will remain
fixed for the rest of this proof.
The cliques of G can be numbered so that they form a perfect sequence of
vertex sets. Let Hp−1 := C1 ∪ C2 ∪ . . . ∪ Cp−1 . The subgraph G (Hp−1) is
decomposable and its cliques are {C1 , . . . , Cp−1}, while its separators are
{S2 , . . . , Sp−1}. As before, T = T(n) is the set of cells associated with n.

In an analogous manner we define the set of cells T(nH p −1 ) associated with
the marginal table nHp −1 . The set of fixed cells T0 = T(n)

0 ⊂ T induced
by fixing the cell counts in the marginals nC1 , nC2 , . . ., nCp

of the table n

includes the set of fixed cells T
(nH p −1 )
0 ⊂ T(nH p −1 ) obtained by fixing the

marginals nC1 ,nC2 , . . . ,nCp −1 of the table nHp −1 .

We have T(nH p −1 ) ⊂ T(n) and Q
(
T(nH p −1 )

)
⊂ Q

(
T(n)

)
. This implies that,

when we run GSA for T(n) and T(n)
0 , it is as if we would run an instance

ofGSA for T(nH p −1 ) and T
(nH p −1 )
0 . Every vertex in Cp \ Sp = Cp \ Hp−1

is simplicial in the graph G, hence Lemma 8.1 tells us that finding bounds
for a cell in t ∈ T(nH p −1 ) given nC1 ,nC2 , . . . ,nCp −1 is equivalent to finding
bounds for t given nC1 ,nC2 , . . . ,nCp

. We do not lose any information by not
considering the marginal nCp

when computing bounds for t ∈ T
(
nHp −1

)
.

From the induction hypothesis we know that GSA employed for table nHp −1

with the set of fixed cells T
(nH p −1 )
0 converges to the Fréchet bounds for the

cell nHp −1

(
i0Hp −1

)
:

nU
Hp −1

(
i0Hp −1

)
= min

{
nC1

(
i0C1

)
, . . . , nCp −1

(
i0Cp −1

)}
, and

nL
Hp −1

(
i0Hp −1

)
= max

{
0,

p−1∑
r=1

nCr

(
i0Cr

)
−

p−1∑
r=2

nSr

(
i0Sr

)}
.

The shuttle procedure generates feasibility intervals [Ls(t), Us(t)] for every
t ∈ T

(
nHp −1

)
. These are the tightest feasibility intervals GSA can find

given the values of the cells in T
(nH p −1 )
0 . Because the information about the

cells in the marginal nCp
is not relevant for computing bounds for the cells
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in T(nH p −1 ), GSA employed for table n converges to the same feasibility
intervals [Ls(t), Us(t)] for every t ∈ T(nH p −1 ).
Since the sequence C1 , C2 , . . . , Cp is perfect in G, (Hp−1 \ Sp , Sp , Cp \ Sp ) is a
proper decomposition of G. Consider the graph G′ = (K,E′), where

E′ := {(u, v) : {u, v} ⊂ Hp−1 or {u, v} ⊂ Cp} .

G′ is a decomposable graph with two cliques Hp−1 , Cp and one separa-
tor Hp−1 ∩ Cp = Sp . Running GSA for table n and the set of fixed
cells T(n)

0 is equivalent to running GSA for n given the feasibility intervals{
[Ls(t), Us(t)] : t ∈ T(nH p −1 )

}
and the set of fixed cells in T(n) obtained by

fixing the cells in the marginal nCp
.

As a consequence, by employing the shuttle procedure for table n, we end
up with the following Fréchet bounds for the count n(i0):

min
{

nU
Hp −1

(
i0Hp −1

)
, nCp

(
i0Cp

)}
≥ n(i0), and

n(i0) ≥ max
{

0, nL
Hp −1

(
i0Hp −1

)
+ nCp

(
i0Cp

)
− nSp

(
i0Sp

)}
. (23.23)

It is straightforward to notice that Equation (23.5) is obtained by combining
Equations (23.23) and (23.23). We can conclude that Proposition 8.4 is true
when the set of fixed marginals are the minimal sufficient statistics of a
decomposable log-linear model.
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24.1 An example of complex coding for sudoku design

A row r of the sudoku grid is coded by the levels of the pseudo-factors R1 and R2

(ωr1 , ωr2 ) with ri ∈ Zp and r − 1 = p r1 + r2 .

Similarly, for columns and symbols. Figure 24.1 gives a 9 × 9 partially filled su-
doku grid and the array on the right gives the complex coding of the fraction. For
example, for the symbol 3 in the first row and second column we have: first row
R1 = ω0 , R2 = ω0 , second column C1 = ω0 , C2 = ω1 , symbol 3 S1 = ω0 , S2 = ω2 .
The box is the first, in fact R1 = ω0 , C2 = ω0 .

00

22

21

20

12

11

10

02

01

00 01 22212012111002

5

1

3 4 6

7

7 8

9

r1 r2 c1 c2 s1 s2

ω0 ω0 ω0 ω0 ω1 ω1
ω0 ω0 ω0 ω1 ω0 ω2
ω0 ω0 ω0 ω2 ω2 ω2
ω0 ω0 ω1 ω0 ω1 ω2
ω0 ω0 ω1 ω1 ω2 ω0
ω0 ω0 ω1 ω2 ω2 ω1
.. .. .. .. .. ..
ω2 ω2 ω2 ω0 ω0 ω0
ω2 ω2 ω2 ω1 ω2 ω0
ω2 ω2 ω2 ω2 ω2 ω2

Fig. 24.1 A partially filled sudoku and its complex coding.

24.2 Proofs

Proposition 12.8 The move corresponding to the exchange of the symbol u with
the symbol v is:

M(F ) = Es,uv Pg,uv (F ) =
∑

αg ∈Lg

∑
βs ∈Ls

mαg ,βs
Xαg

g Xβs
s

408
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where the coefficients mαg ,βs
are:

mαg ,βs
=

1
p2 (− eβs ,uv )

∑
αs ∈Ls

b(αg ,αs )eαs ,uv .

Proof First, we prove that F1 = F +M(F ) is the indicator function corresponding
to the grid where the symbol u has been exchanged with the symbol v. Then, we
prove that M(F ) is a valid move, according to Corollary 2.

Step 1.
If Es,hk = 0 (no symbol to exchange) or if Pu = Pv = 0 (no cell to modify) we

have F1 = F on D.
Let’s now consider the points corresponding to the cells of the grid where the

symbol is u. We denote by ζĝ these points of D1234 : ζĝ = (ωr̂1 , ωr̂2 , ωĉ1 , ωĉ2 ).
We have: F (ζĝ , ζu ) = 1 and F (ζĝ , ζv ) = 0. On the same points the move is:

M(F )(ζĝ , ζu ) = Es,hk (ζu ) Pg,hk (F )(ζĝ ) = −1

M(F )(ζĝ , ζv ) = Es,hk (ζv ) Pg,hk (F )(ζĝ ) = 1

and, therefore: F1(ζĝ , ζu ) = 1 − 1 = 0 and F1(ζĝ , ζv ) = 0 + 1 = 1.
Analogously, for the replacement of the symbol v by the symbol u. We can

conclude that F1 = F + M(F ) is the indicator function of the grid that has been
generated exchanging u with v in the original fraction.

Step 2.
As in Lemma 1, Es,hk depends only by S1 and S2 , and it is the polynomial

Es,hk =
1
p2

∑
βs ∈Ls

(− eβs ,hk ) Xβs ,

where the constant term is zero.
It follows that the move M(F ) can be written as

M(F ) =Es,hk Pg,hk (F ) =

− 1
p2

∑
αg ∈Lg ;αs ∈Ls

∑
βs ∈Ls

b(αg ,αs ) eαs ,hk eβs ,hk Xαg
g Xβs

s =

− 1
p2

∑
αg ∈Lg

∑
βs ∈Ls

(
eβs ,hk

∑
αs ∈Ls

b(αg ,αs ) eαs ,hk

)
Xαg

g Xβs
s .

