
2 Chapter 2 Solution Set

Problems

2.1 Prove that the real and imaginary parts of the analytic signal are connected

by Hilbert transforms. HINT: Use fact that f(+)(t) is analytic in l.h.p. and

goes to zero as |t| → ∞ in that half-plane.

Since f(+)(t) is analytic in the l.h.p. and goes to zero as |t| → ∞ in that

half-plane we can use Cauchy’s integral theorem to find that

f(+)(t0) = − 1

2πi

∫

C

dt
f((+)(t)

t− t0
where t0 lies on the real axis and the contour C lies along the real axis from

−∞ to +∞ and is deformed above the pole at t = t0. We can break the

contour C into the principle part integral from −∞ to t0 − ε and then from

t0 + ε to +∞ and a semi-circle Cε of radius ε in the u.h.p. centered at t0. We

then find that

f(+)(t0) = − 1

2πi
P

∫ ∞

−∞
dt
f((+)(t)

t− t0
− 1

2πi

∫

Cε

dt
f((+)(t)

t − t0
The integral around Cε is easily evaluated at found to be f(t0)/2 which then

leads to

f(+)(t0) = − 1

πi
P

∫ ∞

−∞
dt
f((+)(t)

t − t0
.

As a final step we set

f(+)(t) = u(t) + iv(t)

to arrive at our final result

u(t) = − 1

π
P

∫ ∞

−∞
dt

v(t)

t − t0
, v(t) =

1

π
P

∫ ∞

−∞
dt

u(t)

t− t0
.

2.2 Let

εk(τ ) =
1

2π

∫ ∞

−∞
dω k2(ω)e−iωτ ,

where k(ω) is the wavenumber of a Causal medium.
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1. Prove that εk(τ ) is causal; i.e., vanishes for negative τ .

This follows immediately since the complex wavenumber k(ω) of a causal

medium is analytic with no singularities throughout the u.h.p. and goes to

(ω/c)2 as |ω| → ∞. If τ < 0 we can then close the contour in the u.h.p.

yielding zero.

2. Compute εk(τ ) as a generalized function for a non-dispersive medium where

k2(ω) = ω2/c2.

We have

εk(τ ) =
1

2π

∫ ∞

−∞
dω (

ω

c
)2e−iωτ = − 1

c2
∂2

∂τ2
{ 1

2π

∫ ∞

−∞
dω e−iωτ} = − 1

c2
δ(2)(τ ),

where δ(2)(τ ) is the second derivative of the delta function.

3. Prove that the real and imaginary parts of k2(ω) − (ω/c)2 are connected

via Hilbert transforms.

From the discussion given above it follows that k2(ω) − (ω/c)2 is analytic

with no singularities in the u.h.p. and tends to zero as |ω| → ∞ in that

half-plane. We can then follow the same treatment given in the solution of

Problem 2.1 but where now the contour integral is performed in the upper-

half of the complex ω plane rather than the lower-half of the complex t

plane. This changes the signs in the Hilbert transform relationships and

we obtain

<[k2(ω0) − (ω0/c)
2] =

1

π
P

∫ ∞

−∞
dω
=[k2(ω) − (ω/c)2]

ω − ω0
,

=[k2(ω0)− (ω0/c)
2] = − 1

π
P

∫ ∞

−∞
dω
<[k2(ω)− (ω/c)2]

ω − ω0
.

2.3 Derive the equation satisfied by the time-dependent field u+(r, t) radiated by

the source q(r, t) if k2(ω) ⇔ εk(τ ). Show that this equation reduces to the

usual wave equation in the special case when k(ω) = ω/c.

The frequency domain radiated field by the source Q(r, ω) satisfies the

Helmholtz equation

[∇2 + k2(ω)]U+(r, ω) = Q(r, ω).

Under a Fourier transformation the product of two functions transforms to

the convolution of their transforms so that

k2(ω)U+(r, ω)→
∫
dτ εk(t− τ )u+(r, τ )

and we find that

∇2u+(r, t) +

∫
dτ εk(t − τ )u+(r, τ ) = q(r, t).

