
Digital Logic Design: a rigorous approach c©
Chapter 6: Propositional Logic

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

April 10, 2012

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

http://www.eng.tau.ac.il/~guy/Even-Medina

building blocks of Boolean formulas

The building blocks of a Boolean formula are constants, variables,
and connectives.

1 A constant is either 0 or 1. As in the case of bits, we interpret
a 1 as “true” and a 0 as a “false”. The terms constant and bit
are synonyms; the term bit is used in Boolean functions and in
circuits while the term constants is used in Boolean formulas.

2 A variable is an element in a set of variables. We denote the
set of variables by U. The set U does not contain constants.
Variables are usually denoted by upper case letters.

3 Connectives are used to build longer formulas from shorter
ones. We denote the set of connectives by C.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

logical connectives

We consider unary, binary, and higher arity connectives.

1 There is only one unary connective called negation. Negation
of a variable A is denoted by not(A), ¬A, or Ā.

2 There are several binary connectives, the most common are
and (denoted also by ∧ or ·) and or (denoted also by ∨ or
+). A binary connective is applied to two formulas. We later
show the relation between binary connectives and Boolean
functions B : {0, 1}2 → {0, 1}.

3 A connective has arity j if it is applied to j formulas. The arity
of negation is 1, the arity of and is 2, etc.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

parse trees

We use parse trees to define Boolean formulas.

Definition

A parse tree is a pair (G , π), where G = (V ,E) is a rooted tree
and π : V → {0, 1} ∪ U ∪ C is a labeling function that satisfies:

1 A leaf is labeled by a constant or a variable. Formally, if
v ∈ V is a leaf, then π(v) ∈ {0, 1} ∪ U.

2 An interior vertex v is labeled by a connective whose arity
equals the in-degree of v . Formally, if v ∈ V is an interior
vertex, then π(v) ∈ C is a connective with arity degin(v).

We usually use only unary and binary connectives. Thus, unless
stated otherwise, a parse tree has an in-degree of at most two.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

example: parse tree

and

X Y0

¬or

Figure: A parse tree that corresponds to the Boolean formula
((X or 0) and (¬Y)). The rooted trees that are hanging from the root
of the parse tree (the and connective) are bordered by dashed rectangles.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Boolean formulas

A Boolean formula is a string containing constants, variables,
connectives, and parenthesis. Every parse tree defines a Boolean
formula. This definition is constructive and the Boolean formula is
obtained by an inorder traversal of the parse tree.
A subformula ϕi of a Boolean formula ϕ is the Boolean formula
that is obtained by an inorder traversal of a subtree in the parse
tree.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Examples of Good and Bad Formulas

(A and B)

(A or B)

A or or B) not a Boolean formula!

((A and B) or (A and C) or 1).

If ϕ and ψ are Boolean formulas, then (ϕ or ψ) is a Boolean
formula.

If ϕ is a Boolean formula, then (¬ϕ) is a Boolean formula.

We will stick to parse trees, and now show how they are parsed to
generate valid Boolean formulas.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Algorithm 1 INORDER(G , π) - An algorithm for generating the
Boolean formula corresponding to a parse tree (G , π), where G =
(V ,E) is a rooted tree with in-degree at most 2 and π : V →
{0, 1} ∪ U ∪ C is a labeling function.

1 Base Case: If |V | = 1 then return π(v) (where v ∈ V is the
only node in V)

2 Reduction Rule:
1 If degin(r(G)) = 1, then

1 Let G1 = (V1,E1) denote the rooted tree hanging from r(G).
2 Let π1 denote the restriction of π to V1.
3 α← INORDER(G1, π1).
4 Return (¬α).

2 If degin(r(G)) = 2, then

1 Let G1 = (V1,E1) and G2 = (V2,E2) denote the rooted
subtrees hanging from r(G).

2 Let πi denote the restriction of π to Vi .
3 α← INORDER(G1, π1).
4 β ← INORDER(G2, π2).
5 Return (α π(r(G)) β).

notation

Let BF(U, C) denote the set of Boolean formulas over the set of
variables U and the set of connectives C. To simplify notation, we
abbreviate BF(U, C) by BF when the sets of variables and
connectives are known.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

examples

Some of the connectives have several notations. The following
formulas are the same, i.e. string equality.

