
SUPPLEMENTAL EXERCISES FOR
QUANTUM COMPUTING FOR COMPUTER SCIENTISTS

NOSON S. YANOFSKY

1. Chapter 1

Supp-Ex. 1.1.1: Calculate (3− 2i) + (5.2 + 6.5i).

Supp-Ex. 1.1.2: Calculate (3− 2i)× (5.2 + 6.5i).

Supp-Ex. 1.2.1: Calculate (7,−4.1)× (4,−3).

Supp-Ex. 1.2.2: Calculate (7,−4.1)÷ (4,−3).

Supp-Ex. 1.2.3: Prove that for all c1, c2, c3, the following distributivity property
holds

c1 + c3
c2

=
c1
c2

+
c3
c2
.

Supp-Ex. 1.2.4: Find the modulus of 5 + 7i.

Supp-Ex. 1.2.5: What is the relationship between c1 ÷ c2 and c1 ÷ c2?

Supp-Ex. 1.2.6: Calculate (5 + 2i) + [(6− 4i)× (3 + 5i)].

Supp-Ex. 1.3.1: Draw c1 = (4,−3), c2 = (6, 2) and c1 + c2.

Supp-Ex. 1.3.2: Consider c1 = (4,−3), c2 = (6, 2) and c3 = (−2, 3). Show the
distributive property

c1 × (c2 + c3) = (c1 × c2) + (c1 × c3)

for these numbers.

Supp-Ex. 1.3.3: What is the polar representation of 12− 4i?
1
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Supp-Ex. 1.3.4: What is the Cartesian representation of (6.2, 35o)?

Supp-Ex. 1.3.5: Use the polar representations to calculate (12− 4i)× (3 + 7i).

Supp-Ex. 1.3.6: Use the polar representations to calculate (12− 4i)÷ (3 + 7i).

Supp-Ex. 1.3.7: Use the polar representations to calculate (12− 4i)3.

Supp-Ex. 1.3.8: Use the polar representations to calculate (12− 4i)
1
4 .

Supp-Ex. 1.3.9: Write the exponential form of 7− 6i.

Supp-Ex. 1.3.10: Give the Cartesian representations of all the six roots of unity.

2. Chapter 2

Supp-Ex. 2.1.1: Calculate


3− 2i

7− 3i

7 + 2i

12.1− 8i

 +


−6i

6− 4i

2

4 + 17i

.

Supp-Ex. 2.1.2: Calculate (3− 4i) ·


−6i

6− 4i

2

4 + 17i

.

Supp-Ex. 2.1.3: Formally show that for two vectors V , and W we have

c · (V +W ) = c · V + c ·W.

Supp-Ex. 2.2.1: Consider the union of vectors in C6 and C8, i.e. C6 ∪ C8. Does
this form a complex vector space? Explain your answer.
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Supp-Ex. 2.2.2: Find the transpose, conjugate, and adjoint of
16 + 4i 2 + 2i 7− 9i

2 + 3i 15 + 2i 8− 2i

1 + 12i 2 3− 5i

 .

Supp-Ex. 2.2.3: Formally prove the vector space Cm×n satisfies the property

(c1 + c2) · V = c1 · V + c2 · V.

Supp-Ex. 2.2.4: Formally prove the vector space Cn×n satisfies the property

(c ·A)† = c ·A†

Supp-Ex. 2.2.5: Formally prove the vector space Cn×n satisfies the property

A ? B = A ? B

Supp-Ex. 2.2.6: Prove that a complex subspace is closed under inverse and that
0 is in the subspace.

Supp-Ex. 2.2.7: Prove that a linear map between two vecotr spaces satisfies

f(V1 − V2) = f(V1)− f(V2).

Supp-Ex. 2.2.8: Formally prove that the vector space Fun([a, b],R) satisfies the
property

(c ·A)† = c ·A†

Supp-Ex. 2.3.1: Show that if a set {V0, V1, . . . , Vn−1} of vectors in V is lin-
early independent then for for any nonzero V ∈ V, there are unique coefficients
c0, c1, . . . , cn−1 in C such that

V = c0 · V0 + c1 · V1 + · · ·+ cn−1 · Vn−1.