We verify that the coefficients mα of M(F ) meet the requirements that are stated
in Corollary 2. Indeed

(a) mi1 i2 i3 i4 00 = 0 because −e0,hk = (ω0
v1

ω0
v2
− ω0

u1
ω0

u2
) = 0,

(b) mi1 i2 00i5 i6 = 0 because bi1 i2 00i5 i6 = 0,
(c) m00i3 i4 i5 i6 = 0 because b00i3 i4 i5 i6 = 0,
(d) mi1 0i3 0i5 i6 = 0 because bi1 0i3 0i5 i6 = 0.
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Example 12.7 Consider the following 4 × 4 sudoku grid

1 2 3 4

3 4 1 2

2 1 4 3

4 3 2 1

The corresponding indicator function is

F =
1
4
(1 −R1C2S2)(1 −R2C1S1).

If we exchange the second row of the grid with the third one, the coefficient m101010

of M(F ) is 1/4 and conditions of Corollary 12.2 are not satisfied.

Proof The second row corresponds to the points of D12 ζu = (ωu1 , ωu2 ) = (−1, 1)
and the third one to ζv = (ωv1 , ωv2 ) = (1,−1). Then, the move is not valid. Indeed:

m101010 = − 1
4

e10,hk

∑
αs ∈Ls

bαg ,αs
eαs ,hk =

1
4

(ω1
v1

ω0
v2
− ω1

u1
ω0

u2
)

1∑
α1 =0

1∑
α2 =0

bα1 α2 1010(ωα1
u1

ωα2
u2

− ωα1
v1

ωα2
v2

) =

1
4

(1 + 1)
(
b001010(ω0

u1
ω0

u2
− ω0

v1
ω0

v2
)

+ b011010(ω0
u1

ω1
u2

− ω0
v1

ω1
v2

)b101010(ω1
u1

ω0
u2

− ω1
v1

ω0
v2

)

+ b111010(ω1
u1

ω1
u2

− ω1
v1

ω1
v2

)
)

=
1
2

(−1
4
)(1 + 1) = −1

4
.

Proposition 12.10 We identify the parts of the sudoku grid where the M3 moves
can be applied. Fix

- a stack: C1 = ωt ,
- two columns of this stack C2 = ωcu

and C2 = ωcv
,

- two boxes of this stack: (R1 , C1) = (ωbm
, ωt) and (R1 , C1) = (ωbn

, ωt).
- a row in each box: (R1 , R2 , C1) = (ωbm

, ωrp
, ωt) and (R1 , R2 , C1) =

(ωbn
, ωrq

, ωt).

In this way we select two couple of cells, as shown in the following table

R1 R2 C1 C2 symbol

ωbm
ωrp

ωt ωcu
a1

ωbm
ωrp

ωt ωcv
a2

ωbn
ωrq

ωt ωcu
a3

ωbn
ωrq

ωt ωcv
a4
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Clearly, analogue identification holds by fixing a band, and then two rows of this
band, etc. Moreover, this kind of exchange can be generalised to more than two
symbols, simultaneously.

The two couples of cells selected above can be exchanged only if they contain
exactly two symbols a1 and a2 (i.e. a4 = a1 and a3 = a2).

The coefficients of the move are

mi1 i2 i3 i4 i5 i6 =
1
p4 ωi3

t (−ei1 i2 ,hk ) ni4 i5 i6

where

ni4 i5 i6 =
∑
αs

eαs ,hk

∑
α3

ωα3
t

∑
α4

bαs ,α3 ,α4 ,i5 ,i6

(
ω[α4 −i4 ]

ch
+ ω[α4 −i4 ]

ck

)
.

Moreover, it holds:

n0i5 i6 = 0 for all (i5 , i6) ∈ {0, · · · , p − 1}2 \ {(0, 0)}.

Proof The new grid has both the boxes, the rows and the columns involved in the
moves that still contain all the symbols repeated exactly once.

Let s = {1, 2}, ζu = (ωbm
, ωrp

) and ζv = (ωbn
, ωrq

). We define the following
indicator functions of specific parts of the grid:

- S identifying the cells of the stack represented by C1 = ωs :

S =
1
p

(
p−1∑
i=0

(ωsC1)
i

)
;

- K1 and K2 identifying the cells of the columns represented by C2 = ωc1 and
C2 = ωc2 respectively:

K1 =
1
p

(
p−1∑
i=0

(ωc1 C2)
i

)
and K2 =

1
p

(
p−1∑
i=0

(ωc2 C2)
i

)
;

- K identifying the cells of both the columns represented by C2 = ωc1 and
C2 = ωc2 :

K = K1 + K2 .

It follows that the polynomial F · S ·K is the indicator function of the cells of the
specific sudoku grid in the stack and in both the columns identified by S and K

respectively.
The coefficients of the polynomial move can be obtained as in Proposition 12.8,

where the coefficients of the indicator function are replaced by those of F · S · K.
Writing ζg as (ζ3 , ζ4 , ζ5 , ζ6), the polynomial form of the move is:

M(F ) = Es,hk P̃g ,hk (24.1)
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where Es,hk is the usual polynomial and P̃g ,hk is obtained using the indicator func-
tion F · S · K in place of F

P̃g,hk (ζg ) = (F · S ·K)(ωbm
, ωrp

, ζg )− (F · S · K)(ωbn
, ωrq

, ζg ).

The expression of the coefficients follows from Equation (24.1), observing that:

(F · S · K)(ωbm
, ωrp

, ζg ) =

S(ζ3)K1(ζ4)F (ωbm
, ωrp

, ωs, ωcu
, ζ5 , ζ6) + S(ζ3)K2(ζ4)F (ωbm

, ωrp
, ωs, ωcv

, ζ5 , ζ6).

To be a valid move the coefficients mi1 i2 i3 i4 i5 i6 must meet the requirements of
Corollary 2. The conditions (a) and (c) are satisfied. Indeed

(a) mi1 i2 i3 i4 00 = 0 because bi1 i2 i3 i4 00 = 0

(c) m00i3 i4 i5 i6 = 0 because −e0,hk =
(
ω0

bn
ω0

rq
− ω0

bm
ω0

rp

)
= 0

Both the conditions (b) and (d) become equivalent to n0i5 i6 = 0.

Proposition 12.11 Let σ1 , σ2 be two exchanges in M1(F ) and write

σ1(F ) = F + Es1 ,u1 v1 Pg1 ,u1 v1 and σ2(F ) = F + Es2 ,u2 v2 Pg2 ,u2 v2 .

where Esi ,ui vi
and Pgi ,ui vi

, i = 1, 2, are defined in Lemma 12.1. The composed
move σ1 ◦ σ2 equals to σ2 ◦ σ1 if one of the two following conditions holds:

- s1 ∩ s2 = ∅, i.e. the moves act on different factors,
- s1 = s2 and {u1 , v1} ∩ {u2 , v2} = ∅, i.e. the moves act on the same factors and

on different bands/rows/stacks/columns/symbols.

Proof We remind that Esi ,ui vi
, i = 1, 2 depend on the set of variables whose

exponents are in Ls1 and Ls2 respectively. Let’s consider the composition of the
moves σ2 ◦ σ1 :

(σ2 ◦ σ1)(F ) = σ2(σ1(F )) = σ2(F1) = F1 + Es2 ,u2 v2 Pg2 ,u2 v2 (F1)

= F + Es1 ,u1 v1 Pg1 ,u1 v1 + Es2 ,u2 v2 Pg2 ,u2 v2 (F + Es1 ,u1 v1 Pg1 ,u1 v1 ).

We focus on Pg2 ,u2 v2 (F + Es1 ,u1 v1 Pg1 ,u1 v1 ).

- If s1 ∩ s2 = ∅, then

Pg2 ,u2 v2 (F + Es1 ,u1 v1 Pg1 ,u1 v1 ) = Pg2 ,u2 v2 + Es1 ,u1 v1 Pg2 ,u2 v2 (Pg1 ,u1 v1 ).