In the special case when k(ω) = (ω/c)2 we showed in Problem 2.2 that
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ε(τ ) = −δ(2)(τ )/c2 so that
∫
dτ εk(t− τ )u+(r, τ ) = − 1

c2

∫
dτ

∂2

∂τ2
δ(t− τ )u+(r, τ ) = − 1

c2
∂2

∂t2
u+(r, t)

(2.1)

where we have made use of the fact that∫
dτ δ(n)(τ )f(τ ) = (−1)nf(n)(0).

On making use of Eq.(2.1) we then obtain

∇2u+(r, t)− 1

c2
∂2

∂t2
u+(r, t) = q(r, t).

2.4 Prove that k(−ω) = −k∗(ω) if ω is real valued.

We have that

k(ω) =
ω

c
n(ω)→ k(−ω) = −ω

c
n(−ω) = −k∗(ω)

since n(−ω) = n∗(ω) for real ω.

2.5 Compute the incoming and outgoing wave Green function G−(R, ω) and

G+(R, ω) from their Fourier integral representations using contour integration

techniques.

These two Green functions admit the Fourier integral representation (cf.

Eq.(2.15))

G±(R, ω) =
1

(2π)3

∫
d3K

eiK·R

k2 −K2
,

where the integration contour for G+ lies above the pole at K = −k and

below the pole at K = +k and for G− lies below the pole at K = −k and

above the pole at K = +k. Since the transforms depend only on K = |K| it
is convenient to transform the above integrals to spherical polar coordinates

yielding

G±(R;ω) =
−1

(2π)3

∫

C±

dK
K2

K2 − k2

∫

4π

dΩ eiKs·R,

where s is the unit radial vector in K space and dΩ the differential solid angle

in K space. Here, the integration contour C+ yields G+ and extends from

K = 0 to +∞ below the pole at K = k and C− extends from K = 0 to +∞
above the pole at K = k. By aligning the polar axis along the direction of

R we have that s ·R = R cos θ where θ is the polar angle in K space. The

angular integral is then easily performed and we find that

G±(R;ω) =
i

(2π)2R

∫

C±

KdK
eiKR

K2 − k2
− i

(2π)2R

∫

C±

KdK
e−iKR

K2 − k2

If we now make the transformation K → −K in the second integral we find

that the above reduces to

G±(R;ω) =
i

(2π)2R

∫

C̃±

KdK
eiKR

K2 − k2
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where now C̃+ = C+−C+(−K) extends from −∞ to +∞ and lies above the

pole at K = −k and below the pole at K = +k and C̃− = C− − C−(−K)

extends from −∞ to +∞ and lies below the pole at K = −k and above the

pole at K = +k

Since R > 0 the integration contours can be closed in the u.h.p. and can

thus be readily performed with the help of Cauchy’s residue theorem. In the

case of G+ the u.h.p. pole is located at K = +k and for G− is at K = −k
and we find that

G±(R;ω) = − 1

4π

e±ikR

R
.

2.6 Using the Fourier integral representations of the frequency domain outgoing

and incoming wave Green functions G±(R, ω) and Cauchy’s integral theorem

show that the free field propagator Gf(R, ω) = G+(R, ω)−G−(R, ω) satisfies

the homogeneous Helmholtz equation.

Using the results from the previous problem we have that

Gf(R, ω) = G+(R, ω)−G−(R, ω)

=
i

(2π)2R

∫

C̃+

KdK
eiKR

K2 − k2
− i

(2π)2R

∫

C̃−

KdK
eiKR

K2 − k2

=
i

(2π)2R

∫

C

KdK
eiKR

K2 − k2

where C̃+ extends from −∞ to +∞ and lies above the pole at K = −k and

below the pole at K = +k and C̃− extends from −∞ to +∞ and lies below

the pole at K = −k and above the pole at K = +k and where C = C̃+−C̃− is

the sum of the closed contour surrounding the pole at K = −k in the counter

clockwise direction and the closed contour surrounding the pole at K = +k

in the clockwise direction. We then find that

[∇2 + k2]G± = − i

(2π)2R

∫

C

KdK eiKR = 0

since no poles lie within the contour C.

