
Programming with Mathematica
An Introduction

Solutions to exercises
Solutions to the exercises in Programming with Mathematica: An Introduction are given here. The
exercises to every section are listed first, followed by the solutions. Solutions are provided both as a
PDF file and in notebook form at www.cambridge.org/wellin.

2

The Mathematica language
2.1 Expressions
1. Give the full (internal) form of the expression a Hb + cL.

2. What is the traditional representation of Times@a, Power@Plus@b, cD, -1DD.

3. What is the part specification of the b in the expression a x2 + b x + c?

4. What do you expect to be the result of the following operations? Use the FullForm of the expres-
sions to understand what is going on.

a. IIx2 + yM z ê wM@@2, 1, 2DD.

b. Ha ê bL@@2, 2DD.

2.1 Solutions

1. The expression a Hb + cL is given in full form as Times@a, Plus@b, cDD.
2. This is simply a

b+c
 as can be seen by evaluating the full form expression.

In[1]:= Times@a, Power@Plus@b, cD, -1DD
Out[1]=

a

b + c

3. There are three elements in the expression, with the term b x being the second.

In[2]:= expr = a x2 + b x + c;

In[3]:= FullForm@exprD
Out[3]//FullForm= Plus@c, Times@b, xD, Times@a, Power@x, 2DDD

The first element of Times@b, xD is b, so the part specification is 2, 1.

In[4]:= expr@@2DD
Out[4]= b x

In[5]:= expr@@2, 1DD
Out[5]= b

4. Looking at the internal representation of this expression with FullForm helps to unwind the part
specification.

In[6]:= FullFormBIx2 + yM z
w

F
Out[6]//FullForm= Times@Power@w, -1D, Plus@Power@x, 2D, yD, zD

In[7]:=
Ix2 + yM z

w
@@2, 1, 2DD

Out[7]= 2

From the FullForm of a ê b, you can see that the second part is Power@b, -1D and the second
part of that is -1. Note the need for parentheses here as the Part function has higher precedence
than Power. For more information on operator precedence, see Operator Input Forms (WMDC).

In[8]:= FullForm@a ê bD
Out[8]//FullForm= Times@a, Power@b, -1DD

In[9]:= Ha ê bL@@2, 2DD
Out[9]= -1

2.2 Definitions
1. What rules are created by each of the following functions? Check your predictions by evaluating

them and then querying Mathematica with ?function_name.

a. randLis1@n_D := RandomReal@1, 8n<D
b. randLis2@n_D := Hx = RandomReal@D; Table@x, 8n<DL
c. randLis3@n_D := Hx := RandomReal@D; Table@x, 8n<DL
d. randLis4@n_D = Table@RandomReal@D, 8n<D

2 Solutions to exercises

2. Consider two functions f and g, which are identical except that one is written using an immediate
assignment and the other using a delayed assignment.

In[1]:= f@n_D = SumAH1 + xLj, 8j, 1, n<E;
In[2]:= g@n_D := SumAH1 + xLj, 8j, 1, n<E

Explain why the outputs of these two functions look so different. Are they in fact different?

In[3]:= f@2D
Out[3]=

H1 + xL I-1 + H1 + xL2M
x

In[4]:= g@2D
Out[4]= 1 + x + H1 + xL2

3. Write rules for a function log (note lowercase) that encapsulate the following identities:

log Ha bL = log HaL + logHbL;
log I a

b
M = log HaL - logHbL;

log HanL = n logHaL.
4. Create a piecewise-defined function gHxL based on the following and then plot the function from –2

to 0.

g HxL = - 1 - Hx + 2L2 -2 § x § -1

1 - x2 x < 0

2.2 Solutions

1. This exercise focuses on the difference between immediate and delayed assignments.

a. This will generate a list of n random numbers.

In[1]:= randLis1@n_D := RandomReal@1, 8n<D
In[2]:= randLis1@3D

Out[2]= 80.988991, 0.213663, 0.475922<
b. Since the definition for x is an immediate assignment, its value does not change in the body of

randLis2. But each time randLis2 is called, a new value is assigned to x.

In[3]:= randLis2@n_D := Hx = RandomReal@D; Table@x, 8n<DL
In[4]:= randLis2@3D

Out[4]= 80.759267, 0.759267, 0.759267<

2 The Mathematica language 3

In[5]:= randLis2@3D
Out[5]= 80.979382, 0.979382, 0.979382<
c. Because the definition for x is a delayed assignment, the definition for randLis3 is functionally

equivalent to randLis1.

In[6]:= randLis3@n_D := Hx := RandomReal@D; Table@x, 8n<DL
In[7]:= randLis3@3D

Out[7]= 80.7941, 0.736074, 0.254351<
d. In an immediate assignment, the right-hand side of the definition is evaluated first. But in this case,

n does not have a value, so Table is not able to evaluate properly.

In[8]:= randLis4@n_D = Table@RandomReal@D, 8n<D
Table::iterb : Iterator 8n< does not have appropriate bounds. à

Out[8]= Table@RandomReal@D, 8n<D
In[9]:= Clear@xD

2. The definition for f given in the exercise evaluates the sum first (immediate assignment), giving a
symbolic expression for the general sum from 1 to n. When f@2D is evaluated, the argument 2 is then
substituted into this expression for n. In the case of g, the value of n is substituted and then the sum is
evaluated. Although the resulting expressions output by these two functions look different at first,
expanding them gives the same result.

In[10]:= f@n_D = SumAH1 + xLj, 8j, 1, n<E
Out[10]=

H1 + xL H-1 + H1 + xLnL
x

In[11]:= g@n_D := SumAH1 + xLj, 8j, 1, n<E
In[12]:= Expand@f@2DD

Out[12]= 2 + 3 x + x2

In[13]:= Expand@g@2DD
Out[13]= 2 + 3 x + x2

3. The rules for the logarithm function are as follows. Note, there is no need to program the division
rule separately. Do you see why? (Look at FullForm@x ê yD.)

In[14]:= log@a_ * b_D := log@aD + log@bD
In[15]:= log@a_n_D := n log@aD

4 Solutions to exercises

In[16]:= logAx y2 z3E
Out[16]= log@xD + 2 log@yD + 3 log@zD

In[17]:= log@x ê yD
Out[17]= log@xD - log@yD

4. Using Piecewise , we have:

In[18]:= g@x_D := PiecewiseB::-1 1 - Hx + 2L2 , -2 § x § -1>, : 1 - x2 , x < 0>>F
In[19]:= Plot@g@xD, 8x, -2, 0<D

Out[19]=
-2.0 -1.5 -1.0 -0.5

-1.0

-0.5

0.5

1.0

2.3 Predicates and Boolean operations
1. Create a predicate function that returns a value of True if its argument is between –1 and 1.

2. Define a predicate function CharacterQ@strD that returns true if its argument str is a single string
character, and returns false otherwise.

3. Write a predicate function NaturalQ@nD that returns a value of True if n is a natural number and
False otherwise, that is, NaturalQ@nD is True if n is among 0, 1, 2, 3, ….

4. Create a predicate function SubsetQAlis1, lis2E that returns a value of True if lis1 is a subset of lis2.

Remember, the empty set, 8<, is a subset of every set.

5. Create a predicate function CompositeQ that tests whether its argument is a nonprime integer.

2.3 Solutions

1. There are several ways to define this function, either using the relational operator for less than, or
with the absolute value function.

In[1]:= f@x_D := -1 < x < 1

In[2]:= f@x_D := Abs@xD < 1

In[3]:= f@4D
Out[3]= False

2 The Mathematica language 5

In[4]:= f@-0.35D
Out[4]= True

2. The requirements here are that the argument be both a string (StringQ) and have length
(StringLength) one.

In[5]:= CharacterQ@ch_D := StringQ@chD && StringLength@chD ã 1

In[6]:= CharacterQ@"v"D
Out[6]= True

In[7]:= CharacterQ@"vi"D
Out[7]= False

In[8]:= CharacterQ@viD
Out[8]= False

3. A number n can be considered a natural number if it is both an integer and greater than or equal to
zero. There is some disagreement in the mathematics community about 0, but for our purposes, we
will adopt the convention that 0 is a natural number.

In[9]:= NaturalQ@n_D := IntegerQ@nD && n ¥ 0

In[10]:= NaturalQ@0D
Out[10]= True

In[11]:= NaturalQ@-4D
Out[11]= False

4. The empty set is a subset of every set. So first we need a definition to cover this case.

In[12]:= SubsetQ@8<, lis2_D := True

The intersection of lis1 and lis2 will be identical to lis1 whenever lis1 is a subset of lis2.

In[13]:= SubsetQ@lis1_, lis2_D := Intersection@lis1, lis2D == lis1

In[14]:= A = 8a, b, c<;
B = 8a, b, c, d, e<;

In[16]:= SubsetQ@A, BD
Out[16]= True

We can also give a definition in terms of the subset character Õ which can be entered by typing Â-
sub-Â or by using one of the palettes.

In[17]:= lis1_ Õ lis2_ := Intersection@lis1, lis2D == lis1

6 Solutions to exercises

In[18]:= A Õ B

Out[18]= True

5. There are three tests that have to be satisfied: integer, greater than 1, not prime.

In[19]:= CompositeQ@n_D := IntegerQ@nD && n > 1 && Not@PrimeQ@nDD
In[20]:= CompositeQA231 - 1E

Out[20]= False

In[21]:= CompositeQA231 + 1E
Out[21]= True

This is more neatly done using conditional pattern matching. See, for example, Section 4.1 on
patterns.

2.4 Attributes
1. Ordinarily, when you define a function, it has no attributes. Mathematica evaluates the arguments

before passing them up to the calling function. So, in the following case, 2 + 3 is evaluated before it
is passed to f.

In[1]:= f@x_ + y_D := x2 + y2

In[2]:= f@2 + 3D
Out[2]= f@5D

Use one of the Hold attributes to give f the property that its argument is not evaluated first. The
resulting output should look like this:

In[3]:= f@2 + 3D
Out[3]= 13

2. Define a function that takes each number in a vector of numbers and returns that number if it is
within a certain interval, say -0.5 < x < 0.5, and returns x otherwise. Then make your function
listable so that it can operate on vectors (lists) directly.

2.4 Solutions

1. First clear any definitions and attributes that might be associated with f.

In[1]:= ClearAll@fD
Then set the HoldAll attribute to prevent initial evaluation of the argument of this function.

In[2]:= SetAttributes@f, HoldAllD
In[3]:= f@x_ + y_D := x2 + y2

2 The Mathematica language 7

In[4]:= f@a + bD
Out[4]= a2 + b2

In[5]:= f@2 + 3D
Out[5]= 13

2. Here is a small list of random numbers to use.

In[6]:= vec = RandomReal@8-1, 1<, 10D
Out[6]= 8-0.0606576, -0.245491, 0.612118, 0.904241, -0.598884,

0.546108, 0.145979, -0.491207, 0.327699, 0.810952<
The function could be set up to take two arguments, the number and the bound.

In[7]:= fun@x_?NumberQ, bound_D := IfB-bound < x < bound, x, x F
Make fun listable.

In[8]:= SetAttributes@fun, ListableD
In[9]:= fun@vec, 0.5D

Out[9]= 8-0.0606576, -0.245491, 0.78238, 0.950916, 0. + 0.773876 Â,

0.738991, 0.145979, -0.491207, 0.327699, 0.900529<

8 Solutions to exercises

3

Lists
3.1 Creating and displaying lists
1. Generate the list 880<, 80, 2<, 80, 2, 4<, 80, 2, 4, 6<, 80, 2, 4, 6, 8<< in two

different ways using the Table function.

2. A table containing ten random 1s and 0s can be created using RandomInteger@1, 810<D. Create
a ten-element list of random 1s, 0s and -1s.

3. Create a ten-element list of random 1s and -1s. This list can be viewed as the steps taken in a random
walk along the x-axis, where a step can be taken in either the positive x direction (corresponding to
1) or the negative x direction (corresponding to -1) with equal likelihood.

The random walk in one, two, three (and even higher) dimensions is used in science and engineer-
ing to represent phenomena that are probabilistic in nature. We will use a variety of random walk
models throughout this book to illustrate many different programming concepts.

4. Generate both of the following arrays using the Table function.

In[1]:= Array@f, 5D
Out[1]= 8f@1D, f@2D, f@3D, f@4D, f@5D<

In[2]:= Array@f, 83, 4<D
Out[2]= 88f@1, 1D, f@1, 2D, f@1, 3D, f@1, 4D<,8f@2, 1D, f@2, 2D, f@2, 3D, f@2, 4D<,8f@3, 1D, f@3, 2D, f@3, 3D, f@3, 4D<<

5. Construct an integer lattice graphic like the one below. Start by creating pairs of coordinate points
to connect with lines – here we have written the coordinates explicitly but you should generate
them programmatically. Once you have your coordinate pairs, you can display the graphic as
follows:

In[3]:= coords = 888-2, -1<, 82, -1<<, 88-2, 0<, 82, 0<<,88-2, 1<, 82, 1<<, 88-2, -1<, 8-2, 1<<, 88-1, -1<, 8-1, 1<<,880, -1<, 80, 1<<, 881, -1<, 81, 1<<, 882, -1<, 82, 1<<<;
Graphics@Line@coordsDD

Out[4]=

3 Lists 9

6. Import six images, resize them to the same dimensions, then display them inside a 3ä2 grid using
options for Grid to format the output.

3.1 Solutions

1. You can take every other element in the iterator list, or encode that in the expression 2 j.

In[1]:= Table@j, 8i, 0, 8, 2<, 8j, 0, i, 2<D
Out[1]= 880<, 80, 2<, 80, 2, 4<, 80, 2, 4, 6<, 80, 2, 4, 6, 8<<

In[2]:= Table@2 j, 8i, 0, 4<, 8j, 0, i<D
Out[2]= 880<, 80, 2<, 80, 2, 4<, 80, 2, 4, 6<, 80, 2, 4, 6, 8<<

2. Here is probably the simplest way to generate random -1s, 0s, and 1s.

In[3]:= RandomInteger@8-1, 1<, 810<D
Out[3]= 8-1, -1, -1, 1, 0, 1, 1, 0, -1, -1<

Or use RandomChoice:

In[4]:= RandomChoice@8-1, 0, 1<, 810<D
Out[4]= 80, 1, -1, 0, 1, 0, 1, -1, 1, 0<

3. Here are three ways to generate the list.

In[5]:= 2 RandomInteger@1, 810<D - 1

Out[5]= 8-1, 1, 1, -1, -1, 1, -1, -1, -1, -1<
In[6]:= H-1LRandomInteger@1,810<D

Out[6]= 81, 1, 1, 1, 1, -1, 1, 1, -1, -1<
The most direct way to do this is to use RandomChoice.

In[7]:= RandomChoice@8-1, 1<, 810<D
Out[7]= 8-1, 1, 1, 1, -1, 1, 1, -1, -1, -1<

4. These lists can be generated with Table, using two iterators for the second example.

In[8]:= Table@f@iD, 8i, 5<D
Out[8]= 8f@iD, f@iD, f@iD, f@iD, f@iD<

In[9]:= Table@f@i, jD, 8i, 3<, 8j, 4<D
Out[9]= 88f@i, jD, f@i, jD, f@i, jD, f@i, jD<,8f@i, jD, f@i, jD, f@i, jD, f@i, jD<,8f@i, jD, f@i, jD, f@i, jD, f@i, jD<<

5. Some thought is needed to get the iterators right using Table.

10 Solutions to exercises

In[10]:= xmin = -2; xmax = 2; ymin = -1; ymax = 1;

hlines = Table@88xmin, y<, 8xmax, y<<, 8y, ymin, ymax<D
Out[11]= 888-2, -1<, 82, -1<<, 88-2, 0<, 82, 0<<, 88-2, 1<, 82, 1<<<

In[12]:= vlines = Table@88x, ymin<, 8x, ymax<<, 8x, xmin, xmax<D
Out[12]= 888-2, -1<, 8-2, 1<<, 88-1, -1<, 8-1, 1<<,880, -1<, 80, 1<<, 881, -1<, 81, 1<<, 882, -1<, 82, 1<<<

Join the two sets of lines and then flatten to remove one set of braces.

In[13]:= pairs = Flatten@8hlines, vlines<, 1D
Out[13]= 888-2, -1<, 82, -1<<, 88-2, 0<, 82, 0<<,88-2, 1<, 82, 1<<, 88-2, -1<, 8-2, 1<<, 88-1, -1<, 8-1, 1<<,880, -1<, 80, 1<<, 881, -1<, 81, 1<<, 882, -1<, 82, 1<<<

In[14]:= Graphics@Line@pairsDD
Out[14]=

Here is a function that puts all this together:

In[15]:= Lattice@8xmin_, xmax_<, 8ymin_, ymax_<D :=

Module@8hlines, vlines, coords<,
hlines = Table@88xmin, y<, 8xmax, y<<, 8y, ymin, ymax<D;
vlines = Table@88x, ymin<, 8x, ymax<<, 8x, xmin, xmax<D;
coords = Flatten@8hlines, vlines<, 1D;
Graphics@Line@coordsDDD

In[16]:= Lattice@8-3, 3<, 8-2, 2<D
Out[16]=

6. Here are some sample images to work with.

3 Lists 11

In[17]:= RandomSample@ExampleData@"TestImage"D, 6D
Out[17]= 88TestImage, Peppers<, 8TestImage, Clock<, 8TestImage, Airplane<,8TestImage, Numbers<, 8TestImage, Lena<, 8TestImage, Ruler<<

In[18]:= images = Map@ExampleData,88"TestImage", "Girl2"<, 8"TestImage", "Peppers"<,8"TestImage", "Aerial"<, 8"TestImage", "Moon"<,8"TestImage", "Tank2"<, 8"TestImage", "Ruler"<<D;
Get their dimensions.

In[19]:= Map@ImageDimensions, imagesD
Out[19]= 88256, 256<, 8512, 512<, 8256, 256<,8256, 256<, 8512, 512<, 8512, 512<<

Resize the larger images.

In[20]:= img1 = images@@1DD;
img2 = ImageResize@images@@2DD, 256D;
img3 = images@@3DD;
img4 = images@@4DD;
img5 = ImageResize@images@@5DD, 256D;
img6 = ImageResize@images@@6DD, 256D;

Finally, put in a grid with some formatting.

In[26]:= Grid@88img1, img2, img3<,8img4, img5, img6<<, Frame Ø All, Spacings Ø 81, 1<, ItemSize Ø 83, 3<D
Out[26]=

3.2 The structure of lists
1. Given a list of integers such as the following, count the number of 0s. Find a way to count all those

elements of the list which are not 1s.

In[1]:= ints = RandomInteger@8-5, 5<, 30D
Out[1]= 8-2, -2, 2, -1, -1, -3, -5, 3, -4, -4, -3, 4, -3,

4, 2, -2, -3, 1, 2, 3, -2, -4, 1, -1, 1, 1, 5, -2, 0, 3<

12 Solutions to exercises

2. Given the list 8881, a<, 82, b<, 83, c<<, 884, d<, 85, e<, 86, f<<<, determine its
dimensions. Use the Dimensions function to check your answer.

3. Find the positions of the 9s in the following list. Confirm using Position.882, 1, 10<, 89, 5, 7<, 82, 10, 4<, 810, 1, 9<, 86, 1, 6<<
3.2 Solutions

1. Here is the list of integers to use.

In[1]:= ints = RandomInteger@8-5, 5<, 30D
Out[1]= 8-3, 0, -4, 5, -5, -1, -5, 0, -3, 5, 4, -3, -5, 1,

-4, 4, 3, 2, 3, -2, 5, 4, -1, 0, 2, -3, -4, -1, -1, -3<
Count all elements that match 0.

In[2]:= Count@ints, 0D
Out[2]= 3

Count all integers in ints that do not match 1.

In[3]:= Count@ints, Except@1DD
Out[3]= 29

2. From the top level, there are two lists, each consisting of three sublists, each sublist consisting of two
elements.

In[4]:= Dimensions@8881, a<, 82, b<, 83, c<<, 884, d<, 85, e<, 86, f<<<D
Out[4]= 82, 3, 2<

3. The Position function tells us that the 9s are located in the second sublist, first position, and in the
fourth sublist, third position.

In[5]:= Position@882, 1, 10<, 89, 5, 7<, 82, 10, 4<, 810, 1, 9<, 86, 1, 6<<, 9D
Out[5]= 882, 1<, 84, 3<<

3.3 Operations on lists
1. Given a list of data points, 88x1, y1<, 8x2, y2<, 8x3, y3<, 8x4, y4<, 8x5, y5<<, separate

the x and y components to get:88x1, x2, x3, x4, x5<, 8y1, y2, y3, y4, y5<<
2. Consider a two-dimensional random walk on a square lattice. (A square lattice can be envisioned as

a two-dimensional grid, just like the lines on graph paper.) Each step can be in one of the four
directions: 81, 0<, 80, 1<, 8-1, 0<, 80, -1<, corresponding to steps in the compass directions
east, north, west and south, respectively. Use the list 881, 0<, 80, 1<, 8-1, 0<, 80, -1<< to
create a list of the steps of a ten-step random walk.

3 Lists 13

3. Extract elements in the even-numbered locations in the list 8a, b, c, d, e, f, g<.

4. Given a matrix, use list component assignment to swap any two rows.

5. Create a function AddColumnAmat, col, posE that inserts a column vector col into the matrix mat at

the column position given by pos. For example:

In[1]:= mat = RandomInteger@9, 84, 4<D;
MatrixForm@matD

Out[2]//MatrixForm=
5 0 9 1
0 0 0 5
9 6 2 5
1 2 2 2

In[3]:= AddColumn@mat, 8a, b, c, d<, 3D êê MatrixForm

Out[3]//MatrixForm=
5 0 a 9 1
0 0 b 0 5
9 6 c 2 5
1 2 d 2 2

6. Suppose you are given a list S of length n, and a list P containing n different numbers between 1 and
n, that is, P is a permutation of Range@nD. Compute the list T such that for all k between 1 and n,
TPkT = SPPPkTT. For example, if S = 8a, b, c, d< and P = 83, 2, 4, 1<, then
T = 8c, b, d, a<.

7. Given the lists S and P in the previous exercise, compute the list U such that for all k between 1 and
n, UPPPkTT = SPkT, that is, SPiT takes the value from position PPiT in U. Thus, for
S = 8a, b, c, d< and P = 83, 2, 4, 1<, U = 8d, b, a, c<. Think of it as moving SP1T to
position PP1T, SP2T to position PP2T, and so on. Hint: start by pairing the elements of P with the
elements of S.

8. How would you perform the same task as Prepend@8x, y<, zD using the Join function?

9. Starting with the lists 81, 2, 3, 4< and 8a, b, c, d<, create the list 82, 4, b, d<.

10. Starting with the lists 81, 2, 3, 4< and 8a, b, c, d<, create the list
81, a, 2, b, 3, c, 4, d<.

11. Given two lists, find all those elements that are not common to the two lists. For example, starting
with the lists, 8a, b, c, d< and 8a, b, e, f<, your answer would return the list 8c, d, e, f<.

12. One of the tasks in computational linguistics involves statistical analysis of text using what are
called n-grams. These are sequences of n adjacent letters or words and their frequency distribution in
a body of text can be used to predict word usage based on the previous history or usage. Import a
file consisting of some text and find the twenty most frequently occurring word combinations. Pairs
of words that are grouped like this are called bigrams, that is, n-grams for n = 2.

Use the following StringSplit code to split long strings into a list of words that can then be
operated on with the list manipulation functions. Regular expressions are discussed in detail in
Section 9.4.

14 Solutions to exercises

In[4]:= words =
StringSplit@"Use StringSplit to split long strings into words.",

RegularExpression@"\\W+"DD
Out[4]= 8Use, StringSplit, to, split, long, strings, into, words<

13. Based on the previous exercise, create a function NGrams@str, nD that takes a string of text and
returns a list of n-grams, that is a list of the n adjacent words. For example:

In[5]:= text = "Use StringSplit to split long strings into words.";

NGrams@text, 3D
Out[6]= 88Use, StringSplit, to<, 8StringSplit, to, split<,8to, split, long<, 8split, long, strings<,8long, strings, into<, 8strings, into, words<<
3.3 Solutions

1. This is a straightforward use of the Transpose function.

In[1]:= Transpose@88x1, y1<, 8x2, y2<, 8x3, y3<, 8x4, y4<, 8x5, y5<<D
Out[1]= 88x1, x2, x3, x4, x5<, 8y1, y2, y3, y4, y5<<

2. Here is one way to do it. First create a list representing the directions.

In[2]:= NSEW = 880, 1<, 80, -1<, 81, 0<, 8-1, 0<<;
RandomChoice chooses with replacement.

In[3]:= RandomChoice@NSEW, 810<D
Out[3]= 880, -1<, 80, -1<, 80, 1<, 81, 0<,80, 1<, 80, 1<, 80, 1<, 80, 1<, 81, 0<, 8-1, 0<<

3. Start by dropping the first element in the list, then create a nested list of every other element in the
remaining list, and finally unnest the resulting list.

In[4]:= Rest@8a, b, c, d, e, f, g<D
Out[4]= 8b, c, d, e, f, g<

In[5]:= Partition@%, 1, 2D
Out[5]= 88b<, 8d<, 8f<<

In[6]:= Flatten@%D
Out[6]= 8b, d, f<

This can also be done directly in one step using Part with Span . The expression 2 ;; -1 ;; 2
indicates the range from the second element to the last element in increments of 2.

In[7]:= Part@8a, b, c, d, e, f, g<, 2 ;; -1 ;; 2D
Out[7]= 8b, d, f<

3 Lists 15

4. The standard procedural approach is to use a temporary variable to do the swapping.

In[8]:= mat = RandomInteger@9, 84, 4<D;
MatrixForm@matD

Out[9]//MatrixForm=
1 8 6 9
4 8 4 1
2 9 7 5
6 3 0 7

In[10]:= temp = mat@@1DD;
mat@@1DD = mat@@2DD;
mat@@2DD = temp;

MatrixForm@matD
Out[13]//MatrixForm=

4 8 4 1
1 8 6 9
2 9 7 5
6 3 0 7

But you can use parallel assignments to avoid the temporary variable.

In[14]:= mat = RandomInteger@9, 84, 4<D;
MatrixForm@matD

Out[15]//MatrixForm=
2 9 8 7
8 8 8 4
2 4 7 7
7 4 7 2

In[16]:= 8mat@@2DD, mat@@1DD< = 8mat@@1DD, mat@@2DD<;
MatrixForm@matD

Out[17]//MatrixForm=
8 8 8 4
2 9 8 7
2 4 7 7
7 4 7 2

In fact you can make this a bit more compact.

In[18]:= mat = RandomInteger@9, 84, 4<D;
MatrixForm@matD

Out[19]//MatrixForm=
5 7 2 6
2 0 3 6
4 2 4 8
5 8 2 0

16 Solutions to exercises

In[20]:= mat@@82, 1<DD = mat@@81, 2<DD;
MatrixForm@matD

Out[21]//MatrixForm=
2 0 3 6
5 7 2 6
4 2 4 8
5 8 2 0

A key point to notice is that in this exercise, the matrix mat was overwritten in each case; in other
words, these were destructive operations. Section 5.5 discusses how to handle row and column
swapping properly so that the original matrix remains untouched.

5. You need to first transpose the matrix to operate on the columns as rows.

In[22]:= mat = RandomInteger@9, 84, 4<D;
MatrixForm@matD

Out[23]//MatrixForm=
7 0 8 8
8 3 3 8
3 0 8 4
7 5 0 6

In[24]:= Transpose@matD
Out[24]= 887, 8, 3, 7<, 80, 3, 0, 5<, 88, 3, 8, 0<, 88, 8, 4, 6<<

Now insert the column vector at the desired position. Then transpose back.

In[25]:= Insert@Transpose@matD, 8a, b, c, d<, 3D êê MatrixForm

Out[25]//MatrixForm=
7 8 3 7
0 3 0 5
a b c d
8 3 8 0
8 8 4 6

In[26]:= TransposeüInsert@Transpose@matD, 8a, b, c, d<, 3D êê MatrixForm

Out[26]//MatrixForm=
7 0 a 8 8
8 3 b 3 8
3 0 c 8 4
7 5 d 0 6

Here then is the function, with some basic argument checking to make sure the number of elements
in the column vector is the same as the number of rows of the matrix.

In[27]:= AddColumn@mat_, col_, pos_D ê; Length@colD ã Length@matD :=

Transpose@Insert@Transpose@matD, col, posDD
6. We want those elements in S given by the positions in P.

3 Lists 17

In[28]:= S = 8a, b, c, d<;
P = 83, 2, 4, 1<;

In[30]:= S@@83, 2, 4, 1<DD

Out[30]= 8c, b, d, a<
Or, more compactly:

In[31]:= SPPT

Out[31]= 8c, b, d, a<
7. Without resorting to a functional approach as discussed in Chapter 5, this requires several steps.

In[32]:= S = 8a, b, c, d<;
P = 83, 2, 4, 1<;

In[34]:= Transpose@8P, S<D

Out[34]= 883, a<, 82, b<, 84, c<, 81, d<<
In[35]:= Sort@%D

Out[35]= 881, d<, 82, b<, 83, a<, 84, c<<
In[36]:= Transpose@%D

Out[36]= 881, 2, 3, 4<, 8d, b, a, c<<
In[37]:= %P2T

Out[37]= 8d, b, a, c<
Using Map, this can be done in one step.

In[38]:= Map@Last, Sort@Transpose@8P, S<DDD

Out[38]= 8d, b, a, c<
8. Join expects lists as arguments.

In[39]:= Join@8z<, 8x, y<D

Out[39]= 8z, x, y<
9. Joining the two lists and then using Part with Span is the most direct way to do this.

In[40]:= expr = Join@81, 2, 3, 4<, 8a, b, c, d<D

Out[40]= 81, 2, 3, 4, a, b, c, d<
In[41]:= expr@@2 ;; -1 ;; 2DD

Out[41]= 82, 4, b, d<
10. The function Riffle is designed for this task.

18 Solutions to exercises

In[42]:= Riffle@81, 2, 3, 4<, 8a, b, c, d<D
Out[42]= 81, a, 2, b, 3, c, 4, d<

This can also be done in two steps by first transposing the two lists and then flattening.

In[43]:= Transpose@881, 2, 3, 4<, 8a, b, c, d<<D
Out[43]= 881, a<, 82, b<, 83, c<, 84, d<<

In[44]:= Flatten@%D
Out[44]= 81, a, 2, b, 3, c, 4, d<

11. This is another way of asking for all those elements that are in the union but not the intersection of
the two sets.

In[45]:= A = 8a, b, c, d<;
B = 8a, b, e, f<;

In[47]:= Complement@A ‹ B, A › BD
Out[47]= 8c, d, e, f<

In[48]:= Complement@Union@A, BD, Intersection@A, BDD
Out[48]= 8c, d, e, f<

12. We will use Darwin’s On the Origin of Species text, built into Mathematica via ExampleData .

In[49]:= darwin = ExampleData@8"Text", "OriginOfSpecies"<D;
words = StringSplit@darwin, RegularExpression@"\\W+"DD

Out[50]=

A very large output was generated. Here is a sample of it:8INTRODUCTION, When, on, board, H, M, S, á151191à,

wonderful, have, been, and, are, being, evolved<
Show Less Show More Show Full Output Set Size Limit...

First, partition the list of words into pairs with overlap one. Then tally them and sort by the fre-
quency count, the last element in each sublist. Finally, take the last twenty expressions, those
bigrams occurring the most frequently.

3 Lists 19

In[51]:= tally = SortBy@Tally@Partition@words, 2, 1DD, LastD;
Take@tally, -20D

Out[52]= 888has, been<, 190<, 88each, other<, 195<,88species, of<, 202<, 88of, life<, 229<, 88with, the<, 230<,88natural, selection<, 236<, 88it, is<, 238<, 88and, the<, 240<,88by, the<, 243<, 88from, the<, 256<, 88in, a<, 256<,88to, be<, 267<, 88of, a<, 268<, 88have, been<, 432<,88that, the<, 438<, 88on, the<, 501<, 88to, the<, 582<,88the, same<, 716<, 88in, the<, 1028<, 88of, the<, 1995<<
Here are the next twenty most frequently occurring bigrams.