The polynomial Pg2 ,u2 v2 (Pg1 ,u1 v1 ) is

Pg2 ,u2 v2 (F (u1 , ζg1 ) − F (v1 , ζg1 ) =

F (u1 , u2 , ζg1 , 2 ) − F (v1 , u2 , ζg1 , 2 )− F (u1 , v2 , ζg1 , 2 ) + F (v1 , v2 , ζg1 , 2 )

with g1,2 = g1 ∩ g2 . It follows that

σ2 ◦ σ1 = F + Es1 ,u1 v1 Pg1 ,u1 v1 + Es2 ,u2 v2 Pg2 ,u2 v2 + Es2 ,u2 v2 Es1 ,u1 v1 ×
(F (u1 , u2 , ζg1 , 2 )−F (v1 , u2 , ζg1 , 2 )−F (u1 , v2 , ζg1 , 2 )+F (v1 , v2 , ζg1 , 2 ))= σ1◦σ2 .
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- If s1 = s2 = s and {u1 , v1} ∩ {u2 , v2} = ∅, then

Pg,u2 v2 (F + Es,u1 v1 Pg,u1 v1 ) =

Pg,u2 v2 + (Es,u1 v1 (u2)− Es,u1 v1 (v2))Pg,u1 v1 = Pg,u2 v2

being Es,u1 v1 (u2) = Es,u1 v1 (v2) = 0. It follows that

σ2 ◦ σ1 = F + Es1 ,u1 v1 Pg1 ,u1 v1 + Es2 ,u2 v2 Pg2 ,u2 v2 = σ1 ◦ σ2 .

Proposition 12.14 Let F be a 4×4-sudoku regular fraction. A move in M3(F )
must satisfy the equation system:

(ωrp
− ωrq

)b0110i5 i6 − (ωrp
+ ωrq

)b1110i5 i6 = 0 ∀ i5 , i6 ∈ {0, 1}.

It leads to a non regular fraction.

Proof We proved the system of conditions in the Example 12.10. We observe that
only one of the b’s is different from 0. If not, also b1000[i5 +j5 ][i6 +j6 ] must be different
from 0 and it does not meet the requirements of Proposition 12.5. It follows that
there always exists a solution for each regular fraction: the exchange must be made
either on the same row within the band or in two different rows.

The new fraction is non regular. Indeed, referring to the proof of Proposition
12.10, the expression of the move is

M(F ) = Es,hk P̃g ,hk .

Keeping into account that the 2nd roots of unity are ±1 and that ωbn
= −ωbm

, we
derive the expressions of the polynomials Es,hk and P̃g ,hk . For Es,hk we get

Es,hk =
1
4
(
(1 + ωbn

R1)(1 + ωbq
R2) − (1 + ωbm

R1)(1 + ωbp
R2)

)
=

− 1
4
(
2ωbm

R1 + (ωrp
− ωrq

)R2 + ωbm
(ωrp

+ ωrq
)R1R2

)
We observe that all the three coefficients of Es,hk are equal to 0 or ± 1

2 and that
the coefficient of R1 is different from 0 and one of the remaining is different from
0. The expression of P̃g ,hk is

P̃g ,hk (ζg ) = (F · S · K)(ωbm
, ωrp

, ζg ) − (F · S ·K)(ωbn
, ωrq

, ζg )

In this case there are only two columns within a stack and so K = K1 + K2 = 1
and S is 1

2 (1 + ωsC1). We obtain

P̃g ,hk (ζg ) =
1
2
(1 + ωsζ3)

(
F (ωbm

, ωrp
, ωs, ζ4 , ζ5 , ζ6)− F (−ωbm

, ωrq
, ωs, ζ4 , ζ5 , ζ6)

)
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and considering the polynomial expression of the indicator function:

P̃g ,hk =
1
2
(1 + ωsC1)×∑

α4 ,α5 ,α6

( ∑
α1 ,α2 ,α3

bα1 α2 α3 α4 α5 α6 ω
α1
bm

(ωα2
rp

− (−1)α1 ωα2
rq

)ωα3
s

)
Cα4

2 Sα5
1 Sα6

2 .

F is the indicator function of a sudoku regular fraction so all its non null coef-
ficients are equal to ± 1

4 . In particular one of the non null coefficients has α1 = 1
and α2 = 0, by definition of regular fraction and Remark 1. If we indicate with
b10α̃3 α̃4 α̃5 α̃6 such coefficient, the coefficient of P̃g ,hk corresponding to the monomial
Cα̃4

2 Sα̃5
1 Sα̃6

2 is

1
2

∑
α1 ,α2 ,α3

bα1 α2 α3 α̃4 α̃5 α̃6 ω
α1
bm

(ωα2
rp

− (−1)α1 ωα2
rq

)ωα3
s .

We observe that, in this summation, only b10α̃3 α̃4 α̃5 α̃6 can be different from 0 in
order to satisfy the requirements of Proposition 12.5 and so the coefficient of P̃g ,hk

corresponding to the monomial Cα̃4
2 Sα̃5

1 Sα̃6
2 reduces to

1
2
b10α̃3 α̃4 α̃5 α̃6 ωbm

(1 + 1)ωα̃3
s = b10α̃3 α̃4 α̃5 α̃6 ωbm

ωα̃3
s .

It follows that the coefficient of M(F ) corresponding to the monomial
R1C

α̃4
2 Sα̃5

1 Sα̃6
2 is equal to ± 1

8 and therefore Fe = F +M(F ) is an indicator function
of a non regular design.

24.3 Generation and classification of all the 4 × 4 sudoku

Using CoCoA software all the 288 possible 4×4 sudoku have been found. In order to
simplify the presentation we consider only the grids with the symbol 4 in position
(4, 4). In the Appendix the CoCoA code and the list of obtained sudoku grids and
their indicator functions are provided. Among the 72 sudoku grids, 24 correspond
to regular fractions and the other 48 correspond to non regular fractions.

There are no 4× 4 symmetrical sudoku.
Removing one or two of three symmetry conditions (a)-(c) of Proposition 12.6

there are 6 sudoku in each case; all of them correspond to regular fractions.
We list below some characteristics of the obtained sudoku fractions.
Among the 24 regular fractions:

- 6 fractions which are symmetric with respect to broken rows and broken columns,
- 6 fractions which are symmetric with respect to broken rows and locations,
- 6 fractions which are symmetric with respect to broken columns and locations,
- 6 fractions which are symmetric with respect to symbols only.

All the indicator functions of non regular fractions have 10 terms: the constant
(1/4), one interaction with coefficient 1/4, two interactions with coefficients -1/8
and six with coefficients 1/8. We can classify them using the word length pattern of
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the indicator function. We denote by i and j the indices of the factors, i, j ∈ {1, 2},
and we consider i �= j.

- 16 fractions have the word length pattern (0,0,2,3,4,1) and the term whose coef-
ficient is 1/4 is either RiCjSi or RiCjSj ,

- 24 fractions have the word length pattern is (0,0,2,5,2,0) and the term whose
coefficient is 1/4 is either RiCjS1S2 or R1C1C2Si,j or R1R2C1Si,j ,

- 8 fractions have the word length pattern is (0,0,4,4,1,0) and the term whose
coefficient is 1/4 is either R1C1C2S1S2 or R1R2C1S1S2 .

Proposition 12.7 allows us also to know how many and which solutions has a
partially filled puzzle. It is enough to add to the system on the coefficients the
conditions F (xj ) = 1, where xj are the points of F already known.

For instance, among the 72 previous sudoku with the symbol 4 the position (4, 4)
of the sudoku grid, there are 54 sudoku grids with the symbol 3 in position (1, 1)
and, among them, there are 45 sudoku with the symbol 2 in position (2, 3). In the
Appendix the CoCoA code is provided.

24.3.1 CoCoA code for 4 × 4 sudoku

(A-1) Generation of all the indicator functions with given symmetries.