2.7 Use the second Helmholtz identity in the time-domain Eq.(1.36b) to derive

Eq.(2.31b). Can Eq.(1.36b) be derived from Eq.(2.31b) for dispersive media?

What does this say about the validity of this identity in the time domain for

dispersive media?

The frequency domain version Eq.(2.31b) of Eq.(1.36b) follows immediately

from the well-known relationship between a convolution of two functions and

the inverse Fourier transform of the product of the transforms of the two

functions:
∫ ∞

−∞
dt′ f(t − t′)g(t′) =

1

2π

∫ ∞

−∞
dω F̃ (ω)G̃(ω)e−iωt.

By the same argument the time-domain version Eq.(1.36b) of Eq.(2.31b) must
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also hold for dispersive media which means that the second Helmholtz iden-

tity in the time-domain Eq.(1.36b) holds for both dispersive as well as non-

dispersive media.

2.8 Show that if r ∈ τ that the back propagated field Φ(r, ω) defined in Eq.(2.33a)

can be expressed in terms of the free field propagator in the form

Φ(r, ω) = −
∫

∂τ

dS′ [U+(r′, ω)
∂

∂n′Gf (r− r′, ω) −Gf(r− r′, ω)
∂

∂n′U+(r′, ω)].

This follows immediately from the second Helmholtz identity Eq.(2.31b).

2.9 Verify that the contribution from the integral over the surface Σ∞ in the

derivation of Eqs.(2.43) vanishes.

We wish to show that

I =

∫

Σ∞

dS′ [U+(r′, ω)
∂

∂n′G+(r− r′, ω)−G+(r− r′, ω)
∂

∂n′U+(r′, ω)] = 0.

To establish this result we use the asymptotic form for the outgoing wave

Green function and its normal derivative

G+(r− r′, ω) ∼ − 1

4π
e−ikr̂

′·r e
ikr′

r′
,

∂G+(r− r′, ω)

∂r′
∼ − ik

4π
e−ikr̂

′·r e
ikr′

r′

as r′ →∞ and which then yields

G+(r− r′, ω)
∂

∂n′U+(r′, ω)− U+(r′, ω)
∂

∂n′G+(r− r′, ω)

∼ − 1

4π
e−ikr̂

′·r e
ikr′

r′
{ ∂
∂n′U+(r′, ω)− ikU+(r′, ω)}.

The bracketed term in the above equation will go to zero faster than 1/r′

according to the SRC. It then follows on setting dS′ = r′2dΩ that the integral

over Σ∞ will vanish and I = 0 as required.

2.10 State and prove the frequency domain version of the source decomposition

theorem 1.3.

The theorem in the frequency domain reads:

Theorem 2.1 (Frequency Domain Source Decomposition Theorem)
Let Q(r, ω) be a square integrable source compactly supported within τ0. Then

this source can be uniquely decomposed into an NR component Qnr(r, ω) and

a minimum norm component Q̂(r, ω) such that
∫

τ0

d3r Qnr(r, ω)Q̂(r, ω) = 0,

[∇2
r + k2]Q̂(r, ω) = 0,

Qnr(r, ω) = [∇2
r + k2]Π(r, ω),

where Π(r, ω) is a square integrable function supported in τ0 that has contin-

uous first partial derivatives.
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The first statement of the theorem follows immediately from the corre-

sponding statement of Theorem 1.3 on the application of Parseval’s Theorem

while the second two statements follow from Fourier transformation of the

corresponding two statements of Theorem 1.3.