In[53]:= Take@tally, -40 ;; -20D
Out[53]= 888to, have<, 120<, 88which, are<, 121<, 88conditions, of<, 124<,88between, the<, 125<, 88do, not<, 128<, 88and, in<, 132<,88the, case<, 133<, 88can, be<, 137<, 88will, be<, 138<,88as, the<, 141<, 88would, be<, 142<, 88number, of<, 144<,88all, the<, 150<, 88at, the<, 157<, 88the, most<, 160<,88the, other<, 167<, 88for, the<, 171<, 88the, species<, 172<,88I, have<, 187<, 88may, be<, 189<, 88has, been<, 190<<

13. This is a straightforward extension of the previous exercise.

In[54]:= NGrams@text_, n_D := Partition@
StringSplit@text, RegularExpression@"\\W+"DD, n, 1D

In[55]:= sentence = "Use StringSplit to split long strings into words.";

NGrams@sentence, 3D
Out[56]= 88Use, StringSplit, to<, 8StringSplit, to, split<,8to, split, long<, 8split, long, strings<,8long, strings, into<, 8strings, into, words<<

20 Solutions to exercises

4

Patterns and rules
4.1 Patterns
1. Use conditional patterns to find all those numbers in a list of integers that are divisible by 2 or 3 or 5.

2. Write down five conditional patterns that match the expression 84, 8a, b<, "g"<.

3. Write a function Collatz that takes an integer n as an argument and returns 3 n + 1 if n is an odd
integer and returns n ê2 if n is even.

4. Write the Collatz function from the above exercise, but this time you should also check that the
argument to Collatz is positive.

5. Use alternatives to write a function abs@xD that returns x if x ¥ 0, and -x if x < 0, whenever x is an

integer or a rational number. Whenever x is complex, abs@xD should return reHxL2 + imHxL2 .

6. Create a function swapTwoAlisE that returns lis with only its first two elements interchanged; for

example, the input swapTwo@8a, b, c, d, e<D should return 8b, a, c, d, e<. If lis has fewer
than two elements, swapTwo just returns lis. Write swapTwo using three clauses: one for the empty
list, one for one-element lists, and one for all other lists. Then write it using two clauses: one for lists
of length 0 or 1 and another for all longer lists.

4.1 Solutions

1. Start by creating a list of integers with which to work.

In[1]:= lis = RandomInteger@1000, 820<D
Out[1]= 8480, 430, 509, 848, 842, 760, 785, 769, 579,

96, 754, 241, 840, 180, 849, 707, 347, 333, 613, 67<
IntegerQ is a predicate; it returns True or False, so we need to use the logical OR to separate
clauses here.

In[2]:= Cases@lis, n_ ê; IntegerQ@n ê 2D »» IntegerQ@n ê 3D »» IntegerQ@n ê 5DD
Out[2]= 8480, 430, 848, 842, 760, 785, 579, 96, 754, 840, 180, 849, 333<

This is a bit more compact and direct.

In[3]:= Cases@lis, n_ ê; Mod@n, 2D ã 0 »» Mod@n, 3D ã 0 »» Mod@n, 5D ã 0D
Out[3]= 8480, 430, 848, 842, 760, 785, 579, 96, 754, 840, 180, 849, 333<

Once you are familiar with pure functions (Section 5.6), you can also do this with Select.

4 Patterns and rules 21

In[4]:= Select@lis, Mod@Ò, 2D ã 0 »» Mod@Ò, 3D ã 0 »» Mod@Ò, 5D ã 0 &D

Out[4]= 8480, 430, 848, 842, 760, 785, 579, 96, 754, 840, 180, 849, 333<
2. FullForm should help to guide you.

In[5]:= FullForm@84, 8a, b<, "g"<D

Out[5]//FullForm= List@4, List@a, bD, "g"D
In[6]:= MatchQ@84, 8a, b<, "g"<, x_List ê; Length@xD == 3D

Out[6]= True

In[7]:= MatchQ@84, 8a, b<, "g"<, 8_, y_, _< ê; yP0T == ListD

Out[7]= True

In[8]:= MatchQ@84, 8a, b<, "g"<, 8x_, y_, z_< ê; AtomQ@zDD

Out[8]= True

In[9]:= MatchQ@84, 8a, b<, "g"<, 8x_, _, _< ê; EvenQ@xDD

Out[9]= True

3. The Collatz function has a direct implementation based on its definition. There is no need to check
explicitly that the argument is an integer since OddQ and EvenQ handle that.

In[10]:= Collatz@n_?OddQD := 3 n + 1

In[11]:= Collatz@n_?EvenQD :=
n

2

Here we iterate the Collatz function fifteen times starting with an initial value of 23.

In[12]:= NestList@Collatz, 23, 15D

Out[12]= 823, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1<
Check for arguments that do not match the patterns above.

In[13]:= Collatz@24.0D

Out[13]= Collatz@24.D
4. Here again is the Collatz function, but this time using a condition on the right-hand side of the

definition.

In[14]:= Clear@CollatzD

In[15]:= Collatz@n_D := 3 n + 1 ê; OddQ@nD && Positive@nD

In[16]:= Collatz@n_D :=
n

2
ê; EvenQ@nD && Positive@nD

22 Solutions to exercises

In[17]:= Collatz@4.3D
Out[17]= Collatz@4.3D

In[18]:= Collatz@-3D
Out[18]= Collatz@-3D

In[19]:= NestList@Collatz, 22, 15D
Out[19]= 822, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1<

You could also put the conditions inside the pattern on the left-hand side if you prefer.

In[20]:= Clear@CollatzD
In[21]:= Collatz@n_ ê; OddQ@nD && Positive@nDD := 3 n + 1

In[22]:= Collatz@n_ ê; EvenQ@nD && Positive@nDD :=
n

2

In[23]:= NestList@Collatz, 22, 15D
Out[23]= 822, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1<

5. Using alternatives, this gives the definition for real, integer, or rational arguments.

In[24]:= abs@x_Real x_Integer x_RationalD := If@x ¥ 0, x, -xD
Here is the definition for complex arguments.

In[25]:= abs@x_ComplexD := Re@xD2 + Im@xD2
Note that these rules are not invoked for symbolic arguments.

In[26]:= MapBabs, :-3, 3 + 4 I,
-4

5
, a>F

Out[26]= :3, 5,
4

5
, abs@aD>

6. We first have to consider the base cases. Given a list with no elements, swapTwo should return the
empty list. And, given a list with one element, swapping should give that one element back.

In[27]:= swapTwo@8<D := 8<
swapTwo@8x_<D := 8x<

Now, we use the triple-blank to indicate that r could be a sequence of zero or more elements.

In[29]:= swapTwo@8x_, y_, r___<D := 8y, x, r<
In[30]:= Map@swapTwo, 88<, 8a<, 8a, b, c, d<<D

Out[30]= 88<, 8a<, 8b, a, c, d<<

4 Patterns and rules 23

Notice in this second definition for swapTwo that the second clause covers both the situation where
the argument is the empty list and when it contains only one element.

In[31]:= swapTwo2@8x_, y_, r___<D := 8y, x, r<
swapTwo2@x_D := x

In[33]:= Map@swapTwo2, 88<, 8a<, 8a, b, c, d<<D
Out[33]= 88<, 8a<, 8b, a, c, d<<

4.2 Transformation rules
1. Here is a rule designed to switch the order of each pair of expressions in a list. It works fine on the

first example, but fails on the second.

In[1]:= 88a, b<, 8c, d<, 8e, f<< ê. 8x_, y_< ß 8y, x<
Out[1]= 88b, a<, 8d, c<, 8f, e<<

In[2]:= 88a, b<, 8c, d<< ê. 8x_, y_< ß 8y, x<
Out[2]= 88c, d<, 8a, b<<

Explain what has gone wrong and rewrite this rule to correct the situation, that is, so that the second
example returns 88b, a<, 8d, c<<.

2. The following compound expression returns a value of 14. Describe the evaluation sequence that
was followed. Use the Trace function to check your answer.

In[3]:= z = 11;

a = 9;

z + 3 ê.z Ø a

Out[5]= 14

Then use the Hold function in the compound expression to obtain a value of 12.

3. Create a function to compute the area of any triangle, given its three vertices. The area of a triangle is
one-half the base times the altitude. For arbitrary points, the altitude requires a bit of computation
that does not generalize. The magnitude of the cross product of two vectors gives the area of the
parallelogram that they determine. The cross product is only defined for three-dimensional vectors,
so to compute the area of a two-dimensional triangle using the cross product you will need to
embed the edges (vectors) in three-dimensional space, say, in the plane z = 0. Try a second imple-
mentation using determinants instead of cross products.

4. Use pattern matching to extract all negative solutions of the following polynomial:

x9 + 3.4 x6 - 25 x5 - 213 x4 - 477 x3 + 1012 x2 + 111 x - 123

Then extract all real solutions, that is, those which are not complex.

5. Create a rewrite rule that uses a repeated replacement to “unnest” the nested lists within a list.

In[6]:= unNest@88a, a, a<, 8a<, 88b, b, b<, 8b, b<<, 8a, a<<D
Out[6]= 8a, a, a, a, b, b, b, b, b, a, a<

24 Solutions to exercises

6. Define a function using pattern matching and repeated replacement to sum the elements of a list.

7. Using the built-in function ReplaceList , write a function cartesianProduct that takes two
lists as input and returns the Cartesian product of these lists.

In[7]:= cartesianProduct@8x1, x2, x3<, 8y1, y2<D
Out[7]= 88x1, y1<, 8x1, y2<, 8x2, y1<, 8x2, y2<, 8x3, y1<, 8x3, y2<<

8. Write a function to count the total number of multiplications in any polynomial expression. For
example, given a power, your function should return one less than the exponent.

In[8]:= MultiplyCountAt5E
Out[8]= 4

In[9]:= MultiplyCount[a x y t]

Out[9]= 3

In[10]:= MultiplyCountAa x y t4 + w tE
Out[10]= 7

9. Create six graphical objects, one each to represent the faces of a standard six-sided die. Dice@nD
should display the face of the appropriate die, as below.

In[11]:= Table@Dice@nD, 8n, 1, 6<D
Out[11]= : , , , , , >

One way to approach this problem is to think of a die face as a grid of nine elements, some of which
are turned on (white) and some turned off (blue above). Then create one set of rules for each die
face. Once your rules are defined, you could use something like the following graphics code (a bit
incomplete as written here) to create your images.

Dice@n_D := GraphicsGrid@
Map@Graphics, Partition@Range@9D, 3D ê. rules@@nDD, 82<DD

4.2 Solutions

1. The problem here is that the pattern is too general and has been matched by the entire expression,
which has the form 8x_, y_<, where x is matched by 8a, b< and y is matched by 8c, d<. To fix
this, use patterns to restrict the expressions that match.

In[1]:= 88a, b<, 8c, d<< ê. 8x_Symbol, y_Symbol< ß 8y, x<
Out[1]= 88b, a<, 8d, c<<

In[2]:= 88a, b<, 8c, d<, 8e, f<< ê. 8x_Symbol, y_Symbol< ß 8y, x<
Out[2]= 88b, a<, 8d, c<, 8f, e<<

2. The evaluation sequence can be seen directly from the Trace of this compound expression.

4 Patterns and rules 25

In[3]:= Trace@
z = 11;

a = 9;

z + 3 ê. z Ø aD
Out[3]= 8z = 11; a = 9; z + 3 ê. z Ø a,8z = 11, 11<, 8a = 9, 9<, 888z, 11<, 11 + 3, 14<,88z, 11<, 8a, 9<, 11 Ø 9, 11 Ø 9<, 14 ê. 11 Ø 9, 14<, 14<

First make sure that a and z have no values associated with them.

In[4]:= Clear@a, zD
In[5]:= Hold@z = 11D;

a = 9;

z + 3 ê.z Ø a

Out[7]= 12

In[8]:= Clear@aD
3. The cross product is only defined for three dimensions, so first we need to embed the two-dimen-

sional vectors in 3-space; in this case, in the plane z = 0.

In[9]:= 8x1, y1< ê.8x_, y_< ß 8x, y, 0<
Out[9]= 8x1, y1, 0<

We need to compute the cross product of two vectors that span the triangle.

In[10]:= Cross@8x2, y2< - 8x1, y1< ê.8x_, y_< ß 8x, y, 0<,8x3, y3< - 8x1, y1< ê.8x_, y_< ß 8x, y, 0<D
Out[10]= 80, 0, -x2 y1 + x3 y1 + x1 y2 - x3 y2 - x1 y3 + x2 y3<

Here are the coordinates for a triangle.

In[11]:= a = 80, 0<;
b = 85, 0<;
c = 83, 2<;

And here is the computation for the cross product.

In[14]:= Cross@b - a ê.8x_, y_< ß 8x, y, 0<, c - a ê.8x_, y_< ß 8x, y, 0<D
Out[14]= 80, 0, 10<

So the given area is then just half the magnitude of the cross product.

In[15]:=
Norm@%D

2

Out[15]= 5

26 Solutions to exercises

This is done more simply using determinants. Note the change here: each vector (edge of triangle) is
embedded in the plane z = 1.

In[16]:= TriangleArea@tri : 8v1_, v2_, v3_<D :=
1

2
Det@tri ê.8x_, y_< ß 8x, y, 1<D

In[17]:= TriangleArea@8a, b, c<D
Out[17]= 5

In[18]:= Clear@a, b, cD
4. First, get the solutions to this polynomial.

In[19]:= soln =

SolveAx9 + 3.4 x6 - 25 x5 - 213 x4 - 477 x3 + 1012 x2 + 111 x - 123 ã 0, xE
Out[19]= 88x Ø -2.80961<, 8x Ø -1.85186 - 2.15082 Â<,8x Ø -1.85186 + 2.15082 Â<, 8x Ø -0.376453<,8x Ø 0.323073<, 8x Ø 1.06103 - 3.12709 Â<,8x Ø 1.06103 + 3.12709 Â<, 8x Ø 1.30533<, 8x Ø 3.13931<<

The pattern needs to match an expression consisting of a list with a rule inside where the value on
the right-hand side of the rule should pass the Negative test.

In[20]:= Cases@soln, 8x_ Ø _?Negative<D
Out[20]= 88x Ø -2.80961<, 8x Ø -0.376453<<

Here are two solutions for the noncomplex roots.

In[21]:= Cases@soln, 8_ Ø _Real<D
Out[21]= 88x Ø -2.80961<, 8x Ø -0.376453<,8x Ø 0.323073<, 8x Ø 1.30533<, 8x Ø 3.13931<<

In[22]:= DeleteCases@soln, 8_ Ø _Complex<D
Out[22]= 88x Ø -2.80961<, 8x Ø -0.376453<,8x Ø 0.323073<, 8x Ø 1.30533<, 8x Ø 3.13931<<

5. The transformation rule unnests lists within a list.

In[23]:= unNest@lis_D := Map@HÒ êê.8x__< ß x &L, lisD
In[24]:= unNest@88a, a, a<, 8a<, 88b, b, b<, 8b, b<<, 8a, a<<D

Out[24]= 8a, a, a, a, b, b, b, b, b, a, a<
6. Note the need to put y in a list on the right-hand side of the rule. Also, an immediate rule is required

here.
In[25]:= sumList@lis_D := First@lis êê.8x_, y___< Ø x + 8y<D
In[26]:= sumList@81, 5, 8, 3, 9, 3<D

Out[26]= 29

4 Patterns and rules 27

7. The triple blank is required both before and after the variables x and y.

In[27]:= cartesianProduct@lis1_, lis2_D :=

ReplaceList@8lis1, lis2<, 88___, x_, ___<, 8___, y_, ___<< ß 8x, y<D
We should also have a rule for the base case.

In[28]:= cartesianProduct@8<D := 8<
In[29]:= Clear@x, y, z, a, b, cD
In[30]:= cartesianProduct@8a, b, c<, 8x, y, z<D

Out[30]= 88a, x<, 8a, y<, 8a, z<, 8b, x<, 8b, y<, 8b, z<, 8c, x<, 8c, y<, 8c, z<<
In[31]:= cartesianProduct@8<D

Out[31]= 8<
8. For an expression of the form PowerAa, bE, the number of multiplies is b - 1.

In[32]:= Cases@8x^4<, Power@_, exp_D ß exp - 1D
Out[32]= 83<

For an expression of the form TimesAa, b, c, …E, the number of multiplications is given by one

less then the number of arguments.

In[33]:= Cases@8a b c d e<, fac_Times ß Length@facD - 1D
Out[33]= 84<

For a mix of terms of these two cases, we will need to total up the counts from the respective terms.
Here is a function that puts this all together. Use Infinity as a third argument to Cases to make
sure the search goes all the way down the expression tree.

In[34]:= MultiplyCount@expr_?PolynomialQD :=

TotalüCases@8expr<, Power@_, exp_D ß exp - 1, InfinityD +

TotalüCases@8expr<, fac_Times ß Length@facD - 1, InfinityD
In[35]:= MultiplyCountAa b2 c d5E

Out[35]= 8

In[36]:= poly = ExpandAHx + y - zL3E
Out[36]= x3 + 3 x2 y + 3 x y2 + y3 - 3 x2 z - 6 x y z - 3 y2 z + 3 x z2 + 3 y z2 - z3

In[37]:= MultiplyCount@polyD
Out[37]= 28

9. First, we create a grid of the nine locations on the die.

28 Solutions to exercises

In[38]:= lis = Partition@Range@9D, 3D;
Grid@lisD

Out[39]=

1 2 3
4 5 6
7 8 9

Next, use graphics primitives to indicate if a location on the grid is colored (on) or not (off).

In[40]:= off = 8Red, Disk@D<;
on = 8White, Disk@D<;

Here are the rules for a five.

In[42]:= GraphicsGrid@Map@Graphics,
lis ê. 81 Ø on, 2 Ø off, 3 Ø on,

4 Ø off, 5 Ø on, 6 Ø off, 7 Ø on, 8 Ø off, 9 Ø on<,82<D, Background Ø Red, Spacings Ø 10, ImageSize Ø 50D
Out[42]=

The five other rules are straightforward. Here then is a function that wraps up the code. Note the use
of the Background option to GraphicsGrid to pick up the color from the value of off.

In[43]:= Dice@n_D :=

Module@8rules, off = 8DarkerüBlue, Disk@D<, on = 8White, Disk@D<<,
rules = 881 Ø off, 2 Ø off, 3 Ø off, 4 Ø off,

5 Ø on, 6 Ø off, 7 Ø off, 8 Ø off, 9 Ø off<,81 Ø off, 2 Ø off, 3 Ø on, 4 Ø off, 5 Ø off,

6 Ø off, 7 Ø on, 8 Ø off, 9 Ø off<,81 Ø off, 2 Ø off, 3 Ø on, 4 Ø off, 5 Ø on,

6 Ø off, 7 Ø on, 8 Ø off, 9 Ø off<,81 Ø on, 2 Ø off, 3 Ø on, 4 Ø off, 5 Ø off,

6 Ø off, 7 Ø on, 8 Ø off, 9 Ø on<,81 Ø on, 2 Ø off, 3 Ø on, 4 Ø off, 5 Ø on,

6 Ø off, 7 Ø on, 8 Ø off, 9 Ø on<,81 Ø on, 2 Ø off, 3 Ø on, 4 Ø on, 5 Ø off,

6 Ø on, 7 Ø on, 8 Ø off, 9 Ø on<<;
GraphicsGrid@Map@Graphics,

Partition@Range@9D, 3D ê. rules@@nDD,82<D, Background Ø First@offD, Spacings Ø 10, ImageSize Ø 40DD

4 Patterns and rules 29

In[44]:= Table@Dice@nD, 8n, 1, 6<D
Out[44]= : , , , , , >

4.3 Examples and applications
1. The function FindSubsequence defined in this section suffers from the limitation that the

arguments digits and subseq must both be lists of numbers. Write another definition of
FindSubsequence that takes two integers as arguments. So, for example, the following should
work:

In[1]:= n = RandomIntegerA10200E
Out[1]= 99886364225785890637248382678171952235146647070036321 Ö

273192078968865572610676045767583093169497891617017225 Ö

261830124007777401603464795137556513541607966794013354 Ö

513861062656302896471480157720676043512

In[2]:= FindSubsequence@n, 22D
Out[2]= 889, 10<, 835, 36<, 8105, 106<<

2. Plot the function sinHxL over the interval [–2 p, 2 p] and then reverse the x- and y-coordinates of each
point by means of a transformation rule to display a reflection in the line y = x.

3. Given a two-column array of data,

In[3]:= data = RandomReal@80, 10<, 85, 2<D;
MatrixForm@data, TableAlignments Ø "."D

Out[4]//MatrixForm=
2.75703 8.36575
7.99197 4.86756
1.90927 5.59835
7.76051 2.29443
3.87192 8.11463

create a new array that consists of three columns where the first two columns are identical to the
original, but the third column consists of the norm of the two numbers from the first two columns.

2.75703 8.36575 8.80835
7.99197 4.86756 9.35761
1.90927 5.59835 5.91497
7.76051 2.29443 8.09258
3.87192 8.11463 8.99105

4. Occasionally, when collecting data from an instrument, the collector fails or returns a bad value. In
analyzing the data, the analyst has to make a decision about what to use to replace these bad values.
One approach is to replace them with a column mean. Given an array of numbers such as the
following, create a function to replace each "NAN" with the mean of the numbers that appear in
that column.

30 Solutions to exercises

data =

0.9034 "NAN" 0.7163 0.8588
0.3031 0.5827 0.2699 0.8063

0.0418 0.8426 "NAN" 0.8634

"NAN" 0.8913 0.0662 0.8432

;

4.3 Solutions

1. Here is the function FindSubsequence as given in the text.

In[1]:= FindSubsequence@lis_List, subseq_ListD :=

Module@8p, len = Length@subseqD<,
p = Partition@lis, len, 1D;
Position@p, subseqD ê. 8num_?IntegerQ< ß 8num, num + len - 1<D

This creates another rule associated with FindSubsequence that simply takes each integer
argument, converts it to a list of integer digits, and then passes that off to the rule above.

In[2]:= FindSubsequence@n_Integer, subseq_IntegerD := Module@8nlist = IntegerDigits@nD, sublist = IntegerDigits@subseqD<,
FindSubsequence@nlist, sublistDD

Create the list of the first 100 000 digits of p.

In[3]:= pi = FromDigitsARealDigitsANAPi, 105E - 3E@@1DDE;
The subsequence 1415 occurs seven times at the following locations in this digit expansion of p.

In[4]:= FindSubsequence@pi, 1415D
Out[4]= 881, 4<, 86955, 6958<, 829136, 29139<, 845234, 45237<,879687, 79690<, 885880, 85883<, 888009, 88012<<

2. Here is the plot of the sine function.

In[5]:= splot = Plot@Sin@xD, 8x, -2 p, 2 p<D
Out[5]=

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

This replacement rule interchanges each ordered pair of numbers. Note the need to modify the plot
range here.

4 Patterns and rules 31

In[6]:= Show@splot ê. 8x_?NumberQ, y_?NumberQ< ß 8y, x<,
PlotRange Ø 8-2 p, 2 p<D

Out[6]=
-1.0 -0.5 0.5 1.0

-6

-4

-2

2

4

6

Although this particular example may have worked without the argument checking (_?NumberQ),
it is a good idea to include it so that pairs of arbitrary expressions are not pattern matched here. We
only want to interchange pairs of numbers, not pairs of options or other expressions that might be
present in the underlying expression representing the graphic.

3. We are embedding the two-dimensional data into a three-dimensional array. The embedding
function is written directly as a transformation rule.

In[7]:= data = RandomReal@80, 1<, 88, 2<D
Out[7]= 880.430685, 0.720811<, 80.258206, 0.143087<,80.41837, 0.180368<, 80.038807, 0.860367<, 80.759872, 0.532175<,80.404326, 0.769468<, 80.530604, 0.795417<, 80.345516, 0.0340149<<

In[8]:= data ê. 8x_, y_< ß 8x, y, Norm@8x, y<D< êê MatrixForm

Out[8]//MatrixForm=
0.430685 0.720811 0.839678
0.258206 0.143087 0.295203
0.41837 0.180368 0.455594
0.038807 0.860367 0.861242
0.759872 0.532175 0.927694
0.404326 0.769468 0.86923
0.530604 0.795417 0.956153
0.345516 0.0340149 0.347186

4. First, here is the data with which we will work.

In[9]:= array =

0.9034 "NAN" 0.7163 0.8588 0.1228

0.3031 0.5827 0.2699 0.8063 "NAN"

0.0418 0.8426 "NAN" 0.8634 0.9682
0.9163 0.8913 0.0662 0.8432 0.0547
0.7937 0.6905 0.9105 0.5589 0.8993

;

Get only the numeric values from the second column.

In[10]:= col2 = array@@All, 2DD;
Cases@col2, _?NumberQD

Out[11]= 80.5827, 0.8426, 0.8913, 0.6905<
Compute the mean of the second column.

32 Solutions to exercises

In[12]:= Mean@Cases@col2, _?NumberQDD
Out[12]= 0.751775

Replace the string with the column mean.

In[13]:= col2 ê. "NAN" Ø Mean@Cases@col2, _?NumberQDD êê MatrixForm

Out[13]//MatrixForm=
0.751775
0.5827
0.8426
0.8913
0.6905

Turn it into a function.

In[14]:= fixcolumn@col_D := array@@All, colDD ê.
"NAN" ß Mean@Cases@array@@All, colDD, _?NumberQDD

Try this function out on column 1 of our matrix.

In[15]:= fixcolumn@2D
Out[15]= 80.751775, 0.5827, 0.8426, 0.8913, 0.6905<

Map this function across all the columns.

In[16]:= Map@fixcolumn, Range@Length@First@arrayDDDD êê MatrixForm

Out[16]//MatrixForm=

0.9034 0.3031 0.0418 0.9163 0.7937
0.751775 0.5827 0.8426 0.8913 0.6905
0.7163 0.2699 0.490725 0.0662 0.9105
0.8588 0.8063 0.8634 0.8432 0.5589
0.1228 0.51125 0.9682 0.0547 0.8993

This operated on the columns, so the array is a list of the transformed column vectors. Transpose it
back to put things right.

In[17]:= MatrixForm@Transpose@%DD
Out[17]//MatrixForm=

0.9034 0.751775 0.7163 0.8588 0.1228
0.3031 0.5827 0.2699 0.8063 0.51125
0.0418 0.8426 0.490725 0.8634 0.9682
0.9163 0.8913 0.0662 0.8432 0.0547
0.7937 0.6905 0.9105 0.5589 0.8993

Next, turn this into a reusable function, FixArray.

In[18]:= FixArray@mat_D := Module@8fixcolumn<,
fixcolumn@col_D := mat@@All, colDD ê.

"NAN" ß Mean@Cases@mat@@All, colDD, _?NumberQDD;
Transpose@Map@fixcolumn, Range@Length@First@matDDDDDD

4 Patterns and rules 33

In[19]:= FixArray@arrayD êê MatrixForm

Out[19]//MatrixForm=
0.9034 0.751775 0.7163 0.8588 0.1228
0.3031 0.5827 0.2699 0.8063 0.51125
0.0418 0.8426 0.490725 0.8634 0.9682
0.9163 0.8913 0.0662 0.8432 0.0547
0.7937 0.6905 0.9105 0.5589 0.8993

34 Solutions to exercises

5

Functional programming
5.2 Functions for manipulating expressions
1. Rewrite the definition of SquareMatrixQ given in Section 4.1 to use Apply.

2. Given a set of points in the plane (or 3-space), find the maximum distance between any pair of these
points. This is often called the diameter of the pointset.

3. An adjacency matrix can be thought of as representing a graph of vertices and edges where a value
of 1 in position aij indicates an edge between vertex i and vertex j, whereas aij = 0 indicates no such

edge between vertices i and j.

In[1]:= mat = RandomInteger@1, 85, 5<D;
MatrixForm@matD

Out[2]//MatrixForm=
0 0 0 1 1
0 0 1 1 0
1 1 1 0 1
0 1 1 0 0
0 0 0 1 1

In[3]:= AdjacencyGraph@mat, VertexLabels Ø "Name"D
Out[3]=

Compute the total number of edges for each vertex in both the adjacency matrix and graph represen-
tations. For example, you should get the following edge counts for the five vertices represented in
the above adjacency matrix. Note: self-loops count as two edges each.83, 4, 7, 5, 5<

4. Create a function ToGraphAlisE that takes a list of pairs of elements and transforms it into a list of

graph (directed) edges. For example:

In[4]:= lis = RandomInteger@9, 812, 2<D
Out[4]= 884, 3<, 86, 4<, 80, 1<, 86, 0<, 85, 2<, 84, 7<,86, 4<, 87, 1<, 87, 6<, 87, 8<, 84, 0<, 83, 4<<

5 Functional programming 35

In[5]:= ToGraph@lisD
Out[5]= 84 3, 6 4, 0 1, 6 0, 5 2,

4 7, 6 4, 7 1, 7 6, 7 8, 4 0, 3 4<
Make sure that your function also works in the case where its argument is a single list of a pair of
elements.

In[6]:= ToGraph@83, 6<D
Out[6]= 3 6

5. Create a function RandomColor@D that generates a random RGB color. Add a rule for
RandomColor@nD to create a list of n random colors.

6. Create a graphic that consists of n circles in the plane with random centers and random radii.
Consider using Thread or MapThread to thread Circle@…D across the lists of centers and radii.
Use RandomColor from the previous exercise to give each circle a random color.

7. Use MapThread and Apply to mirror the behavior of Inner.

8. While matrices can easily be added using Plus , matrix multiplication is a bit more involved. The
Dot function, written as a single period, is used.

In[7]:= 881, 2<, 83, 4<<.8x, y<
Out[7]= 8x + 2 y, 3 x + 4 y<

Perform matrix multiplication on 881, 2<, 83, 4<< and 8x, y< without using Dot.

9. FactorInteger@nD returns a nested list of prime factors and their exponents for the number n.

In[8]:= FactorInteger@3628800D
Out[8]= 882, 8<, 83, 4<, 85, 2<, 87, 1<<

Use Apply to reconstruct the original number from this nested list.

10. Repeat the above exercise but instead use Inner to reconstruct the original number n from the
factorization given by FactorInteger@nD.

11. Create a function PrimeFactorForm@nD that formats its argument n in prime factorization form.
For example:

In[9]:= PrimeFactorForm@12D
Out[9]= 22 ÿ 31

You will need to use Superscript and CenterDot to format the factored integer.

12. The Vandermonde matrix arises in Lagrange interpolation and in reconstructing statistical distribu-
tions from their moments. Construct the Vandermonde matrix of order n, which should look like
the following:

36 Solutions to exercises

1 x1 x1
2 ∫ x1

n-1

1 x2 x2
2 ∫ x2

n-1

ª ª ª ∏ ª

1 xn xn
2 ∫ xn

n-1

13. Using Inner, write a function div@vecs, varsD that computes the divergence of an n-dimensional
vector field, vecs = 8e1, e2, …, en< dependent upon n variables, vars = 8v1, v2, …, vn<. The
divergence is given by the sum of the pairwise partial derivatives.

∑ e1

∑ v1

+
∑ e2

∑ v2

+∫ +
∑ en

∑ vn

14. The example in the section on Select and Pick found those Mersenne numbers 2n - 1 that are
prime doing the computation for all exponents n from 1 to 100. Modify that example to only use
prime exponents (since a basic theorem in number theory states that a Mersenne number with
composite exponent must be composite).

5.2 Solutions

1. First, here is the definition given in Section 4.1.

In[1]:= SquareMatrixQ@mat_?MatrixQD :=

Dimensions@matD@@1DD ã Dimensions@matD@@2DD
For a matrix, Dimensions returns a list of two integers. Applying Equal to the list will return
True if the two dimensions are identical, that is, if the matrix is square.

In[2]:= SquareMatrixQ@mat_?MatrixQD := Apply@Equal, Dimensions@matDD
2. First create a set of points with which to work.

In[3]:= points = RandomReal@1, 8100, 2<D;
The set of all two-element subsets is given by:

In[4]:= pairs = Subsets@points, 82<D;
Apply the distance function to pairs. Note the need to apply EuclideanDistance at level 1.

In[5]:= Apply@EuclideanDistance, pairs, 81<D;
The maximum distance (diameter) is given by Max.

In[6]:= Max@%D
Out[6]= 1.22117

Here is a function that puts it all together.

In[7]:= PointsetDiameter@pts_ListD :=

Max@Apply@EuclideanDistance, Subsets@pts, 82<D, 81<DD

5 Functional programming 37

In[8]:= PointsetDiameter@pointsD
Out[8]= 1.22117

In fact, this function works on n-dimensional point sets.

In[9]:= points3D = RandomReal@1, 85, 3<D
Out[9]= 880.909071, 0.903087, 0.299482<,80.696615, 0.317125, 0.391343<, 80.544775, 0.465739, 0.847848<,80.368606, 0.928498, 0.77199<, 80.582795, 0.993437, 0.74005<<
In[10]:= PointsetDiameter@points3DD

Out[10]= 0.791365

3. Here is a test matrix.

In[11]:= mat = RandomInteger@1, 85, 5<D;
MatrixForm@matD

Out[12]//MatrixForm=
1 0 0 0 0
0 1 1 0 0
0 1 0 0 1
1 1 0 1 0
1 0 1 1 1

A bit of thought should convince you that adding the matrix to its transpose and then totaling all
the 1s in each row will give the correct count.