Supp-Ex. 2.3.2: Find x, y and z to make the following into a basis for R3:


0

2

3

 ,

x

y

z

 ,


2

0

1


 .
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Supp-Ex. 2.3.3: Prove that for any given complex vector space every basis has
the same number of elements. (Hint: write one basis in terms of another.)

Supp-Ex. 2.3.4: Let H be the Hadamard matrix. Show that H3 = H.

Supp-Ex. 2.4.1: Calculate 〈


3 + 2i

4− 3i

7

 ,


i

6− 6i

2

〉.

Supp-Ex. 2.4.2: Calculate |


3 + 2i

4− 3i

7

 |.

Supp-Ex. 2.4.3: Calculate the distance d(


3 + 2i

4− 3i

7

 ,


i

6− 6i

2

).

Supp-Ex. 2.4.4: What is the trace of
16 + 4i 2 + 2i 7− 9i

2 + 3i 15 + 2i 8− 2i

1 + 12i 2 3− 5i

 .

Supp-Ex. 2.5.1: The eigenvalues of 2 −4

−1 −1

 .
are 3 and −2. Find their eigenvectors.

Supp-Ex. 2.5.2: The eigenvectors of
5 8 16

4 1 8

−4 −4 −11

 .
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are [−2,−1, 1]T , [−2, 0, 1]T , and [−1, 1, 0]T . Find their eigenvalues.

Supp-Ex. 2.6.1: Show that 
1 1 + i 2i

1− i 5 −3

−2i −3 0

 .
is a hermitian matrix.

Supp-Ex. 2.6.2: The matrix  3 i+ 2

2− i 1


has eigenvalues {

2−
√

5− i2,
√

5− i2 + 2
}
.

Find their eigenvectors.

Supp-Ex. 2.6.3: Show that if U is a unitary matrix, so is U†.

Supp-Ex. 2.6.4: Show that if U is a unitary matrix, the columns of U form an
orthonormal basis of Cn.

Supp-Ex. 2.7.1: Calculate

[3, 6, 1, 8]T ⊗ [2, 8, 9, 0, 5]T .

Supp-Ex. 2.7.2: Calculate

 3 i+ 2

2− i 1

⊗


1 1 + i 2i

1− i 5 −3

−2i −3 0

 .
Supp-Ex. 2.7.3: What is the unit of the tensor product of matrices multiplica-
tion?

Supp-Ex. 2.7.4: Formally prove that (A⊗B)T = AT ⊗BT .
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3. Chapter 3

Supp-Ex. 3.1.1: A permutation matrix is a matrix that has exactly one 1 in every
row and every column (all the other entries are 0). Prove that if P is a permutation
matrix than PPT = I.

Supp-Ex. 3.1.2: Show that if P is a permutation matrix and A is any matrix
than PA is a permutation of the rows of A and AP is a permutation of the columns
of A.

Supp-Ex. 3.1.1: What does a graph that corresponds to a permutation matrix
look like?

Supp-Ex. 3.2.1: Prove that every permutation matrix is a doubly stochastic
matrix.

Supp-Ex. 3.2.2: Show that if A and B are doubly stochastic matrices than so is
A ? B.

Supp-Ex. 3.2.3: Is it true that if A and B are doubly stochastic matrices than
so is A⊗B?

Supp-Ex. 3.2.4: The probabilistic double slit experiment described in the text is
unnecessarily complex. Formulate a version of the double slit experiment with the
following diagram:

• //

��?
??

??
??

??
??

??
??

? •

•

??����������������

��?
??

??
??

??
??

??
??

? •

•

??���������������� // •

Supp-Ex. 3.3.1: Use the diagram in Supp-Ex. 3.2.4 to formulate a simpler version
of a quantum double slit experiment.
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4. Chapter 4

Supp-Ex. 4.1.1: Let |ψ〉 = [3 + 6i, 4 − 2i, 7 + 7i, 12 − 6i,−2i]T correspond to
a quantum system that corresponds to a particle being in one of five positions.
Calculate the probability after a measurement the particle is in the second position.