2.11 Show that by using a coordinate system translation along the z axis that the

RS solutions given in Eqs.(2.47) yield the solutions in Eqs.(2.48) which are

valid for a boundary value plane z = z0 with z0 being arbitrary.

Although the solutions to the RS Dirichlet and Neumann boundary value

problems given in Eqs.(2.47) assume that the boundary plane is the plane

z = 0, the general case of a boundary plane located at z = z0 is easily obtained

via a coordinate system translation along the z axis. In particular, if we note

that the arguments on the Green functions in Eqs.(2.47) depend only on the

difference vector r − ρ′ we can translate the origin of the coordinate system

so that the data plane z = 0 gets translated to z = z0 so that Eqs.(2.47)

transform to Eqs.(2.48).

2.12 Solve the one-dimensional inverse RS problem in the r.h.s. z > z+ in terms of

Dirichlet data on the line z = z0 > z+. Compare this solution with the exact

field radiated by the source into this half-space.

We solved the one-dimensional RS problem in the r.h.s. for Dirichlet data

U0(ω) specified at z = 0 in Example 2.7 where the solution was found to be

U(z, ω) = U0(ω)eikz.

In the more general case where the source lies in the l.h.s. z < z+ and Dirichlet

data on the boundary z = z+ the solution in the half-space z > z+ is easily

verified to be given by

U(z, ω) = Uz+(ω)eik(z−z+).

We then find that

U(z0, ω) = Uz+(ω)eik(z0−z+) → Uz+(ω) = U(z0, ω)e−ik(z0−z+)

and the (exact) solution of the inverse RS problem in the half-space z > z+

is then

U(z, ω) = U(z0, ω)e−ik(z0−z+)eik(z−z+) = U(z0, ω)eik(z−z0).

2.13 Compute a one-dimensional non-radiating source distributed on the two points

z = z±.

The one-dimensional Green function was found in Example 2.2 to be given

by

G+(z − z′, ω) = − i

2k
eik|z−z

′|

which yields the solution to the one-dimensional radiation problem

U+(z, ω) = − i

2k

∫ z+

z−
dz′Q(z′, ω)eik|z−z

′|,
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where the interval [z−, z+] is the support of the source. The radiation pattern

is immediately found from the above solution to be

f(s, ω) = − i

2k

∫ z+

z−
dz′Q(z′, ω)e−iksz

′

= − i

2k
Q̃(sk, ω)e−iksz

′

,

where s = +1 in the r.h.s. and s = −1 in the l.h.s. The condition for an NR

source then reduces to

Q̃(sk, ω) = 0, s = ±1.

For a one-dimensional source distributed on the two points z = z± we have

that

Q̃(sk, ω) =

∫ z+

z−
dz′ [Q−δ(z−z−)+Q+δ(z−z+)]e−iksz

′

= Q−e−iksz
−

+Q+e−iksz
+

where Q± are two functions of ω. We then find that the NR condition becomes

Q−e−iksz
−

+Q+e−iksz
+

= 0, s = ±1.

We can express the above condition in the matrix form
[
eikz

−

eikz
+

e−ikz
−

e−ikz
+

][
Q−

Q+

]
=

[
0

0

]
,

which will possess a solution if and only if

sin k(z− − z+) = 0→ z− − z+ = m
λ

2
,

where m is an arbitrary integer.

2.14 Use the general procedure employed in Section 2.8 to compute the field ra-

diated by a source located in the l.h.s. in the presence of a Dirichlet plane (a

plane over which the field vanishes) at z = 0. Express your answer in terms

of a Dirichlet Green function.

We begin, as usual, with the equations satisfied by the Green function and

radiated field

[∇2
r′ + k2]G(r, r′, ω) = δ(r− r′),

[∇2
r′ + k2]U(r′, ω) = Q(r′;ω).