In[13]:= Map@Total, mat + Transpose@matDD
Out[13]= 84, 5, 4, 5, 6<

Using graphs you can accomplish the same thing.

In[14]:= gr = AdjacencyGraph@mat, VertexLabels Ø "Name"D
Out[14]=

In[15]:= VertexDegree@grD
Out[15]= 84, 5, 4, 5, 6<

4. Applying DirectedEdge at level 1 will do the trick.

38 Solutions to exercises

In[16]:= ToGraph@lis : 88_, _< ..<D := Apply@DirectedEdge, lis, 81<D
In[17]:= lis = RandomInteger@9, 812, 2<D;

ToGraph@lisD
Out[18]= 83 8, 6 9, 9 8, 2 7, 0 7,

1 0, 2 5, 1 0, 8 6, 2 6, 7 7, 6 0<
This rule fails for the case when the argument is a single flat list of a pair of elements.

In[19]:= ToGraph@83, 6<D
Out[19]= ToGraph@83, 6<D

A second rule is needed for this case.

In[20]:= ToGraph@lis : 8_, _<D := Apply@DirectedEdge, lisD
In[21]:= ToGraph@83, 6<D

Out[21]= 3 6

5. RGBColor takes a sequence of three values between 0 and 1. So you only need to apply RGBColor
to this list.

In[22]:= RandomColor@D := Apply@RGBColor, RandomReal@1, 83<DD
A second rule uses pattern matching to make sure the argument, n, to RandomColor is a positive
integer; then create a list of n triples of random reals before applying RGBColor at level 1.

In[23]:= RandomColor@n_Integer?PositiveD :=

Apply@RGBColor, RandomReal@1, 8n, 3<D, 81<D
6. First, create the random centers and radii.

In[24]:= n = 12;

centers = RandomReal@8-1, 1<, 8n, 2<D
Out[25]= 88-0.33306, -0.757053<, 8-0.604635, -0.0691777<,80.995937, 0.75683<, 80.787243, -0.654724<,8-0.439541, 0.992207<, 80.192561, 0.843047<,8-0.944553, -0.796825<, 80.509232, -0.925483<,8-0.0752457, 0.606451<, 80.709054, -0.175166<,80.422127, 0.82078<, 8-0.0804006, 0.215504<<

In[26]:= radii = RandomReal@1, 8n<D
Out[26]= 80.864193, 0.41542, 0.746293, 0.777527, 0.495235, 0.343537,

0.273533, 0.0624348, 0.62805, 0.906858, 0.444684, 0.59442<
MapThread is perfect for the task of grabbing one center, one radii, and wrapping Circle around
them.

In[27]:= Hcircles = MapThread@Circle, 8centers, radii<DL êê Short

Out[27]//Short= 8Circle@á1àD, á10à, Circle@8-á18à, á20à<, á19àD<

5 Functional programming 39

In[28]:= Graphics@circlesD

Out[28]=

And here is a rule to transform each circle into a scoped list that includes Thick and
RandomColor. Note the need for the delayed rule (ß).

In[29]:= Graphics@circles ê. Circle@x__D ß 8Thick, RandomColor@D, Circle@xD<D

Out[29]=

7. Here is the Inner example from the text.

In[30]:= Inner@f, 8a, b, c<, 8d, e, f<, gD
Out[30]= g@f@a, dD, f@b, eD, f@c, fDD

Using MapThread , we zip together the two lists and wrap f around each pair. Then apply g.

In[31]:= MapThread@f, 88a, b, c<, 8d, e, f<<D
Out[31]= 8f@a, dD, f@b, eD, f@c, fD<

40 Solutions to exercises

In[32]:= Apply@g, %D
Out[32]= g@f@a, dD, f@b, eD, f@c, fDD

8. This can be done either in two steps, or by using the Inner function.

In[33]:= Transpose@881, 2<, 83, 4<<D 8x, y<
Out[33]= 88x, 3 x<, 82 y, 4 y<<

In[34]:= Total@%D
Out[34]= 8x + 2 y, 3 x + 4 y<

In[35]:= Inner@Times, 881, 2<, 83, 4<<, 8x, y<, PlusD
Out[35]= 8x + 2 y, 3 x + 4 y<

9. To get down to the level of the nested lists, you have to use a second argument to Apply.

In[36]:= facs = FactorInteger@3628800D
Out[36]= 882, 8<, 83, 4<, 85, 2<, 87, 1<<

In[37]:= Apply@Power, facs, 81<D
Out[37]= 8256, 81, 25, 7<

One more use of Apply is needed to multiply these terms.

In[38]:= Apply@Times, %D
Out[38]= 3628800

Here is a function that puts this all together.

In[39]:= ExpandFactors@lis_D := Apply@Times, Apply@Power, lis, 81<DD
In[40]:= FactorInteger@295232799039604140847618609643520000000D

Out[40]= 882, 32<, 83, 15<, 85, 7<, 87, 4<, 811, 3<,813, 2<, 817, 2<, 819, 1<, 823, 1<, 829, 1<, 831, 1<<
In[41]:= ExpandFactors@%D

Out[41]= 295232799039604140847618609643520000000

10. Here is a factorization we can use to work through this problem.

In[42]:= facs = FactorInteger@3628800D
Out[42]= 882, 8<, 83, 4<, 85, 2<, 87, 1<<

Another approach uses Transpose to separate the bases from their exponents, then uses Inner
to put things back together.

5 Functional programming 41

In[43]:= 8base, exponents< = Transpose@facsD
Out[43]= 882, 3, 5, 7<, 88, 4, 2, 1<<

In[44]:= Inner@Power, base, exponents, TimesD
Out[44]= 3628800

Since Tranpose returns a list of two lists in this example, we need to strip the outer list. This is
done by applying Sequence.

In[45]:= ExpandFactors2@lis_D :=

Inner@Power, Sequence üü Transpose@lisD, TimesD
In[46]:= ExpandFactors2@facsD

Out[46]= 3628800

11. First, here is the prime factorization of a test integer:

In[47]:= lis = FactorInteger@10!D
Out[47]= 882, 8<, 83, 4<, 85, 2<, 87, 1<<

Apply Superscript at level 1 to each of the sublists:

In[48]:= Apply@Superscript, lis, 81<D
Out[48]= 928, 34, 52, 71=

Finally, apply CenterDot to this list.

In[49]:= Apply@CenterDot, %D
Out[49]= 28 ÿ 34 ÿ 52 ÿ 71

Put it all together (using shorthand notation for Apply) and Apply at level 1.

In[50]:= PrimeFactorForm@p_D :=

CenterDot üü HSuperscript üüü FactorInteger@pDL
In[51]:= PrimeFactorForm@20!D

Out[51]= 218 ÿ 38 ÿ 54 ÿ 72 ÿ 111 ÿ 131 ÿ 171 ÿ 191

Unfortunately, this rule fails for numbers that have only one prime factor.

In[52]:= PrimeFactorForm@9D
Out[52]= CenterDotA32E

A second rule is needed for this special case.

In[53]:= PrimeFactorForm@p_?PrimePowerQD :=

First@Superscript üüü FactorInteger@pDD

42 Solutions to exercises

In[54]:= PrimeFactorForm@9D
Out[54]= 32

A subtle point is that Mathematica has automatically ordered these two rules, putting the one
involving prime powers first.

In[55]:= ? PrimeFactorForm

Global`PrimeFactorForm

PrimeFactorForm@p_?PrimePowerQD :=

First@Apply@Superscript, FactorInteger@pD, 81<DD
PrimeFactorForm@p_D :=

CenterDot üü Apply@Superscript, FactorInteger@pD, 81<D
This reordering (we evaluated the rules in a different order) is essential for this function to work
properly. If the general rule was checked first, it would apply to arguments that happen to be prime
powers and it would give wrong answers.

One final point: the expressions returned by PrimeFactorForm will not evaluate like ordinary
expressions due to the use of CenterDot which has no evaluation rules associated with it. You
could add an “interpretation” to such expressions by using InterpretationAdisp, exprE as

follows.

In[56]:= PrimeFactorForm@p_IntegerD := With@8fp = FactorInteger@pD<,
Interpretation@
CenterDot üü HSuperscript üüü fpL,
Times üü HPower üüü fpLDD

Now the output of the following expression can be evaluated directly to get an interpreted result.

In[57]:= PrimeFactorForm@12!D
Out[57]= 210 ÿ 35 ÿ 52 ÿ 71 ÿ 111

12. This is a straightforward application of the Outer function.

In[58]:= VandermondeMatrix@n_, x_D :=

Outer@Power, Table@xi, 8i, 1, n<D, Range@0, n - 1DD
In[59]:= VandermondeMatrix@4, xD êê MatrixForm

Out[59]//MatrixForm=

1 x1 x1
2 x1

3

1 x2 x2
2 x2

3

1 x3 x3
2 x3

3

1 x4 x4
2 x4

3

5 Functional programming 43

13. If we first look at a symbolic result, we should be able to see how to construct our function. For three
vectors and three variables, here is the divergence (think of d as the derivative operator).

In[60]:= Inner@d, 8e1, e2, e3<, 8v1, v2, v3<, PlusD
Out[60]= d@e1, v1D + d@e2, v2D + d@e3, v3D

So for arbitrary-length vectors and variables, we have:

In[61]:= div@vecs_, vars_D := Inner@D, vecs, vars, PlusD
As a check, we can compute the divergence of the standard gravitational or electric force field,
which should be zero.

In[62]:= divA8x, y, z< ë Ix2 + y2 + z2M3ê2, 8x, y, z<E
Out[62]= -

3 x2Ix2 + y2 + z2M5ê2 -
3 y2Ix2 + y2 + z2M5ê2 -

3 z2Ix2 + y2 + z2M5ê2 +
3Ix2 + y2 + z2M3ê2

In[63]:= Simplify@%D
Out[63]= 0

Finally, we should note that this definition of divergence is a bit delicate as we are doing no argu-
ment checking at this point. For example, it would be sensible to insure that the length of the vector
list is the same as the length of the variable list before starting the computation. Refer to Chapter 4
for a discussion of how to use pattern matching to deal with this issue.

14. First create a table of primes and then use that list for values of p in the second table.

In[64]:= primes = Table@Prime@nD, 8n, 1, 50<D
Out[64]= 82, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,

47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107,

109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,

173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229<
In[65]:= Select@Table@2p - 1, 8p, primes<D, PrimeQD

Out[65]= 83, 7, 31, 127, 8191, 131071, 524287, 2147483647,

2305843009213693951, 618970019642690137449562111,

162259276829213363391578010288127,

170141183460469231731687303715884105727<
Or you could do the same thing more directly.

In[66]:= SelectATableA2Prime@nD - 1, 8n, 1, 50<E, PrimeQE
Out[66]= 83, 7, 31, 127, 8191, 131071, 524287, 2147483647,

2305843009213693951, 618970019642690137449562111,

162259276829213363391578010288127,

170141183460469231731687303715884105727<

44 Solutions to exercises

5.3 Iterating functions
1. Determine the locations after each step of a ten-step one-dimensional random walk. (Recall that

you have already generated the step directions in Exercise 3 at the end of Section 3.1.)

2. Create a list of the step locations of a ten-step random walk on a square lattice.

3. Using Fold , create a function fac@nD that takes an integer n as argument and returns the factorial
of n, that is, nHn - 1L Hn - 2L∫3 ÿ2 ÿ 1.

4. The Sierpinski triangle is a classic iteration example. It is constructed by starting with an equilateral
triangle (other objects can be used) and removing the inner triangle formed by connecting the
midpoints of each side of the original triangle.

ö

The process is iterated by repeating the same computation on each of the resulting smaller triangles.

ö ö ∫ ö ∫

One approach is to take the starting equilateral triangle and, at each iteration, perform the appropri-
ate transformations using Scale and Translate , then iterate. Implement this algorithm, but be
careful about nesting large graphical structures too deeply.

5.3 Solutions

1. First generate the step directions.

In[1]:= TableAH-1LRandom@IntegerD, 810<E
Out[1]= 8-1, -1, -1, -1, -1, 1, -1, -1, 1, 1<

Or the following also works.

In[2]:= steps = 2 RandomInteger@1, 810<D - 1

Out[2]= 8-1, -1, -1, -1, 1, 1, -1, 1, 1, 1<
Then, starting at 0, the fold operation generates the locations.

In[3]:= FoldList@Plus, 0, stepsD
Out[3]= 80, -1, -2, -3, -4, -3, -2, -3, -2, -1, 0<

2. Use the method of generating a list of step locations that was shown in an earlier exercise.

5 Functional programming 45

In[4]:= steps = RandomChoice@881, 0<, 8-1, 0<, 80, 1<, 80, -1<<, 810<D
Out[4]= 881, 0<, 80, 1<, 81, 0<, 80, 1<, 81, 0<,80, -1<, 80, 1<, 80, -1<, 81, 0<, 80, 1<<

In[5]:= FoldList@Plus, 80, 0<, stepsD
Out[5]= 880, 0<, 81, 0<, 81, 1<, 82, 1<, 82, 2<,83, 2<, 83, 1<, 83, 2<, 83, 1<, 84, 1<, 84, 2<<

3. Starting with 1, fold the Times function across the first n integers.

In[6]:= fac@n_D := Fold@Times, 1, Range@nDD
In[7]:= fac@10D

Out[7]= 3628800

4. First create the vertices of the triangle. Wrapping them in N@…D helps to keep the graphical struc-
tures small (see Section 10.2 for more on this).

In[8]:= vertices = N@880, 0<, 81, 0<, 81 ê 2, 1<<D;
This gives the three different translation vectors.

In[9]:= translateVecs = 0.5 vertices

Out[9]= 880., 0.<, 80.5, 0.<, 80.25, 0.5<<
Here is the set of transformations of the triangle described by vertices, scaled by 0.5, and trans-
lated according to the translation vectors.

In[10]:= tri = Polygon@verticesD;
Graphics@8

Blue, Translate@Scale@tri, 0.5, 80., 0.<D, translateVecsD<D
Out[11]=

Finally, iterate the transformations by wrapping them in Nest .

46 Solutions to exercises

In[12]:= Graphics@8Blue,
Nest@8Blue, Translate@Scale@Ò, 0.5, 80., 0.<D, translateVecsD< &,

Polygon@verticesD, 3D<D
Out[12]=

Once you have been through the rest of this chapter, you should be able to turn this into a reusable
function, scoping local variables, using pure functions, and adding options.

In[13]:= SierpinskiTriangle@iter_, opts : OptionsPattern@GraphicsDD :=

Module@8vertices, vecs<,
vertices = N@880, 0<, 81, 0<, 81 ê 2, 1<<D;
vecs = 0.5 vertices;

Graphics@8Blue, Nest@8Blue, Translate@Scale@Ò, 0.5, 80., 0.<D, vecsD< &,

Polygon@verticesD, iterD<, optsDD
In[14]:= SierpinskiTriangle@8, ImageSize Ø SmallD

Out[14]=

5.4 Programs as functions
1. Using Total, create a function to sum the first n positive integers.

2. Rewrite the listEvenQ function from this section using MemberQ .

3. Using the shuffle function developed in this section, how many shuffles of a deck of cards (or
any list, for that matter) are needed to return the deck to its original order?

5 Functional programming 47

4. Many lotteries include games that require you to pick several numbers and match them against the
“house.” The numbers are independent, so this is essentially random sampling with replacement.
The built-in RandomChoice does this. For example, here are five random samples from the
integers 0 through 9.

In[1]:= RandomChoice@Range@0, 9D, 5D
Out[1]= 84, 1, 8, 7, 4<

Write your own function randomChoiceAlis, nE that performs a random sampling with replace-

ment, where n is the number of elements being chosen from the list lis. Here is a typical result using
a list of symbols.

In[2]:= randomChoice@8a, b, c, d, e, f, g, h<, 12D
Out[2]= 8g, c, a, a, d, h, c, a, c, f, c, a<

5. Use Trace on the rule-based maxima from Section 4.2 and maxima developed in this section to
explain why the functional version is much faster than the pattern matching version.

6. Write your own user-defined functions using the Characters and StringJoin functions to
perform the same operations as StringInsert and StringDrop.

7. Write a function interleave that interleaves the elements of two lists of unequal length. (You
have already seen how to interleave lists of equal length using Partition earlier in this section
with the shuffle function.) Your function should take the lists 8a, b, c, d< and 81, 2, 3< as
inputs and return 8a, 1, b, 2, c, 3, d<.

8. Write nested function calls using ToCharacterCode and FromCharacterCode to perform the
same operations as the built-in StringJoin and StringReverse functions.

5.4 Solutions

1. Generate the list of integers 1 through n, then total that list.

In[1]:= sumInts@n_D := Total@Range@nDD
In[2]:= sumInts@100D

Out[2]= 5050

In[3]:= sumInts@1000D
Out[3]= 500500

We have not been careful to check that the arguments are positive integers here. See Section 5.6 for a
proper definition to check arguments.

2. Use MemberQ to check if any elements of the list pass the OddQ test. If they do, True is returned
and so we take the Boolean negation of that. In other words, if the list contains an odd number,
False is returned, indicating that the list does not consist of even numbers exclusively.

In[4]:= listEvenQ2@lis_D := Not@MemberQ@lis, _?OddQDD

48 Solutions to exercises

In[5]:= listEvenQ2@82, 4, 6, 4, 8<D

Out[5]= True

In[6]:= listEvenQ2@82, 4, 6, 5, 8<D

Out[6]= False

Alternatively, you could have FreeQ check to see if the list is free of numbers that are equal to 1
mod 2.

In[7]:= listEvenQ3@lis_D := FreeQ@lis, p_ ê; Mod@p, 2D ã 1D

In[8]:= listEvenQ3@82, 4, 6, 4, 8<D

Out[8]= True

In[9]:= listEvenQ3@82, 4, 6, 5, 8<D

Out[9]= False

3. Some simple experiments iterating the shuffle function shows that the number of shuffles to
return the deck to its original state is dependent upon the number of cards in the deck. For a deck of
52 cards, eight such perfect (Faro) shuffles will return the deck to its original state.

In[10]:= shuffle@lis_D := Module@8len = Ceiling@Length@lisD ê 2D<,
Apply@Riffle, Partition@lis, len, len, 1, 8<DDD

In[11]:= Nest@shuffle, Range@52D, 8D

Out[11]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,

37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52<
4. The obvious way to do this is to take the list and simply pick out elements at random locations. The

right-most location in the list is given by Length@lisD, using Part and RandomInteger.
In[12]:= randomChoice@lis_, n_D := lisPRandomInteger@81, Length@lisD<, 8n<DT

In[13]:= randomChoice@8a, b, c, d, e, f, g, h<, 12D

Out[13]= 8h, b, c, f, c, f, b, g, h, e, e, b<
5. The pattern matched function is slower because it repeatedly applies transformation rules.

In[14]:= maxima@lis_ListD :=

lis êê.8a___, b_, c___, d_, e___< ê; d § b ß 8a, b, c, e<

In[15]:= maximaF@lis_D := Rest@DeleteDuplicates@FoldList@Max, -¶, lisDDD

5 Functional programming 49

In[16]:= Trace@maxima@83, 5, 2, 6, 1, 8, 4, 9, 7<DD
Out[16]= 8maxima@83, 5, 2, 6, 1, 8, 4, 9, 7<D, 83, 5, 2, 6, 1, 8, 4, 9, 7< êê.8a___, b_, c___, d_, e___< ê; d § b ß 8a, b, c, e<,88a___, b_, c___, d_, e___< ê; d § b ß 8a, b, c, e<,8a___, b_, c___, d_, e___< ê; d § b ß 8a, b, c, e<<,83, 5, 2, 6, 1, 8, 4, 9, 7< êê.8a___, b_, c___, d_, e___< ê; d § b ß 8a, b, c, e<,85 § 3, False<, 82 § 3, True<, 85 § 3, False<, 86 § 3, False<,81 § 3, True<, 85 § 3, False<, 86 § 3, False<, 88 § 3, False<,84 § 3, False<, 89 § 3, False<, 87 § 3, False<, 86 § 5, False<,88 § 5, False<, 84 § 5, True<, 85 § 3, False<, 86 § 3, False<,88 § 3, False<, 89 § 3, False<, 87 § 3, False<, 86 § 5, False<,88 § 5, False<, 89 § 5, False<, 87 § 5, False<, 88 § 6, False<,89 § 6, False<, 87 § 6, False<, 89 § 8, False<, 87 § 8, True<,85 § 3, False<, 86 § 3, False<, 88 § 3, False<, 89 § 3, False<,86 § 5, False<, 88 § 5, False<, 89 § 5, False<, 88 § 6, False<,89 § 6, False<, 89 § 8, False<, 83, 5, 6, 8, 9<<

In[17]:= Trace@maximaF@83, 5, 2, 6, 1, 8, 4, 9, 7<DD
Out[17]= 8maximaF@83, 5, 2, 6, 1, 8, 4, 9, 7<D, Rest@

DeleteDuplicates@FoldList@Max, -¶, 83, 5, 2, 6, 1, 8, 4, 9, 7<DDD,8888¶, ¶<, -¶, -¶<, FoldList@Max, -¶, 83, 5, 2, 6, 1, 8, 4, 9, 7<D,8Max@-¶, 3D, Max@3, -¶D, 3<, 8Max@3, 5D, 5<, 8Max@5, 2D,
Max@2, 5D, 5<, 8Max@5, 6D, 6<, 8Max@6, 1D, Max@1, 6D, 6<,8Max@6, 8D, 8<, 8Max@8, 4D, Max@4, 8D, 8<, 8Max@8, 9D, 9<,8Max@9, 7D, Max@7, 9D, 9<, 8-¶, 3, 5, 5, 6, 6, 8, 8, 9, 9<<,

DeleteDuplicates@8-¶, 3, 5, 5, 6, 6, 8, 8, 9, 9<D,8-¶, 3, 5, 6, 8, 9<<,
Rest@8-¶, 3, 5, 6, 8, 9<D, 83, 5, 6, 8, 9<<

6. Here is our user-defined stringInsert.

In[18]:= stringInsert@str1_, str2_, pos_D := StringJoinüJoin@
Take@Characters@str1D, pos - 1D,
Characters@str2D,
Drop@Characters@str1D, pos - 1DD

In[19]:= stringInsert@"Joy world", "to the ", 5D
Out[19]= Joy to the world

In[20]:= stringDrop@str_, pos_D := StringJoin@Drop@Characters@strD, posDD
In[21]:= stringDrop@"ABCDEF", -2D

Out[21]= ABCD

The idea in these two examples is to convert a string to a list of characters, operate on that list using

50 Solutions to exercises

p g p g
list manipulation functions like Join , Take , and Drop , then convert back to a string. More
efficient approaches use string manipulation functions directly (see Chapter 9).

7. We assume that lis1 is longer than lis2 and pair off the corresponding elements in the lists and
then tack on the leftover elements from lis1.

In[22]:= interleave@lis1_, lis2_D :=

Flatten@Join@Transpose@8Take@lis1, Length@lis2DD, lis2<D,
Take@lis1, Length@lis2D - Length@lis1DDDD

In[23]:= interleave@8a, b, c, d<, 81, 2, 3<D
Out[23]= 8a, 1, b, 2, c, 3, d<

Compare with the built-in Riffle.

In[24]:= Riffle@8a, b, c, d<, 81, 2, 3<D
Out[24]= 8a, 1, b, 2, c, 3, d<

8. First, here is how we might write our own StringJoin.

In[25]:= FromCharacterCode@Join@
ToCharacterCode@"To be, "D, ToCharacterCode@"or not to be"DDD

Out[25]= To be, or not to be

And here is a how we might implement a StringReverse.

In[26]:= FromCharacterCode@Reverse@ToCharacterCode@%DDD
Out[26]= eb ot ton ro ,eb oT

5.5 Scoping constructs
1. Write a compound function definition for the location of steps taken in an n-step random walk on a

square lattice. The step directions can be taken to be the compass directions with north represented
by 81, 0<, south by 8-1, 0<, and so on. Hint: consider using the Accumulate function.

2. The PerfectSearch function defined in Section 1.1 is impractical for checking large numbers
because it has to check all numbers from 1 through n. If you already know the perfect numbers
below 500, say, it is inefficient to check all numbers from 1 to 1000 if you are only looking for
perfect numbers in the range 500 to 1000. Modify PerfectSearch so that it accepts two numbers
as input and finds all perfect numbers between the inputs. For example, PerfectSearchAa, bE

will produce a list of all perfect numbers in the range from a to b.

3. A number, n, is k-perfect if the sum of its proper divisors equals k n. Redefine PerfectSearch
from the previous exercise so that it accepts as input two numbers a and b, a positive integer k, and
computes all k-perfect numbers in the range from a to b. Use your rule to find the only three 4-
perfect numbers less than 2 200 000.

5 Functional programming 51

4. Often in processing files you are presented with expressions that need to be converted into a format
that can be more easily manipulated inside Mathematica. For example, a file may contain dates in the
form 20120515 to represent May 15, 2012. Mathematica represents its dates as a list in the form 9 year, month, day, hour, minutes, seconds=. Write a function convertToDate@nD to convert a

number consisting of eight digits such as 20120515 into a list of the form 82012, 5, 15<.

In[2]:= convertToDate@20120515D
Out[2]= 82012, 5, 15<

5. Create a function zeroColumns@mat, m ;; nD that zeros out columns m through n in matrix mat.
Include rules to handle the cases of zeroing out one column or a list of nonconsecutive columns.

5.5 Solutions

1. In the first definition, we only use one auxiliary function inside the Module.

In[1]:= latticeWalk2D@n_D :=

Module@8NSEW = 881, 0<, 8-1, 0<, 80, 1<, 80, -1<<<,
Accumulate@RandomChoice@NSEW, nDDD

In[2]:= latticeWalk2D@10D
Out[2]= 881, 0<, 81, -1<, 81, -2<, 80, -2<, 80, -3<,80, -2<, 80, -3<, 81, -3<, 80, -3<, 80, -4<<

2. The following function creates a local function perfectQ using the Module construct. It then
checks every other number between n and m by using a third argument to the Range function.

In[3]:= PerfectSearch@n_, m_D := Module@8perfectQ<,
perfectQ@j_D := Total@Divisors@jDD ã 2 j;

Select@Range@n, m, 2D, perfectQDD
In[4]:= PerfectSearch@2, 10000D

Out[4]= 86, 28, 496, 8128<
This function does not guard against the user supplying “bad” inputs. For example, if the user starts
with an odd number, then this version of PerfectSearch will check every other odd number,
and, since it is known that there are no odd perfect numbers below at least 10

300, none is reported.

In[5]:= PerfectSearch@1, 10000D
Out[5]= 8<

You can fix this situation by using the (as yet unproved) assumption that there are no odd perfect
numbers. This next version first checks that the first argument is an even number.

In[6]:= Clear@PerfectSearchD
In[7]:= PerfectSearch@n_?EvenQ, m_D := Module@8perfectQ<,

perfectQ@j_D := Total@Divisors@jDD ã 2 j;

Select@Range@n, m, 2D, perfectQDD
Now, the function only works if the first argument is even.

52 Solutions to exercises

In[8]:= PerfectSearch@2, 10000D
Out[8]= 86, 28, 496, 8128<

In[9]:= PerfectSearch@1, 1000D
Out[9]= PerfectSearch@1, 1000D

3. This function requires a third argument.

In[10]:= Clear@PerfectSearchD;
PerfectSearch@n_, m_, k_D := Module@8perfectQ<,

perfectQ@j_D := Total@Divisors@jDD ã k j;

Select@Range@n, mD, perfectQDD
The following computation can be quite time consuming and requires a fair amount of memory to
run to completion. If your computer’s resources are limited, you should split up the search intervals
into smaller units or try running this in parallel. See Section 12.3 for a discussion on how to set up
parallel computation.

In[12]:= PerfectSearch@1, 2200000, 4D êê AbsoluteTiming

Out[12]= 830.775270, 830240, 32760, 2178540<<
We also give a speed boost by using DivisorSigma@1, jD which gives the sum of the divisors of j.

In[13]:= PerfectSearchParallel@n_, m_, k_D :=

Module@8perfectQ<, perfectQ@j_D := DivisorSigma@1, jD ã k j;

DistributeDefinitions@perfectQD;
Parallelize@Select@Range@n, m, 2D, perfectQDDD

In[14]:= PerfectSearchParallel@2, 2200000, 4D êê AbsoluteTiming

Out[14]= 85.698599, 830240, 32760, 2178540<<
4. Many implementations are possible for convertToDate. The task is made easier by observing that

DateList handles this task directly if its argument is a string.

In[15]:= DateList@"20120515"D
Out[15]= 82012, 5, 15, 0, 0, 0.<

The string is necessary otherwise DateList will interpret the integer as an absolute time (from Jan
1 1900).

In[16]:= DateList@20120515D
Out[16]= 81900, 8, 21, 21, 1, 55.<

So we need to convert the integer to a string first,

In[17]:= DateList@ToString@20120515DD
Out[17]= 82012, 5, 15, 0, 0, 0.<

5 Functional programming 53

and then take the first three elements.

In[18]:= Take@%, 3D
Out[18]= 82012, 5, 15<

Here is the function that puts these steps together.

In[19]:= convertToDate@n_IntegerD := Take@DateList@ToString@nDD, 3D
In[20]:= convertToDate@20120515D

Out[20]= 82012, 5, 15<
With a bit more manual work, you could also do this with StringTake.

In[21]:= convertToDate2@n_Integer ê; Length@IntegerDigits@nDD ã 8D :=

Module@8str = ToString@nD<, 8StringTake@str, 4D,
StringTake@str, 85, 6<D, StringTake@str, -2D<D

In[22]:= convertToDate2@20120515D
Out[22]= 82012, 05, 15<

You could avoid working with strings by making use of FromDigits. This uses With to create a
local constant d, as this expression never changes throughout the body of the function.

In[23]:= convertToDate3@num_D := With@8d = IntegerDigits@numD<,8FromDigits@Take@d, 4DD,
FromDigits@Take@d, 85, 6<DD,
FromDigits@Take@d, 87, 8<DD<D

In[24]:= convertToDate3@20120515D
Out[24]= 82012, 5, 15<

5. The computation of zeroing out one or more columns of a matrix can be handled with list compo-
nent assignment. We need to use a local variable here to avoid changing the original matrix.

In[25]:= mat = RandomReal@1, 85, 5<D;
MatrixForm@matD

Out[26]//MatrixForm=
0.451062 0.891983 0.184897 0.144232 0.568668
0.575134 0.116466 0.194857 0.715349 0.0186447
0.813932 0.0560997 0.13639 0.00183425 0.450973
0.165999 0.585373 0.302838 0.0688475 0.804879
0.639574 0.215239 0.147306 0.0116693 0.677564

Here is a rule for zeroing out one column:

In[27]:= zeroColumns@mat_, n_IntegerD := Module@8lmat = mat<,
lmat@@All, nDD = 0;

lmatD
This next rule is for zeroing out a range of columns:

54 Solutions to exercises

In[28]:= zeroColumns@mat_, Span@m_, n_DD := Module@8lmat = mat<,
lmat@@All, m ;; nDD = 0;

lmatD
We also need a final rule for zeroing out a discrete set of columns whose positions are given by a list.

In[29]:= zeroColumns@mat_, lis : 8__<D := Module@8lmat = mat<,
lmat@@All, lisDD = 0;

lmatD
In[30]:= zeroColumns@mat, 3D êê MatrixForm

Out[30]//MatrixForm=
0.451062 0.891983 0 0.144232 0.568668
0.575134 0.116466 0 0.715349 0.0186447
0.813932 0.0560997 0 0.00183425 0.450973
0.165999 0.585373 0 0.0688475 0.804879
0.639574 0.215239 0 0.0116693 0.677564

In[31]:= zeroColumns@mat, 1 ;; 2D êê MatrixForm

Out[31]//MatrixForm=
0 0 0.184897 0.144232 0.568668
0 0 0.194857 0.715349 0.0186447
0 0 0.13639 0.00183425 0.450973
0 0 0.302838 0.0688475 0.804879
0 0 0.147306 0.0116693 0.677564

In[32]:= zeroColumns@mat, 81, 3, 5<D êê MatrixForm

Out[32]//MatrixForm=
0 0.891983 0 0.144232 0
0 0.116466 0 0.715349 0
0 0.0560997 0 0.00183425 0
0 0.585373 0 0.0688475 0
0 0.215239 0 0.0116693 0

5.6 Pure functions
1. Write a function to sum the squares of the elements of a numeric list.

2. In Exercise 2 from Section 5.2 you were asked to create a function to compute the diameter of a set
of points in n-dimensional space. Modify that solution by instead using the Norm function and pure
functions to find the diameter.

3. Rewrite the code from Section 5.3 for finding the next prime after a given integer so that it uses pure
functions instead of relying upon auxiliary definitions addOne and CompositeQ.