Use R::=Q[b[0..1,0..1,0..1,0..1,0..1,0..1]];
D:=6; L1:=Tuples([0,1],D); L2:=L1; Le:=2^D;
-- LABEL A
L3:=[I | I In 1..Le];
T:=[[[Mod(L1[I,K]+L2[J,K],2)|K In 1..D]|J In 1..Le]|I In 1..Le];
Tab:=[[b[B[1],B[2],B[3],B[4],B[5],B[6]] |B In T[J]]|J In 1..Le];
Coe:=[b[B[1],B[2],B[3],B[4],B[5],B[6]] |B In L1];
LF:=[-Coe[J]+Sum([Coe[I]*Tab[I,J] | I In 1..Le])| J In 1..Le];
LOrth:=[];
For K:=2 To Le Do
If (L1[K][1]= 0 And L1[K][2]= 0) -- columns and symbols
Or (L1[K][3]= 0 And L1[K][4]= 0) -- rows and symbols
Or (L1[K][5]= 0 And L1[K][6]= 0) -- rows and columns
Or (L1[K][2]= 0 And L1[K][4]= 0) -- boxes and symbols
Or (L1[K][1]= 0 And L1[K][4]= 0) -- broken rows and symbols
Or (L1[K][2]= 0 And L1[K][3]= 0) -- broken columns and symbols

-- Or (L1[K][1]= 0 And L1[K][3]= 0) -- locations and symbols
Then Append(LOrth, L1[K]); EndIf;

EndFor;
CoeOrth:=[b[B[1],B[2],B[3],B[4],B[5],B[6]] |B In LOrth];
EvCoeOrth:=[[C,0]|C In CoeOrth];
Append(LF,Sum(Coe)-1); ---- 4 in position (4,4)
Fin:=Subst(LF,EvCoeOrth);
Append(Fin,CoeOrth);Fin:=Flatten(Fin);
-- LABEL B
Define BCond(FinCond,B,V);
FinCond:=Subst(FinCond,B,V);
Append(FinCond,B-V);
Return FinCond;

EndDefine;
Define Ord(L);

L2:=[LT(L[I])-L[I] | I In 1..Len(L)]; K:=L;
For I:=1 To Len(L) Do K[IndetIndex(LT(L[I]))]:= L2[I]; End;
L:=K; Return L;

EndDefine;
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FinCond:=BCond(Fin,b[0,0,0,0,0,0],1/4);
G :=ReducedGBasis(Ideal(FinCond));
E:=QuotientBasis(Ideal(G));Len(E);
-- 6 solutions for symmetry w.r.t. broken rows and broken columns
Define Sol(G,C,V);
LL:=BCond(G,C,V);
LL:=ReducedGBasis(Ideal(LL));
PrintLn C,’ = ’,V;
E:=QuotientBasis(Ideal(LL));
PrintLn ’Number of solution ’,Len(E);
If Len(E)=1 Then Append(MEMORY.CT,Ord(LL));Else PrintLn LL;EndIf;
Return LL;
EndDefine;
MEMORY.CT:=[];

Solutions for symmetric sudoku w.r.t. broken rows and broken columns

G01:=Sol(G,b[1,0,1,1,1,0],1/4); -- 2 sol
G02:=Sol(G01,b[1,1,1,0,1,1],0); -- 1 sol
G03:=Sol(G01,b[1,1,1,0,1,1],1/4); -- 1 sol
G04:=Sol(G,b[1,0,1,1,1,0],0); -- 4 sol
G05:=Sol(G04,b[1,0,1,1,1,1],1/4); -- 2 sol
G06:=Sol(G05,b[1,1,1,0,1,0],1/4); -- 1 sol
G07:=Sol(G05,b[1,1,1,0,1,0],0); -- 1 sol
G08:=Sol(G04,b[1,0,1,1,1,1],0); -- 2 sol
G09:=Sol(G08,b[1,1,1,0,1,1],1/4); -- 1 sol
G010:=Sol(G08,b[1,1,1,0,1,1],0); -- 1 sol
UnSet Indentation;
Len(MEMORY.CT);MEMORY.CT;

(A-2) Computation of sudoku grids

Use R::=Q[x[1..6]];
CT:=BringIn(MEMORY.CT);
D:=6;
L1:=Tuples([0,1],D);L2:=[[2*L1[I,J]-1|J In 1..6]|I IN 1..64]
SK:=NewMat(4,4); Define Sudo(ZZ,L1,SK);
For I:= 1 To 64 Do
If ZZ[I]=1 Then
R:=2*L1[I,1]+L1[I,2]+1;
C:=2*L1[I,3]+L1[I,4]+1;
S:=2*L1[I,5]+L1[I,6]+1;
SK[R,C]:=S;
EndIf;

EndFor;
Return SK; End;
F:=CT;
For J:=1 To Len(CT) Do
F[J]:=Sum([CT[J,I]*LogToTerm(L1[I])|I In 1..64]);PrintLn(F[J]);
ZZ:=[Eval(F[J],L2[I])|I In 1..64]; PrintLn(Sudo(ZZ,L1,SK));
EndFor;

(A-3) Computation of solutions of incomplete sudoku grids

Use S::=Q[ x[1..6]];
L1:=Tuples([0,1],6);
Le:=2^6;
X:= [LogToTerm(L1[I]) |I In 1..Le];
Use R::=Q[b[0..1,0..1,0..1,0..1,0..1,0..1], x[1..6]];
X:=BringIn(X);
L1:=BringIn(L1);

Continue from Label A to Label B of Item (i)
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MEMORY.EvCoe:=EvCoeOrth;
Define PS(F,S,Fin);
P:=Subst(F,S);
Point:=Subst(P,MEMORY.EvCoe);
Append(Fin,P);Fin:=Flatten(Fin);

Return Fin;
EndDefine;
Fin:=PS(F,[[x[1],-1],[x[2],-1],[x[3],-1],[x[4],-1],[x[5],1],

[x[6],-1]],Fin);
Fin:=PS(F,[[x[1],-1],[x[2],1],[x[3],1],[x[4],-1],[x[5],-1],

[x[6],1]],Fin);
Use RR::=Q[b[0..1,0..1,0..1,0..1,0..1,0..1]];
Fin:=BringIn(Fin);

Continue from Label B of Item (i)

24.3.2 4 × 4 sudoku regular fractions

There are 96 regular fractions. Among them, 24 are symmetric for broken rows and
broken columns, 24 are symmetric for broken rows and locations, 24 are symmetric
for broken columns and locations, 24 are symmetric for symbols only. There are no
4 × 4 symmetrical sudoku.

We list only the sudoku with the symbol 4 in the position (16, 16) of the grid.
After the grids we show the terms of the indicator functions; all the coefficients

are 1/4.

(A-1) Symmetric fractions for broken rows and broken columns, non symmetric
for locations:

3 2 4 1 2 3 4 1 3 1 4 2
1 4 2 3 1 4 3 2 2 4 1 3
4 1 3 2 4 1 2 3 4 2 3 1
2 3 1 4 3 2 1 4 1 3 2 4

R1R2C1S1S2 R1C1C2S2 R2C2S1 1
R1R2C1S1S2 R1C1C2S1 R2C2S2 1
(R1C1C2S1S2 R1R2C1S2 R2C2S1 1

2 1 4 3 1 2 4 3 1 3 4 2
3 4 1 2 3 4 2 1 2 4 3 1
4 3 2 1 4 3 1 2 4 2 1 3
1 2 3 4 2 1 3 4 3 1 2 4

R1C1C2S1S2 R1R2C1S1 R2C2S2 1
R1R2C1S1 R1C1C2S2 R2C2S1S2 1
R1C1C2S1 R1R2C1S2 R2C2S1S2 1

(A-2) Symmetric fractions for broken rows and locations, non symmetric for broken
columns:

2 3 4 1 2 1 4 3 3 1 4 2
4 1 2 3 4 3 2 1 4 2 3 1
1 4 3 2 3 4 1 2 2 4 1 3
3 2 1 4 1 2 3 4 1 3 2 4
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R1R2C1S1S2 R2C1C2S1 R1C2S2 1
R2C1C2S1S2 R1R2C1S1 R1C2S2 1
R2C1C2S1S2 R1R2C1S2 R1C2S1 1

3 2 4 1 1 2 4 3 1 3 4 2
4 1 3 2 4 3 1 2 4 2 1 3
1 4 2 3 3 4 2 1 2 4 3 1
2 3 1 4 2 1 3 4 3 1 2 4

R1R2C1S1S2 R2C1C2S2 R1C2S1 1
R1R2C1S1 R2C1C2S2 R1C2S1S2 1
R2C1C2S1 R1R2C1S2 R1C2S1S2 1

(A-3) Symmetric fractions for broken columns and locations, non symmetric for
broken rows:

3 4 2 1 2 4 3 1 3 4 1 2
1 2 4 3 1 3 4 2 2 1 4 3
4 3 1 2 4 2 1 3 4 3 2 1
2 1 3 4 3 1 2 4 1 2 3 4