Supp-Ex. 4.1.2: Let |ψ〉 = [3 + 6i, 4 − 2i, 7 + 7i, 12 − 6i,−2i]T . Calculate |ψ〉 +
|ψ〉+ |ψ〉 = 3|ψ〉.

Supp-Ex. 4.1.3: Let |ψ〉 = [3 + 6i, 4− 2i, 7 + 7i, 12− 6i,−2i]T . Normalize |ψ〉.

Supp-Ex. 4.1.4: Let |ψ〉 = [3 + 6i, 4 − 2i, 7 + 7i, 12 − 6i,−2i]T . Imagine that
(3 − 2i)|ψ〉 corresponds to a quantum system that has a particle in one of five
positions. Calculate the probability that the particle is in the second position after
measurement.

Supp-Ex. 4.1.5: Consider a particle whose spin is described by the ket

|ψ〉 = (7 + 2i)| ↑〉+ (6− 3i)| ↓〉.

Normalize |ψ〉.

Supp-Ex. 4.1.6: Consider a particle whose spin is described by the ket

|ψ〉 = (7 + 2i)| ↑〉+ (6− 3i)| ↓〉.

After measurement, what is the chances of finding the particle in the spin up state?

Supp-Ex. 4.1.7: Let |ψ〉 = [3+6i, 4−2i, 7+7i, 12−6i,−2i]T and |ϕ〉 = [−3i, 6+
2i, 14, 2 + i, 5− 3i]T . Calculate 〈ψ|ϕ〉.

Supp-Ex. 4.2.1: Show that for three matrices we have that

[Ω1,Ω2 + Ω3] = [Ω1,Ω2] + [Ω1,Ω3].

Supp-Ex. 4.4.1: What is the physical significance of the fact that for two unitary
matrices U1 and U2 we have that

(U1 ? U2)† = U†
2 ? U

†
1?
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5. Chapter 5

Supp-Ex. 5.1.1: What is the norm of the vector7 + 2i

6− i

?

Supp-Ex. 5.1.2: If one was to measure a qubit in state

(5 + 3i) ·

1

0

 + (16− 2i) ·

0

1

 ,
what is the probability of finding the qubit in state |0〉 after measurement?

Supp-Ex. 5.1.3: What, if anything, can we know about the second qubit if we
measure the first qubit of the following state:

|11〉+ |00〉+ |01〉√
3

?

What can we know about the first qubit if we measure the second qubit?

Supp-Ex. 5.2.1: Find the matrix that corresponds to the exclusive-or gate.

Supp-Ex. 5.2.2: Consider a gate that accepts three inputs and has one output.
The single output should be on if exactly two of any of the three inputs are on.
Find the matrix that corresponds to this gate.

Supp-Ex. 5.2.3: Consider the following logical expression:

(X ∧ ¬Y ) → ¬(Y ∨ Z).

Write the logic diagram for this expression and find the matrix that corresponds to
it.

Supp-Ex. 5.3.1: Show how to construct the OR gate using only Fredkin gates.

Supp-Ex. 5.4.1: Consider the qubit |ψ〉 = [3 + 2i, 5− i]T . Write this qubit in the
form

|ψ〉 = cos(θ)|0〉+ eiφ sin(θ)|1〉.
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6. Chapter 6

Supp-Ex. 6.1.1: Calculate H|1〉.