4. Create a function RepUnit@nD that generates integers of length n consisting entirely of ones. For
example RepUnit@7D should produce 1111111.

5. Given a set of numerical data, extract all those data points that are within one standard deviation of
the mean of the data.

In[1]:= data = RandomVariate@NormalDistribution@0, 1D, 82500<D;

5 Functional programming 55

6. Write a pure function that moves a random walker from one location on a square lattice to one of
the four adjoining locations with equal probability. For example, starting at 80, 0<, the function
should return 80, 1<, 80, -1<, 81, 0<, or 8-1, 0< with equal likelihood. Now, use this pure
function with NestList to generate the list of step locations for an n-step random walk starting at 80, 0<.

7. Find all words in the dictionary that start with the letter q and are of length five. Here is the list of
words in the dictionary that comes with Mathematica.

In[2]:= words = DictionaryLookup@D;
RandomSample@words, 24D

Out[3]= 8leafage, uncorrupted, cocci, disadvantaged, inflicter, Moira,

interpolates, squander, archer, tricking, lithosphere,

deforested, throb, soapboxes, monopolies, advisedly, silencer,

tames, satanists, individuals, snorter, huh, noised, WWW<
8. A naive approach to polynomial arithmetic would require three additions and six multiplications to

carry out the arithmetic in the expression a x3 + b x2 + c x + d. Using Horner’s method for fast
polynomial multiplication, this expression can be represented as d + xHc + xHb + a xLL, where there
are now half as many multiplications. You can see this using the MultiplyCount function
developed in Exercise 8 of Section 4.2.

In[4]:= MultiplyCountAa x3 + b x2 + c x + dE
Out[4]= 6

In[5]:= MultiplyCount@d + x Hc + x Hb + a xLLD
Out[5]= 3

In general, the number of multiplications in an n-degree polynomial is given by:

In[6]:= Binomial@n + 1, 2D
Out[6]=

1

2
n H1 + nL

This, of course, grows quadratically with n, whereas Horner’s method grows linearly. Create a
function HornerAlis, varE that gives a representation of a polynomial in Horner form. Here is

some sample output that your function should generate.

In[7]:= Horner@8a, b, c, d<, xD
Out[7]= d + x Hc + x Hb + a xLL

In[8]:= Expand@%D
Out[8]= d + c x + b x2 + a x3

9. Graphs that are not too dense are often represented using adjacency structures which consist of a list
for each vertex vi that includes those other vertices that vi is connected to. Create an adjacency
structure for any graph, directed or undirected. For example, consider the graph gr below.

56 Solutions to exercises

In[9]:= gr = RandomGraph@88, 12<, VertexLabels Ø "Name"D
Out[9]=

Start by creating an adjacency list for any given vertex; that is, a list of those vertices to which the
given vertex is connected. For example, the adjacency list for vertex 8 in the above graph would be:83, 4, 5, 7<
The adjacency structure is then the list of adjacency lists for every vertex in that graph. It is common
to prepend each adjacency list with its vertex; typically the adjacency structure takes the following
form where this syntax indicates that vertex 1 is connected to vertices 2 and 6; vertex 2 is connected
to vertices 1, 4, and 5; and so on.881, 82, 6<<, 82, 81, 4, 5<<, 83, 85, 7, 8<<, 84, 82, 7, 8<<,85, 82, 3, 6, 8<<, 86, 81, 5<<, 87, 83, 4, 8<<, 88, 83, 4, 5, 7<<<

10. Use FoldList to compute an exponential moving average of a list 8x1, x2, x3<. You can check
your result against the built-in ExponentialMovingAverage.

In[10]:= ExponentialMovingAverage@8x1, x2, x3<, aD
Out[10]= 8x1, x1 + a H-x1 + x2L, x1 + a H-x1 + x2L + a H-x1 - a H-x1 + x2L + x3L<

11. A well-known programming exercise in many languages is to generate Hamming numbers,
sometimes referred to as regular numbers. These are numbers that divide powers of 60 (the choice of
that number goes back to the Babylonians who used 60 as a number base). Generate a sorted
sequence of all Hamming numbers less than 1000. The key observation is that these numbers have
only 2, 3, and 5 as prime factors.

5.6 Solutions

1. This function adds the squares of the elements in a list.

In[1]:= elementsSquared@lis_D := TotalAlis2E
In[2]:= elementsSquared@81, 3, 5, 7, 9<D

Out[2]= 165

Using a pure function, this becomes:

In[3]:= FunctionAlis, TotalAlis2EE@81, 3, 5, 7, 9<D
Out[3]= 165

or simply,

5 Functional programming 57

In[4]:= TotalAÒ2E &@81, 3, 5, 7, 9<D
Out[4]= 165

2. To compute the distance between two points, use either EuclideanDistance or Norm .

In[5]:= pts = RandomReal@1, 84, 2<D
Out[5]= 880.928713, 0.605799<, 80.479095, 0.758771<,80.860938, 0.239588<, 80.539415, 0.1972<<

In[6]:= Norm@pts@@1DD - pts@@2DDD
Out[6]= 0.474928

In[7]:= EuclideanDistance@pts@@1DD, pts@@2DDD
Out[7]= 0.474928

Now we need the distance between every pair of points. So we first create the set of pairs.

In[8]:= pairs = Subsets@pts, 82<D
Out[8]= 8880.928713, 0.605799<, 80.479095, 0.758771<<,880.928713, 0.605799<, 80.860938, 0.239588<<,880.928713, 0.605799<, 80.539415, 0.1972<<,880.479095, 0.758771<, 80.860938, 0.239588<<,880.479095, 0.758771<, 80.539415, 0.1972<<,880.860938, 0.239588<, 80.539415, 0.1972<<<

Then we compute the distance between each pair and take the Max.

In[9]:= Apply@Norm@Ò1 - Ò2D &, pairs, 81<D
Out[9]= 80.474928, 0.37243, 0.564364, 0.64448, 0.564802, 0.324305<
In[10]:= Max@%D

Out[10]= 0.64448

Or, use Outer on the set of points directly, but not the need to get the level correct.

In[11]:= MaxüOuter@Norm@Ò1 - Ò2D &, pts, pts, 1D
Out[11]= 0.64448

Now put it all together using a pure function in place of the distance function. The diameter
function operates on lists of pairs of numbers, so we need to specify them in our pure function as Ò1
and Ò2.

In[12]:= diameter@lis_D := Max@Apply@Norm@Ò1 - Ò2D &, Subsets@lis, 82<D, 81<DD
In[13]:= diameter@ptsD

Out[13]= 0.64448

58 Solutions to exercises

EuclideanDistance is a bit faster here, but for large datasets, the difference is more
pronounced.

In[14]:= Max@Apply@EuclideanDistance, Subsets@pts, 82<D, 81<DD
Out[14]= 0.64448

In[15]:= pts = RandomReal@1, 81500, 2<D;
Max@Apply@Norm@Ò1 - Ò2D &, Subsets@pts, 82<D, 81<DD êê Timing

Out[16]= 86.86021, 1.38635<
In[17]:= Max@Apply@EuclideanDistance, Subsets@pts, 82<D, 81<DD êê Timing

Out[17]= 81.67334, 1.38635<
3. Pure functions are needed to replace both addOne and CompositeQ:

In[18]:= nextPrime@n_Integer ê; n > 1D :=

NestWhile@Ò + 1 &, n, Not@PrimeQ@ÒDD &D
Here is a quick check for correctness.

In[19]:= nextPrimeA2123E ã NextPrimeA2123E
Out[19]= True

Compare timing with the built-in function.

In[20]:= TimingAnextPrimeA22500E;E
Out[20]= 80.342968, Null<

In[21]:= TimingANextPrimeA22500E;E
Out[21]= 80.321423, Null<

4. This function is ideally written as an iteration.

In[22]:= RepUnit@n_D := Nest@H10 Ò + 1L &, 1, n - 1D
In[23]:= RepUnit@7D

Out[23]= 1111111

In[24]:= Map@RepUnit@ÒD &, Range@12DD
Out[24]= 81, 11, 111, 1111, 11111, 111111, 1111111, 11111111,

111111111, 1111111111, 11111111111, 111111111111<
5. Here are some sample data taken from a normal distribution.

In[25]:= data = RandomVariate@NormalDistribution@0, 1D, 8500<D;
Quickly visualize the data together with dashed lines drawn one standard deviation from the mean.

5 Functional programming 59

In[26]:= mean = Mean@dataD;
sd = StandardDeviation@dataD;
len = Length@dataD;
ListPlot@data,
Epilog Ø 8Dashed, Red,

Line@880, mean + sd<, 8len, mean + sd<<D,
Line@880, mean - sd<, 8len, mean - sd<<D<D

Out[29]=
100 200 300 400 500

-3

-2

-1

1

2

3

Select those data elements whose distance to the mean is less than one standard deviation.

In[30]:= filtered = Select@data, HAbs@HÒ - meanLD < sd &LD;
Here is a quick check that we get about the value we might expect (we would expect about 68% for
normally distributed data).

In[31]:= NB Length@filteredD
Length@dataD F

Out[31]= 0.678

In[32]:= ListPlot@filtered, PlotRange Ø All,

Epilog Ø 8Dashed, Red,

Line@880, mean + sd<, 8len, mean + sd<<D,
Line@880, mean - sd<, 8len, mean - sd<<D<D

Out[32]=
50 100 150 200 250 300

-1.0

-0.5

0.5

1.0

6. Using the list of step increments in the north, south, east, and west directions, this ten-step walk
starts at the origin.

60 Solutions to exercises

In[33]:= SeedRandom@0D;
NestList@
Ò1 + RandomChoice@881, 0<, 8-1, 0<, 80, 1<, 80, -1<<D &, 80, 0<, 10D

Out[34]= 880, 0<, 80, 1<, 80, 2<, 8-1, 2<, 8-1, 1<,80, 1<, 81, 1<, 81, 2<, 82, 2<, 83, 2<, 83, 3<<
Except for the initial value, you can get the same result with Accumulate which generates
cumulative sums.

In[35]:= SeedRandom@0D;
Accumulate@RandomChoice@881, 0<, 8-1, 0<, 80, 1<, 80, -1<<, 10DD

Out[36]= 880, 1<, 80, 2<, 8-1, 2<, 8-1, 1<,80, 1<, 81, 1<, 81, 2<, 82, 2<, 83, 2<, 83, 3<<
7. Here are the words from the built-in Mathematica dictionary.

In[37]:= words = DictionaryLookup@D;
Here are those words that start with the letter q.

In[38]:= DictionaryLookup@"q" ~~ __D;
RandomSample@%, 20D

Out[39]= 8quadruples, quaffs, quark, quarantining, quahogs, quaff, quickie,

quadrupled, quires, quit, quell, quints, quizzes, quadriplegia,

quotation, quacking, quilter, queered, quintuple, quarterfinals<
And here are those words that start with the letter q and are of length 5. Note the need for
StringLength, not Length.

In[40]:= Select@DictionaryLookup@"q" ~~ __D, StringLength@ÒD ã 5 &D
Out[40]= 8quack, quads, quaff, quail, quake, quaky, qualm,

quark, quart, quash, quasi, quays, queen, queer,

quell, quern, query, quest, queue, quick, quids, quiet,

quiff, quill, quilt, quins, quint, quips, quire, quirk,

quirt, quite, quits, quoin, quoit, quota, quote, quoth<
8. Using Fold , this pure function requires two arguments. The key is to start with an initial value of 0.

In[41]:= Horner@list_List, var_D := Fold@var Ò1 + Ò2 &, 0, listD
In[42]:= Horner@8a, b, c, d, e<, xD

Out[42]= e + x Hd + x Hc + x Hb + a xLLL
In[43]:= Expand@%D

Out[43]= e + d x + c x2 + b x3 + a x4

9. Here is the prototype graph we will work with:

5 Functional programming 61

In[44]:= SeedRandom@16D;
gr = RandomGraph@810, 15<, VertexLabels Ø "Name"D

Out[45]=

And here are its edges and its vertices:

In[46]:= EdgeList@grD
Out[46]= 82 10, 2 3, 3 5, 4 5, 4 1, 4 7, 4 3,

5 7, 5 8, 6 5, 9 8, 9 6, 10 9, 10 8, 10 4<
In[47]:= VertexList@grD

Out[47]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10<
Below are those edges from vertex 3 to any other vertex. In other words, this gives the adjacency list
for vertex 3.

In[48]:= With@8u = 3<,
Select@VertexList@grD, HEdgeQ@gr, UndirectedEdge@u, ÒDD &LDD

Out[48]= 82, 4, 5<
The case for directed graphs is similar. Here then is a function that returns the adjacency list for a
given vertex u in graph gr.

In[49]:= adjacencyList@gr_, u_D := If@DirectedGraphQ@grD,
Select@VertexList@grD, EdgeQ@gr, DirectedEdge@u, ÒDD &D,
Select@VertexList@grD, EdgeQ@gr, UndirectedEdge@u, ÒDD &DD

62 Solutions to exercises

The adjacency structure is then given by mapping the above function across the vertex list.

In[50]:= AdjacencyStructure@gr_GraphD :=

Map@8Ò, adjacencyList@gr, ÒD< &, VertexList@grDD
In[51]:= AdjacencyStructure@grD

Out[51]= 881, 84<<, 82, 83, 10<<, 83, 82, 4, 5<<, 84, 81, 3, 5, 7, 10<<,85, 83, 4, 6, 7, 8<<, 86, 85, 9<<, 87, 84, 5<<,88, 85, 9, 10<<, 89, 86, 8, 10<<, 810, 82, 4, 8, 9<<<
Check that it works for a directed graph also.

In[52]:= gr2 = Graph@81 2, 2 1, 3 1, 3 2, 4 1, 4 2, 4 4<,
VertexLabels Ø "Name"D

Out[52]=

In[53]:= AdjacencyStructure@gr2D
Out[53]= 881, 82<<, 82, 81<<, 83, 81, 2<<, 84, 81, 2, 4<<<

10. The key to solving this problem is thinking carefully about the initial value for FoldList.

In[54]:= FoldList@Ò1 + a HÒ2 - Ò1L &, x1, 8x2, x3<D
Out[54]= 8x1, x1 + a H-x1 + x2L, x1 + a H-x1 + x2L + a H-x1 - a H-x1 + x2L + x3L<

If you were defining your own function, you would need to extract the first element of the (data) list
as the initial value of FoldList.

In[55]:= expMovingAverage@lis_, a_D :=

FoldList@Ò1 + a HÒ2 - Ò1L &, First@lisD, Rest@lisDD
In[56]:= expMovingAverage@8a, b, c<, aD

Out[56]= 8a, a + H-a + bL a, a + H-a + bL a + a H-a + c - H-a + bL aL<
11. A first, naive implementation will use the fact that the factors are all less than 6. Here are the factors

for a single integer.

5 Functional programming 63

In[57]:= facs = FactorInteger@126D
Out[57]= 882, 1<, 83, 2<, 87, 1<<

This extracts only the prime factors.

In[58]:= Map@First, facsD
Out[58]= 82, 3, 7<

In this case, they are not all less than 6.

In[59]:= Max@%D < 6

Out[59]= False

Putting these pieces together, here are the Hamming numbers less than 1000.

In[60]:= Select@Range@1000D, Max@Map@First, FactorInteger@ÒDDD < 6 &D
Out[60]= 81, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32,

36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80, 81, 90, 96, 100, 108,

120, 125, 128, 135, 144, 150, 160, 162, 180, 192, 200, 216, 225,

240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384, 400,

405, 432, 450, 480, 486, 500, 512, 540, 576, 600, 625, 640, 648,

675, 720, 729, 750, 768, 800, 810, 864, 900, 960, 972, 1000<
Factoring is slow for large integers and so this implementation does not scale well. This finds the 507
Hamming numbers less than 10

6.

In[61]:= WithA9n = 106=,
Select@Range@nD, Max@Map@First, FactorInteger@ÒDDD < 6 &DE; êê Timing

Out[61]= 87.80972, Null<
See Dijkstra H1981L for a different implementation that starts with h = 81<, then builds lists 2 h, 3 h,
5 h, merges these lists, and iterates.

In[62]:= HammingNumberList@n_D := ModuleB8lim<,
lim =

IfBn < 100, Ceiling@Log2@nDD, CeilingBLog2B n

2 μ 3 μ 5
F Log2@nDFF;

Join@81<, Take@Union üü NestList@
Union üü Outer@Times, 82, 3, 5<, ÒD &, 82, 3, 5<, limD, n - 1DDF

In[63]:= HammingNumber@n_D := Part@HammingNumberList@nD, nD
In[64]:= HammingNumberList@20D

Out[64]= 81, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36<

64 Solutions to exercises

In[65]:= HammingNumber@1691D êê Timing

Out[65]= 80.120575, 2125764000<
This gives the one-millionth Hamming number.

In[66]:= HammingNumberA106E êê Timing

Out[66]= 815.1734,
519312780448388736089589843750000000000000000000000000000 Ö

000000000000000000000000000<
5.7 Options and messages
1. In Section 5.5 we developed a function switchRows that interchanged two rows in a matrix. Create

a message for this function that is issued whenever a row index greater than the size of the matrix is
used as an argument. For example,

In[1]:= mat = RandomInteger@80, 9<, 84, 4<D;
MatrixForm@matD

Out[2]//MatrixForm=
3 5 1 8
5 9 7 4
5 0 7 1
4 2 3 0

In[3]:= switchRows@mat, 85, 2<D
switchRows::badargs : The absolute value of the row indices

5 and 2 in switchRows@mat,85,2<D must be between 1 and 4, the size of the matrix.

Out[3]= 883, 5, 1, 8<, 85, 9, 7, 4<, 85, 0, 7, 1<, 84, 2, 3, 0<<
You should also trap for a row index of 0.

In[4]:= switchRows@mat, 80, 2<D
switchRows::badargs : The absolute value of the row indices

0 and 2 in switchRows@mat,80,2<D must be between 1 and 4, the size of the matrix.

Out[4]= 883, 5, 1, 8<, 85, 9, 7, 4<, 85, 0, 7, 1<, 84, 2, 3, 0<<
2. Create an error message for StemPlot, developed in this section, so that an appropriate message is

issued if the argument is not a list of numbers.

5.7 Solutions

1. The message will slot in the values of the row indices being passed to the function switchRows, as
well as the length of the matrix, that is, the number of matrix rows.

In[1]:= switchRows::badargs =

"The absolute value of the row indices `1` and

`2` in switchRows@mat,`1`,`2`D must be

between 1 and `3`, the size of the matrix.";

5 Functional programming 65

The message is issued if either of the row indices have absolute value greater than the length of the
matrix or if either of these indices is equal to 0.

In[2]:= switchRows@mat_, 8r1_Integer, r2_Integer<D :=

Module@8lmat = mat, len = Length@matD<,
If@Abs@r1D > len »» Abs@r2D > len »» r1 r2 ã 0,

Message@switchRows::badargs, r1, r2, lenD,
lmat@@8r1, r2<DD = lmat@@8r2, r1<DDD;

lmatD
In[3]:= mat = RandomInteger@9, 84, 4<D;

MatrixForm@matD
Out[4]//MatrixForm=

0 0 8 5
4 6 9 9
0 0 0 3
2 7 0 8

In[5]:= switchRows@mat, 80, 4<D
switchRows::badargs : The absolute value of the row indices

0 and 4 in switchRows@mat,0,4D must be between 1 and 4, the size of the matrix.

Out[5]= 880, 0, 8, 5<, 84, 6, 9, 9<, 80, 0, 0, 3<, 82, 7, 0, 8<<
In[6]:= switchRows@mat, 82, 8<D

switchRows::badargs : The absolute value of the row indices
2 and 8 in switchRows@mat,2,8D must be between 1 and 4, the size of the matrix.

Out[6]= 880, 0, 8, 5<, 84, 6, 9, 9<, 80, 0, 0, 3<, 82, 7, 0, 8<<
2. If the first argument is not a list containing numbers, then issue a message.

In[7]:= MatchQ@81, 2, a<, 8__?NumericQ<D
Out[7]= False

Here is the message:

In[8]:= StemPlot::badarg =

"The first argument to StemPlot must be a list of numbers.";

In[9]:= Options@StemPlotD = Options@ListPlotD;
In[10]:= StemPlot@lis_, opts : OptionsPattern@DD :=

If@MatchQ@lis, 8__?NumericQ<D,
ListPlot@lis, opts, Filling Ø AxisD,
Message@StemPlot::badargDD

In[11]:= StemPlot@4D
StemPlot::badarg : The first argument to StemPlot must be a list of numbers.

66 Solutions to exercises

In[12]:= StemPlot@81, 2, c<D
StemPlot::badarg : The first argument to StemPlot must be a list of numbers.

In[13]:= StemPlot@81, 2, 3, 4, 5<D
Out[13]=

5.8 Examples and applications
1. Write a version of the function that computes Hamming distance by using Count to find the

number of nonidentical pairs of corresponding numbers in two binary signals.

2. Write an implementation of Hamming distance using the Total function and then compare
running times with the other versions discussed in this chapter.

3. Extend the survivor function developed in this section to a function of two arguments, so that
survivor@n, mD returns the survivor starting from a list of n people and executing every mth
person.

4. Create a function medianAlisE that computes the median of a one-dimensional list. Create one rule

for the case when lis has an odd number of elements and another rule for the case when the length
of lis is even. In the latter case, the median is given by the average of the middle two elements of lis.

5. One of the best ways to learn how to write programs is to practice reading code. We list below a
number of one-liner function definitions along with a very brief explanation of what these user-
defined functions do and a typical input and output. Deconstruct these programs to see what they
do and then reconstruct them as compound functions without any pure functions.

a. Tally the frequencies with which distinct elements appear in a list.

In[1]:= tally@lis_D := Map@H8Ò, Count@lis, ÒD<L &, Union@lisDD
In[2]:= tally@8a, a, b, b, b, a, c, c<D

Out[2]= 88a, 3<, 8b, 3<, 8c, 2<<
In[3]:= Tally@8a, a, b, b, b, a, c, c<D

Out[3]= 88a, 3<, 8b, 3<, 8c, 2<<
b. Divide up a list such that the length of each part is given by the second argument.

In[4]:= split1@lis_, parts_D :=HInner@Take@lis, 8Ò1, Ò2<D &, Drop@Ò1, -1D + 1, Rest@Ò1D, ListD &L@
FoldList@Plus, 0, partsDD

In[5]:= split1@Range@10D, 82, 5, 0, 3<D
Out[5]= 881, 2<, 83, 4, 5, 6, 7<, 8<, 88, 9, 10<<

5 Functional programming 67

This is the same as the previous program, done in a different way.

In[6]:= split2@lis_, parts_D := Map@Take@lis, Ò1 + 81, 0<D &,

Partition@FoldList@Plus, 0, partsD, 2, 1DD
6. In Section 4.2 we created a function CountChangeAlisE that took a list of coins and, using transfor-

mation rules, returned the monetary value of that list of coins. Rewrite CountChange to use a
purely functional approach. Consider using Dot, or Inner, or Tally.

7. Write a function that generates a one-dimensional off-lattice, random walk, that is, a walk with step
positions any real number between -1 and 1. Then do the same for two- and three-dimensional off-
lattice walks.

8. Extend the range of ReplaceElement developed in this section to accept a list of strings consid-
ered as nonnumeric matrix entries, each of which should be replaced by a column mean.

9. Extend the visualization of PPI networks from this section by coloring vertices according to the
biological process in which they are involved. The built-in ProteinData contains this informa-
tion, for example:

In[7]:= ProteinData@"KLKB1", "BiologicalProcesses"D
Out[7]= 8BloodCoagulation, Fibrinolysis,

InflammatoryResponse, Proteolysis<
10. Create a function TruthTable@expr, varsD that takes a logical expression such as AflB and outputs

a truth table similar to those in Section 2.3. You can create a list of truth values using Tuples. For
example,

In[8]:= Tuples@8True, False<, 2D
Out[8]= 88True, True<, 8True, False<, 8False, True<, 8False, False<<

You will also find it helpful to consider threading rules over the tuples using MapThread or
Thread.

11. Given a list of expressions, lis, create a function NearToAlis, elem, nE that returns all elements of lis

that are exactly n positions away from elem. For example:

In[9]:= chars = CharacterRange@"a", "z"D
Out[9]= 8a, b, c, d, e, f, g, h, i, j, k,

l, m, n, o, p, q, r, s, t, u, v, w, x, y, z<
In[10]:= NearTo@chars, "q", 3D

Out[10]= 88n<, 8t<<
Write a second rule, NearToAlis, elem, 8n<E that returns all elements in lis that are within n

positions of elem.

In[11]:= NearTo@chars, "q", 84<D
Out[11]= 88m, n, o, p, q, r, s, t, u<<

68 Solutions to exercises

Finally, create you own distance function (DistanceFunction) and use it with the built-in
Nearest to do the same computation.

Two useful functions for these tasks are Position and Extract . Extract@expr, posD returns

elements from expr whose positions pos are given by Position.

12. A Smith number is a composite number such that the sum of its digits is equal to the sum of the digits
of its prime factors. For example, the prime factorization of 852 is 22 ÿ31 ÿ71

1, and so the sum of the
digits of its prime factors is 2 + 2 + 3 + 7 + 1 = 15 which is equal to the sum of its digits,
8 + 5 + 2 = 15. Write a program to find all Smith numbers less than 10 000.

5.8 Solutions

1. Here are two sample lists.

In[1]:= l1 = 81, 0, 0, 1, 1<;
l2 = 80, 1, 0, 1, 0<;

First, pair them.

In[3]:= ll = Transpose@8l1, l2<D
Out[3]= 881, 0<, 80, 1<, 80, 0<, 81, 1<, 81, 0<<

Here is the conditional pattern that matches any pair where the two elements are not identical. The
Hamming distance is the number of such nonidentical pairs.

In[4]:= Count@ll, 8p_, q_< ê; p ∫ qD
Out[4]= 3

Finally, here is a function that puts this all together.

In[5]:= HammingDistance3@lis1_List, lis2_ListD :=

Count@Transpose@8lis1, lis2<D, 8p_, q_< ê; p ∫ qD
In[6]:= HammingDistance3@l1, l2D

Out[6]= 3

The running times of this version of HammingDistance are quite a bit slower than those where we
used bit operators. This is due to additional computation (Transpose , Length) and the use of
pattern matching and comparisons at every step.

In[7]:= HammingDistance2@lis1_, lis2_D := Total@BitXor@lis1, lis2DD
In[8]:= data1 = RandomIntegerA1, 9106=E;
In[9]:= data2 = RandomIntegerA1, 9106=E;

In[10]:= Timing@HammingDistance2@data1, data2DD
Out[10]= 80.011924, 501049<

5 Functional programming 69

In[11]:= Timing@HammingDistance3@data1, data2DD
Out[11]= 80.718988, 501049<

2. Using Total, which simply gives the sum of the elements in a list, Hamming distance can be
computed as follows:

In[12]:= HammingDistance4@lis1_, lis2_D := Total@Mod@lis1 + lis2, 2DD
Timing tests show that the implementation with Total is quite a bit more efficient than the
previous versions, although still slower than the version that uses bit operators.

In[13]:= sig1 = RandomIntegerA1, 9106=E;
In[14]:= sig2 = RandomIntegerA1, 9106=E;
In[15]:= HammingDistance1@lis1_, lis2_D :=

Count@MapThread@SameQ, 8lis1, lis2<D, FalseD
In[16]:= Map@8Ò, Timing@Ò@sig1, sig2DD< &, 8HammingDistance1,

HammingDistance2, HammingDistance3, HammingDistance4<D êê Grid

Out[16]=

HammingDistance1 80.500941, 499991<
HammingDistance2 80.007204, 499991<
HammingDistance3 80.695777, 499991<
HammingDistance4 80.02221, 499991<

3. Just one change is needed here: add a second argument to RotateLeft that specifies the number
of positions to rotate. We have used NestList to display the intermediate steps.

In[17]:= survivor@n_, m_D :=

NestList@Rest@RotateLeft@Ò, m - 1DD &, Range@nD, n - 1D
In[18]:= survivor@11, 3D

Out[18]= 881, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11<, 84, 5, 6, 7, 8, 9, 10, 11, 1, 2<,87, 8, 9, 10, 11, 1, 2, 4, 5<, 810, 11, 1, 2, 4, 5, 7, 8<,82, 4, 5, 7, 8, 10, 11<, 87, 8, 10, 11, 2, 4<,811, 2, 4, 7, 8<, 87, 8, 11, 2<, 82, 7, 8<, 82, 7<, 87<<
4. The median of a list containing an odd number of elements is the middle element of the sorted list.

In[19]:= median@lis_List ê; OddQ@Length@lisDDD :=

Part@Sort@lisD, Ceiling@Length@lisD ê 2DD
When the list has an even number of elements, take the mean of the middle two.

In[20]:= median@lis_List ê; EvenQ@Length@lisDDD :=

Module@8len = Length@lisD ê 2<,
Mean@Part@Sort@lisD, len ;; len + 1DDD

Check the two cases – an even number of elements, and an odd number of elements. Then compare
with the built-in Median.

In[21]:= dataE = RandomInteger@10000, 100000D;

70 Solutions to exercises

In[22]:= dataO = RandomInteger@10000, 100001D;
In[23]:= median@dataED êê Timing

Out[23]= 80.019613, 4977<
In[24]:= Median@dataED êê Timing

Out[24]= 80.018717, 4977<
In[25]:= median@dataOD êê Timing

Out[25]= 80.019516, 4962<
In[26]:= Median@dataOD êê Timing

Out[26]= 80.019463, 4962<
The two rules given here should be more careful about the input, using pattern matching to insure
that these rules only apply to one-dimensional lists. The following modifications handle that more
robustly.

In[27]:= Clear@medianD
In[28]:= median@lis : 8__< ê; OddQ@Length@lisDDD :=

Part@Sort@lisD, Ceiling@Length@lisD ê 2DD
In[29]:= median@lis : 8__< ê; EvenQ@Length@lisDDD :=

Module@8len = Length@lisD ê 2<,
Mean@Part@Sort@lisD, len ;; len + 1DDD

5.

a. The pure function 8Ò, Count@lis, ÒD< & is replaced with the function pair below.

In[30]:= frequencies@lis_D := Module@8pair<,
pair@x_D := 8x, Count@lis, xD<;
Map@pair, Union@lisDDD

In[31]:= frequencies@8a, a, b, b, b, a, c, c<D
Out[31]= 88a, 3<, 8b, 3<, 8c, 2<<

b.

In[32]:= split1@lis_, parts_D := Module@8lis1, lis2<,
lis1@y_, z_D := Take@lis, 8y, z<D;
lis2@x_D := Inner@lis1, Drop@x, -1D + 1, Rest@xD, ListD;
lis2@FoldList@Plus, 0, partsDDD

In[33]:= split1@Range@10D, 82, 5, 0, 3<D
Out[33]= 881, 2<, 83, 4, 5, 6, 7<, 8<, 88, 9, 10<<

5 Functional programming 71

In[34]:= split2@lis_, parts_D := Module@8lis1<,
lis1@x_D := Take@lis, x + 81, 0<D;
Map@lis1, Partition@FoldList@Plus, 0, partsD, 2, 1DDD

In[35]:= split2@Range@10D, 82, 5, 0, 3<D

Out[35]= 881, 2<, 83, 4, 5, 6, 7<, 8<, 88, 9, 10<<
c.

In[36]:= lotto1@lis_, n_D := Module@8lis1, lis2, lis3<, lis1@x_D :=

Flatten@Rest@MapThread@Complement, 8RotateRight@xD, x<, 1DDD;
lis2@y_D := Delete@y, RandomInteger@81, Length@yD<DD;
lis3@z_D := NestList@lis2, z, nD;
lis1@lis3@lisDDD

In[37]:= lotto1@Range@10D, 5D

Out[37]= 84, 3, 6, 8, 9<
In[38]:= lotto2@lis_, n_D := Take@Transpose@

Sort@Transpose@8RandomReal@1, 8Length@lisD<D, lis<DDDP2T, nD

In[39]:= lotto2@Range@10D, 5D

Out[39]= 83, 5, 4, 7, 10<
6. Here is a list of coins (modify for other currencies).

In[40]:= coins = 8p, p, q, n, d, d, p, q, q, p<;

First count the occurrences of each.

In[41]:= Map@Count@coins, ÒD &, 8p, n, d, q<D

Out[41]= 84, 1, 2, 3<
Then a dot product of this count vector with a value vector does the trick.

In[42]:= %.8.01, .05, .10, .25<

Out[42]= 1.04

In[43]:= CountChange@lis_D :=

Dot@Map@Count@lis, ÒD &, 8p, n, d, q<D, 8.01, .05, .10, .25<D

In[44]:= CountChange@coinsD

Out[44]= 1.04

In[45]:= CountChange2@lis_D :=

Inner@Times, Map@Count@lis, ÒD &, 8p, n, d, q<D,
8.01, .05, .10, .25<, PlusD

72 Solutions to exercises

In[46]:= CountChange2@coinsD
Out[46]= 1.04

And here is a rule-based approach.