R1R2C2S1S2 R1C1C2S2 R2C1S1 1
R1R2C2S1S2 R1C1C2S1 R2C1S2 1
R1C1C2S1S2 R1R2C2S2 R2C1S1 1

2 4 1 3 1 4 3 2 1 4 2 3
3 1 4 2 2 3 4 1 3 2 4 1
4 2 3 1 4 1 2 3 4 1 3 2
1 3 2 4 3 2 1 4 2 3 1 4

R1C1C2S1S2 R1R2C2S1 R2C1S2 1
R1C1C2S1 R1R2C2S2 R2C1S1S2 1
R1R2C2S1 R1C1C2S2 R2C1S1S2 1

(A-4) Symmetric fractions for locations only:

4 2 3 1 4 3 2 1 4 3 1 2
3 1 4 2 2 1 4 3 1 2 4 3
2 4 1 3 3 4 1 2 3 4 2 1
1 3 2 4 1 2 3 4 2 1 3 4

R1R2C1C2S1S2 R1C2S1 R2C1S2 1
R1R2C1C2S1S2 R2C1S1 R1C2S2 1
R1R2C1C2S2 R1C2S1S2 R2C1S1 1

4 1 3 2 4 2 1 3 4 1 2 3
3 2 4 1 1 3 4 2 2 3 4 1
1 4 2 3 2 4 3 1 1 4 3 2
2 3 1 4 3 1 2 4 3 2 1 4

R1R2C1C2S2 R2C1S1S2 R1C2S1 1
R1R2C1C2S1 R1C2S1S2 R2C1S2 1
R1R2C1C2S1 R2C1S1S2 R1C2S2 1
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24.3.3 4 × 4 non-regular sudoku fractions

There are 192 non regular fractions. We list only the sudoku with the symbol 4 in
the position (16, 16) of the grid.

All the indicator functions have 10 terms: the constant (1/4), one interaction
with coefficient 1/4, two interactions with coefficients -1/8 and six with coefficients
1/8.

After the grids we show the terms of the indicator functions; in bold the interac-
tions whose coefficients are 1/4.

We can classify the fractions using the word length pattern of the indicator
function. We denote by i and j the indices of the factors i, j ∈ {1, 2} and we
consider i �= j.

(A-1) The word length pattern of the indicator function is (0,0,2,3,4,1).
The interactions whose coefficients are 1/4 are of the form:

RiCjSi or RiCjSj

(a)

2 4 1 3 4 2 1 3 2 4 3 1 4 2 3 1
1 3 4 2 3 1 4 2 3 1 4 2 1 3 4 2
4 2 3 1 2 4 3 1 4 2 1 3 2 4 1 3
3 1 2 4 1 3 2 4 1 3 2 4 3 1 2 4

b 1 0 0 1 1 0 b 1 0 0 1 1 1 b 1 0 1 1 1 0 b 1 0 1 1 1 1 b 1 1 0 1 1 0 b 1 1 0 1 1 1 b 1 1 1 1 1 0 b 1 1 1 1 1 1

- + + + + + + -

+ + - + + - + +

+ - + + + + - +

+ + + - - + + +

R1R2C1C2S1S2 R1R2C1C2S1 R1R2C2S1S2 R1C1C2S1S2

R1R2C2S1 R1C1C2S1 R1C2S1S2 R1C2S1

R2C1S2 1
(b)

3 4 1 2 4 3 2 1 4 3 1 2 3 4 2 1
1 2 4 3 1 2 4 3 2 1 4 3 2 1 4 3
4 3 2 1 3 4 1 2 3 4 2 1 4 3 1 2
2 1 3 4 2 1 3 4 1 2 3 4 1 2 3 4

b 1 0 0 1 0 1 b 1 0 0 1 1 1 b 1 0 1 1 0 1 b 1 0 1 1 1 1 b 1 1 0 1 0 1 b 1 1 0 1 1 1 b 1 1 1 1 0 1 b 1 1 1 1 1 1

- + + + + + + -

+ + + - - + + +

+ + - + + - + +

+ - + + + + - +

R1R2C1C2S1S2 R1R2C1C2S2 R1R2C2S1S2 R1C1C2S1S2

R1R2C2S2 R1C1C2S2 R1C2S1S2 R2C1S1

R1C2S2 1
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(c)

2 1 4 3 4 1 2 3 4 3 2 1 2 3 4 1
4 3 2 1 2 3 4 1 2 1 4 3 4 1 2 3
1 4 3 2 3 4 1 2 1 4 3 2 3 4 1 2
3 2 1 4 1 2 3 4 3 2 1 4 1 2 3 4

b 0 1 1 0 1 0 b 0 1 1 0 1 1 b 0 1 1 1 1 0 b 0 1 1 1 1 1 b 1 1 1 0 1 0 b 1 1 1 0 1 1 b 1 1 1 1 1 0 b 1 1 1 1 1 1

+ - + + + + - +

- + + + + + + -

+ + - + + - + +

+ + + - - + + +

R1R2C1C2S1S2 R1R2C1C2S1 R1R2C1S1S2 R2C1C2S1S2

R1R2C1S1 R2C1C2S1 R2C1S1S2 R2C1S1

R1C2S2 1
(d)

3 1 4 2 4 2 3 1 4 1 3 2 3 2 4 1
4 2 3 1 3 1 4 2 3 2 4 1 4 1 3 2
1 4 2 3 1 4 2 3 2 4 1 3 2 4 1 3
2 3 1 4 2 3 1 4 1 3 2 4 1 3 2 4

b 0 1 1 0 0 1 b 0 1 1 0 1 1 b 0 1 1 1 0 1 b 0 1 1 1 1 1 b 1 1 1 0 0 1 b 1 1 1 0 1 1 b 1 1 1 1 0 1 b 1 1 1 1 1 1

+ - + + + + - +

- + + + + + + -

+ + + - - + + +

+ + - + + - + +

R1R2C1C2S1S2 R1R2C1C2S2 R1R2C1S1S2 R2C1C2S1S2

R1R2C1S2 R2C1C2S2 R2C1S1S2 R1C2S1

R2C1S2 1

(A-2) The word length pattern of the indicator function is (0,0,2,5,2,0).
The interactions whose coefficients are 1/4 are of the form:

RiCjS1S2 or R1C1C2Si,j or R1R2C1Si,j

(a)

4 1 2 3 4 1 3 2 1 4 2 3 1 4 3 2
3 2 4 1 2 3 4 1 2 3 4 1 3 2 4 1
1 4 3 2 1 4 2 3 4 1 3 2 4 1 2 3
2 3 1 4 3 2 1 4 3 2 1 4 2 3 1 4

b 1 0 0 1 0 1 b 1 0 0 1 1 0 b 1 0 1 1 0 1 b 1 0 1 1 1 0 b 1 1 0 1 0 1 b 1 1 0 1 1 0 b 1 1 1 1 0 1 b 1 1 1 1 1 0

+ + + - - + + +

+ + - + + - + +

+ - + + + + - +

- + + + + + + -
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R1R2C1C2S1 R1R2C1C2S2 R1R2C2S1 R1C1C2S1

R1R2C2S2 R1C1C2S2 R2C1S1S2 R1C2S1

R1C2S2 1
(b)

1 2 4 3 1 3 4 2 4 2 1 3 4 3 1 2
4 3 1 2 4 2 1 3 1 3 4 2 1 2 4 3
2 4 3 1 3 4 2 1 3 4 2 1 2 4 3 1
3 1 2 4 2 1 3 4 2 1 3 4 3 1 2 4

b 0 1 1 0 0 1 b 0 1 1 0 1 0 b 0 1 1 1 0 1 b 0 1 1 1 1 0 b 1 1 1 0 0 1 b 1 1 1 0 1 0 b 1 1 1 1 0 1 b 1 1 1 1 1 0

+ - + + + + - +

- + + + + + + -

+ + + - - + + +

+ + - + + - + +

R1R2C1C2S1 R1R2C1C2S2 R1R2C1S1 R2C1C2S1

R1R2C1S2 R2C1C2S2 R1C2S1S2 R2C1S1

R2C1S2 1
(c)