(A + B) = (A ∨ B) = (A or B) ,

(A · B) = (A ∧ B) = (A and B) ,

(¬B) = (not(B)) = (B̄) ,

(A xor B) = (A ⊕ B) ,

((A ∨ C) ∧ (¬B)) = ((A + C) · (B̄)) .

We sometimes omit parentheses from formulas if their parse tree is
obvious. When parenthesis are omitted, one should use precedence
rules as in arithmetic, e.g., a · b + c · d = ((a · b) + (c · d)).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Boolean function of a connective

We associate a Boolean function Bc : {0, 1}k → {0, 1} with each
connective c ∈ C of arity k.
notation:

denote the function Band simply by and, etc.

The Boolean function associated with negation is not.

The function BX associated with a variable X is the identity
function I : {0, 1} → {0, 1} defined by I (b) = b.

The function Bσ associated with a constant σ ∈ {0, 1} is the
constant function whose value is always σ.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

truth assignments

Consider a Boolean formula p generated by a parse tree (G , π).
We now show how to evaluate the truth value of p. First, we need
to assign truth values to the variables.

Definition

An assignment is a function τ : U → {0, 1}, where U is the set of
variables.

Our goal is to extend every assignment τ : U → {0, 1} to a
function that assigns truth values to every Boolean formula over
the variables in U.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

extending truth assignments to formulas

The extension τ̂ : BF → {0, 1} of an assignment τ : U → {0, 1} is
defined as follows.

Definition

Let p ∈ BF be a Boolean formula generated by a parse tree
(G , π). Then,

τ̂(p)
△
= EVAL(G , π, τ),

where EVAL is listed as Algorithm 2.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Algorithm 2 EVAL(G , π, τ) - evaluate the truth value of the
Boolean formula generated by the parse tree (G , π), where (i) G =
(V ,E) is a rooted tree with in-degree at most 2, (ii) π : V →
{0, 1} ∪ U ∪ C, and (iii) τ : U → {0, 1} is an assignment.

1 Base Case: If |V | = 1 then
1 Let v ∈ V be the only node in V .
2 π(v) is a constant: If π(v) ∈ {0, 1} then return (π(v)).
3 π(v) is a variable: return (τ(π(v)).

2 Reduction Rule:
1 If degin(r(G)) = 1, then (in this case π(r(G)) = not)

1 Let G1 = (V1,E1) denote the rooted tree hanging from r(G).
2 Let π1 denote the restriction of π to V1.
3 σ ← EVAL(G1, π1, τ).
4 Return (not(σ)).

2 If degin(r(G)) = 2, then

1 Let G1 = (V1,E1) and G2 = (V2,E2) denote the rooted
subtrees hanging from r(G).

2 Let πi denote the restriction of π to Vi .
3 σ1 ← EVAL(G1, π1, τ).
4 σ2 ← EVAL(G2, π2, τ).
5 Return (B

π(r(G))(σ1, σ2)).

satisfiability and logical equivalence

Previous: fixed a set of variables U and an assignment
τ : U → {0, 1}. We then extended τ to every Boolean formula
p ∈ BF over the variables U.
Now: fix a Boolean formula p over a set U of variables, and
consider all possible assignments τ : U → {0, 1}.

Definition

Let p denote a Boolean formula.

1 p is satisfiable if there exists an assignment τ such that
τ̂(p) = 1.

2 p is a tautology if τ̂(p) = 1 for every assignment τ .

Definition

Two formulas p and q are logically equivalent if τ̂(p) = τ̂(q) for
every assignment τ .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Examples

1 Show that ϕ
△
= (X ⊕ Y) is satisfiable.

2 Let ϕ
△
= (X ∨ ¬X). Show that ϕ is a tautology.

τ(X) not(τ(X)) τ̂(X ∨ ¬X)

0 1 1
1 0 1

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

more examples

Let ϕ
△
= (X ⊕ Y), and let ψ

△
= (X̄ · Y + X · Ȳ). Show that ϕ and

ψ are equivalent.
We show that τ̂(ϕ) = τ̂ (ψ) for every assignment τ . We do that by
enumerating all the 2|U| assignments.