In[47]:= Tally@coinsD ê. 8d Ø .10, n Ø .05, p Ø .01, q Ø .25<
Out[47]= 880.01, 4<, 80.25, 3<, 80.05, 1<, 80.1, 2<<

In[48]:= Total@Apply@Times, %, 81<DD
Out[48]= 1.04

In[49]:= CountChange3@lis_D := Module@8freq<,
freq = Tally@lisD ê. 8p Ø .01, n Ø .05, d Ø .10, q Ø .25<;
Total@Apply@Times, freq, 81<DDD

In[50]:= CountChange3@coinsD
Out[50]= 1.04

7. The two-dimensional implementation insures steps of unit length by mapping the pure function 8Cos@ÒD, Sin@ÒD< & over the angles.
In[51]:= walk1DOffLattice@steps_D := Accumulate@RandomReal@8-1, 1<, stepsDD
In[52]:= walk2DOffLattice@steps_D :=

Accumulate@Map@8Cos@ÒD, Sin@ÒD< &, RandomReal@80, 2 p<, stepsDDD
The three-dimensional walk requires two angles, q in the interval @0, 2 pL and f in the interval
[-1, 1]. See Section 13.1 for a discussion of the three-dimensional off-lattice walk.

In[53]:= walk3DOffLattice@t_D := AccumulateB
TableBFunctionB8q, f<, :Cos@qD 1 - f2 , Sin@qD 1 - f2 , f>F üü8RandomReal@80, 2 p<D, RandomReal@8-1, 1<D<, 8t<FF

With the one-dimensional walk, the vertical axis gives displacement from the origin and the
horizontal axis shows the number of steps.

In[54]:= ListLinePlot@walk1DOffLattice@1000DD
Out[54]= 200 400 600 800 1000

-10

-5

5

10

5 Functional programming 73

In[55]:= ListLinePlot@walk2DOffLattice@5000DD
Out[55]=

-30 -20 -10 10 20 30

-20

20

40

In[56]:= Graphics3D@Line@walk3DOffLattice@5000DDD
Out[56]=

8. Column 4 of this matrix contains several different nonnumeric values.

In[57]:= mat3 = 880.796495, "NêA", 0.070125, "nan", 0.806554<,8"nn", -0.100365, 0.992736, -0.320560, -0.0805351<,80.473571, 0.460741, 0.030060, -0.412400, 0.788522<,80.614974, -0.503201, 0.615744, 0.966053, -0.011776<,8-0.828415, 0.035514, 0.8911617, "NêA", -0.453926<<;
MatrixForm@col4 = mat3@@All, 4DDD

Out[58]//MatrixForm=
nan

-0.32056
-0.4124
0.966053

NêA
To pattern match on either "NêA" or "nan", use Alternatives (»).

In[59]:= col4 ê. "NêA" "nan" Ø Mean@Cases@mat3@@All, 4DD, _?NumberQDD êê
MatrixForm

Out[59]//MatrixForm=

0.0776977
-0.32056
-0.4124
0.966053
0.0776977

74 Solutions to exercises

Convert the list of strings to a set of alternatives.

In[60]:= Apply@Alternatives, 8"NêA", "nan", "nn"<D
Out[60]= NêA nan nn

Here is a third set of definitions, including a new rule for ReplaceElement where the second
argument is a list of strings. And another rule for ReplaceElement accommodates the new
argument structure of colMean.

In[61]:= colMean@col_, 8strings___String<D := col ê.
Apply@Alternatives, 8strings<D Ø Mean@Cases@col, _?NumberQDD

In[62]:= ReplaceElement@mat_, 8strings__<D :=

Transpose@Map@colMean@Ò, 8strings<D &, Transpose@matDDD
In[63]:= ReplaceElement@mat3, 8"NêA", "nan", "nn"<D êê MatrixForm

Out[63]//MatrixForm=
0.796495 -0.0268277 0.070125 0.0776977 0.806554
0.264156 -0.100365 0.992736 -0.32056 -0.0805351
0.473571 0.460741 0.03006 -0.4124 0.788522
0.614974 -0.503201 0.615744 0.966053 -0.011776
-0.828415 0.035514 0.891162 0.0776977 -0.453926

9. Start with a prototype logical expression.

In[64]:= Clear@A, BD
In[65]:= expr = HA »» BL fl C;

In[66]:= vars = 8A, B, C<;
List all the possible truth value assignments for the variables.

In[67]:= tuples = Tuples@8True, False<, Length@varsDD
Out[67]= 88True, True, True<, 8True, True, False<, 8True, False, True<,8True, False, False<, 8False, True, True<, 8False, True, False<,8False, False, True<, 8False, False, False<<

Next, create a list of rules, associating each of the triples of truth values with a triple of variables.

In[68]:= rules = Map@Thread@vars Ø ÒD &, tuplesD
Out[68]= 88A Ø True, B Ø True, C Ø True<, 8A Ø True, B Ø True, C Ø False<,8A Ø True, B Ø False, C Ø True<, 8A Ø True, B Ø False, C Ø False<,8A Ø False, B Ø True, C Ø True<, 8A Ø False, B Ø True, C Ø False<,8A Ø False, B Ø False, C Ø True<, 8A Ø False, B Ø False, C Ø False<<

Replace the logical expression with each set of rules.

In[69]:= expr ê. rules

Out[69]= 8True, False, True, False, True, False, True, True<

5 Functional programming 75

Put these last values at the end of each “row” of the tuples.

In[70]:= table = TransposeüJoin@Transpose@tuplesD, 8expr ê. rules<D
Out[70]= 88True, True, True, True<, 8True, True, False, False<,8True, False, True, True<, 8True, False, False, False<,8False, True, True, True<, 8False, True, False, False<,8False, False, True, True<, 8False, False, False, True<<

Create a header for table.

In[71]:= head = Append@vars, TraditionalForm@exprDD
Out[71]= 8A, B, C, A Í B fl C<

Prepend head to table.

In[72]:= Prepend@table, headD
Out[72]= 88A, B, C, A Í B fl C<,8True, True, True, True<, 8True, True, False, False<,8True, False, True, True<, 8True, False, False, False<,8False, True, True, True<, 8False, True, False, False<,8False, False, True, True<, 8False, False, False, True<<

Pour into a grid.

In[73]:= Grid@Prepend@table, headDD
Out[73]=

A B C A Í B fl C

True True True True
True True False False
True False True True
True False False False
False True True True
False True False False
False False True True
False False False True

Replace True with "T" and False with "F".

In[74]:= Grid@Prepend@table ê. 8True Ø "T", False Ø "F"<, headDD
Out[74]=

A B C A Í B fl C

T T T T
T T F F
T F T T
T F F F
F T T T
F T F F
F F T T
F F F T

76 Solutions to exercises

Add formatting via options to Grid .

In[75]:= Grid@Prepend@table ê. 8True Ø "T", False Ø "F"<, headD,
Dividers Ø 881 Ø Black, -1 Ø Black, -2 Ø LightGray<,81 Ø Black, 2 Ø LightGray, -1 Ø Black<<,
BaseStyle Ø 8FontFamily Ø "Times"<D

Out[75]=

A B C A fi Bfl C

T T T T

T T F F

T F T T

T F F F

F T T T

F T F F

F F T T

F F F T

Put the pieces together.

In[76]:= TruthTable@expr_, vars_D :=

Module@8len = Length@varsD, tuples, rules, table, head<,
tuples = Tuples@8True, False<, lenD;
rules = Thread@vars Ø Ò1D & êü tuples;
table = TransposeüJoin@Transpose@tuplesD, 8expr ê. rules<D;
head = Append@vars, TraditionalForm@exprDD;
Grid@Prepend@table ê. 8True Ø "T", False Ø "F"<, headD,
Dividers Ø 881 Ø 8Thin, Black<, -1 Ø 8Thin, Black<,

-2 Ø 8Thin, LightGray<<, 81 Ø 8Thin, Black<,
2 Ø 8Thin, LightGray<, -1 Ø 8Thin, Black<<<,

BaseStyle Ø 8FontFamily Ø "Times"<DD
In[77]:= TruthTable@AÏ B fl Ÿ C, 8A, B, C<D

Out[77]=

A B C A fl Bfl Ÿ C
T T T F

T T F T

T F T T

T F F T

F T T T

F T F T

F F T T

F F F T

10. PositionAlis, elemE returns a list of positions at which elem occurs in lis. ExtractAlis, posE

returns those elements whose positions are specified by Position.

5 Functional programming 77

In[78]:= NearTo@lis_List, elem_, n_D :=

Module@8pos = Position@lis, elemD<, Extract@lis, 8pos - n, pos + n<DD

In[79]:= NearTo@lis_List, elem_, 8n_<D := Module@
8pos = Position@lis, elemD<, Extract@lis, Range@pos - n, pos + nDDD

In[80]:= chars = CharacterRange@"a", "z"D;

In[81]:= NearTo@chars, "q", 3D

Out[81]= 88n<, 8t<<
In[82]:= NearTo@chars, "q", 84<D

Out[82]= 88m, n, o, p, q, r, s, t, u<<
The key to writing the distance function is to observe that it must be a function of two variables and
return a numeric value (the distance metric). We are finding the difference of the positions of a
target element in the list with the element in question, y and x, respectively in the pure function.
The use of @@1, 1DD is to strip off extra braces returned by Position.

In[83]:= NearToN@lis_, elem_, n_D :=

Nearest@lis, elem, 82 n + 1, n<, DistanceFunction Ø Function@
8x, y<, Abs@HPosition@lis, yD - Position@lis, xDLP1, 1TDDD

In[84]:= NearToN@chars, "q", 4D

Out[84]= 8q, p, r, o, s, n, t, m, u<
11. Rather than try to incorporate all the conditions into one rule, it is cleaner and more efficient to write

separate rules for the cases where the input is prime or less than or equal to one.

In[85]:= SmithNumberQ@n_ ê; n § 1D := False

In[86]:= SmithNumberQ@n_?PrimeQD := False

Given the factorization of a number, separate the prime bases from their exponents using
Transpose .

In[87]:= lis = FactorInteger@852D

Out[87]= 882, 2<, 83, 1<, 871, 1<<
In[88]:= Transpose@lisD

Out[88]= 882, 3, 71<, 82, 1, 1<<
This multiplies the integer digits of each base by its multiplicity.

In[89]:= MapThread@IntegerDigits@Ò1D Ò2 &, %D

Out[89]= 884<, 83<, 87, 1<<
Here is the sum.

78 Solutions to exercises

In[90]:= Total@Flatten@%DD
Out[90]= 15

Check that it equals the sum of the digits of the original number:

In[91]:= Total@IntegerDigits@852DD
Out[91]= 15

This puts the pieces together for the general rule.

In[92]:= SmithNumberQ@n_D := With@8lis = FactorInteger@nD<,
Total@

Flatten@MapThread@IntegerDigits@Ò1D Ò2 &, Transpose@lisDDDD ã

Total@IntegerDigits@nDDD
Here are the Smith numbers less than 100.

In[93]:= Select@Range@100D, SmithNumberQD
Out[93]= 84, 22, 27, 58, 85, 94<

There are 376 Smith numbers less than 10000.

In[94]:= SelectARangeA104E, SmithNumberQE êê Length

Out[94]= 376

As an interesting aside, you can also generate Smith numbers using rep units (see Exercise 5 in
Section 5.6). For example, multiply any prime repunit by a suitable factor, e.g., 1540. For details of
the relationship between repunits and Smith numbers, see Hoffman H1999L.

In[95]:= RepUnit@n_D := Nest@H10 Ò + 1L &, 1, n - 1D
In[96]:= PrimeQ@RepUnit@19DD

Out[96]= True

In[97]:= SmithNumberQ@1540 RepUnit@23DD
Out[97]= True

5 Functional programming 79

6

Procedural programming
6.1 Loops and iteration
1. Compare the use of a Do loop with using the function Nest (see Section 5.3). In particular, compute

the square root of 2 using Nest .

2. Do is closely related to Table, the main difference being that Do does not return any value,
whereas Table does. Use Table instead of Do to rewrite one of the findRoot functions given in
this section. Compare the efficiency of the two approaches.

3. Compute Fibonacci numbers iteratively. Fibonacci numbers consist of the sequence 1, 1, 2, 3, 5, 8, 13,
…, where, after the first two 1s, each Fibonacci number is the sum of the previous two numbers in
the sequence. You will need to have two variables, say this and prev, giving the two most recent
Fibonacci numbers, so that after the ith iteration, this and prev have the values Fi and Fi-1,
respectively.

4. One additional improvement can be made to the findRoot program developed in this section.
Notice that the derivative of the function fun is recomputed each time through the loop. This is
quite inefficient. Rewrite findRoot so that the derivative is computed only once and that result is
used in the body of the loop.

5. Another termination criterion for root-finding is to stop when xi - xi+1 < e, that is, when two
successive estimates are very close. The idea is that if you are not getting much improvement, you
must be very near the root. The difficulty in programming this is that you need to remember the two
most recent estimates computed. (It is similar to computing Fibonacci numbers iteratively, as in
Exercise 3.) Program findRoot this way.

6. The built-in FindRoot function is set up so that you can monitor intermediate computations using
the option EvaluationMonitor and Reap and Sow. For example, the following sows the values
of x and f HxL and when FindRoot is done, Reap displays the sown expressions.

In[1]:= f@x_D := x2 - 2

In[2]:= Reap@
FindRoot@f@xD, 8x, 1<, EvaluationMonitor ß Sow@8x, f@xD<DDD

Out[2]= 98x Ø 1.41421<, 9981., -1.<, 81.5, 0.25<,81.41667, 0.00694444<, 91.41422, 6.0073 μ 10-6=,91.41421, 4.51061 μ 10-12=, 91.41421, 4.44089 μ 10-16====
Modify each of the versions of findRoot presented in the text that uses a Do or While loop to
produce a similar output to that above.

80 Solutions to exercises

7. To guard against starting with a poor choice of initial value, modify your solution to the previous
exercise to take, as an argument, a list of initial values, and simultaneously compute approximations
for each until one converges; then return that one.

8. The bisection method is quite useful for finding roots of functions. If a continuous function f HxL is
such that f HaL < 0 and f HbL > 0 for two real numbers a and b, then, as a consequence of the Intermedi-
ate Value Theorem of calculus, a root of f must occur between a and b. If f is now evaluated at the
midpoint of a and b, and if f Ha + bL ê2 < 0, then the root must occur between Ha + bL ê2 and b; if not,
then it occurs between a and Ha + bL ê2. This bisection can be repeated until a root is found to a
specified tolerance.

Define bisectA f, 9x, a, b=, eE to compute a root of f , within e, using the bisection

method. You should give it two initial values a and b and assume that f HaL ÿ f HbL < 0, that is, f HaL and

f HbL differ in sign.

9. Using a While loop, write a function gcd@m, nD that computes the greatest common divisor (gcd)
of m and n. The Euclidean algorithm for computing the gcd of two positive integers m and n, sets
m = n and n = m mod n. It iterates this process until n = 0, at which point the gcd of m and n is left in
the value of m.

10. Create a procedural definition for each of the following functions. For each function, create a
definition using a Do loop and another using Table.

For example, the following function first creates an array consisting of 0s of the same dimension
as mat. Then inside the Do loop it assigns the element in position 8j, i< in mat to position 8i, j< in matA, effectively performing a transpose operation. Finally, it returns matA, since the Do
loop itself does not return a value.

In[3]:= transposeDo@mat_D :=

Module@8matA, rows = Length@matD, cols = Length@mat@@1DDD, i, j<,
matA = ConstantArray@0, 8rows, cols<D;
Do@matAPi, jT = matPj, iT,
8i, 1, rows<,
8j, 1, cols<D;

matAD

In[4]:= mat1 = 88a, b, c<, 8d, e, f<, 8g, h, i<<;

In[5]:= MatrixForm@mat1D

Out[5]//MatrixForm=
a b c
d e f

g h i

In[6]:= MatrixForm@transposeDo@mat1DD

Out[6]//MatrixForm=
a d g
b e h

c f i

6 Procedural programming 81

This same computation could be performed with a structured iteration using Table.

In[7]:= transposeTable@mat_?MatrixQD := Module@8matA, rows, cols<,
8rows, cols< = Dimensions@matD;
matA = ConstantArray@0, 8rows, cols<D;
Table@matA@@i, jDD = mat@@j, iDD, 8i, rows<, 8j, cols<D

D

In[8]:= transposeTable@mat1D êê MatrixForm

Out[8]//MatrixForm=
a d g
b e h

c f i

a. Create the function reverse@vecD that reverses the elements in the list vec.

b. Create a function rotateRight@vec, nD, where vec is a vector and n is a (positive or negative)
integer.

c. Create a procedural implementation of rotateRows, which could be defined in this functional
way:

In[9]:= rotateRows@mat_D :=

Map@rotateRight@matPÒT, Ò - 1D &, Range@1, Length@matDDD

That is, it rotates the ith row of mat by i - 1 places to the right.

d. Create a procedural function rotateRowsByS, which could be defined in this functional way:

In[10]:= rotateRowsByS@mat_, S_D ê; Length@matD == Length@SD :=

Map@HrotateRight@matPÒ1T, SPÒ1TD &L, Range@1, Length@matDDD

That is, it rotates the ith row of matA by the amount S@@iDD.

e. Create a function pickAlisa, lisbE, where lisa and lisb are lists of equal length, and lisb contains

only Boolean values (False and True). This function selects those elements from lisa corre-
sponding to True in lisb. For example, the result of the following should be 8a, b, e<.

pick@8a, b, c, d, e<, 8True, True, False, False, True<D

6.1 Solutions
1. To compute the square root of a number r, iterate the following expression.

In[1]:= fun@x_D := x2 - r;

SimplifyBx -
fun@xD
fun'@xD F

Out[2]=
r + x2

2 x

This can be written as a pure function, with a second argument giving the initial guess. Here we
iterate ten times, starting with a high-precision initial value, 2.0 to 30-digit precision.

82 Solutions to exercises

In[3]:= nestSqrt@r_, init_D := NestB r + Ò2

2 Ò
&, init, 10F

In[4]:= nestSqrt@2, N@2, 30DD
Out[4]= 1.41421356237309504880168872

2. Here is a first basic attempt to replace the Do loop with Table.

In[5]:= f@x_D := x2 - 2

In[6]:= a = 2;

TableBa = NBa -
f@aD
f£@aD F, 810<F

Out[7]= 81.5, 1.41667, 1.41422, 1.41421, 1.41421,

1.41421, 1.41421, 1.41421, 1.41421, 1.41421<
In[8]:= findRoot@fun_Symbol, 8var_, init_<, iter_ : 10D :=

ModuleB8xi = init<,
TableBxi = NBxi -

fun@xiD
fun£@xiD F, 8iter<F;8var Ø xi<F

In[9]:= findRoot@f, 8x, 2<D
Out[9]= 8x Ø 1.41421<

This runs the iteration only three times.

In[10]:= findRoot@f, 8x, 2<, 3D
Out[10]= 8x Ø 1.41422<

3. Note that this version of the Fibonacci function is much more efficient than the simple recursive
version given in Chapter 7, and is closer to the version there that uses dynamic programming.

In[11]:= fib@n_D := Module@8prev = 0, this = 1, next<,
Do@next = prev + this;

prev = this;

this = next,8n<D;
prevD

In[12]:= Table@fib@iD, 8i, 1, 10<D
Out[12]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55<

Actually, this code can be simplified a bit by using parallel assignments.

In[13]:= fib2@n_D := Module@8f1 = 0, f2 = 1<,
Do@8f1, f2< = 8f2, f1 + f2<,8n - 1<D;

6 Procedural programming 83

f2D
In[14]:= Table@fib2@iD, 8i, 1, 10<D

Out[14]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55<
Both of these implementations are quite fast and avoid the deep recursion of the classical definition.

In[15]:= 8Timing@fib@100000D;D, Timing@fib2@100000D;D<
Out[15]= 880.22523, Null<, 80.183665, Null<<

4. We compute the derivative df inside the Module and then use that throughout the body of the
function.

In[16]:= Clear@findRootD
In[17]:= findRoot@fun_, 8var_, init_<, e_D :=

ModuleB8xi = init, funxi = fun@initD, df = fun'<,
WhileBAbs@funxiD > e,

xi = NBxi -
funxi

df@xiD F;
funxi = fun@xiDF;8var Ø xi<F

In[18]:= f@x_D := x^2 - 2

In[19]:= findRoot@f, 8x, 10<, 0.0001D
5. The variable b is the current approximation, and the variable a is the previous approximation.

In[16]:= findRoot@fun_, 8var_, init_<, e_D :=

ModuleB8a = init, b = fun@initD<,
WhileBAbs@b - aD > e,

a = b;

b = NBb -
fun@bD
fun£@bDFF;8var Ø b<F

In[17]:= f@x_D := x2 - 50

In[18]:= findRoot@f, 8x, 10<, 0.0001D
Out[18]= 8x Ø 7.07107<

6. This solution is based on the solution to Exercise 4 above.

84 Solutions to exercises

In[19]:= findRootList@fun_, init_, e_D :=

ModuleB8a = init, b, solns = 8init<<,
b = NBa -

fun@aD
fun£@aD F;

WhileBAbs@b - aD > e,

a = b;

b = b -
fun@bD
fun£@bD ;

AppendTo@solns, bDF;
solnsF

In[20]:= f@x_D := x2 - 2

In[21]:= findRootListAf, 1, 10-6E
Out[21]= 81, 1.41667, 1.41422, 1.41421, 1.41421<

There is a numerical issue here that may not be apparent at first. If you were to provide a value for e
that is smaller than 1 ê MachinePrecision, this function will have trouble satisfying the test. In
fact, this is true for all of the implementations of Newton’s method in this chapter. These issues are
explored and resolved in Section 8.4.

7. Based on a previous version of findRoot, the following adds multiple initial values.

In[22]:= findRootList@fun_, inits_List, e_D := ModuleB8a = inits<,
WhileBMin@Abs@Map@fun, aDDD > e,

a = MapBNBÒ -
fun@ÒD
fun£@ÒDF &, aFF;

Select@a, Min@Abs@Map@fun, aDDD == Abs@fun@ÒDD &DF
In[23]:= findRootListAIÒ2 - 50M &, 8-10, 1, 10<, .001E

Out[23]= 8-7.07108, 7.07108<
8. A bit of variable swapping is needed here depending on whether or not a sign change occurs.

In[24]:= bisect@f_, 8var_, a_, b_<, e_D :=

ModuleB:midpt = NB a + b

2
F, low = a, high = b>,

WhileBAbs@f@midptDD > e,

If@Sign@f@lowDD ã Sign@f@midptDD, low = midpt, high = midptD;
midpt =

low + high

2
F;

6 Procedural programming 85

8var Ø midpt<F

In[25]:= f@x_D := x2 - 2

bisect@f, 8x, 0, 2<, .0001D

Out[26]= 8x Ø 1.41418<

9. This is a direct implementation of the Euclidean algorithm.

In[27]:= gcd@m_, n_D := Module@8a = m, b = n, tmpa<,
While@b > 0,

tmpa = a;

a = b;

b = Mod@tmpa, bDD;
aD

In[28]:= With@8m = 12782, n = 5531207<,
gcd@m, nDD

Out[28]= 11

You can avoid the need for the temporary variable tmpa by performing a parallel assignment as in
the following function. In addition, some argument checking insures that m and n are integers.

In[29]:= gcd@m_Integer, n_IntegerD := Module@8a = m, b = n<,
While@b > 0,

8a, b< = 8b, Mod@a, bD<D;
aD

In[30]:= With@8m = 12782, n = 5531207<,
gcd@m, nDD

Out[30]= 11

10. Each solution mirrors that of the transpose example in the exercise.

a. Create a list vecA of zeros, then use a Do loop to set vecAPiT to vecPn - iT, where n is the length
of vec.

In[31]:= Clear@reverse, a, b, c, d, eD

In[32]:= reverse@vec_D := Module@8vecA, n = Length@vecD<,
vecA = ConstantArray@0, 8n<D;
Do@vecAPiT = vecPn - i + 1T,
8i, 1, n<D;

vecAD

In[33]:= reverse@8a, b, c, d, e<D

Out[33]= 8e, d, c, b, a<

86 Solutions to exercises

In[34]:= reverseStruc@vec_D := Module@8vecA, n = Length@vecD<,
vecA = ConstantArray@0, 8n<D;
Table@vecA@@iDD = vec@@n - i + 1DD, 8i, n<D

D

In[35]:= reverseStruc@8a, b, c, d, e<D

Out[35]= 8e, d, c, b, a<
b. The key to this problem is to use the Mod operator to compute the target address for any item from

vec. That is, the element vec@iD must move to, roughly speaking, position n + i mod
Length@vecD. The “roughly speaking” is due to the fact that the Mod operator returns values in
the range 0 to Length@vecD - 1, whereas vectors are indexed by values 1 up to Length@vecD.
This causes a little trickiness in this problem.

In[36]:= rotateRight@vec_, n_D := Module@8vecA, len = Length@vecD<,
vecA = ConstantArray@0, 8len<D;
Do@vecAP1 + Mod@n + i - 1, lenDT = vecPiT, 8i, 1, len<D;
vecAD

In[37]:= rotateRight@8a, b, c, d, e<, 2D

Out[37]= 8d, e, a, b, c<
In[38]:= rotateRightStruc@vec_, n_D := Module@8vecA, len = Length@vecD<,

vecA = ConstantArray@0, 8len<D;
Table@vecAP1 + Mod@n + i - 1, lenDT = vecPiT, 8i, len<D;
vecA

D

In[39]:= rotateRightStruc@8a, b, c, d, e<, 3D

Out[39]= 8c, d, e, a, b<
c. Iterate over the rows of mat, setting row i to the result of calling rotateRight.

In[40]:= rotateRows@mat_D := Module@8matA, len = Length@matD<,
matA = ConstantArray@0, 8len<D;
Do@matAPiT = rotateRight@matPiT, iD,
8i, 1, len<D;

matAD

In[41]:= rotateRows@88a, b, c<, 8d, e, f<, 8g, h, k<<D

Out[41]= 88c, a, b<, 8e, f, d<, 8g, h, k<<
d. Similar construction to the previous exercise.

6 Procedural programming 87

In[42]:= rotateRowsByS@mat_, S_D := Module@8matA, len = Length@matD<,
matA = ConstantArray@0, 8len<D;
Do@matAPiT = rotateRight@matPiT, SPiTD,
8i, 1, len<D;

matAD

In[43]:= rotateRowsByS@88a, b, c<, 8d, e, f<, 8g, h, k<<, 81, 2, 3<D

Out[43]= 88c, a, b<, 8e, f, d<, 8g, h, k<<

e. Create a list lisC of correct length, then iterate over lisA and lisB, moving lisAPiT to lisC
whenever lisBPiT is True. The position in lisC that receives this value is not necessarily i; we use
the variable last to keep track of the next position in lisC that will receive a value from lisA.

In[44]:= pick@lisA_, lisB_D :=

Module@8lisC = Table@0, 8Count@lisB, TrueD<D, last = 1<,
Do@
If@lisBPiT,
lisCPlastT = lisAPiT; last = last + 1D,

8i, 1, Length@lisBD<D;
lisCD

In[45]:= pick@8a, b, c, d, e<, 8True, True, False, False, True<D

Out[45]= 8a, b, e<

This is doing the same computation as the built-in Pick function.

In[46]:= Pick@8a, b, c, d, e<, 8True, True, False, False, True<D

Out[46]= 8a, b, e<

6.2 Flow control
1. Create a function UpperTriangularMatrix@8m, n<D that generates an män upper triangular

matrix, that is, a matrix containing 1s on and above the diagonal and 0s below the diagonal. Create
an alternative rule that defaults to 1 for the upper values, but allows the user to specify a nondefault
upper value.

In[1]:= UpperTriangularMatrix@83, 3<D êê MatrixForm

Out[1]//MatrixForm=
1 1 1
0 1 1
0 0 1

88 Solutions to exercises

In[2]:= UpperTriangularMatrix@84, 4<, zD êê MatrixForm

Out[2]//MatrixForm=
z z z z
0 z z z
0 0 z z
0 0 0 z

2. Write a function signum@xD which, when applied to an integer x, returns -1, 0, or 1, if x is less than,
equal to, or greater than 0, respectively. Write it in four ways: using three clauses, using a single
clause with If , using a single clause with Which, and using Piecewise .

3. The definition of the absolute value function in this section does not handle complex numbers
properly.

In[3]:= abs@3 + 4 ID
GreaterEqual::nord : Invalid comparison with 3 + 4 Â attempted. à

Less::nord : Invalid comparison with 3 + 4 Â attempted. à

Out[3]= abs@3 + 4 ID
Correct this problem by rewriting abs to include a specific rule for the case where its argument is
complex.

4. Use If in conjunction with Map or Fold to define the following functions:

a. In a list of numbers, double all the positive numbers, but leave the negative numbers alone.

b. remove3Repetitions alters three or more consecutive occurrences in a list, changing them
to two occurrences; if there are only two occurrences to begin with, they are left alone. For
example, remove3Repetitions@80, 1, 1, 2, 2, 2, 1<D will return 80, 1, 1, 2, 2, 1<.

c. Add the elements of a list in consecutive order, but never let the sum go below 0.

In[4]:= positiveSum@85, 3, -13, 7, -3, 2<D
Out[4]= 6

Since the –13 caused the sum to go below 0, it was instead put back to 0 and the summation contin-
ued from there.

5. Rewrite the median function from Exercise 4 in Section 5.8 using an If control structure.

6. Using NestWhileList, write a function CollatzSequence@nD that produces the Collatz
sequence for any positive integer n. The Collatz sequence is generated as follows: starting with a
number n, if it is even, then output n ê2; if n is odd, then output 3n + 1. Iterate this process while n ∫ 1.

6.2 Solutions
1. If, for element ai j, i is bigger than j, then we are below the diagonal and should insert a 0, otherwise

insert a 1.

6 Procedural programming 89

In[1]:= UpperTriangularMatrix@8m_, n_<D :=

Table@If@i ¥ j, 0, 1D, 8i, m<, 8j, n<D
A default value can be given for an optional argument that specifies the elements above the diago-
nal.

In[2]:= UpperTriangularMatrix@8m_, n_<, val_: 1D :=

Table@If@i ¥ j, 0, valD, 8i, m<, 8j, n<D
In[3]:= UpperTriangularMatrix@85, 5<, aD êê MatrixForm

Out[3]//MatrixForm=
0 a a a a
0 0 a a a
0 0 0 a a
0 0 0 0 a
0 0 0 0 0

2. Here are the conditional definitions.

In[4]:= signum@x_ ê; x < 0D := -1

signum@x_ ê; x > 0D := 1

signum@0D := 0

signum@0.0D := 0

In[8]:= Map@signum, 8-2, 0, 1<D
Here is the signum function defined using If .

In[9]:= signumIf@x_D := If@x < 0, -1, If@x == 0, 0, 1DD
In[10]:= Map@signumIf, 8-2, 0, 1<D

Here is the signum function defined using Which.

In[11]:= signumWhich@x_D := Which@x < 0, -1, x > 0, 1, True, 0D
In[12]:= Map@signumWhich, 8-2, 0, 1<D

Finally, here is the signum function defined using Piecewise .

In[13]:= Piecewise@88-1, x < 0<, 81, x > 0<, 80, x == 0<<D
3. The test as the first argument of If on the right-hand side checks to see if x is an element of the

domain of complex numbers and, if it is, then reHxL2 + imHxL2 is computed. If x is not complex,

nothing is done, but then the other definitions for abs will be checked.
In[14]:= Clear@absD;

abs@x_D := SqrtARe@xD2 + Im@xD2E ê; x œ Complexes;

abs@x_D := x ê; x ¥ 0

abs@x_D := -x ê; x < 0

90 Solutions to exercises

In[18]:= abs@3 + 4 ID

Out[18]= 5

In[19]:= abs@-3D

Out[19]= 3

The condition itself can appear on the left-hand side of the function definition, as part of the pattern
match. Here is a slight variation on the abs definition.

In[20]:= Clear@absD
abs@x_D := If@x ¥ 0, x, -xD
abs@x_ ê; x œ ComplexesD := SqrtARe@xD2 + Im@xD2E

In[23]:= abs@3 + 4 ID

Out[23]= 5

In[24]:= abs@-3D

Out[24]= 3

4.

a. The pure function doubles its argument if it is greater than zero.

In[25]:= doublePos@lis_D := Map@If@Ò > 0, 2 Ò, ÒD &, lisD

b.

In[26]:= remove3Repetitions@lis_D := Fold@
If@Length@Ò1D > 2 && Ò2 == Ò1P-1T == Ò1P-2T, Ò1, Join@Ò1, 8Ò2<DD &,

8<, lisD

c.