1 2 4 3 3 2 4 1 3 4 2 1 1 4 2 3
3 4 2 1 1 4 2 3 1 2 4 3 3 2 4 1
4 1 3 2 4 3 1 2 4 1 3 2 4 3 1 2
2 3 1 4 2 1 3 4 2 3 1 4 2 1 3 4

b 0 1 0 1 1 0 b 0 1 0 1 1 1 b 0 1 1 0 1 0 b 0 1 1 0 1 1 b 1 1 0 1 1 0 b 1 1 0 1 1 1 b 1 1 1 0 1 0 b 1 1 1 0 1 1

+ + + - - + + +

+ + - + + - + +

+ - + + + + - +

- + + + + + + -

R1R2C1S1S2 R1R2C2S1S2 R1R2C1S1 R1R2C2S1

R1C1C2S2 R2C1S1S2 R2C2S1S2 R2C1S1

R2C2S1 1
(d)

1 3 4 2 2 3 4 1 1 4 3 2 2 4 3 1
2 4 3 1 1 4 3 2 2 3 4 1 1 3 4 2
4 1 2 3 4 2 1 3 4 2 1 3 4 1 2 3
3 2 1 4 3 1 2 4 3 1 2 4 3 2 1 4

b 0 1 0 1 0 1 b 0 1 0 1 1 1 b 0 1 1 0 0 1 b 0 1 1 0 1 1 b 1 1 0 1 0 1 b 1 1 0 1 1 1 b 1 1 1 0 0 1 b 1 1 1 0 1 1

+ + + - - + + +

+ + - + + - + +

- + + + + + + -

(+ - + + + + - +
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R1R2C1S1S2 R1R2C2S1S2 R1C1C2S1 R1R2C1S2

R1R2C2S2 R2C1S1S2 R2C2S1S2 R2C1S2

R2C2S2 1
(e)

3 1 4 2 1 3 4 2 3 1 4 2 1 3 4 2
2 4 3 1 2 4 1 3 4 2 1 3 4 2 3 1
4 2 1 3 4 2 3 1 2 4 3 1 2 4 1 3
1 3 2 4 3 1 2 4 1 3 2 4 3 1 2 4

b 0 1 0 1 1 0 b 0 1 0 1 1 1 b 0 1 1 1 1 0 b 0 1 1 1 1 1 b 1 0 0 1 1 0 b 1 0 0 1 1 1 b 1 0 1 1 1 0 b 1 0 1 1 1 1

+ - + + + + - +

+ + - + + - + +

+ + + - - + + +

- + + + + + + -

R1C1C2S1S2 R2C1C2S1S2 R1C1C2S1 R2C1C2S1

R1R2C1S2 R1C2S1S2 R2C2S1S2 R1C2S1

R2C2S1 1
(f)

2 1 4 3 2 1 4 3 1 2 4 3 1 2 4 3
4 3 1 2 3 4 2 1 3 4 1 2 4 3 2 1
3 4 2 1 4 3 1 2 4 3 2 1 3 4 1 2
1 2 3 4 1 2 3 4 2 1 3 4 2 1 3 4

b 0 1 0 1 0 1 b 0 1 0 1 1 1 b 0 1 1 1 0 1 b 0 1 1 1 1 1 b 1 0 0 1 0 1 b 1 0 0 1 1 1 b 1 0 1 1 0 1 b 1 0 1 1 1 1

+ - + + + + - +

+ + - + + - + +

+ + + - - + + +

- + + + + + + -

R1C1C2S1S2 R2C1C2S1S2 R1R2C1S1 R1C1C2S2

R2C1C2S2 R1C2S1S2 R2C2S1S2 R1C2S2

R2C2S2 1

(A-3) The word length pattern of the indicator function is (0,0,4,4,1,0).
The interactions whose coefficients are 1/4 are of the form:

R1C1C2S1S2 or R1R2C1S1S2

(a)

2 1 4 3 3 1 4 2 3 4 1 2 2 4 1 3
3 4 1 2 2 4 1 3 2 1 4 3 3 1 4 2
4 2 3 1 4 3 2 1 4 2 3 1 4 3 2 1
1 3 2 4 1 2 3 4 1 3 2 4 1 2 3 4
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b 0 1 0 1 0 1 b 0 1 0 1 1 0 b 0 1 1 0 0 1 b 0 1 1 0 1 0 b 1 1 0 1 0 1 b 1 1 0 1 1 0 b 1 1 1 0 0 1 b 1 1 1 0 1 0

+ + + - - + + +

+ + - + + - + +

- + + + + + + -

+ - + + + + - +

R1C1C2S1S2 R1R2C1S1 R1R2C2S1 R1R2C1S2

R1R2C2S2 R2C1S1 R2C2S1 R2C1S2

R2C2S2 1
(b)

2 3 4 1 2 3 4 1 3 2 4 1 3 2 4 1
4 1 3 2 1 4 2 3 1 4 3 2 4 1 2 3
1 4 2 3 4 1 3 2 4 1 2 3 1 4 3 2
3 2 1 4 3 2 1 4 2 3 1 4 2 3 1 4

b 0 1 0 1 0 1 b 0 1 0 1 1 0 b 0 1 1 1 0 1 b 0 1 1 1 1 0 b 1 0 0 1 0 1 b 1 0 0 1 1 0 b 1 0 1 1 0 1 b 1 0 1 1 1 0

- + + + + + + -

+ - + + + + - +

+ + - + + - + +

+ + + - - + + +

R1R2C1S1S2 R1C1C2S1 R2C1C2S1 R1C1C2S2

R2C1C2S2 R1C2S1 R2C2S1 R1C2S2

R2C2S2 1
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On-line Supplement to
Replicated measurements and algebraic statistics

Roberto Notari and Eva Riccomagno

25.1 Proofs

Theorem 11.3 Consider n distinct points P1 , . . . , Pn ∈ Ak with Pi of coordinates
(ai1 , . . . , aik ), and let X = {P1 , . . . , Pn}. Then J =

⋂n
i=1〈x1−taai1 , . . . , xk−taik 〉 ⊂

S = K[x1 , . . . , xk , t] is a flat family. Its special fibre is the origin with multiplicity n

and it is defined by the ideal I0 = {F ∈ R : F is homogeneous and there exists f ∈
I(X) such that F = LF(f)}. Moreover, the Hilbert function does not depend on t.

Proof At first, we prove that the ideal J ⊂ S is homogeneous, that is to say, if
f ∈ J and f = f0 + · · ·+ fs with fi homogeneous of degree j, then fi ∈ J for every
i = 0, . . . , s.

By definition, if f ∈ J then f ∈ 〈x1 − tai1 , . . . , xk − taik 〉 for i = 1, . . . , n, that is
to say, f(t, tai1 , . . . , taik ) is the null polynomial in the variable t. Let tm xm 1

1 . . . xmk
n

be a term of degree M = m + m1 + . . . mn . If we evaluate it at (t, tai1 , . . . , taik )
we obtain (am 1

i1 . . . amk
in )tM . Hence, if f = f0 + · · · + fs with fj homogeneous of

degree j, then f(t, tai1 , . . . , taik ) = c0t
0 + · · · + cst

s where cj = fj (1, ai1 , . . . , aik ).
The polynomial f(t, tai1 , . . . , taik ) is the null polynomial and thus, for every j and
every i, we have fj (1, ai1 , . . . , aik ) = 0. The homogeneity of fj guarantees that
fj (t, tai1 , . . . taik ) = 0 as well, and so fj ∈ 〈x1 − tai1 , . . . , xk − taik 〉 for every j and
i. The first claim then follows.

A remarkable property of homogeneous ideals in polynomial rings is that they can
be generated by homogeneous polynomials. Secondly, we prove that J = 〈tsf0 +
· · · + t0fs : f = f0 + · · · + fs ∈ I(X), fj homogeneous of degree j〉. Let F =
tsf0 + . . . t0fs ∈ S with f = f0 + · · · + fs ∈ I(X). Then F is homogeneous of
degree s, f(ai1 , . . . , aik ) = 0 and F (t, tai1 , . . . , taik ) = tsf(ai1 , . . . aik ) = 0. Hence,
F ∈ 〈x1 − tai1 , . . . , xk − taik 〉 for every i and so F ∈ J . Conversely, if F ∈ J

is homogeneous, then f(ai1 , . . . , aik ) = F (1, ai1 , . . . , aik ) = 0 for every i and so
f ∈ I(X).