τ (X) τ (Y) and(not(τ (X)), τ (Y)) and(τ (X),not(τ (Y))) τ̂(ϕ) τ̂(ψ)

0 0 0 0 0 0
1 0 0 1 1 1
0 1 1 0 1 1
1 1 0 0 0 0

Table: There are two variables, hence the enumeration consists of 22 = 4
assignments. The columns that correspond to τ̂ (ϕ) and τ̂ (ψ) are
identical, hence ϕ and ψ are equivalent.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Satisfiability and Tautologies

Lemma

Let ϕ ∈ BF , then

ϕ is satisfiable ⇔ (¬ϕ) is not a tautology .

Proof.

The proof is as follows.

ϕ is satisfiable ⇔ ∃τ : τ̂(ϕ) = 1

⇔ ∃τ : not(τ̂ (ϕ)) = 0

⇔ ∃τ : τ̂(¬(ϕ)) = 0

⇔ (¬ϕ) is not a tautology .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

interpreting a Boolean formula as a function

Assume that U = {X1, . . . ,Xn}.

Definition

Given a binary vector v = (v1, . . . , vn) ∈ {0, 1}n, the assignment

τv : {X1, . . . ,Xn} → {0, 1} is defined by τv (Xi)
△
= vi .

Definition

A Boolean formula p over the variables U = {X1, . . . ,Xn} defines
the Boolean function Bp : {0, 1}n → {0, 1} by

Bp(v1, . . . vn)
△
= τ̂v (p).

Example

p = X1 ∨ X2

Bp(0, 0) = 0, Bp(0, 1) = 1, . . .
Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

a tautology induces a constant function

Claim

A Boolean formula p is a tautology if and only if the Boolean
function Bp is identically one, i.e., Bp(v) = 1, for every
v ∈ {0, 1}n.

Proof.

p is a tautology ⇔ ∀ τ : τ̂(p) = 1

⇔ ∀ v ∈ {0, 1}n : τ̂v (p) = 1

⇔ ∀ v ∈ {0, 1}n : Bp(v) = 1 .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

what about a satisfiable formula?

Claim

A Boolean formula p is a satisfiable if and only if the Boolean
function Bp is not identically zero, i.e., there exists a vector
v ∈ {0, 1}n such that Bp(v) = 1.

Proof.

p is a satisfiable ⇔ ∃ τ : τ̂(p) = 1

⇔ ∃ v ∈ {0, 1}n : τ̂v (p) = 1

⇔ ∃ v ∈ {0, 1}n : Bp(v) = 1 .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

equivalent formulas

Claim

Two Boolean formulas p and q are logically equivalent if and only
if the Boolean functions Bp and Bq are identical, i.e.,
Bp(v) = Bq(v), for every v ∈ {0, 1}n.

Proof.

p and q are logically equivalent

⇔ ∀ τ : τ̂(p) = τ̂(q)

⇔ ∀ v ∈ {0, 1}n : τ̂v (p) = τ̂v (q)

⇔ ∀ v ∈ {0, 1}n : Bp(v) = Bq(v) .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Example: Composition of Boolean formulas

If ϕ = (α1 and α2), then

Bϕ(v) = τ̂v (ϕ)

= τ̂(α1 and α2)

= Band(τ̂v (α1), τ̂v (α1))

= Band(Bα1(v),Bα2(v)).

Thus, we can express complicated Boolean functions by composing
long Boolean formulas.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Composition of Boolean formulas

Lemma

If ϕ = α1 ◦ α2 for a binary connective ◦, then

∀v ∈ {0, 1}n : Bϕ(v) = B◦(Bα1(v),Bα2(v)).

Proof.

The justifications of all the following lines are by the definition of
evaluation:

Bϕ(v) = τ̂v(ϕ)

= τ̂v(α1 ◦ α2)

= B◦(τ̂v (α1), τ̂v (α2))

= B◦(Bα1(v),Bα2(v)),

and the lemma follows.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

the implication connective

The implication connective is denoted by →.