In[27]:= positiveSum@L_D := Fold@If@Ò1 + Ò2 < 0, 0, Ò1 + Ò2D &, 0, LD

5. This is a straightforward conversion from the two rules given in Exercise 4 in Section 5.8 to an If
statement.

In[28]:= medianP@lis : 8__<D := Module@8len = Length@lisD<,
If@OddQ@lenD,
Part@Sort@lisD, Ceiling@len ê 2DD,
MeanüPart@Sort@lisD, len ê 2 ;; len ê 2 + 1D

DD

In[29]:= dataO = RandomInteger@10000, 100001D;
dataE = RandomInteger@10000, 100000D;

In[31]:= medianP@dataOD êê Timing

Out[31]= 80.019074, 5001<

6 Procedural programming 91

In[32]:= Median@dataOD êê Timing

Out[32]= 80.019326, 5001<
In[33]:= medianP@dataED êê Timing

Out[33]= 80.020737, 4985<
In[34]:= Median@dataED êê Timing

Out[34]= 80.018148, 4985<
6. First, define the auxiliary function using conditional statements.

In[35]:= collatz@n_D :=
n

2
ê; EvenQ@nD

In[36]:= collatz@n_D := 3 n + 1 ê; OddQ@nD
Alternatively, use If .

In[37]:= collatz@n_Integer?PositiveD := If@EvenQ@nD, n ê 2, 3 n + 1D
Then iterate Collatz, starting with n, and continue while n is not equal to 1.

In[38]:= CollatzSequence@n_D := NestWhileList@collatz, n, Ò ∫ 1 &D
In[39]:= CollatzSequence@17D

Out[39]= 817, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1<
6.3 Examples and applications
1. Using an If function, write a function gcd@m, nD that implements the Euclidean algorithm (see

Exercise 9 of Section 6.1) for finding the greatest common divisor of m and n.

2. The digit sum of a number is given by adding the digits of that number. For example, the digit sum of
7763 is 7 + 7 + 6 + 3 = 23. If you iterate the digit sum until the resulting number has only one digit,
this is called the digit root of the original number. So the digit root of 7763 is
7763 Ø 7 + 7 + 6 + 3 = 23 Ø 2 + 3 = 5. Create a function to compute the digit root of any positive
integer.

3. Use Piecewise to define the quadrant function given in this section.

4. In the version of quadrant using If and Which developed in this section, the point 80.0, 0.0<
is not handled properly because of how Mathematica treats the real number 0.0 compared with the
integer 0. Write another version of quadrant using alternatives (discussed in Section 4.1) to handle
this situation and correctly return the 0.

5. Extend quadrant to three dimensions, following this rule: for point (x, y, z), if z ¥ 0, then give the
same classification as (x, y), with the exception that 0 is treated as a positive number (so the only
classifications are 1, 2, 3, and 4); if z < 0, add 4 to the classification of (x, y) (with the same exception).
For example, H1, 0, 1L is in octant 1, and H0, -3, -3L is in octant 8. quadrant should work for points
in two or three dimensions.

92 Solutions to exercises

Consider a sequence of numbers generated by the following iterative process: starting with the list
of odd integers 1, 3, 5, 7, …, the first odd number greater than 1 is 3, so delete every third number
from the list; from the list of remaining numbers, the next number is 7, so delete every seventh
number; and so on. The numbers that remain after this process has been carried out completely are
referred to as lucky numbers (Weisstein, Lucky Number). Use a sieving method to find all lucky
numbers less than 1000.

7. Create an animation for bubble sort similar to the animation in the text for selection sort.

100 200 300 400 500

0.2
0.4
0.6
0.8
1.0

100 200 300 400 500

0.2
0.4
0.6
0.8
1.0

100 200 300 400 500

0.2
0.4
0.6
0.8
1.0

100 200 300 400 500

0.2
0.4
0.6
0.8
1.0

100 200 300 400 500

0.2
0.4
0.6
0.8
1.0

100 200 300 400 500

0.2
0.4
0.6
0.8
1.0

100 200 300 400 500

0.2
0.4
0.6
0.8
1.0

100 200 300 400 500

0.2
0.4
0.6
0.8
1.0

6.3 Solutions
1. Here is the gcd function implemented using an If structure.

In[1]:= Clear@gcdD
In[2]:= gcd@m_Integer, n_IntegerD :=

If@m > 0, gcd@Mod@n, mD, mD, gcd@m, nD = nD
In[3]:= With@8m = 12782, n = 5531207<,

gcd@m, nDD
Out[3]= 11

2. Given an integer, this totals the list of its digits.

In[4]:= Total@IntegerDigits@7763DD
Out[4]= 23

To repeat this process until the resulting integer has only one digit, use While.

In[5]:= digitRoot@n_Integer?PositiveD := Module@8locn = n, lis<,
While@
Length@lis = IntegerDigitsülocnD > 1,

locn = Total@lisDD;
locnD

In[6]:= digitRoot@7763D
Out[6]= 5

6 Procedural programming 93

This can also be accomplished without iteration as follows:

In[7]:= digitRoot2@n_Integer?PositiveD := If@Mod@n, 9D ã 0, 9, Mod@n, 9DD
In[8]:= digitRoot2@1000!D

Out[8]= 9

3. This is a direct implementation using Piecewise .

In[9]:= Piecewise@880, x ã 0 && y ã 0<, 8-1, y ã 0<, 8-2, x ã 0<,81, x > 0 && y > 0<, 82, x < 0 && y > 0<, 83, x < 0 && y < 0<<, 4D
In[10]:= quadrantPW@8x_, y_<D :=

Piecewise@880, x ã 0 && y ã 0<, 8-1, y ã 0<, 8-2, x ã 0<,81, x > 0 && y > 0<, 82, x < 0 && y > 0<, 83, x < 0 && y < 0<<, 4D
In[11]:= Map@quadrantPW, 880, 0<, 84, 0<, 80, 1.3<,82, 4<, 8-2, 4<, 8-2, -4<, 82, -4<, 82, 0<, 83, -4<<D

4. The alternatives we need to check for are 0 0.0 for both x and y.

In[9]:= quadrant@80 0.0, 0 0.0<D := 0

quadrant@8x_, 0 0.0<D := -1

quadrant@80 0.0, y_<D := -2

quadrant@8x_, y_<D := If@x < 0, 2, 1D ê; y > 0

quadrant@8x_, y_<D := If@x < 0, 3, 4D
In[14]:= quadrant@80.0, 0<D

Out[14]= 0

In[15]:= quadrant@81, 0<D
Out[15]= -1

5. These rules are basic extensions of the two-dimensional cases.

In[19]:= quadrant@80, 0<D := 0

quadrant@8x_, 0<D := -1

quadrant@80, y_<D := -2

quadrant@8x_, y_<D := If@x < 0, 2, 1D ê; y > 0

quadrant@8x_, y_<D := If@x < 0, 3, 4D
quadrant@8x_, y_, z_<D := If@x < 0, 2, 1D ê; y ¥ 0 && z ¥ 0

quadrant@8x_, y_, z_<D := If@x < 0, 3, 4D ê; y < 0 && z ¥ 0

quadrant@8x_, y_, z_<D := If@x < 0, 6, 5D ê; y ¥ 0 && z < 0

quadrant@8x_, y_, z_<D := If@x < 0, 7, 8D ê; y < 0 && z < 0

In[28]:= Map@quadrant, 882, 0, 1<, 8-1, 3, -4<<D
6. Start with a small list of odd numbers.

94 Solutions to exercises

In[29]:= ints = Range@1, 100, 2D
Out[29]= 81, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35,

37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67,

69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99<
On the first iteration, drop every third number, that is, drop 5, 11, 17, and so on.

In[30]:= p = ints@@2DD;
ints = Drop@ints, p ;; -1 ;; pD

Out[31]= 81, 3, 7, 9, 13, 15, 19, 21, 25, 27, 31, 33, 37, 39, 43, 45, 49, 51,

55, 57, 61, 63, 67, 69, 73, 75, 79, 81, 85, 87, 91, 93, 97, 99<
Get the next number, 7, in the list ints; then drop every seventh number.

In[32]:= p = ints@@3DD;
ints = Drop@ints, p ;; -1 ;; pD

Out[33]= 81, 3, 7, 9, 13, 15, 21, 25, 27, 31, 33, 37, 43, 45, 49,

51, 55, 57, 63, 67, 69, 73, 75, 79, 85, 87, 91, 93, 97, 99<
Iterate. You will need to be careful about the upper limit of the iterator i.

In[34]:= ints = Range@1, 1000, 2D;
Do@
p = ints@@iDD;
ints = Drop@ints, p ;; -1 ;; pD,8i, 2, 32<D

ints

Out[36]= 81, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69,

73, 75, 79, 87, 93, 99, 105, 111, 115, 127, 129, 133, 135, 141,

151, 159, 163, 169, 171, 189, 193, 195, 201, 205, 211, 219, 223,

231, 235, 237, 241, 259, 261, 267, 273, 283, 285, 289, 297, 303,

307, 319, 321, 327, 331, 339, 349, 357, 361, 367, 385, 391,

393, 399, 409, 415, 421, 427, 429, 433, 451, 463, 475, 477,

483, 487, 489, 495, 511, 517, 519, 529, 535, 537, 541, 553,

559, 577, 579, 583, 591, 601, 613, 615, 619, 621, 631, 639,

643, 645, 651, 655, 673, 679, 685, 693, 699, 717, 723, 727,

729, 735, 739, 741, 745, 769, 777, 781, 787, 801, 805, 819,

823, 831, 841, 855, 867, 873, 883, 885, 895, 897, 903, 925,

927, 931, 933, 937, 957, 961, 975, 979, 981, 991, 993, 997<
It would be more efficient if you did not need to manually determine the upper limit of the iteration.
A While loop is better for this task. The test checks that the value of the iterator has not gone past
the length of the successively shortened lists.

6 Procedural programming 95

In[37]:= LuckyNumbers@n_Integer?PositiveD :=

Module@8p, i = 2, ints = Range@1, n, 2D<,
While@ints@@iDD < Length@intsD,
p = ints@@iDD;
ints = Drop@ints, p ;; -1 ;; pD;
i++D;

intsD

In[38]:= LuckyNumbers@1000D

Out[38]= 81, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69,

73, 75, 79, 87, 93, 99, 105, 111, 115, 127, 129, 133, 135, 141,

151, 159, 163, 169, 171, 189, 193, 195, 201, 205, 211, 219, 223,

231, 235, 237, 241, 259, 261, 267, 273, 283, 285, 289, 297, 303,

307, 319, 321, 327, 331, 339, 349, 357, 361, 367, 385, 391,

393, 399, 409, 415, 421, 427, 429, 433, 451, 463, 475, 477,

483, 487, 489, 495, 511, 517, 519, 529, 535, 537, 541, 553,

559, 577, 579, 583, 591, 601, 613, 615, 619, 621, 631, 639,

643, 645, 651, 655, 673, 679, 685, 693, 699, 717, 723, 727,

729, 735, 739, 741, 745, 769, 777, 781, 787, 801, 805, 819,

823, 831, 841, 855, 867, 873, 883, 885, 895, 897, 903, 925,

927, 931, 933, 937, 957, 961, 975, 979, 981, 991, 993, 997<
This latter approach is also reasonably fast. Here is the time it takes to compute all lucky numbers
less than one million; there are 71918 of them.

In[39]:= LengthALuckyNumbersA106EE êê Timing

Out[39]= 80.265116, 71918<
7. Use the same constructs as were used in the text for selection sort.

In[40]:= bubbleSortList@lis_D :=

Module@8slist = lis, len = Length@lisD, tmp = 8<<,
For@i = len, i > 0, i--,

AppendTo@tmp, slistD;
For@j = 2, j § i, j++,

If@slistPj - 1T > slistPjT,
slistP8j - 1, j<T = slistP8j, j - 1<TDDD;

tmpD

In[41]:= data = RandomReal@1, 500D;
sort = bubbleSortList@dataD;
ListAnimate@ListPlot êü sortD;

96 Solutions to exercises

100 200 300 400 500

0.2
0.4
0.6
0.8
1.0

100 200 300 400 500

0.2
0.4
0.6
0.8
1.0

100 200 300 400 500

0.2
0.4
0.6
0.8
1.0

100 200 300 400 500

0.2
0.4
0.6
0.8
1.0

100 200 300 400 500

0.2
0.4
0.6
0.8
1.0

100 200 300 400 500

0.2
0.4
0.6
0.8
1.0

100 200 300 400 500

0.2
0.4
0.6
0.8
1.0

100 200 300 400 500

0.2
0.4
0.6
0.8
1.0

6 Procedural programming 97

7

Recursion
7.1 Fibonacci numbers
1. For each of the following sequences of numbers, see if you can deduce the pattern and write a

Mathematica function to compute the general term.

a.
2, 3, 6, 18, 108, 1944, 209 952, …
A1 A2 A3 A4 A5 A6 A7 …

b.
0, 1, -1, 2, -3, 5, -8, 13, -21, …
B1 B2 B3 B4 B5 B6 B7 B8 B9 …

c.
0, 1, 2, 3, 6, 11, 20, 37, 68, …

C1 C2 C3 C4 C5 C6 C7 C8 C9 …

2. The numbers FAn represent the number of additions that are done in the course of evaluating the
Fibonacci function F@nD defined in this section.

0 0 1 2 4 7 12 20 33 …

FA1 FA2 FA3 FA4 FA5 FA6 FA7 FA8 FA9 …

Write a function FA such that FA@nD = FAn.

3. A faster approach to computing Fibonacci numbers uses various identities associated with these
numbers (The Fibonacci Sequence 2011). We start the base case at 0 instead of 1 here. The notation dnumbert represents the floor of number. You can use IntegerPart .

f0 = 0

f1 = 1

fn =

f @kD H f @kD + 2 f @k - 1D n even, k = dn ê2tH2 f @kD + f @k - 1DL H2 f @kD - f @k - 1DL + 2 n mod 4 = 1, k = dn ê2tH2 f @kD + f @k - 1DL H2 f @kD - f @k - 1DL - 2 otherwise

Implement this algorithm. Consider using Which for the different conditions.

4. The Fibonacci sequence can also be defined for negative integers using the following formula
(Graham, Knuth, and Patashnik 1994):

F-n = H-1Ln-1 Fn

The first few terms are

98 Solutions to exercises

0 1 -1 2 -3 5 -8 13 -21 …
F0 F-1 F-2 F-3 F-4 F-5 F-6 F-7 F-8 …

Write the definitions for Fibonacci numbers with negative integer arguments.

7.1 Solutions

1. The key here is to get the stopping conditions right in each case.

a. This is a straightforward recursion, multiplying the previous two values to get the next.

In[1]:= a@1D := 2

a@2D := 3

a@i_D := a@i - 1D a@i - 2D
In[4]:= Table@a@iD, 8i, 1, 8<D

Out[4]= 82, 3, 6, 18, 108, 1944, 209952, 408146688<
b. The sequence is obtained by taking the difference of the previous two values.

In[5]:= b@1D := 0

b@2D := 1

b@i_D := b@i - 2D - b@i - 1D
In[8]:= Table@b@iD, 8i, 1, 9<D

Out[8]= 80, 1, -1, 2, -3, 5, -8, 13, -21<
c. Here we add the previous three values.

In[9]:= c@1D := 0

c@2D := 1

c@3D := 2

c@i_D := c@i - 3D + c@i - 2D + c@i - 1D
In[13]:= Table@c@iD, 8i, 1, 9<D

Out[13]= 80, 1, 2, 3, 6, 11, 20, 37, 68<
2. It is important to get the two base cases right here.

In[14]:= FA@1D := 0

FA@2D := 0

FA@i_D := FA@i - 2D + FA@i - 1D + 1

In[17]:= Map@FA, Range@9DD
Out[17]= 80, 0, 1, 2, 4, 7, 12, 20, 33<

It is interesting to note that the number of additions needed to compute the nth Fibonacci number is
one less than the nth Fibonacci number itself. As the Fibonacci numbers grow, so too does the
computation!

7 Recursion 99

In[18]:= Fibonacci êü Range@9D
Out[18]= 81, 1, 2, 3, 5, 8, 13, 21, 34<

3. This is a direct implementation of the traditional mathematical notation given in the exercise.
Avoiding the double recursion of the naive implementation reduces the memory required and
speeds things up significantly, although it is still too slow for large numbers.

In[19]:= Clear@fib, fD;
fib@0D = 0;

fib@1D = 1;

In[22]:= fib@n_Integer?PositiveD := With@8k = IntegerPart@n ê 2D<,
Which@
EvenQ@nD, fib@kD Hfib@kD + 2 fib@k - 1DL,
Mod@n, 4D ã 1, H2 fib@kD + fib@k - 1DL H2 fib@kD - fib@k - 1DL + 2,

True, H2 fib@kD + fib@k - 1DL H2 fib@kD - fib@k - 1DL - 2DD
In[23]:= TimingüTable@fib@iD, 8i, 1, 40<D

Out[23]= 80.023411, 81, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,

233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711,

28657, 46368, 75025, 121393, 196418, 317811, 514229,

832040, 1346269, 2178309, 3524578, 5702887, 9227465,

14930352, 24157817, 39088169, 63245986, 102334155<<
4. You can use your earlier definition of the Fibonacci numbers, or use the built-in Fibonacci .

In[24]:= f@n_Integer?NonPositiveD := H-1Ln-1 Fibonacci@-nD
In[25]:= f@0D = 0;

f@-1D = 1;

In[27]:= Table@f@iD, 8i, 0, -8, -1<D
Out[27]= 80, 1, -1, 2, -3, 5, -8, 13, -21<

7.2 Thinking recursively
1. Create a recursive function to reverse the elements in a flat list.

2. Create a recursive function to transpose the elements of two lists. Write an additional rule to
transpose the elements of three lists.

3. Write a recursive function sumOddElementsAlisE that adds up only the elements of the list lis that

are odd integers. lis may contain even integers and nonintegers.

4. Write a recursive function sumEveryOtherElementAlisE that adds up lis@@1DD, lis@@3DD,

lis@@5DD, etc. Each of these elements is a number. lis may have any number of elements.

5. Write a function addTriplesAlis1, lis2, lis3E that is like addPairs in that it adds up the corre-

sponding elements of the three equal-length lists of numbers.

100 Solutions to exercises

6. Write a function multAllPairsAlisE that multiplies every consecutive pair of integers in the

numerical list lis. Add a rule that issues an appropriate warning message if the user supplies a list
with an odd number of elements.

In[1]:= multAllPairs@83, 9, 17, 2, 6, 60<D
Out[1]= 827, 153, 34, 12, 360<

7. Write the function maxPairsAlis1, lis2E which, for numerical lists of equal length, returns a list of

the larger value in each corresponding pair.

8. The function riffleAlis1, lis2E, which merges two lists of equal length, can be defined as follows:

In[2]:= riffle@lis1_, lis2_D := Flatten@Transpose@8lis1, lis2<DD
In[3]:= riffle@8a, b, c<, 8x, y, z<D

Out[3]= 8a, x, b, y, c, z<
Rewrite riffle using recursion.

9. maxima can also be computed more efficiently with an auxiliary function.

maxima@8<D := 8<
maxima@8x_, r___<D := maxima@x, 8r<D

The two-argument version has this meaning: maximaAx, lisE gives the maxima of the list

JoinA8x<, lisE. Define it. (Hint: the key point about this is that maximaAx, lisE is equal to

maximaAx, RestAlisEEif x ¥ FirstAlisE.) Compare its efficiency with the version in the text.

10. Write recursive definitions for Fold , FoldList, and NestList.

7.2 Solutions

1. This is similar to the length function in the text – recursion is on the tail. The base case is a list

consisting of a single element.

In[1]:= reverse@8x_, y__<D := Join@reverse@8y<D, 8x<D
In[2]:= reverse@8x_<D := 8x<
In[3]:= reverse@81, b, 3 ê 4, "practice makes perfect"<D

Out[3]= :practice makes perfect,
3

4
, b, 1>

2. Recursion is on the tails of the two lists, here denoted r1 and r2.

In[4]:= transpose@88x1_, r1__<, 8x2_, r2__<<D :=

Join@88x1, x2<<, transpose@88r1<, 8r2<<DD
In[5]:= transpose@88x_<, 8y_<<D := 88x, y<<

7 Recursion 101

In[6]:= transpose@88x1, x2<, 8y1, y2<<D
Out[6]= 88x1, y1<, 8x2, y2<<

In[7]:= transpose@%D
Out[7]= 88x1, x2<, 8y1, y2<<

3. Recursion is on the tail.

In[8]:= sumOddElements@8<D := 0

sumOddElements@8x_, r___<D := x + sumOddElements@8r<D ê; OddQ@xD
sumOddElements@8x_, r___<D := sumOddElements@8r<D

In[11]:= sumOddElements@82, 3, 5, 6, 7, 9, 12, 13<D
Out[11]= 37

4. Again, recursion is on the tail.

In[12]:= sumEveryOtherElement@8<D := 0

sumEveryOtherElement@8x_<D := x

sumEveryOtherElement@8x_, y_, r___<D :=

x + sumEveryOtherElement@8r<D
In[15]:= sumEveryOtherElement@81, 2, 3, 4, 5, 6, 7, 8, 9<D

Out[15]= 25

5. This is a direct extension of the addPairs function discussed in this section.

In[16]:= addTriples@8<, 8<, 8<D := 8<
addTriples@8x1_, y1___<, 8x2_, y2___<, 8x3_, y3___<D :=

Join@8x1 + x2 + x3<, addTriples@8y1<, 8y2<, 8y3<DD
In[18]:= addTriples@8w1, x1, y1, z1<, 8w2, x2, y2, z2<, 8w3, x3, y3, z3<D

Out[18]= 8w1 + w2 + w3, x1 + x2 + x3, y1 + y2 + y3, z1 + z2 + z3<
6. Multiply successive pairs with one element overlap.

In[19]:= multAllPairs@8<D := 8<
multAllPairs@8_<D := 8<
multAllPairs@8x_, y_, r___<D := Join@8x y<, multAllPairs@8y, r<DD

In[22]:= multAllPairs@83, 9, 17, 2, 6, 60<D
Out[22]= 827, 153, 34, 12, 360<

7. Recursion is on the tails of each of the two lists.

In[23]:= maxPairs@8<, 8<D := 8<
maxPairs@8x_, r___<, 8y_, s___<D :=

Join@8Max@x, yD<, maxPairs@8r<, 8s<DD

102 Solutions to exercises

In[25]:= maxPairs@81, 2, 4<, 82, 7, 2<D
Out[25]= 82, 7, 4<

8. Again, we do recursion on the tails of the two lists.

In[26]:= riffle@8<, 8<D := 8<
riffle@8x_, r___<, 8y_, s___<D := Join@8x, y<, riffle@8r<, 8s<DD

In[28]:= riffle@8a, b, c<, 8x, y, z<D
Out[28]= 8a, x, b, y, c, z<

Here is the built-in function that does this.

In[29]:= Riffle@8a, b, c<, 8x, y, z<D
Out[29]= 8a, x, b, y, c, z<

9. Here is maxima using an auxiliary function.

In[30]:= maxima@8<D := 8<
maxima@8x_, r___<D := maxima@x, 8r<D

In[32]:= maxima@x_, 8<D := 8x<
maxima@x_, 8y_, r___<D := maxima@x, 8r<D ê; x ¥ y

maxima@x_, 8y_, r___<D := Join@8x<, maxima@y, 8r<DD
10. First, here is the definition for our user-defined fold.

In[35]:= fold@f_, x_, 8<D := x

fold@f_, x_, 8a_, r___<D := fold@f, f@x, aD, 8r<D
In[37]:= fold@Plus, 0, 8a, b, c, d, e<D

Out[37]= a + b + c + d + e

In[38]:= foldList@f_, x_, 8<D := 8x<
foldList@f_, x_, 8a_, r___<D :=

Join@8x<, foldList@f, f@x, aD, 8r<DD
In[40]:= foldList@Times, 1, Range@6DD

Out[40]= 81, 1, 2, 6, 24, 120, 720<
And here is nestList.

In[41]:= nestList@f_, x_, 0D := 8x<
nestList@f_, x_, n_D := Join@8x<, nestList@f, f@xD, n - 1DD

In[43]:= nestList@Sin, q, 3D
Out[43]= 8q, Sin@qD, Sin@Sin@qDD, Sin@Sin@Sin@qDDD<

7 Recursion 103

7.3 Dynamic programming

1. An Eulerian number, denoted [n
k
_, gives the number of permutations with k increasing runs of

elements. For example, for n = 3 the permutations of {1,2,3} contain four increasing runs of length 1,

namely {1,3,2}, {2,1,3}, {2,3,1}, and {3,1,2}. Hence, [3

1

_ = 4.

In[1]:= Permutations@81, 2, 3<D
Out[1]= 881, 2, 3<, 81, 3, 2<, 82, 1, 3<, 82, 3, 1<, 83, 1, 2<, 83, 2, 1<<

This can be programmed using the following recursive definition

(Graham, Knuth, and Patashnik 1994), where n and k are assumed to be integers:[n
k
_ = Hk + 1L [n - 1

k
_ + Hn - kL [n - 1

k - 1

_, for n > 0,

[0

k
_ = 1 k = 0

0 k ∫ 0.

Create a function EulerianNumberAn, kE. You can check your work against Table 7.1 which

displays the first few Eulerian numbers.

Table 7.1. Eulerian number triangle[n
0

_ [n
1

_ [n
2

_ [n
3

_ [n
4

_ [n
5

_ [n
6

_ [n
7

_ [n
8

_
0 1

1 1 0

2 1 1 0

3 1 4 1 0

4 1 11 11 1 0

5 1 26 66 26 1 0

6 1 57 302 302 57 1 0

7 1 120 1191 2416 1191 120 1 0

8 1 247 4293 15 619 15 619 4293 247 1 0

Because of the triple recursion, you will find it necessary to use a dynamic programming implemen-
tation to compute any Eulerian numbers of even modest size.

Hint: Although the above formulas will compute it, you can add the following rule to simplify some
of the computation:

104 Solutions to exercises

[n
k
_ = 0, for k ¥ n

2. Using dynamic programming is one way to speed up the computation of the Fibonacci numbers,
but another is to use a different algorithm. A much more efficient algorithm is based on the follow-
ing identities.

F1 = 1

F2 = 1

F2n = 2Fn-1Fn + Fn
2, for n ¥ 1

F2n+1 = Fn+1
2 + Fn

2, for n ¥ 1

Program a Fibonacci number generating function using these identities.

3. You can still speed up the code for generating Fibonacci numbers in the previous exercise by using
dynamic programming. Do so, and construct tables like those in this section, giving the number of
additions performed for various n by the two programs you have just written.

4. Calculation of the Collatz numbers, as described in Exercise 6 from Section 6.2, can be implemented
using recursion and sped up by using dynamic programming. Using recursion and dynamic
programming, create the function collatz@n, iD, which computes the ith iterate of the Collatz
sequence starting with integer n. Compare its speed with that of your original solution.

7.3 Solutions

1. Here are the rules translated directly from the formulas given in the exercise.

In[1]:= EulerianNumber@0, k_D = 0;

EulerianNumber@n_Integer, 0D = 1;

EulerianNumber@n_Integer, k_IntegerD ê; k ¥ n = 0;

In[4]:= EulerianNumber@n_Integer, k_IntegerD :=Hk + 1L EulerianNumber@n - 1, kD + Hn - kL EulerianNumber@n - 1, k - 1D
In[5]:= Table@EulerianNumber@n, kD, 8n, 0, 7<, 8k, 0, 7<D êê TableForm

Out[5]//TableForm=

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 4 1 0 0 0 0 0
1 11 11 1 0 0 0 0
1 26 66 26 1 0 0 0
1 57 302 302 57 1 0 0
1 120 1191 2416 1191 120 1 0

Because of the triple recursion, computing larger values is not only time and memory intensive but
also bumps up against the built-in recursion limit.

In[6]:= EulerianNumber@25, 15D êê Timing

Out[6]= 818.4585, 531714261368950897339996<

7 Recursion 105

This is a good candidate for dynamic programming. In the following implementation we have
temporarily reset the value of $RecursionLimit using Block.

In[7]:= Clear@EulerianNumberD;
In[8]:= EulerianNumber@0, k_D = 0;

EulerianNumber@n_Integer, 0D = 1;

EulerianNumber@n_Integer, k_IntegerD ê; k ¥ n = 0;

In[11]:= EulerianNumber@n_Integer, k_IntegerD :=

Block@8$RecursionLimit = Infinity<,
EulerianNumber@n, kD = Hk + 1L EulerianNumber@n - 1, kD +Hn - kL EulerianNumber@n - 1, k - 1DD

In[12]:= EulerianNumber@25, 15D êê Timing

Out[12]= 80.00253, 531714261368950897339996<
In[13]:= EulerianNumber@600, 65D; êê Timing

Out[13]= 80.385132, Null<
In[14]:= N@EulerianNumber@600, 65DD

Out[14]= 4.998147102049161 μ 101091

2. This implementation uses the identities given in the exercise together with some pattern matching
for the even and odd cases.

In[15]:= F@1D := 1

F@2D := 1

In[17]:= F@n_?EvenQD := 2 FB n
2

- 1F FB n
2
F + FB n

2
F2

F@n_?OddQD := FB n - 1

2
+ 1F2 + FB n - 1

2
F2

In[19]:= Map@F, Range@10DD
Out[19]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55<

In[20]:= TimingAFA104E;E
Out[20]= 80.43854, Null<

3. The use of dynamic programming speeds up the computation by several orders of magnitude.

In[21]:= FF@1D := 1

FF@2D := 1

In[23]:= FF@n_?EvenQD := FF@nD = 2 FFB n
2

- 1F FFB n
2
F + FFB n

2
F2

FF@n_?OddQD := FF@nD = FFB n - 1

2
+ 1F2 + FFB n - 1

2
F2

106 Solutions to exercises

In[25]:= Map@FF, Range@10DD
Out[25]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55<

In[26]:= TimingAFFA105E;E
Out[26]= 80.001024, Null<

This is fairly fast, even compared with the built-in Fibonacci which uses a method based on the
binary digits of n.

In[27]:= TimingAFibonacciA105E;E
Out[27]= 80.000275, Null<

4. Recursion is on the tail of the iterator i.

In[28]:= collatz@n_, 0D := n

In[29]:= collatz@n_, i_D :=

collatz@n, iD =
collatz@n, i - 1D

2
ê; EvenQ@collatz@n, i - 1DD

In[30]:= collatz@n_, i_D :=Hcollatz@n, iD = 3 collatz@n, i - 1D + 1L ê; OddQ@collatz@n, i - 1DD
Here is the fifth iterate of the Collatz sequence for 27.

In[31]:= collatz@27, 5D
Out[31]= 31

Here is the Collatz sequence for 27. This sequence takes a while to settle down to the cycle 4, 2, 1.

In[32]:= Table@collatz@27, iD, 8i, 0, 114<D
Out[32]= 827, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161,

484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155,

466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780,

890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566,

283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079,

3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367,

4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866,

433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23,

70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1<
7.4 Classical examples
1. Modify one of the runEncode functions so that it produces output in the same form as the built-in

Split function.

7 Recursion 107

In[1]:= Split@89, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5<D

Out[1]= 889, 9, 9, 9, 9<, 84<, 83, 3, 3, 3<, 85, 5, 5, 5, 5, 5<<
2. A slightly more efficient version of runEncode uses a three-argument auxiliary function.

runEncode@8<D := 8<
runEncode@8x_, r___<D := runEncode@x, 1, 8r<D

runEncodeAx, k, 8r<E computes the compressed version of 8x, x, x, …, x, r<, where the xs

are given k times. Define this three-argument function. Using the Timing function, compare the
efficiency of this version with our earlier version; be sure to try a variety of examples, including lists
that have many short runs and ones that have fewer, but longer runs. Use Table to generate lists
long enough to see any difference in speed.

3. Write the function runDecode, which takes an encoded list produced by runEncode and returns
its unencoded form.

In[2]:= runDecode@889, 5<, 84, 1<, 83, 4<, 85, 6<<D
Out[2]= 89, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5<

4. The MergeSort function defined in this section becomes quite slow for moderately sized lists.
Perform some experiments to determine if the bottleneck is caused mostly by the auxiliary merge
function or the double recursion inside MergeSort itself. Once you have identified the cause of the
problem, try to rewrite MergeSort to overcome the bottleneck issues.

7.4 Solutions

1. Perhaps the most straightforward way to do this is to write an auxiliary function that takes the
output from runEncode and produces output such as Split would generate.