To simplify notation, set h(f, t) = tsf0 + · · · + t0fs where f = f0 + · · · + fs and
fj is homogeneous of degree j.

Now, we prove that there exists a monomial ideal L ⊂ R such that LT(J) = L

with respect a term-ordering � which satisfies the following properties:

(A-1) t � x1 � · · · � xk ;

424
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(A-2) over R, � is graded;
(A-3) tlxl1

1 . . . xlk
k � tm xm 1

1 . . . xmk

k if xl1
1 . . . xlk

k � xm 1
1 . . . xmk

k or
xl1

1 . . . xlk
k = xm 1

1 . . . xmk

l and l < m.

With respect to �, LT(F ) = LT(fs) ∈ R for every F = h(f, t) ∈ J, with f ∈
I(X). Furthermore, if G = {g1 , . . . , gm} is a Gröbner base of I(X) with respect to
�, then {h(g1 , t), . . . , h(gm , t)} is a Gröbner base of J with respect to �. Hence,
LT(J) = LT(I(X)) ⊂ R and the claim follows.

For every t0 ∈ K, a Gröbner base of 〈J, t − t0〉 is then

{h(g1 , t), . . . , h(gm , t), t − t0}

because GCD(LT(h(gi, t)), t) = 1, for every i = 1, . . . ,m and GCD stands for
greatest common divisor. It follows that the Hilbert function of S/〈J, t − t0〉 is
equal to the Hilbert function of X and so it does not depend on t0 ∈ K. The family
J is then flat and the claim follows. In particular,

〈J, t〉 = 〈LF(f) : f ∈ I(X)〉.

Theorem 11.4 Let X = {P1 , . . . , Pr}, Y = {Q1 , . . . , Qs} be sets of points in Ak ,
and assume that Z = X ∪ Y has degree n = r + s; that is, n distinct points. If Pi

has coordinates (ai1 , . . . , aik ) then the family

J =
r⋂

i=1

〈x1 − tai1 , . . . , xk − taik 〉 ∩ I(Q1) ∩ · · · ∩ I(Qs)

is flat, with fibers of dimension 0 and degree r + s.

Proof Assume first that Pi �= O and Qi /∈ lj for each i, j where lj is the line through
Pj and the origin O. Then, for each t0 �= 0, the points P1(t0), . . . , Pr (t0), Q1 , . . . , Qs

are distinct. We have to check that J is flat also for t0 = 0. If tag ∈ J for some g ∈ S,

then tag ∈ I(Qj ) for every j and tag ∈ J ′ =
⋂r

i=1〈x1−tai1 , . . . , xk −taik 〉. The ideal
I(Qj ) is prime and t /∈ I(Qj ). Then I(Qj ) � g. From the proof of Theorem 11.3
it follows that g ∈ J ′ and so g ∈ J. Hence, J is flat also for t0 = 0 and the claim
follows.

If one or more points among the Qj ’s belong to some lines among l1 , . . . , lr then
for some values we obtain some double points, but the family is still flat as a
straightforward computation shows.

If one point among the Qj ’s or one among the Pi ’s is the origin, then again the
family is flat for the same reasons as before.

Theorem 11.8 In the hypotheses and notation of Theorem 11.7, for every i =
1, . . . , r it holds

ci(0) =
det(Di,mi

)
det(A(1))

.
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Proof The hypotheses guarantee that the polynomial ci is equal to

ci =

∑b
h=mi

tm+h−mi det(Dih)
tm det(A(1))

=
∑

h=mi

th−mi
det(Dih)
det(A(1))

.

Hence, ci(0) = det(Di,mi
)/det(A(1)).

Theorem 11.9 Let Y = {A1 , . . . , Am} ⊂ Ak be a set of distinct points, and let
Xi = {Pi1 , . . . , Piri

} be a set of ri distinct points such that Z = X1 ∪ · · · ∪Xm has
degree r = r1 + · · · + rm . Let Ji be the I(Ai)−primary ideal of degree ri obtained
by collapsing Xi to Ai as in previous Theorem 11.6, and let J = J1 ∩ · · · ∩ Jm . Let
Fi ∈ R

Ji
be the limit interpolating polynomial computed as in Theorem 11.7. Then

there exists a unique polynomial F ∈ R
J such that F mod Ji = Fi.

Proof The existence and uniqueness of F is a consequence of the isomorphism
between R

J and R
J1

⊕ · · · ⊕ R
Jm

because Ji + Jj = R for every i �= j. In fact, the
sum of ideals correspond to the intersection of the algebraic sets associated, but
Ai �= Aj and so the intersection is empty.

Now we want to describe an algorithm to get F starting from F1 , . . . , Fm , from a
monomial base of R/J, and from Gröbner bases Gi of Ji. To fix ideas, assume that
G1 = {g1 , . . . , gt}.

Let M1 = 1,M2 , . . . ,Mr be a monomial basis of R
J , and assume that

M1 ,M2 , . . . ,Mr1 is a monomial base of R
J1

. Then, for j = r1 + 1, . . . , r,

there exists σ(j) such that Mj = LT (gσ (j ))Nj for a suitable monomial Nj .

From the fact that M1 ,M2 , . . . ,Mr is a base of R/J, it follows that also
M1 , . . . ,Mr1 , Nr1 +1gσ (r1 +1) , . . . , Nrgσ (r) is a base of R/J. The second base has
the property that Njgσ (j ) = 0 in R/J1 and so their cosets are a base of
R/(J2 ∩ · · · ∩ Jm ) ∼= R/J2 ⊕ · · · ⊕R/Jm . Hence, every interpolation problem has a
unique solution as linear combination of the Njgσ (j ) ’s.

Let H =
∑r

j=r1 +1 ajNjgσ (j ) ∈ J1 , and let F = F1 + H ∈ R/J.

By its properties, we have that F − Fi ∈ Ji, for i = 1, . . . ,m. Then, we impose
that NF (F1 + H − Fi) = 0 in R/Ji. By rewriting the polynomial F1 + H − Fi

modulo Gi we get a polynomial with coefficients that are linear polynomials in the
variables ar1 +1 , . . . , ar . The coefficients must be zero because the normal form is 0
and so we get a linear system in the variables ai ’s. The only solution gives the only
H and so we get F as claimed.
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On-line Supplement to
Geometry of extended exponential models

Daniele Imparato and Barbara Trivellato

26.1 Proofs

Proposition 19.2 Suppose that (Ω,F , µ) is not atomic with a finite number of
atoms.

(A-1) LΦ1
0 (p) is a non-separable space.

(A-2) Cp = L∞ ∩ LΦ1
0 (p) �= LΦ1

0 (p).
(A-3) Kp is neither a closed nor an open set.
(A-4) Sp satisfies a cylindrical property, that is, if v ∈ Sp then v + Cp ∈ Sp .

Proof For Items (A-1) and (A-2), see (Rao and Ren 2002). For Item (A-3), consider
the Lebesgue measure on [0, 1] and let

un (x) = log
(

1
x1− 1

n

)
− Ep

[
log

(
1

x1− 1
n

)]
.

It should be noted that, for each n ∈ N, un ∈ Kp . More precisely, un ∈ Sp . In fact,
let αn = 1 + 1/n, βn its conjugate exponent and tn = 1/βn . Then from Hölder’s
inequality one obtains that, for each v ∈ Bp , ‖v‖Bp

< 1

Ep

[
eun +tn v

]
< (Ep [eαn un ])1/αn (Ep [ev ])1/βn < ∞.

However, the sequence (un )n tends in norm to u(x) = − log(x) + Ep [log(x)], which
does not belong to Kp . This proves that Kp is not a closed set. In order to prove
that Kp is not an open set in general, let µ be the uniform distribution on [0, 1/2]
and let u(x) = − log(x log2(x)) + Ep

[
log(x log2(x))

]
. It is straightforward to see

that u(x) belongs to Kp \ Sp . For Item (A-4), let v ∈ Sp , so that αv ∈ Sp for some
α > 0, and let u ∈ Cp . Then, if λ = 1/α and t = 1/(1 − λ), it holds that

λαv + (1 − λ)tu = u + v,

that is, u + v ∈ Sp as a convex combination of elements which belong to Sp .