X Y X → Y

0 0 1
1 0 0
0 1 1
1 1 1

→ 0 1

0 1 1
1 0 1

Table: The truth table representation and the multiplication table of the
implication connective.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

more on the implication connective

B→(X ,Y) is denoted by X → Y .

The implication connective is not commutative, namely,
(0 → 1) 6= (1 → 0).

This connective is called implication since it models the
natural language templates “Y if X” and “if X then Y ”.

Consider the sentence “if it is raining, then there are clouds”.
This sentence guarantees clouds if it is raining. If it is not
raining, then the sentence trivially holds (regardless of
whether there are clouds or not). This explains why X → Y is
always 1 if X = 0.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

connectives nand nor

The connective nand can be considered to an abbreviation of
not-and. Namely, (p nand q) means (not(p and q)).
Similarly the nor connective is an abbreviation of not-or.
Namely, (p nor q) means (not(p or q)).
The Boolean functions that correspond to these functions are
defined as follows.

nand(A,B)
△
= not(and(A,B)) ,

nor(A,B)
△
= not(or(A,B)) .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

truth tables

X Y X nand Y

0 0 1
1 0 1
0 1 1
1 1 0

X Y X nor Y

0 0 1
1 0 0
0 1 0
1 1 0

nand 0 1

0 1 1
1 1 0

nor 0 1

0 1 0
1 0 0

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

the equivalence connective

The equivalence connective is denoted by ↔.

(p ↔ q) abbreviates ((p → q) and (q → p)).

The Boolean function that corresponds to equivalence is defined as
follows:

B↔(A,B)
△
= (A → B) and (B → A) .

X Y X ↔ Y

0 0 1
1 0 0
0 1 0
1 1 1

↔ 0 1

0 1 0
1 0 1

(A ↔ B) =

{

1 if A = B

0 if A 6= B .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

equivalence and tautology

Claim

Two Boolean formulas p and q are logically equivalent if and only
if the formula (p ↔ q) is a tautology.

Proof.

p and q are logically equivalent

⇔ ∀ τ : τ̂(p) = τ̂(q)

⇔ ∀ v ∈ {0, 1}n : τ̂v (p) = τ̂v (q)

⇔ ∀ v ∈ {0, 1}n : Bp(v) = Bq(v)

⇔ ∀ v ∈ {0, 1}n : B↔(Bp(v),Bq(v)) = 1

⇔ ∀ v ∈ {0, 1}n : Bp↔q(v) = 1

⇔ ∀ v ∈ {0, 1}n : τ̂v (p ↔ q) = 1

⇔ ∀ τ : τ̂(p ↔ q) = 1

⇔ (p ↔ q) is a tautology .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

order matters!

or

X Y0

→

not

Figure: A parse tree that corresponds to the Boolean formula
((X or 0) → (¬Y)). The root is labeled by an implication connective.
The rooted trees hanging from the root are encapsulated by dashed
rectangles.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

literals

Definition

A literal is a variable or its negation.

For example, in the Boolean formula (X · (Y + X̄)) there are three
literals: X , X̄ , and Y .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

substitution

Substitution is used to compose large formulas from smaller ones.
For simplicity, we deal with substitution in formulas over two
variables; the generalization to formulas over any number of
variables is straightforward.

1 ϕ ∈ BF({X1,X2}, C),

2 α1, α2 ∈ BF(U, C).

3 (Gϕ, πϕ) denotes the parse tree of ϕ.

Definition

Substitution of αi in ϕ yields the Boolean formula
ϕ(α1, α2) ∈ BF(U, C) that is generated by the parse tree (G , π)
defined as follows.
For each leaf of v ∈ Gϕ that is labeled by a variable Xi , replace the
leaf v by a new copy of (Gαi

, παi
).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

example: substitution

X2

+

X1 0

·

X Y

not

not

Y0

·

+

X

Figure: ϕ, α1, α2, ϕ(α1, α2)

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

more on substitution

Substitution can be obtain by applying a simple
“find-and-replace”, where each instance of variable Xi is replaced
by a copy of the formula αi , for i ∈ {1, 2}.
One can easily generalize substitution to formulas
ϕ ∈ BF({X1, . . . ,Xk}, C) for any k > 2. In this case,
ϕ(α1, . . . , αk) is obtained by replacing every instance of Xi by αi .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

truth values and substitution

The following lemma allows us to treat a formula ϕ as a Boolean
function Bϕ. This enables us to evaluate the truth value after
substitution (i.e., τ̂(ϕ(α1, α2))) using Bϕ and the truth values
τ̂(αi).