Supp-Ex. 6.1.2: Consider the function f defined as f(0) = 1 and f(1) = 0.
Describe |ϕ0〉, |ϕ1〉, and |ϕ2〉 in the following circuit:

|1〉
H

Uf

|1〉

FE



⇑
|ϕ0〉

⇑
|ϕ1〉

⇑
|ϕ2〉

Supp-Ex. 6.1.3: Give the sequences of matrices that corresponds to following
circuit

|1〉
H

Uf

H FE




|0〉
H H

⇑
|ϕ0〉

⇑
|ϕ1〉

⇑
|ϕ2〉

⇑
|ϕ3〉

Supp-Ex. 6.1.4: Consider the function f defined as f(0) = 1 and f(1) = 0.
Describe |ϕ0〉, |ϕ1〉, |ϕ2〉, and |ϕ3〉 for the quantum circuit given in Supp-Ex 6.1.3.

Supp-Ex. 6.2.1: Give all the balanced functions from {0, 1}4 to {0, 1}.

Supp-Ex. 6.2.2: Show that the following is true for all x,y,y′ ∈ {0, 1}n

〈x,y ⊕ y′〉 = 〈x,y〉 ⊕ 〈x,y′〉.

Supp-Ex. 6.2.3: Consider |1〉 = |000 . . . 001〉. Calculate H⊗n|1〉.

Supp-Ex. 6.2.4: Consider the function f defined as f(00) = 0, f(01) = 1, f(10) =
1 and f(11) = 1. Describe |ϕ0〉, |ϕ1〉, |ϕ2〉, and |ϕ3〉 for the quantum circuit
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|1〉
/n

H⊗n /n

Uf

/n
H⊗n /n

FE




|0〉
H

⇑
|ϕ0〉

⇑
|ϕ1〉

⇑
|ϕ2〉

⇑
|ϕ3〉

Supp-Ex. 6.3.1: Describe the requirements on f if we assume that f is periodic
with the period “1011”.

Supp-Ex. 6.4.1: Invert 100,32,65,81,39,51,91,27, and 67 around their mean.

Supp-Ex. 6.5.1: Prove that

a ≡ a′ Mod N, if and only if N |(a− a′).

Supp-Ex. 6.5.2: Calculate the first seven values f7,249.

7. Chapter 7

Supp-Ex. 7.2.1: Write the quantum assembler code that can preform the follow-
ing circuit:|1〉

H

Uf

H FE




|0〉
H H

8. Chapter 8

Supp-Ex. 8.1.1: Show that coNP is a subset of PSPACE.

Supp-Ex. 8.2.1: Explain how quicksort with a randomized pivot uses is a form
of a probabilistic algorithm. Explain why it works better than the deterministic
version.

Supp-Ex. 8.3.1: As was said in the text, “there is nothing particularly quantum
about the set C of configurations and the matrix acting upon it. In fact, the same
can be done for a deterministic Turing machine. In the deterministic case, we will
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only be concerned with vectors that have exactly one entry as 1 and all others as
0... The UM will be such that every column has exactly one 1 with the remaining
entries will be 0.” Describe nondeterministic Turing machines in the same way.

Supp-Ex. 8.3.2: Write the deterministic Turing machine that searches for a “1”
in an odd length string as a matrix that acts on a set of configurations C.

Supp-Ex. 8.3.3: Write the probabilistic Turing machine that searches for a “1”
in an odd length string as a matrix that acts on a set of configurations C.

Supp-Ex. 8.3.4: Show that BQP is a subset of PSPACE.

9. Chapter 9

Supp-Ex. 9.1.1: Complete the following chart of an example of Alice and Bob
communicating.

Step 1: Alice sends n random bits in random bases

Bit number 1 2 3 4 5 6 7 8 9 10 11 12

Alice’s random bits 1 1 0 1 1 0 1 1 0 1 1 0

Alice’s random bases + X X X + X + + X + X X

Alice sends � � � � � � � � � � � �

Quantum channel ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

Bob’s random bases X + + + X X X + + X X +

Bob observes � � � � � � � � � � � �

Bob’s bits � � � � � � � � � � � �
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10. Chapter 10

Supp-Ex. 10.1.1: Consider the following probabilities at transmitting the letters
R,S,T,U,V,W

p(R) =
1
10

p(R) =
1
5

p(R) =
1
10

p(R) =
2
5

p(R) =
1
5
.

Calculate the Shannon entropy of this PDF.