Proposition 19.4 The following statements are equivalent.

(A-1) q ∈ Ê(p).
(A-2) log(q/p) ∈ LΦ1 (p).

427
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(A-3) p/q ∈ La(p) for some a > 0.
(A-4) q = eu−Kp (u) · p for some u ∈ Kp .

(A-5) A sequence qn = ep(un ), un ∈ Sp , n = 1, 2, . . . , exists so that limn→∞ un = u

µ-a.s. and in LΦ1 (p), lim Kp(un ) = Kp(u), and q = eu−Kp (u) · p.

Proof The equivalence between (A-1) and (A-2) easily follows from the definition
of the exponential arc. Let p(t) be a left open exponential arc connecting q to p;
namely, p(t) = etu−Kp (tu)p, t ∈ (−α, 1], α > 0, with p(0) = p and p(1) = q. For p(t)
to be an exponential model, it is necessary and sufficient that u = log(q/p) belongs
to LΦ1 (p).

It is trivial to say that if q satisfies (A-4), then q ∈ Ê(p). Conversely, let us
suppose that log(q/p) ∈ LΦ1 (p); namely, q = ev p, where v ∈ LΦ1 (p). Then, by
centring v, we obtain

q = eu−Kp (u)p,

where u = v − Ep [v] and Kp [u] = −Ep [v], which is finite since LΦ1 (p) ⊂ L1(p).
Therefore, q ∈ Ê(p).

In order to prove the equivalence between (A-1) and (A-5), let q ∝ eup, q ∈
Ê(p), (tn )n be an increasing real sequence converging to 1 and define the sequence
(un )n = (tnu)n . By definition, un → u a.e. and in LΦ1 (p); furthermore, un ∈ Sp

since Sp is a solid convex set, see (Cena and Pistone 2007, Theorem 21). Hence,
qn = ep(un ) ∈ E(p). Moreover, since eun < eu for u > 0 and eun < 1 for u < 0 from
the Lebesgue dominated convergence theorem Kp(un ) → Kp(u).

Proposition 19.5 Let p ∈M> ; then

(A-1) q ∈ Ê(p) if, and only if, a left open right closed exponential arc exists that
connects p to q. In particular, q ∈ ∂E(p) if, and only if, such an arc cannot
be right open.

(A-2) Ê(p) is a convex set.

Proof Item (A-1) is straightforward from the definition of ∂E(p). In order to prove
Item (A-2), let q1 , q2 ∈ Ê(p) and λ ∈ [0, 1]; then, for some α > 0, because of the
convexity of the function x−α for x > 0, it holds that

Ep

[(
λ

q1

p
+ (1 − λ)

q2

p

)−α
]
≤ λEp

[(
q1

p

)−α
]

+ (1 − λ)Ep

[(
q2

p

)−α
]

< ∞,

since, by hypotheses, both p/q1 and p/q2 belong to Lα (p).

Theorem 19.2 Let p ∈ M> and q ∈ M≥ = E(p). Let us consider sequences
un ∈ Sp and qn = eun −Kp (un ) · p ∈ E(p), n = 1, 2, . . . , such that qn → q in L1(µ)
as n →∞.

(A-1) The sequence vn = un −Kp(un ) converges in p ·µ-probability, as n → ∞, to
a [−∞,+∞[-valued random variable v and {v �= −∞} = Supp q.
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(A-2) lim inf
n→∞

vn ≤ lim inf
n→∞

un . If the sequence (vn )n is µ-a.s. convergent, then
v ≤ lim inf

n→∞
un .

(A-3) If Supp q = Ω, then either

(a) lim sup
n→∞

Kp(un ) < +∞ and for each sub-sequence n(k) such that un(k)

is p · µ-convergent, it holds that

−∞ < v + lim inf
n→∞

Kp(un ) ≤ lim
k→∞

un(k)

≤ v + lim sup
n→∞

Kp(un ) < +∞,

µ-a.s., or
(b) lim sup

n→∞
Kp(un ) = +∞ and for each sub-sequence n(k) such that un(k)

is p · µ-convergent, it holds that lim
k→∞

un(k) = +∞.

(A-4) If Supp q �= Ω, then lim
n→∞

Kp(un ) = +∞ and lim
n→∞

un = +∞ p · µ-a.s on

Supp q. Moreover, lim
n→∞

un −Kp(un ) = −∞ on {q = 0}.

Proof The function log : [0,+∞[→ [−∞,+∞[ is continuous and v = log(qn/p),
therefore Item (A-1) holds true. Item (A-2) follows from the inequality vn = un −
Kp(un ) < un and lim sup

n→∞
vn = lim

n→∞
vn in the case of a.s. convergence.

For Item (A-3), it should first be noted that the convergence of the real sequence
(Kp(un(k)))k is equivalent to the p · µ-convergence of the sequence of real random
variables (un(k))k . Therefore, the first part follows by letting k → ∞ in vn(k) <

un(k) = vn(k) + Kp(un(k)). On the other hand, if lim supn→∞ Kp(un ) = +∞ then
lim

k→∞
Kp(un(k)) = +∞, therefore lim

k→∞
un(k) = +∞, since (vn(k))k converges to a

finite v.
Now, let us suppose that Supp q �= Ω as in Item (A-4). Reasoning by contradic-

tion, let (n(k))k be a subsequence such that lim
k→∞

Kp(un(k)) = κ < ∞. By Jensen

inequality we obtain

0 = lim
k→∞

∫
{q=0}

eun (k )−Kp (un (k ) ) pdµ = e−κ lim
k→∞

∫
{q=0}

eun (k ) pdµ

≥ e−κ exp

(
lim

k→∞

∫
{q=0}

un(k) pdµ

)
,

therefore lim
k→∞

∫
{q=0}

un(k) pdµ = −∞. Because each un(k) has zero expectation, it

follows that lim
k→∞

∫
Supp q

un(k) pdµ = +∞. This is in contradiction with

1 = lim
k→∞

∫
Supp q

eun (k )−Kp (un (k ) ) pdµ = e−κ lim
k→∞

∫
Supp q

eun (k ) pdµ

≥ e−κ exp
(

lim
k→∞

∫
Supp q

un(k) pdµ

)
.
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As lim
n→∞

Kp(un ) = +∞, then the sequence un = vn + Kp(un ) is convergent to +∞
where v = lim

n→∞
σn is finite.

Ttheorem 19.3 Let qn = ep(un ) ∈ E(p), and suppose that un → u in µ-probability.
Then, possibly for a sub-sequence, the following statements are equivalent.

(A-1) u∗
n (qn ) → u∗(q) weakly, where q = eu−kp (u)p.

(A-2) un → u a.e. and Kp(un ) → Kp(u) < ∞.

(A-3) qn → q in L1(µ), where q = eu−kp (u)p.

Proof If un → u in µ-probability, then un → u a.e., possibly for a sub-sequence, and
u∗

n (µ) → u∗(µ) weakly. Hence, if u∗
n (qn ) → u∗(q) weakly, due to Proposition 19.7,

Kp(un ) → Kp(u) < ∞, so that (A-1) implies (A-2). An application of Scheffé’s
Lemma shows that (A-2) implies (A-3), since, possibly for a sub-sequence, qn → q

a.e. and both qn and q are densities. Finally, (A-3) implies (A-1) since by hypotheses
and due to (19.3), possibly for a sub-sequence, u∗

n (qn ) → u∗(q) a.e. and hence
weakly.

Corollary 19.3 Let q ∈ M≥ = E(p), i.e. sequences (un )n , un ∈ Sp and qn =
ep(un ), qn → q in L1(µ), exist and suppose that un → u in µ-probability. Then,
q = eu−Kp (u)p and, possibly for a sub-sequence, Kp(un ) → Kp(u).

Proof Since possibly for a sub-sequence un → u a.e, Proposition 19.3 implies that
for such a sub-sequence lim Kp(un ) < ∞; furthermore, through the lower semi-
continuity of Kp(u) it holds that

Kp(u) ≤ lim inf
n

Kp(un ) = lim Kp(un ) < ∞,

so that q = eu−Kp (u)p and eventually for a sub-sequence limKp(un ) = Kp(u).