Lemma

For every assignment τ : U → {0, 1},

τ̂(ϕ(α1, α2)) = Bϕ(τ̂(α1), τ̂ (α2)). (1)

Proof hint: induction on the size of the parse tree (Gϕ, πϕ).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

substitution preserves logical equivalence

Let

ϕ ∈ BF({X1,X2}, C),
α1, α2 ∈ BF(U, C),
ϕ̃ ∈ BF({X1,X2}, C̃),
α̃1, α̃2 ∈ BF(U, C̃).

Corollary

If αi and α̃i are logically equivalent, and ϕ and ϕ̃ are logically
equivalent, then ϕ(α1, α2) and ϕ̃(α̃1, α̃2) are logically equivalent.

Example

ϕ = ¬(X1 · X2) ϕ̃ =X̄1 + X̄2

α1 = A → B α̃1 =Ā + B

α2 = C ↔ D α̃2 =¬(C ⊕ D)

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Complete Sets of Connectives

Every Boolean formula can be interpreted as Boolean function. In
this section we deal with the following question: Which sets of
connectives enable us to express every Boolean function?

Definition

A Boolean function B : {0, 1}n → {0, 1} is expressible by
BF({X1, . . . ,Xn}, C) if there exists a formula
p ∈ BF({X1, . . . ,Xn}, C) such that B = Bp.

Definition

A set C of connectives is complete if every Boolean function
B : {0, 1}n → {0, 1} is expressible by BF({X1, . . . ,Xn}, C).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Completeness of {¬,and,or}

Theorem

The set C = {¬,and,or} is a complete set of connectives.

Proof Outline: Induction on n.

1 Induction basis for n = 1.

2 Induction step for B : {0, 1}n → {0, 1} define:

g(v1, . . . , vn−1)
△
= B(v1, . . . , vn−1, 0),

h(v1, . . . , vn−1)
△
= B(v1, . . . , vn−1, 1).

3 By induction hyp. ∃r , q ∈ BF({X1, . . . ,Xn−1}, C) :
h = Br and Bq = g

4 Prove that Bp = B for formula p defined by

p
△
= (q · X̄n) + (r · Xn)

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

example: changing connectives

Let C = {and,xor}. We wish to find a formula
β̃ ∈ BF({X ,Y ,Z}, C) that is logically equivalent to the formula

β
△
= (X · Y) + Z .

Parse β: ϕ(α1, α2) with α1 = (X · Y) and α2 = Z .
Verify that ϕ̃ ∈ BF({X1,X2}, C) defined as follows is logically

equivalent to ϕ
△
= (X1 + X2).

ϕ̃
△
= X1 ⊕ X2 ⊕ (X1 · X2).

Apply substitution to define β̃
△
= ϕ̃(α1, α2), thus

β̃
△
= ϕ̃(α1, α2)

= α1 ⊕ α2 ⊕ (α1 · α2)

= (X · Y) ⊕ Z ⊕ ((X · Y) · Z)

You can check that ϕ̃(α1, α2) is indeed logically equivalent to β.
Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Theorem: changing connectives

Theorem

If the Boolean functions in {not,and,or} are expressible by
formulas in BF({X1,X2}, C̃), then C̃ is a complete set of
connectives.

Proof Outline:

1 Express β ∈ BF({X1, . . . ,Xn}, C) by a logically equivalent
formula β̃ ∈ BF({X1, . . . ,Xn}, C̃).

2 How? induction on the parse tree that generates β.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Important Tautologies

Theorem

The following Boolean formulas are tautologies.

1 law of excluded middle: X + X̄

2 double negation: X ↔ (¬¬X)

3 modus ponens: (((X → Y) · X) → Y)

4 contrapositive: (X → Y) ↔ (Ȳ → X̄)

5 material implication: (X → Y) ↔ (X̄ + Y).