In[1]:= runEncode@8<D := 8<
runEncode@8x_<D := 88x, 1<<

In[3]:= runEncode@8x_, res___<D := Module@8R = runEncode@8res<D, p<,
p = First@RD;
If@x ã First@pD,
Join@88x, pP2T + 1<<, Rest@RDD,
Join@88x, 1<<, RDDD

Then our split simply operates on the output of runEncode. The iterator for the Table is the
second element in each sublist, that is, the frequency.

In[4]:= sp@lis_D := Map@Table@Ò@@1DD, 8Ò@@2DD<D &, lisD

In[5]:= sp@883, 2<, 84, 1<, 82, 5<<D

Out[5]= 883, 3<, 84<, 82, 2, 2, 2, 2<<
In[6]:= split@lis_D := sp@runEncode@lisDD

In[7]:= split@89, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5<D

Out[7]= 889, 9, 9, 9, 9<, 84<, 83, 3, 3, 3<, 85, 5, 5, 5, 5, 5<<

108 Solutions to exercises

Check against the built-in function.

In[8]:= Split@89, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5<D
Out[8]= 889, 9, 9, 9, 9<, 84<, 83, 3, 3, 3<, 85, 5, 5, 5, 5, 5<<

2. The order of this list of rules is the order in which the Mathematica evaluator will search for a pattern
match.

In[9]:= runEncode@8<D := 8<
runEncode@8x_, r___<D := runEncode@x, 1, 8r<D
runEncode@x_, k_, 8<D := 88x, k<<
runEncode@x_, k_, 8x_, r___<D := runEncode@x, k + 1, 8r<D
runEncode@x_, k_, 8y_, r___<D := Join@88x, k<<, runEncode@y, 1, 8r<DD

3. Recursion is on the tail.

In[14]:= runDecode@8<D := 8<
runDecode@88x_, k_<, r___<D :=

Join@Table@x, 8k<D, runDecode@8r<DD
In[16]:= runDecode@889, 5<, 84, 1<, 83, 4<, 85, 6<<D

Out[16]= 89, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5<

7 Recursion 109

8

Numerics
8.1 Numbers in Mathematica
1. Define a function complexToPolar that converts complex numbers to their polar representa-

tions. Then, convert the numbers 3 + 3Â and ‰pÂê3 to polar form.

2. Using the built-in Fold function, write a function convertAlis, bE that accepts a list of digits in

any base b (less than 20) and converts it to a base 10 number. For example, 11012 is 13 in base 10, so
your function should handle this as follows:

In[1]:= convert@81, 1, 0, 1<, 2D
Out[1]= 13

3. Create a function to compute the sum of the digits of any integer. Write an additional rule to give
the sum of the base-b digits of an integer. Then use your function to compute the Hamming weight of
any integer: the Hamming weight of an integer is given by the number of 1s in the binary representa-
tion of that number.

4. Write a function sumsOfCubes@nD that takes a positive integer argument n and computes the
sums of cubes of the digits of n (Hayes 1992).

5. Use NestList to iterate the process of summing cubes of digits, that is, generate a list starting with
an initial integer of the successive sums of cubes of digits. For example, starting with 4, the list
should look like: 84, 64, 280, 520, 133, …<. Note, 64 = 4

3, 280 = 6
3 + 4

3, etc. Extend the list
for at least 15 values and make an observation about any patterns you notice. Experiment with other
starting values.

6. Binary shifts arise in the study of computer algorithms because they often allow you to speed up
calculations by operating in base 2 or in bases that are powers of 2. Try to discover what a binary
shift does by performing the following shift on 24 (base 10). First get the integer digits of 24 in base 2.

In[2]:= IntegerDigits@24, 2D
Out[2]= 81, 1, 0, 0, 0<

Then, do a binary shift, one place to the right.

In[3]:= RotateRight@%D
Out[3]= 80, 1, 1, 0, 0<

Finally, construct an integer from these binary digits and convert back to base 10.

In[4]:= FromDigits@%, 2D
Out[4]= 12

110 Solutions to exercises

Experiment with other numbers (including both odd and even integers) and make some conjectures.

7. The survivor@nD function from Section 5.8 can be programmed using binary shifts. This can be
done by rotating the base 2 digits of the number n by one unit to the left and then converting this
rotated list back to base 10. For example, if n = 10, the base 2 representation is 10102; the binary shift
gives 01012; converting this number back to base 10 gives 5, which is the output to survivor@5D.
Program a new survivor function using the binary shift.

8. Using the Dice function from Exercise 9 in Section 4.2, create a function RollDice@D that “rolls”
two dice and displays them side-by-side. Then create an additional rule, RollDice@nD, that rolls a
pair of dice n times and displays the result in a list or row.

9. Create functions walk2D and walk3D that generate two-dimensional and three-dimensional
lattice walks, respectively. For example, the two-dimensional case can use compass directions north,
south, east, west that are represented by the list 880, 1<, 80, -1<, 81, 0<, 8-1, 0<<.

10. A surprisingly simple pseudorandom number algorithm is the linear congruential method. It is quite
easy to implement and has been studied extensively. Sequences of random numbers are generated
by a formula such as the following:

xn+1 = xn b + 1 Hmod mL.
The starting value x0 is the seed, b is the multiplier, and m is the modulus. Recall that 7 mod 5 is the
remainder upon dividing 7 by 5.

In[5]:= Mod@7, 5D
Out[5]= 2

Implement the linear congruential method and test it with a variety of numbers m and b. If you find
that the generator gets in a loop easily, try a large value for the modulus m. See Knuth H1997L for a full

treatment of random number generating algorithms.

11. Implement a quadratic congruential random number generator. The iteration is given by the following,
where a, b, and c are the parameters, m is the modulus, and x0 is the starting value:

xn+1 = Ia xn
2 + b xn + cM mod m

12. John von Neumann, considered by many to be the “father of computer science,” suggested a
random number generator known as the middle-square method. Starting with a ten-digit integer,
square the initial integer and then extract its middle ten digits to get the next number in the
sequence. For example, starting with 1234567890, squaring it produces 1524157875019052100. The
middle digits are 1578750190, so the sequence starts out 1234567890, 1578750190, 4521624250, ….
Implement a middle square random number generator and then test it on a 1000-number sequence.
Was the “father of computer science” a good random number generator?

13. Information theory, as conceived by Claude Shannon in the 1940s and 1950s, was originally inter-
ested in maximizing the amount of data that can be stored and retrieved over some channel such as
a telephone line. Shannon devised a measure, now called the entropy, that gives the theoretical
maxima for such a signal. Entropy can be thought of as the average uncertainty of a single random
variable and is computed by the following, where pHxL is the probability of event x over a domain X:

8 Numerics 111

HHXL = -⁄xœX pHxL log2 pHxL
Generate a plot of the entropy (built into Mathematica as Entropy) as a function of success probabil-
ity. You can simulate n trials of a coin toss with probability p using:

RandomVariate@BernoulliDistribution@pD, nD
See (Manning and Schütze 1999) for a discussion of entropy in the context of information theory

generally and in natural language processing in particular. Also, see Claude Shannon’s very readable

original paper on the mathematical theory of communication (Shannon 1948).

8.1 Solutions
1. This function gives the polar form as a list consisting of the magnitude and the polar angle.

In[1]:= complexToPolar@z_D := 8Abs@zD, Arg@zD<
In[2]:= complexToPolar@3 + 3 ÂD

Out[2]= :3 2 ,
p

4
>

In[3]:= complexToPolarB‰ p Â

3 F
Out[3]= :1, p

3
>

2. This function uses a default value of 2 for the base. (Try replacing Fold with FoldList to see more
clearly what this function is doing.)

In[4]:= convert@digits_List, base_ : 2D := Fold@Hbase Ò1 + Ò2L &, 0, digitsD
Here are the digits for 9 in base 2:

In[5]:= IntegerDigits@9, 2D
Out[5]= 81, 0, 0, 1<

This converts them back to the base 10 representation.

In[6]:= convert@%D
Out[6]= 9

Note, this functionality is built into the function FromDigitsAlis, baseE.

In[7]:= FromDigits@81, 0, 0, 1<, 2D
Out[7]= 9

This function is essentially an implementation of Horner’s method for fast polynomial
multiplication.

112 Solutions to exercises

In[8]:= convert@8a, b, c, d, e<, xD
Out[8]= e + x Hd + x Hc + x Hb + a xLLL

In[9]:= Expand@%D
Out[9]= e + d x + c x2 + b x3 + a x4

3. One rule can cover both parts of this exercise, using a default value of 10 for the base.

In[10]:= DigitSum@n_, base_: 10D := Total@IntegerDigits@n, baseDD
In[11]:= DigitSum@10!D

Out[11]= 27

The Hamming weight of a number is the number of 1s in its binary representation.

In[12]:= DigitSumA231 - 1, 2E
Out[12]= 31

Here is a comparison with a built-in function:

In[13]:= DigitCountA231 - 1, 2, 1E
Out[13]= 31

4. Here is the sumsOfCubes function.

In[16]:= sumsOfCubes@n_IntegerD := TotalAIntegerDigits@nD3E
5. Here is the function that performs the iteration.

In[17]:= sumsOfSums@n_Integer, iter_D := NestList@sumsOfCubes, n, iterD
We see that the number 4 enters into a cycle.

In[18]:= sumsOfSums@4, 12D
In fact, it appears as if many initial values enter cycles.

In[19]:= sumsOfSums@32, 12D
In[20]:= sumsOfSums@7, 12D
In[21]:= sumsOfSums@372, 12D

7. Using the number 100 as an example, first get the base two digits.

In[22]:= IntegerDigits@100, 2D
Perform a binary shift of one unit (actually, the 1 in RotateLeft is not needed here as this is the
default value to shift by).

In[23]:= l = RotateLeft@IntegerDigits@100, 2D, 1D

8 Numerics 113

This converts back from base 2 to base 10 (using the convert function from Exercise 2).

In[24]:= convert@l, 2D
Now we can put all this code together to make the survivor function.

In[25]:= survivor@n_D := Module@8p<,
p = RotateLeft@IntegerDigits@n, 2DD;
Fold@H2 Ò1 + Ò2L &, 0, pDD

In[26]:= survivor@100D
You could of course do the same thing without the symbol p, but it is just a bit less readable.

In[27]:= survivor2@n_IntegerD :=

Fold@H2 Ò1 + Ò2L &, 0, RotateLeft@IntegerDigits@n, 2DDD
In[28]:= survivor2@100D

8. Mapping Dice (from Exercise 9 in Section 4.2) over a list of two random integers between 1 and 6
simulates a roll of a pair of dice.

In[14]:= Map@Dice, RandomInteger@81, 6<, 82<DD
Out[14]= : , >

Here is a function to do that.

In[15]:= RollDice@D := GraphicsRow@Map@Dice, RandomInteger@81, 6<, 82<DDD
In[16]:= RollDice@D

Out[16]=

And here is the rule for rolling the pair of dice n times.

In[17]:= RollDice@n_D := Table@RollDice@D, 8n<D
In[18]:= RollDice@4D

Out[18]= : , , , >
9. Using the hint in the exercise, here are the directions for the two- and three-dimensional cases.

In[19]:= NSEW = 880, 1<, 80, -1<, 81, 0<, 8-1, 0<<;
In[20]:= NSEW3 =881, 0, 0<, 80, 1, 0<, 80, 0, 1<, 8-1, 0, 0<, 80, -1, 0<, 80, 0, -1<<;

114 Solutions to exercises

The walk functions follow directly from the one-dimensional case given in the text.

In[21]:= walk2D@t_D := Accumulate@RandomChoice@NSEW, tDD
In[22]:= walk3D@t_D := Accumulate@RandomChoice@NSEW3, tDD

Exercise the functions and visualize.

In[23]:= ListLinePlot@walk2D@1500D, AspectRatio Ø AutomaticD

Out[23]=

-30 -20 -10

-40

-30

-20

-10

In[24]:= Graphics3D@Line@walk3D@2500DDD
Out[24]=

For a more complete discussion of these functions, see Section 13.1.

10. Here is the linear congruential generator.

In[25]:= linearCongruential@x_, mod_, mult_, incr_D := Mod@mult x + incr, modD
With modulus 100 and multiplier 15, this generator quickly gets into a cycle.

In[26]:= NestList@linearCongruential@Ò, 100, 15, 1D &, 5, 10D
Out[26]= 85, 76, 41, 16, 41, 16, 41, 16, 41, 16, 41<

With a larger modulus and multiplier, it appears as if this generator is doing better.

Here are the first 60 terms starting with a seed of 0.

8 Numerics 115

In[27]:= data = NestList@linearCongruential@Ò, 381, 15, 1D &, 0, 5000D;
Take@data, 60D

Out[28]= 80, 1, 16, 241, 187, 139, 181, 49, 355, 373, 262, 121, 292, 190, 184,

94, 268, 211, 118, 247, 277, 346, 238, 142, 226, 343, 193, 229, 7, 106,

67, 244, 232, 52, 19, 286, 100, 358, 37, 175, 340, 148, 316, 169, 250,

322, 259, 76, 379, 352, 328, 349, 283, 55, 64, 199, 319, 214, 163, 160<
Sometimes it is hard to see if your generator is doing a poor job. Graphical analysis can help by
allowing you to see patterns over larger domains. Here is a ListPlot of this sequence taken out to
5000 terms.

In[29]:= ListPlot@data, PlotStyle Ø PointSize@.005DD
Out[29]=

1000 2000 3000 4000 5000

50
100
150
200
250
300
350

It appears as if certain numbers are repeating. Looking at the plot of the Fourier data shows peaks at
certain frequencies, indicating a periodic nature to the data.

In[30]:= ListPlot@Abs@Fourier@dataDD, PlotStyle Ø PointSize@.005DD
Out[30]=

1000 2000 3000 4000 5000

10

20

30

40

50

Using a much larger modulus and multiplier and an increment of zero (actually, these are the
default values for Mathematica’s built-in "Congruential" method for SeedRandom), you can
keep your generator from getting in such short loops.

In[31]:= ListPlot@
data = NestList@linearCongruential@Ò1, 2305843009213693951,

1283839219676404755, 0D &,

1, 5000D, PlotStyle Ø PointSize@.005DD
Out[31]=

10002000300040005000

5.0μ1017

1.0μ1018

1.5μ1018

2.0μ1018

116 Solutions to exercises

In[32]:= ListPlot@Abs@Fourier@dataDD, PlotStyle Ø PointSize@.005DD
Out[32]=

10002000300040005000

5.0μ1017

1.0μ1018

1.5μ1018

12. Here is a simple implementation of the middle square method. It assumes a ten-digit seed. To work
with arbitrary-length seeds, modify the number of middle digits that are extracted with the Part
function.

In[33]:= middleSquareGenerator@n_, seed_: 1234567890D :=

Module@8tmp = 8seed<, s2, len, s = seed<,
Do@
s2 = IntegerDigits@s^2D;
len = Length@s2D;
s = FromDigits@If@len < 20, PadLeft@s2, 20, 0D, s2D@@6 ;; 15DDD;
AppendTo@tmp, sD,8n<D;

tmpD
In[34]:= middleSquareGenerator@3D

Out[34]= 81234567890, 1578750190, 4521624250, 858581880<
In[35]:= data = middleSquareGenerator@1000D;

Take@data, 12D
Out[36]= 81234567890, 1578750190, 4521624250, 858581880,

1628446643, 8384690979, 428133239, 2980703366,

5925560837, 2712329881, 7333833654, 1160645429<
13. Run 10 000 trials with a range of probabilities from 0 to 1 in increments of .001.

In[37]:= incr = 0.001;

trials = 10000;

lis = Table@RandomVariate@
BernoulliDistribution@pD, trialsD, 8p, 0, 1, incr<D;

Pair up the probabilities with the entropies (in base 2) for each trial.

In[40]:= info = Transpose@8Range@0, 1, incrD, Map@Entropy@2, ÒD &, lisD<D;
Make a plot.

8 Numerics 117

In[41]:= ListPlot@info, AspectRatio Ø 1,

GridLines Ø Automatic, PlotStyle Ø PointSize@SmallDD
Out[41]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

8.2 Numerical computation
1. Explain why Mathematica is unable to produce a number with 100 digits of precision in the following

example.

In[1]:= N@1.23, 100D
Out[1]= 1.23

In[2]:= Precision@%D
Out[2]= MachinePrecision

2. Determine what level of precision is necessary when computing NA 2 , precE200 to produce

accuracy in the output of at least 100 digits.

3. Explain why the following computation produces an unexpected result (that is, why the value
0.000000000001 is not returned).

In[3]:= 1.0 - 0.999999999999

Out[3]= 9.99978 μ 10-13

4. How close is the number ‰p 163 to an integer? Use N, but mind the precision of your computations.

8.2 Solutions
1. The number 1.23 has machine precision.

In[1]:= Precision@1.23D
Out[1]= MachinePrecision

Asking Mathematica to generate 100 digits of precision from a number that only contains about 16
digits of precision would require it to produce 84 digits without any information about where those
digits should come from.

2. This generates a table showing the number of digits of precision needed in the input compared with
the accuracy of the result.

118 Solutions to exercises

In[2]:= TableB:x, AccuracyBNB 2 , xF200 - J 2 N200F>,8x, 100, 140, 5<F êê TableForm

Out[2]//TableForm=

100 67.596
105 72.596
110 77.596
115 82.596
120 87.596
125 92.596
130 97.596
135 102.596
140 107.596

8.3 Arrays of numbers
1. Create a function RandomSparseArray@nD that generates an nän sparse array with random

numbers along the diagonal.

2. Write a function TridiagonalMatrix@n, p, qD that creates an nän matrix with the integer p on
the diagonal, the integer q on the upper and lower subdiagonals, and 0s everywhere else.

3. Create a vector vec consisting of 100 000 random real numbers between 0 and 1. Check that it is
indeed a packed array by using Developer`PackedArrayQ. Then replace one element in vec
with an integer. Check that this new vector is not a packed array. Finally, perform some memory
and timing tests on these two vectors, using functions such as Max, Norm , RootMeanSquare .

4. An interesting computation of the Fibonacci numbers can be obtained using the determinant of a
certain tri-diagonal matrix: 1s on the diagonal and Â = -1 running along each subdiagonal. For
example, the following 4ä4 matrix has determinant equal to the fifth Fibonacci number.

In[1]:=

1 Â 0 0
Â 1 Â 0
0 Â 1 Â
0 0 Â 1

Out[1]= 5

Create a function that computes the nth Fibonacci number using a sparse array implementation of
this tri-diagonal matrix. You will need special rules for n = 1 and n = 2.

5. An efficient approach to computing large Fibonacci numbers relies upon the observation that a
certain matrix has its characteristic polynomial equal to the characteristic equation for the
Fibonacci numbers.

In[2]:= mat = K 1 1
1 0

O;
poly = CharacteristicPolynomial@mat, xD

Out[3]= -1 - x + x2

8 Numerics 119

In[4]:= Solve@poly ã 0, xD
Out[4]= ::x Ø

1

2
I1 - 5 M>, :x Ø

1

2
I1 + 5 M>>

The Fibonacci numbers Fn can be generated from successive powers of this matrix.

1 1

1 0

n

=
Fn+1 Fn

Fn Fn-1

Use these facts to implement an algorithm for computing the Fibonacci numbers using the built-in
MatrixPower function with sparse arrays.

8.3 Solutions
1. Note the need for a delayed rule in this function.

In[1]:= RandomSparseArray@n_IntegerD :=

SparseArray@8Band@81, 1<D ß RandomReal@D<, 8n, n<D
In[2]:= Normal@RandomSparseArray@5DD êê MatrixForm

Out[2]//MatrixForm=
0.778393 0 0 0 0

0 0.685614 0 0 0
0 0 0.639995 0 0
0 0 0 0.79101 0
0 0 0 0 0.427544

2. Here is the definition of TridiagonalMatrix.

In[3]:= TridiagonalMatrix@n_, p_, q_D := SparseArray@8Band@81, 1<D Ø p, Band@81, 2<D Ø q, Band@82, 1<D Ø q<, 8n, n<D
In[4]:= TridiagonalMatrix@5, a, bD

Out[4]= SparseArray@<13>, 85, 5<D
In[5]:= Normal@%D êê MatrixForm

Out[5]//MatrixForm=
a b 0 0 0
b a b 0 0
0 b a b 0
0 0 b a b
0 0 0 b a

3. First we create the packed array vector.

In[6]:= vec = RandomVariateANormalDistribution@1, 3D, 9105=E;
In[7]:= Developer`PackedArrayQ@vecD

Out[7]= True

120 Solutions to exercises

Replacing the first element in vec with a 1 gives an expression that is not packed.

In[8]:= newvec = ReplacePart@vec, 1, 1D;
In[9]:= Developer`PackedArrayQ@newvecD

Out[9]= False

The size of the unpacked object is about four times larger than the packed array.

In[10]:= Map@ByteCount, 8vec, newvec<D
Out[10]= 8800168, 3200040<

Sorting the packed object is about three times faster than sorting the unpacked object.

In[11]:= Timing@Do@Sort@vecD, 85<DD
Out[11]= 80.094712, Null<

In[12]:= Timing@Do@Sort@newvecD, 85<DD
Out[12]= 80.243469, Null<

Finding the minimum element is about one order of magnitude faster with the packed array.

In[13]:= Timing@Min@vecD;D
Out[13]= 80.000213, Null<

In[14]:= Timing@Min@newvecD;D
Out[14]= 80.002076, Null<

4. Since the definition involving determinants only makes sense for n > 2, we include a condition on
the left-hand side of that definition and also specific rules for the cases n = 1, 2.

In[15]:= fibMat@n_ ê; n > 2D :=

DetüSparseArray@8Band@81, 1<D Ø 1, Band@82, 1<D Ø Â,

Band@81, 2<D Ø Â<, 8n - 1, n - 1<D
In[16]:= fibMat@1D = fibMat@2D = 1;

In[17]:= Table@fibMat@iD, 8i, 1, 20<D
Out[17]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

144, 233, 377, 610, 987, 1597, 2584, 4181, 6765<
The computation of determinants using decomposition methods is on the order of OIn3M computa-

tional complexity. So this computation tends to slow down considerably for large n.

8 Numerics 121

In[18]:= TimingAfibMatA103EE
Out[18]= 86.7663,

43466557686937456435688527675040625802564660517371780402 Ö

481729089536555417949051890403879840079255169295922593080 Ö

322634775209689623239873322471161642996440906533187938298 Ö

969649928516003704476137795166849228875<
In[19]:= FibonacciA103E ã fibMatA103E

Out[19]= True

5. The sparse array needs only one rule 82, 2< Ø 0 together with a third argument that specifies the
default values should be set to 1. Then pick off the nth Fibonacci number in the first row, second
column.

In[20]:= fibMat2@n_D := Module@8mat<,
mat = SparseArray@882, 2< Ø 0<, 82, 2<, 1D;
MatrixPower@mat, nD@@1, 2DDD

Quick check of the first few numbers.

In[21]:= Table@fibMat2@nD, 8n, 1, 10<D
Out[21]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55<

The time to compute a large number is quite fast.

In[22]:= TimingAfibMat2A103EE
Out[22]= 80.000216,

43466557686937456435688527675040625802564660517371780402 Ö

481729089536555417949051890403879840079255169295922593080 Ö

322634775209689623239873322471161642996440906533187938298 Ö

969649928516003704476137795166849228875<
Check correctness against the built-in function, using a large random integer n.

In[23]:= WithA9n = RandomIntegerA106E=,
fibMat2@nD ã Fibonacci@nDE

Out[23]= True

8.4 Examples and applications
1. Write a functional implementation of the secant method. Your function should accept as argu-

ments the name of a function and two initial guesses. It should maintain the precision of the inputs
and it should output the root at the precision of the initial guess, and the number of iterations
required to compute the root. Consider using the built-in functions FixedPoint or Nest .

122 Solutions to exercises

2. The findRoot function developed in this section suffers from several inefficiencies. One of them is
that if the precision goal is no more than machine precision, all intermediate computations should
be done at the more efficient machine precision as well. Modify findRoot so that it will operate at
machine precision if the precision goal is at most machine precision.

3. In the findRoot program, we added SetPrecisionAresult, precisionGoalE at the very end to

return the final result at the precision goal, but we have done no test to insure that the result meets
the required precision. Add a test to the end of the findRoot function so that, if this condition is
not met, an error message is generated and the current result is output.

4. Some functions tend to cause root-finding methods to converge rather slowly. For example, the
function f HxL = sinHxL - x requires over ten iterations of Newton’s method with an initial guess of
x0 = 0.1 to get three-place accuracy.

In[1]:= FindRoot@Sin@xD - x, 8x, 0.1<,
MaxIterations Ø 12, EvaluationMonitor ß Sow@xDD êê Reap

FindRoot::cvmit : Failed to converge to the requested accuracy or precision within 12 iterations. à

Out[1]= 88x Ø 0.000770503<,880.1, 0.0666556, 0.0444337, 0.0296215, 0.0197474,

0.0131648, 0.00877654, 0.00585102, 0.00390068,

0.00260045, 0.00173363, 0.00115576, 0.000770503<<<
Implement the following acceleration of Newton’s method and determine how many iterations of
the function f HxL = sinHxL - x, starting with x0 = 0.1, are necessary for six-place accuracy.

accelNewtonHxL = f HxL f £HxLA f £HxLE2- f HxL f ££HxL
This accelerated method is particularly useful for functions with multiple roots.

5. The norm of a matrix gives some measure of the size of that matrix. The norm of a matrix A is
indicated by ∞A¥. There are numerous matrix norms, but all share certain properties. For nμn
matrices A and B:

(i.) ∞A¥ ¥ 0;

(ii.) ∞A¥ = 0 if and only if A is the zero matrix;

(iii.) ∞c A¥ = c ∞A¥ for any scalar c;

(iv.) ∞A + B¥ = ∞A¥ + ∞B¥;

(v.) ∞A B¥ § ∞A¥ ∞B¥.

One particularly useful norm is the l¶ norm, sometimes referred to as the max norm. For a vector,
this is defined as∞x”¥¶ = max1§i§n xi .

The corresponding matrix norm is defined similarly. Hence, for a matrix A = ai j, we have

8 Numerics 123

∞A¥¶ = max1§i§n ⁄j=1
n ai j .

This computes the sum of the absolute values of the elements in each row, and then takes the
maximum of these sums, that is, the l¶ matrix norm is the max of the l¶ norms of the rows.

Write a function norm@mat, ¶D that takes a square matrix as an argument and outputs its ∞ ÿ¥¶
norm. Compare your function with the built-in Norm function. Include rules for the l2 and l1 norms.

6. If a matrix A is nonsingular (invertible), then its condition number is defined as ∞A¥ ÿ±A-1μ. A matrix is

called well-conditioned if its condition number is close to 1, the condition number of the identity
matrix. A matrix is called ill-conditioned if its condition number is significantly larger than 1.

Write a function conditionNumber@matD that uses norm defined in the previous exercise or
the built-in Norm function and outputs the condition number of mat. Use conditionNumber to
compute the condition number of the first ten Hilbert matrices.

7. Create a function LagPlotAdata, lagE that plots data (a one-dimensional vector) against the data

lagged by a displacement, lag. For example, if lag = 1, then LagPlot would display values 8xi-1, xi}.
Use NIST’s lew.dat which consists of 200 observations of beam deflection data and whose lag plot
indicates a lack of randomness in the sequence of numbers. You can import and post-process the
data using the following:

In[2]:= data = Import@
"http:êêitl.nist.govêdiv898êeducationêedaêlew.dat", "Data"D;

Short@lewdata = Cases@data, 8x_?NumberQ< ß xDD
Out[3]//Short= 8-213, -564, -35, -15, 141, á190à, -385, 198, -218, -536, 96<

Or, if you have the files associated with this book, use something like the following:

In[4]:= lewdata = Import@FileNameJoin@8NotebookDirectory@D, "Data", "lew.dat"<D, "List"D;
8. Modify the Correlogram function developed in this section to provide for an option,

Coefficient, that sets the range of values for the dashed lines within which the autocorrelation
coefficients are hoped to lie. In addition, set things up so Correlogram inherits all the options of
ListPlot.

Then use your function to look at some time-series data, such as that below; the plot here shows
a high degree of autocorrelation for small time lags, but less so for larger lags, suggesting a serial
dependence in the data. In finance, autocorrelation analysis (usually referred to as serial correlation)
is used to predict how price movements may be affected by each other.

In[5]:= data =
FinancialData@"^DJI", 882011, 1, 1<, 82011, 12, 31<<, "Value"D;

124 Solutions to exercises

In[6]:= Correlogram@data, 81, 150<, Coefficient Ø 0.5,

Filling Ø Axis, PlotRange Ø 8-1, 1<,
PlotLabel Ø Style@"Dow Jones 2011: autocorrelation plot", 10D,
FrameLabel Ø 88"Autocorrelation", None<, 8"Lag", None<<D

Out[6]=

9. Create random walks on the binary digits of p. For a one-dimensional walk, use
RealDigits@num, 2D to get the base 2 digits and then convert each 0 to –1 so that you have a
vector of ±1s for the step directions; then use Accumulate. For the two-dimensional walk, use
Partition to pair up digits and then use an appropriate transformation to have the four pairs, 80, 0<, 80, 1<, 81, 0<, and 81, 1< map to the compass directions; then use Accumulate. See
Bailey et al. H2012L for more on visualizing digits of p.

8.4 Solutions
1. We will overload findRoot to invoke the secant method when given a list of two numbers as the

second argument.
In[1]:= Options@findRootD = 8

MaxIterations ß $RecursionLimit,

PrecisionGoal Ø Automatic,

WorkingPrecision Ø Automatic<;
In[2]:= findRoot@fun_, 8var_, x1_?NumericQ, x2_?NumericQ<,

OptionsPattern@DD := ModuleB8maxIterations, precisionGoal,

workingPrecision, initx, df, next, result<,8maxIterations, precisionGoal, workingPrecision< = OptionValue@8MaxIterations, PrecisionGoal, WorkingPrecision<D;
If@precisionGoal === Automatic,

precisionGoal = Min@8Precision@x1D, Precision@x2D<DD;
If@workingPrecision === Automatic,

workingPrecision = precisionGoal + 10D;
initx = SetPrecision@8x1, x2<, workingPrecisionD;
df@a_, b_D := Hfun@bD - fun@aDL ê Hb - aL;
next@8a_, b_<D := :a, b -

fun@bD
df@a, bD>;

result = SetPrecision@
FixedPoint@next, initx, maxIterationsD@@2DD, precisionGoalD;

8 Numerics 125

8var Ø result<F
In[3]:= f@x_D := x2 - 2

In[4]:= findRoot@f, 8x, 1., 2.<D
Out[4]= 8x Ø 1.41421<

In[5]:= findRoot@f, 8x, 1.0`60, 2.0`50<D
Out[5]= 8x Ø 1.4142135623730950488016887242096980785696740946953<

In[6]:= Precision@%D
Out[6]= 50.

5. Here is a three-dimensional vector.

In[7]:= vec = 81, -3, 2<;
This computes the l¶ norm of the vector.

In[8]:= norm@v_?VectorQ, l_: InfinityD := Max@Abs@vDD
In[9]:= norm@vecD

Out[9]= 3

Compare this with the built-in Norm function.

In[10]:= Norm@vec, InfinityD
Out[10]= 3

Here is a 3μ3 matrix.

In[11]:= mat = 881, 2, 3<, 81, 0, 2<, 82, -3, 2<<;
Here, then, is the matrix norm.

In[12]:= norm@m_?MatrixQ, l_: InfinityD :=

norm@Total@Abs@Transpose@mDDD, InfinityD
In[13]:= norm@matD

Out[13]= 7

Again, here is a comparison with the built-in Norm function.

In[14]:= Norm@mat, InfinityD
Out[14]= 7

Notice how we overloaded the definition of the function norm so that it would act differently depend-
ing upon what type of argument it was given. This is a particularly powerful feature of Mathematica.
The expression _?MatrixQ on the left-hand side of the definition causes the function norm to use
the definition on the right-hand side only if the argument is in fact a matrix (if it passes the MatrixQ
test). If that argument is a vector (if it passes the VectorQ test), then the previous definition is used.

126 Solutions to exercises

g p p

6. Here is the function to compute the condition number of a matrix (using the l2 norm).

In[15]:= conditionNumber@m_?MatrixQD := Norm@m, 2D Norm@Inverse@mD, 2D
In[16]:= conditionNumber@HilbertMatrix@3DD êê N

Out[16]= 524.057

Compare this with the condition number of a random matrix.

In[17]:= mat = RandomInteger@5, 83, 3<D;
conditionNumber@matD êê N

Out[18]= 2.31709

An alternative definition for the condition number of a matrix is the ratio of largest to smallest
singular value.