As boundary conditions we require that the radiated field satisfy the SRC

throughout the left-half-space z < 0 and homogeneous Dirichlet conditions

over the plane z = 0. If we also require that the Green function (as of now

un-specified) also satisfy the SRC in the l.h.s. then standard Green function

techniques yield the equation

U(r, ω) =

∫

τ0

d3r′G(r, r′, ω)Q(r′;ω)+

∫

∂τ

dS′ [U(r′, ω)
∂

∂z′
G(r, r′, ω)−G(r, r′, ω)

∂

∂z′
U(r′, ω)]

where it is assumed that r is contained in the l.h.s. (i.e., that z < 0) and

where ∂τ is the boundary plane z′ = 0.
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We now impose the physical requirement that the field satisfy homogeneous

Dirichlet conditions on the plane z′ = 0. This annihilates the first term in the

surface integral on the r.h.s. of the above equation. We can annihilate the

second term in this integral if we require that the Green function also satisfy

homogeneous Dirichlet conditions over this plane; i.e., if we select G to be

the Dirichlet Green function relative to this plane. Under this choice of Green

function we then find that the above equation reduces to

U(r, ω) =

∫

τ0

d3r′GD(r, r′, ω)Q(r′;ω), z < 0, (2.2)

which is the radiated field throughout the half-space z < 0 that vanishes

on the boundary z = 0; i.e., is the solution to the radiation problem in the

presence of a perfectly conducting infinite plane located at z = 0. A completely

parallel development can be employed for the case where the field must satisfy

homogeneous Neumann conditions over an infinite plane.

2.15 Interpret the radiated field found in the previous problem in terms of a mirror

image source relative to the plane z = 0.

By substituting for the Dirichlet Green function we find that Eq.(2.2) can

be written in the form

U(r, ω) =

U+(r,ω)︷ ︸︸ ︷∫

τ0

d3r′G+(r− r′, ω)Q(r′;ω)

U (s)(r,ω)︷ ︸︸ ︷
−

∫

τ0

d3r′G+(r− r̃′, ω)Q(r′;ω),

where r̃′ is the mirror image of the source point r′ about the conducting plane.

The first term in the above equation is the normal radiated field U+ in an

infinite homogeneous medium having no physical boundaries. The second term

can be interpreted as the reflected (scattered) field produced by the perfecting

conducting infinite plane at z = 0. By noting that

|r− r̃′| =
√

(x− x′)2 + (y − y′)2 + (z + z′)2

we can make the change of integration variable z′ → −z′ in the scattered field

term in the above equation to obtain

U (s)(r, ω) = −
∫

τ0

d3r′G+(r−r′, ω)Q(r̃′;ω) = −
∫

τ̃0

d3r′G+(r−r′, ω)Q̃(r′;ω)

where τ̃0 is the mirror image of the source region τ0 about the plane z = 0 and

Q̃(r′, ω) = Q(x′, y′,−z′) is the mirror image of the source itself. Under this

interpretation we see that the scattered field component of the total field is

the negative of the field that would be radiated into an infinite homogeneous

medium by the mirror image source about the conducting plane z = 0.

2.16 Determine a cloaking surface source over a closed surface ∂τ0 directly in the

frequency domain using NR surface sources constructed from the incident

wavefield and its normal derivative over the cloaking surface.

This is done in complete analogy to the time-domain construction employed
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in Chapter 1. In this case we base the construction on the Helmholtz identities

in the frequency domain in Section 2.5 so that the net field radiated into an

interior region τ0 from a source located outside of τ0 and the surface source

components satisfying the frequency domain version of Eqs.(1.73) will be null.

2.17 Prove that the cloaking surface source found in the previous problem with the

incident wavefield replaced by the total wavefield (incident plus that generated

from the cloaked object) radiates an identical wavefield into the interior τ0 as

that of the original surface source.

This proof follows identical lines as that employed in Problem 1.26 of Chap-

ter 1.

2.18 Give an argument why the surface source found in the previous problem also

cloaks the region τ0; i.e., both cancels the incident wavefield within τ0 and is

NR outside of τ0.

See solution of Problem 1.26 of Chapter 1.