6 distribution: X · (Y + Z) ↔ (X · Y + X · Z).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Substitution in Tautologies

Recall the lemma:

Lemma

For every assignment τ : U → {0, 1},

τ̂(ϕ(α1, α2)) = Bϕ(τ̂(α1), τ̂ (α2)). (2)

question

Let α1 and α2 be any Boolean formulas.

1 Consider the Boolean formula ϕ
△
= α1 + not(α1). Prove or

refute that ϕ is a tautology.

2 Consider the Boolean formula
ϕ

△
= (α1 → α2) ↔ (not(α1) + α2). Prove or refute that ϕ is

a tautology.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

De Morgan’s Laws

Theorem (De Morgan’s Laws)

The following two Boolean formulas are tautologies:

1 (¬(X + Y)) ↔ (X̄ · Ȳ).

2 (¬(X · Y)) ↔ (X̄ + Ȳ).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

De Morgan Dual

Given a Boolean Formula ϕ ∈ BF(U, {∨,∧,¬}), apply the
following “replacements”:

Xi 7→ ¬Xi

¬Xi 7→ Xi

∨ 7→ ∧

∧ 7→ ∨

What do you get?

Example

ϕ = (X1 + ¬X2) · (¬X2 + X3)

is replaced by

dual(ϕ) = (¬X1 · X2) + (X2 · ¬X3).

What is the relation between ϕ and dual(ϕ)?

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Algorithm 3 DM(ϕ) - An algorithm for evaluating the De Morgan
dual of a Boolean formula ϕ ∈ BF({X1, . . . ,Xn}, {¬,or,and}).

1 Base Cases:
1 If ϕ = 0, then return 1.
2 If ϕ = 1, then return 0.
3 If ϕ = Xi , then return (¬Xi).
4 If ϕ = (¬Xi), then return Xi .

2 Reduction Rules:
1 If ϕ = (¬ϕ1), then return (¬DM(ϕ1)).
2 If ϕ = (ϕ1 · ϕ2), then return (DM(ϕ1) + DM(ϕ2)).
3 If ϕ = (ϕ1 + ϕ2), then return (DM(ϕ1) · DM(ϕ2)).

Example

DM(X · (¬Y)).

De Morgan Dual

Exercise

Prove that DM(ϕ) ∈ BF .

The dual can be obtained by applying replacements to the labels in
the parse tree of ϕ or directly to the “characters” of the string ϕ.

Theorem

For every Boolean formula ϕ, DM(ϕ) is logically equivalent to
(¬ϕ).

Corollary

For every Boolean formula ϕ, DM(DM(ϕ)) is logically equivalent
to ϕ.

Nice trick, but is it of any use?!

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Negation Normal Form

A formula is in negation normal form if negation is applied only
directly to variables or constants.

Definition

A Boolean formula ϕ ∈ BF({X1, . . . ,Xn}, {¬,or,and}) is in
negation normal form if the parse tree (G , π) of ϕ satisfies the
following condition. If a vertex in G is labeled by negation (i.e.,
π(v) = ¬), then v is a parent of a leaf.

Example

¬(X1 + X2) and (¬X1 · ¬X2).

¬(X1 · ¬X2) and (¬X1 + X2).

We present an algorithm NNF (ϕ) that transforms a Boolean
formula ϕ into a logically equivalent formula in negation normal
form.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Algorithm 4 NNF(ϕ) - An algorithm for comput-
ing the negation normal form of a Boolean formula
ϕ ∈ BF({X1, . . . ,Xn}, {¬,or,and}).

1 Base Cases: If ϕ ∈ {0, 1,Xi , (¬Xi)}, then return ϕ.
2 Reduction Rules:

1 If ϕ = (¬ϕ1), then return DM(NNF(ϕ1)).
2 If ϕ = (ϕ1 · ϕ2), then return (NNF(ϕ1) · NNF(ϕ2)).
3 If ϕ = (ϕ1 + ϕ2), then return (NNF(ϕ1) + NNF(ϕ2)).

Lemma

If ϕ is in negation normal form, then so is DM(ϕ).

Theorem

Let ϕ ∈ BF({X1, . . . ,Xn}, {¬,or,and}). Then, NNF (ϕ) is
logically equivalent to ϕ and in negation normal form.