In[19]:= NüSingularValueList@matD
Out[19]= 86.37231, 4.22261, 2.75013<

In[20]:= First@%D ê Last@%D
Out[20]= 2.31709

In[21]:= conditionNumber2@mat_?MatrixQD :=

Module@8sv = SingularValueList@matD<,
First@svD ê Last@svDD

In[22]:= conditionNumber2@matD êê N

Out[22]= 2.31709

7. Pairing up values with preceding values is accomplished by transposing the appropriate lists.

TransposeA9DropAdata, lagE, DropAdata, - lagE=E
Here then is the code for LagPlot.

In[23]:= LagPlot@data_, lag_ : 1, opts : OptionsPattern@ListPlotDD :=

ListPlot@Transpose@8Drop@data, lagD, Drop@data, -lagD<D, optsD
Trying it out on a sequence of “random” numbers generated using a linear congruential generator
shows patterns that indicate a very low likelihood of randomness in the sequence.

In[24]:= data = BlockRandom@SeedRandom@1, Method Ø 8"Congruential",
"Multiplier" Ø 11, "Increment" Ø 0, "Modulus" Ø 17<D;

RandomReal@1, 81000<DD;

8 Numerics 127

In[25]:= Table@LagPlot@data, i, ImageSize Ø SmallD, 8i, 1, 4<D
Out[25]= :

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

,

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

,

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

,

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8 >
NIST describes the data in lew.dat as originating “from an underlying single-cycle sinusoidal model.”

In[26]:= lewdata = Import@FileNameJoin@8NotebookDirectory@D, "Data", "lew.dat"<D, "List"D;
In[27]:= LagPlot@lewdata, 1, ImageSize Ø SmallD

Out[27]=
-400 -200 200

-400

-200

200

8. First, set the options for Correlogram, giving a default value for Coefficient of 0.05.

In[28]:= Options@CorrelogramD =

Join@8Coefficient Ø 0.05<, Options@ListPlotDD;
In[29]:= Correlogram@data_,8lagmin_, lagmax_, incr_: 1<, opts : OptionsPattern@DD :=

Module@8rh, corrs<,
rh = OptionValue@CoefficientD;
corrs = Table@8lag, AutoCorrelation@data, lagD<,8lag, lagmin, lagmax, incr<D;
ListPlot@corrs,
FilterRules@8opts<, Options@ListPlotDD, AspectRatio Ø .4,

Frame Ø True, Axes Ø False, PlotRange Ø Automatic,

FrameTicks Ø 88Automatic, False<, 8Automatic, False<<,
Epilog Ø 8Thin, Dashed,

Line@880, rh<, 8Hlagmax - lagmin + 1L ê incr, rh<<D,
Line@880, -rh<, 8Hlagmax - lagmin + 1L ê incr, -rh<<D<DD

128 Solutions to exercises

In[30]:= AutoCorrelation@data_, lag_: 1D :=

Correlation@Drop@data, lagD, Drop@data, -lagDD
Try out the function on some sinusoidal data with some noise added.

In[31]:= data = Table@RandomReal@8-2, 2<D
Sin@x + RandomReal@8-.25, .25<DD, 8x, 0, 10 p, .05<D;

Exercise some of the options.

In[32]:= Correlogram@data, 81, 100<, Coefficient Ø 0.1,

Filling Ø Axis, PlotRange Ø 8-0.2, 0.2<,
FrameLabel Ø 88"Auto-correlation coeff.", None<, 8"Lags", None<<D

Out[32]=

9. Here are the binary digits of p. First is used to get only the digits from RealDigits.

In[33]:= First@RealDigits@N@Pi, 12D, 2DD
Out[33]= 81, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0,

1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0<
Convert 0s to -1s.

In[34]:= 2 % - 1

Out[34]= 81, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1,

-1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1<
Here then is a plot for the first fifty thousand digits.

In[35]:= ListLinePlot@
With@8digits = 50000<,
Accumulate@2 First@RealDigits@N@Pi, digitsD, 2DD - 1DDD

Out[35]=

50 000 100 000 150 000

-100

100

200

300

400

8 Numerics 129

For the two-dimensional case, use Partition to pair up the binary digits, then a transformation
rule to convert them to compass directions.

In[36]:= With@8digs = First@RealDigits@N@Pi, 50000D, 2DD<,
ListLinePlot@Accumulate@

Partition@digs, 2, 2D ê. 880, 0< Ø 8-1, 0<, 81, 1< Ø 80, -1<<D,
AspectRatio Ø AutomaticDD

Out[36]=

-50 50 100

-300

-200

-100

130 Solutions to exercises

9

Strings
9.1 Structure and syntax
1. Convert the first character in a string (which you may assume to be a lowercase letter) to uppercase.

2. Given a string of digits of arbitrary length, convert it to its integer value. (Hint: you may find that the
Dot function is helpful.)

3. Create a function UniqueCharacters@strD that takes a string as its argument and returns a list of
the unique characters in that string. For example, UniqueCharacters@"Mississippi"D
should return 8M, i, s, p<.

9.1 Solutions
1. Here is a test string we will use for this exercise.

In[1]:= str = "this is a test string"

Out[1]= this is a test string

This extracts the first character from str.

In[2]:= StringTake@str, 1D
Out[2]= t

Here is its character code.

In[3]:= ToCharacterCode@%D
Out[3]= 8116<

For each lowercase letter of the English alphabet, subtracting 32 gives the corresponding uppercase
character.

In[4]:= % - 32

Out[4]= 884<
Convert back to a character.

In[5]:= FromCharacterCode@%D
Out[5]= T

Take the original string minus its first character.

9 Strings 131

In[6]:= StringDrop@str, 1D
Out[6]= his is a test string

Finally, join the previous string with the capital T.

In[7]:= StringJoin@%%, %D
Out[7]= This is a test string

You can do this more efficiently using ToUpperCase and StringTake. This approach is more
general in that it does not assume that the first character in your string is lower case.

In[8]:= ToUpperCase@StringTake@str, 1DD
Out[8]= T

In[9]:= StringTake@str, 2 ;; -1D
Out[9]= his is a test string

In[10]:= ToUpperCase@StringTake@str, 1DD <> StringTake@str, 2 ;; -1D
Out[10]= This is a test string

2. One approach converts the string to character codes.

In[11]:= ToCharacterCode@"10495"D
In[12]:= % - 48

In[13]:= TableA10j, 8j, 4, 0, -1<E
In[14]:= %.%%

This is a good place to use Fold . Using FoldList, you can see how the expression is built up.

In[15]:= FoldList@Ò2 + 10 Ò1 &, 0, ToCharacterCode@"10495"D - 48D
Much more directly, use ToExpression.

In[16]:= ToExpression@"10495"D
3. Start by extracting the individual characters in a string.

In[11]:= str = "Mississippi";

Characters@strD
Out[12]= 8M, i, s, s, i, s, s, i, p, p, i<

This gives the set of unique characters in this string.

In[13]:= Union@Characters@strDD
Out[13]= 8i, M, p, s<

132 Solutions to exercises

Union sorts the list whereas DeleteDuplicates does not.

In[14]:= DeleteDuplicates@Characters@strDD
Out[14]= 8M, i, s, p<

Here then is the function.

In[15]:= UniqueCharacters@str_StringD := DeleteDuplicates@Characters@strDD
Try it out on a more interesting example.

In[16]:= protein = ProteinData@"PP2672"D
Out[16]= MKSSEELQCLKQMEEELLFLKAGQGSQRARLTPPLPRALQGNFGAPALCGIWFAEHLHPAVGMPÖ

PNYNSSMLSLSPERTILSGGWSGKQTQQPVPPLRTLLLRSPFSLHKSSQPGSPKASQRIHPÖ

LFHSIPRSQLHSVLLGLPLLFIQTRPSPPAQYGAQMPLRYICFGPNIFWGSKKPQKE

In[17]:= UniqueCharacters@proteinD
Out[17]= 8M, K, S, E, L, Q, C, F, A, G, R, T, P, N, I, W, H, V, Y<

It even works in the degenerate case.

In[18]:= UniqueCharacters@""D
Out[18]= 8<

9.2 Operations on strings
1. Create a function PalindromeQ@strD that returns a value of True if its argument str is a palin-

drome, that is, if the string str is the same forward and backward. For example, refer is a palindrome.

2. Create a function StringRotateLeft@str, nD that takes a string str, and returns a string with the
characters rotated to the left n places. For example:

In[1]:= StringRotateLeft@"a quark for Muster Mark ", 8D
Out[1]= for Muster Mark a quark

3. In creating the function MakeVarList in this section, we were not careful about the arguments
that might be passed. Correct this problem using pattern matching on the arguments to this
function to insure that the indices are positive integers only.

4. Create a function StringPad@str, 8n<D that pads the end of a string with n whitespace characters.
Then create a second rule StringPad@str, nD that pads the string out to length n. If the input
string has length greater than n, issue a warning message. Finally, mirroring the argument structure
for the built-in PadLeft , create a third rule StringPad@str, n, mD that pads with n whitespaces
at the front and m whitespaces at the end of the string.

5. Modify the Caesar cipher so that it encodes by shifting five places to the right. Include the space
character in the alphabet.

6. A mixed-alphabet cipher is created by first writing a keyword followed by the remaining letters of
the alphabet and then using this as the substitution (or cipher) text. For example, if the keyword is
django, the cipher text alphabet would be:

9 Strings 133

djangobcefhiklmpqrstuvwxyz

So, a is replaced with d, b is replaced with j, c is replaced with a, and so on. As an example, the piece
of text

 the sheik of araby

would then be encoded as

tcg scgeh mo drdjy

Implement this cipher and go one step further to output the cipher text in blocks of length five,
omitting spaces and punctuation.

7. Modify the alphabet permutation cipher so that instead of being based on single letters, it is instead
based on adjacent pairs of letters. The single letter cipher will have
26 ! = 403 291 461 126 605 635 584 000 000 permutations; the adjacent pairs cipher will have
26

2 ! = 1.883707684133810μ 10
1621 permutations.

9.2 Solutions
1. Here is the function that checks if a string is a palindrome.

In[1]:= PalindromeQ@str_StringD := StringReverse@strD == str

In[2]:= PalindromeQ@"mood"D
Out[2]= False

In[3]:= PalindromeQ@"PoP"D
Out[3]= True

An argument that is a number is converted to a string and then the previous rule is called.

In[4]:= PalindromeQ@num_IntegerD := PalindromeQ@ToString@numDD
In[5]:= PalindromeQ@12522521D

Out[5]= True

Get all words in the dictionary that comes with Mathematica.

In[6]:= words = DictionaryLookup@D;
Select those that pass the PalindromeQ test.

In[7]:= Select@words, PalindromeQD
Out[7]= 8a, aha, aka, bib, bob, boob, bub, CFC, civic, dad, deed, deified, did,

dud, DVD, eke, ere, eve, ewe, eye, gag, gig, huh, I, kayak, kook,

level, ma'am, madam, mam, MGM, minim, mom, mum, nan, non, noon,

nun, oho, pap, peep, pep, pip, poop, pop, pup, radar, redder, refer,

repaper, reviver, rotor, sagas, sees, seres, sexes, shahs, sis,

solos, SOS, stats, stets, tat, tenet, TNT, toot, tot, tut, wow, WWW<

134 Solutions to exercises

2. Use the argument structure of RotateLeft.

In[8]:= StringRotateLeft@str_, n_: 1D :=

StringJoin@RotateLeft@Characters@strD, nDD
In[9]:= StringRotateLeft@"squeamish ossifrage", 5D

Out[9]= mish ossifragesquea

3. Using a negative index is a problem when the string is converted using ToExpression.

In[10]:= ToString@xD <> ToString@-2D êê FullForm

Out[10]//FullForm= "x-2"

In[11]:= ToExpression@%D êê FullForm

Out[11]//FullForm= Plus@-2, xD
Argument checking with a different pattern corrects this problem.

In[12]:= Clear@MakeVarListD
In[13]:= MakeVarList@x_Symbol, 8n_Integer?Positive, m_Integer?Positive<D :=

ToExpression@Map@ToString@xD <> ToString@ÒD &, Range@n, mDDD
In[14]:= MakeVarList@tmp, 82, 4<D

Out[14]= 8tmp2, tmp3, tmp4<
4. First, using StringJoin, put n spaces at the end of the string.

In[15]:= StringPad@str_String, 8n_<D := StringJoin@str, Table@" ", 8n<DD
In[16]:= StringPad@"ciao", 85<D êê FullForm

Out[16]//FullForm= "ciao "

For the second rule, first create a message that will be issued if the string is longer than n.

In[17]:= StringPad::badlen = "Pad length `1` must

be greater than the length of string `2`.";

In[18]:= StringPad@str_String, n_D :=

With@8len = StringLength@strD<, If@len > n,

Message@StringPad::badlen, n, strD, StringPad@str, 8n - len<DDD
In[19]:= StringPad@"ciao", 8D êê FullForm

Out[19]//FullForm= "ciao "

In[20]:= StringPad@"ciao", 3D
StringPad::badlen : Pad length 3 must be greater than the length of string ciao.

Finally, here is a rule for padding at the beginning and end of the string.

9 Strings 135

In[21]:= StringPad@str_String, n_, m_D :=

StringJoin@Table@" ", 8n<D, str, Table@" ", 8m<DD
In[22]:= StringPad@"ciao", 3, 8D êê FullForm

Out[22]//FullForm= " ciao "

Note, StringInsert could also be used.

In[23]:= StringInsert@"ciao", " ", 81, -1<D êê FullForm

Out[23]//FullForm= " ciao "

In[24]:= StringPad2@str_String, n_, m_D :=

StringInsert@str, " ", Join@Table@1, 8n<D, Table@-1, 8m<DDD
In[25]:= StringPad2@"ciao", 3, 8D êê FullForm

Out[25]//FullForm= " ciao "

5. This is a simple modification of the code given in the text. But first we add the space character to the
alphabet.

In[26]:= ToCharacterCode@" "D
Out[26]= 832<

In[27]:= alphabet = Join@8FromCharacterCode@32D<, CharacterRange@"a", "z"DD
Out[27]= 8 , a, b, c, d, e, f, g, h, i, j, k,

l, m, n, o, p, q, r, s, t, u, v, w, x, y, z<
In[28]:= coderules = Thread@alphabet Ø RotateRight@alphabet, 5DD

Out[28]= 8 Ø v, a Ø w, b Ø x, c Ø y, d Ø z, e Ø , f Ø a, g Ø b, h Ø c,

i Ø d, j Ø e, k Ø f, l Ø g, m Ø h, n Ø i, o Ø j, p Ø k, q Ø l,

r Ø m, s Ø n, t Ø o, u Ø p, v Ø q, w Ø r, x Ø s, y Ø t, z Ø u<
In[29]:= decoderules = Map@Reverse, coderulesD

Out[29]= 8v Ø , w Ø a, x Ø b, y Ø c, z Ø d, Ø e, a Ø f, b Ø g, c Ø h,

d Ø i, e Ø j, f Ø k, g Ø l, h Ø m, i Ø n, j Ø o, k Ø p, l Ø q,

m Ø r, n Ø s, o Ø t, p Ø u, q Ø v, r Ø w, s Ø x, t Ø y, u Ø z<
In[30]:= code@str_StringD := Apply@StringJoin, Characters@strD ê. coderulesD
In[31]:= decode@str_StringD :=

Apply@StringJoin, Characters@strD ê. decoderulesD
In[32]:= code@"squeamish ossifrage"D

Out[32]= nlp whdncvjnndamwb

In[33]:= decode@%D
Out[33]= squeamish ossifrage

6. First, here is the list of characters from the plaintext alphabet.

136 Solutions to exercises

In[34]:= PlainAlphabet = CharacterRange@"a", "z"D
Out[34]= 8a, b, c, d, e, f, g, h, i, j, k,

l, m, n, o, p, q, r, s, t, u, v, w, x, y, z<
Here is our key, django:

In[35]:= key = "django"

Out[35]= django

And here is the cipher text alphabet, prepending the key:

In[36]:= StringJoin@Charactersükey,
Complement@PlainAlphabet, CharactersükeyDD

Out[36]= djangobcefhiklmpqrstuvwxyz

Make a reusable function.

In[37]:= CipherAlphabet@key_StringD := With@8k = Characters@keyD<,
StringJoin@k, Complement@CharacterRange@"a", "z"D, kDDD

Generate the coding rules:

In[38]:= codeRules =

Thread@PlainAlphabet Ø CharactersüCipherAlphabet@"django"DD
Out[38]= 8a Ø d, b Ø j, c Ø a, d Ø n, e Ø g, f Ø o, g Ø b, h Ø c,

i Ø e, j Ø f, k Ø h, l Ø i, m Ø k, n Ø l, o Ø m, p Ø p, q Ø q,

r Ø r, s Ø s, t Ø t, u Ø u, v Ø v, w Ø w, x Ø x, y Ø y, z Ø z<
The encoding function follows that in the text of this section.

In[39]:= encode@str_StringD := StringJoin@Characters@strD ê. codeRulesD
In[40]:= encode@"the sheik of araby"D

Out[40]= tcg scgeh mo drdjy

Omit spaces and punctuation and output in blocks of length 5 (using StringPartition from
Section 9.5).

In[41]:= StringPartition@str_String, seq__D :=

Map@StringJoin, Partition@Characters@strD, seqDD
In[42]:= StringSplit@encode@"the sheik of araby"D,

RegularExpression@"\\W+"DD
Out[42]= 8tcg, scgeh, mo, drdjy<

In[43]:= StringJoin@Riffle@StringPartition@StringJoin@%D, 5, 5, 1, ""D, " "DD
Out[43]= tcgsc gehmo drdjy

9 Strings 137

Finally, this puts all these pieces together.

In[44]:= Clear@encodeD;
encode@str_String, key_String, blocksize_: 5D :=

Module@8CipherAlphabet, codeRules, s1, s2, s3<,
CipherAlphabet@k_D :=

StringJoin@Characters@kD,
Complement@CharacterRange@"a", "z"D, Characters@kDDD;

codeRules = Thread@
CharacterRange@"a", "z"D Ø CharactersüCipherAlphabet@keyDD;

s1 = StringJoin@Characters@strD ê. codeRulesD;
s2 = StringSplit@s1, RegularExpression@"\\W+"DD;
s3 =

StringPartition@StringJoin@s2D, blocksize, blocksize, 1, ""D;
StringJoin@Riffle@s3, " "DDD

In[46]:= encode@"the sheik of araby", "django", 3D
Out[46]= tcg scg ehm odr djy

9.3 String patterns
1. At the end of Section 9.1 we created a predicate OrderedWordQ to find all words in a dictionary

whose letters are in alphabetic order. This predicate used character codes and returned incorrect
results for words that started with a capital letter. Correct this error by only selecting words from
the dictionary that start with a lowercase letter. Consider using a conditional string pattern involv-
ing the built-in function LowerCaseQ.

2. Given a list of words, some of which start with uppercase characters, convert them all to words in
which the first character is lowercase. You can use the words in the dictionary as a good sample set.

3. Create a function Palindromes@nD that finds all palindromic words of length n in the dictionary.
For example, kayak is a five-letter palindrome.

4. Find the number of unique words in a body of text such as Alice in Wonderland.

In[1]:= text = ExampleData@8"Text", "AliceInWonderland"<D;
After splitting the text into words, convert all uppercase characters to lowercase so that you count
words such as hare and Hare as the same word.

Such computations are important in information retrieval systems, for example, in building
term-document incidence matrices used to compare the occurrence of certain terms across a set of
documents (Manning, Raghavan, and Schütze 2008).

9.3 Solutions
1. First, recall the predicate created in Section 9.1.

138 Solutions to exercises

In[1]:= OrderedWordQ@word_StringD := OrderedQ@ToCharacterCode@wordDD
DictionaryLookup can be given a pattern as its argument and it will return only those words
that match the pattern. Using StringJoin, test the first character with LowerCaseQ; the
remainder of the word (zero or more characters) has no conditions.

In[2]:= words = DictionaryLookup@f_?LowerCaseQ ~~ r___D;
Short@words, 4D

Out[3]//Short= 8a, aah, aardvark, aardvarks, abaci, aback, abacus, á81804à,

zwieback, zydeco, zygote, zygotes, zygotic, zymurgy<
In[4]:= Select@words, OrderedWordQD;

RandomSample@%, 20D
Out[5]= 8now, coop, ills, firs, chops, ass, chin, ells, go, clops,

lox, sty, beep, alp, dims, befit, any, accost, aims, amp<
2. We will work with a small sample of words from the dictionary.

In[6]:= words = DictionaryLookup@D;
sample = RandomSample@words, 12D

Out[7]= 8stiffest, alchemists, suppresses, deliberateness,

frangibility, palaeontologists, progressions,

tithers, retirement, burdening, Parkman, actresses<
StringReplace operates on any words that match the pattern and leave those that do not match
unchanged.

In[8]:= StringReplace@sample, f_?UpperCaseQ ~~ r___ ß ToLowerCase@fD ~~ rD
Out[8]= 8stiffest, alchemists, suppresses, deliberateness,

frangibility, palaeontologists, progressions,

tithers, retirement, burdening, parkman, actresses<
3. You can do a dictionary lookup with a pattern that tests whether the word is palindromic. Then find

all palindromic words of a given length. Note the need for BlankSequence (__) as the simple
pattern _ would only find words consisting of one character.

In[9]:= Palindromes@len_IntegerD := DictionaryLookup@
w__ ê; Hw == StringReverse@wD && StringLength@wD ã lenLD

We also add a rule to return all palindromes of any length.

In[10]:= Palindromes@D := DictionaryLookup@w__ ê; Hw == StringReverse@wD LD
In[11]:= Palindromes@7D

Out[11]= 8deified, repaper, reviver<

9 Strings 139

In[12]:= Palindromes@D
Out[12]= 8a, aha, aka, bib, bob, boob, bub, CFC, civic, dad, deed, deified, did,

dud, DVD, eke, ere, eve, ewe, eye, gag, gig, huh, I, kayak, kook,

level, ma'am, madam, mam, MGM, minim, mom, mum, nan, non, noon,

nun, oho, pap, peep, pep, pip, poop, pop, pup, radar, redder, refer,

repaper, reviver, rotor, sagas, sees, seres, sexes, shahs, sis,

solos, SOS, stats, stets, tat, tenet, TNT, toot, tot, tut, wow, WWW<
4. First import some sample text.

In[13]:= text = ExampleData@8"Text", "AliceInWonderland"<D;
To split into words, use a similar construction to that in this section.

In[14]:= words = StringSplit@text, Characters@":;\"',.?ê\-` *"D ..D;
Short@words, 4D

Out[15]//Short= 8I, DOWN, THE, RABBIT, HOLE, Alice, was, beginning,

á9955à, might, what, a, wonderful, dream, it, had, been<
Get the total number of (nonunique) words.

In[16]:= Length@wordsD
Out[16]= 9971

Convert uppercase to lowercase.

In[17]:= lcwords = ToLowerCase@wordsD;
Short@lcwords, 4D

Out[18]//Short= 8i, down, the, rabbit, hole, alice, was, beginning,

á9955à, might, what, a, wonderful, dream, it, had, been<
Finally, count the number of unique words.

In[19]:= DeleteDuplicates@lcwordsD êê Length

Out[19]= 1643

In fact, splitting words using a list of characters as we have done here is not terribly robust. A better
approach uses regular expressions (introduced in Section 9.4):

In[20]:= words = StringSplit@text, RegularExpression@"\\W+"DD;
Length@wordsD

Out[21]= 9970

In[22]:= lcwords = StringReplace@words,
RegularExpression@"H@A-ZDL"D ß ToLowerCase@"$1"DD;

DeleteDuplicates@lcwordsD êê Length

Out[23]= 1528

140 Solutions to exercises

9.4 Regular expressions
1. Rewrite the genomic example in Section 9.3 to use regular expressions instead of string patterns to

find all occurrences of the sequence AAanythingT. Here is the example using general string patterns.

In[1]:= gene = GenomeData@"IGHV357"D;
In[2]:= StringCases@gene, "AA" ~~ _ ~~ "T"D

Out[2]= 8AAGT, AAGT, AAAT, AAGT, AAAT, AAAT<
2. Rewrite the web page example in Section 9.3 to use regular expressions to find all phone numbers

on the page; that is, expressions of the form nnn–nnn–nnnn. Modify accordingly for other web pages
and phone numbers formatted for other regions.

3. Create a function UcLcAwordE that takes its argument word and returns the word with the first letter

uppercase and the rest of the letters lowercase.

4. Use a regular expression to find all words given by DictionaryLookup that consist only of the
letters a, e, i, o, u, and y in any order with any number of repetitions of the letters.

5. The basic rules for pluralizing words in the English language are roughly, as follows: if a noun ends
in ch, s, sh, j, x, or z, it is made plural by adding es to the end. If the noun ends in y and is preceded by a
consonant, replace the y with ies. If the word ends in ium, replace with ia

(Chicago Manual of Style 2010). Of course, there are many more rules and even more exceptions, but
you can implement a basic set of rules to convert singular words to plural based on these rules and
then try them out on the following list of words.

In[3]:= words = 8"building", "finch", "fix", "ratio",

"envy", "boy", "baby", "faculty", "honorarium"<;
6. A common task in transcribing audio is cleaning up text, removing certain phrases such as um, er,

and so on, and other tags that are used to make a note of some sort. For example, the following
transcription of a lecture from the University of Warwick, Centre for Applied Linguistics (BASE
Corpus), contains quite a few fragments that should be removed, including newline characters,
parenthetical remarks, and nonwords. Use StringReplace with the appropriate rules to “clean”
this text and then apply your code to a larger corpus.

In[4]:= text =
"okay well er today we're er going to be carrying on with the

er French \nRevolution you may have noticed i was sort

of getting rather er enthusiastic \nand carried away at

the end of the last one i was sort of almost er like

i sort \nof started at the beginning about someone

standing on a coffee table and s-, \nshouting to arms

citizens as if i was going to sort of leap up on the

desk and \nsay to arms let's storm the Rootes Social

Building @laughterD or er let's go \nout arm in arm

singing the Marseillaise or something er like that";

9 Strings 141

7. Find the distribution of sentence lengths for any given piece of text. ExampleData@"Text"D
contains several well-known books and documents that you can use. You will need to think about
and identify sentence delimiters carefully. Take care to deal properly with words such as Mr., Dr.,
and so on that might incorrectly trigger a sentence-ending detector.

8. In web searches and certain problems in natural language processing (NLP), it is often useful to filter
out certain words prior to performing the search or processing of the text to help with the perfor-
mance of the algorithms. Words such as the, and, is, and so on are commonly referred to as stop words
for this purpose. Lists of stop words are almost always created manually based on the constraints of
a particular application. We will assume you can import a list of stop words as they are commonly
available across the internet. For our purposes here, we will use one such list that comes with the
materials for this book.

In[5]:= stopwords = RestüImport@"StopWords.dat", "List"D;
RandomSample@stopwords, 12D

Out[6]= 8what, look, taken, specify, wants, thorough,

they, hello, whose, them, mightn't, particular<
Using the above list of stop words, or any other that you are interested in, first filter some sample
“search phrases” and then remove all stop words from a larger piece of text.

In[7]:= searchPhrases = 8"Find my favorite phone",

"How deep is the ocean?", "What is the meaning of life?"<;
9. Modify the previous exercise so that the user can supply a list of punctuation in addition to the list

of stop words to be used to filter the text.

9.4 Solutions
1. The pattern used earlier in the chapter was "AA" ~~ _ ~~ "T". In a regular expression, we want the

character A repeated exactly once. Use the expression "A82,2<" for this. The regular expression
"." stands for any character.

In[1]:= gene = GenomeData@"IGHV357"D;
In[2]:= StringCases@gene, RegularExpression@"A82,2<.T"DD

Out[2]= 8AAGT, AAGT, AAAT, AAGT, AAAT, AAAT<
2. First, read in the web page.

In[3]:= webpage =

Import@"http:êêwww.wolfram.comêcompanyêcontact.cgi", "HTML"D;
In the original example in Section 9.3, we used the pattern NumberString, to represent arbitrary
strings of numbers. The regular expression "\\d+" accomplishes a similar thing but it will also
match strings of numbers that may not be in a phone number format (try it!). Instead, use
"\\d83<" to match a list of exactly three digits, and so on.

In[4]:= StringCases@webpage,
RegularExpression@"\\d83<.\\d83<.\\d84<"DD êê DeleteDuplicates

Out[4]= 8217-398-0700, 217-398-0747, 617-764-0094<

142 Solutions to exercises

3. First, here is the function using regular expressions. H.L will be matched by any single character; the
parentheses are used to refer to this expression on the right-hand side of the rule as "$1". Similarly,
parentheses surround @a - zD + which is matched by any sequence of lowercase characters; this
expression is referred to on the right as "$2".

In[5]:= UcLc@word_StringD := StringReplace@word,
RegularExpression@"H.LH@a-zD+L"D ß ToUpperCase@"$1"D ~~ "$2"D

In[6]:= UcLc@"hello"D
Out[6]= Hello

You can also do this with string patterns.

In[7]:= UcLc@word_StringD := StringReplace@word,
WordBoundary ~~ x_ ~~ y__ ß ToUpperCase@xD ~~ ToLowerCase@yDD

In[8]:= UcLc@"ciao"D
Out[8]= Ciao

4. The first solution uses regular expressions. The second uses string patterns and alternatives.

In[9]:= DictionaryLookup@
RegularExpression@"@aeiouyD+"D, IgnoreCase Ø TrueD

Out[9]= 8a, aye, eye, I, IOU, oi, ya, ye, yea, yo, you<
In[10]:= DictionaryLookup@H"a" "e" "i" "o" "u" "y"L .., IgnoreCase Ø TrueD

Out[10]= 8a, aye, eye, I, IOU, oi, ya, ye, yea, yo, you<
5. Here is the short list of words with which we will work.

In[11]:= words = 8"building", "finch", "fix", "ratio",

"envy", "boy", "baby", "faculty", "honorarium"<;
Using regular expressions, these rules encapsulate those given in the exercise.

In[12]:= rules = 8HRegularExpression@"H\\w+Lx"D ß "$1" ~~ "x" ~~ "es"L,HRegularExpression@"H\\w+LHchL"D ß "$1" ~~ "$2" ~~ "es"L,HRegularExpression@"H\\w+LH@aeiouDLHyL"D ß

"$1" ~~ "$2" ~~ "$3" ~~ "s"L,HRegularExpression@"H\\w+LHyL"D ß "$1" ~~ "ies"L,HRegularExpression@"H\\w+LHiLum"D ß "$1" ~~ "$2" ~~ "a"L,HRegularExpression@"H\\w+LH.L"D ß "$1" ~~ "$2" ~~ "s"L<;
In[13]:= StringReplace@words, rulesD

Out[13]= 8buildings, finches, fixes, ratios,

envies, boys, babies, faculties, honoraria<

9 Strings 143

Of course, lots of exceptions exist:

In[14]:= StringReplace@8"man", "cattle"<, rulesD
Out[14]= 8mans, cattles<

6. We use a combination of string patterns and regular expressions to remove the various fragments.
The regular expression "\@.+\D " matches strings that start with @, followed by an arbitrary
number of characters, followed by D, followed by a space. Because brackets are used in regular
expressions to denote sequences of characters, you need to escape them to refer to the explicit
characters @ or D.

In[15]:= text =

"okay well er today we're er going to be carrying on with the

er French \nRevolution you may have noticed i was sort

of getting rather er enthusiastic \nand carried away at

the end of the last one i was sort of almost er like

i sort \nof started at the beginning about someone

standing on a coffee table and s-, \nshouting to arms

citizens as if i was going to sort of leap up on the

desk and \nsay to arms let's storm the Rootes Social

Building @laughterD or er let's go \nout arm in arm

singing the Marseillaise or something er like that";

In[16]:= StringReplace@text, 8"\n" Ø "", " er" Ø "",

" s-" Ø "", RegularExpression@"\@.+\D "D Ø ""<D
Out[16]= okay well today we're going to be carrying on with the French

Revolution you may have noticed i was sort of getting

rather enthusiastic and carried away at the end of the

last one i was sort of almost like i sort of started

at the beginning about someone standing on a coffee

table and, shouting to arms citizens as if i was going

to sort of leap up on the desk and say to arms let's

storm the Rootes Social Building or let's go out arm

in arm singing the Marseillaise or something like that

7. Start by importing a somewhat lengthy text, Charles Darwin’s On the Origin of Species.

In[17]:= text = ExampleData@8"Text", "OriginOfSpecies"<D;
There are numerous instances of “Mr.” and “Dr.”, words that end in a period that would trigger a
sentence-ending detector such as StringSplit .

In[18]:= StringCount@text, "Mr." "Dr."D
Out[18]= 119

To keep our sentence count accurate, we will replace such words (and a few others in this particular
text) with words that will not cause errors in our sentence count. This step of cleaning text based on
identified issues is a common one in textual analysis.

144 Solutions to exercises

In[19]:= cleanText = StringReplace@text,8"Mr." Ø "Mr", "Dr." Ø "Dr", "H.M.S." Ø "HMS"<D;
In[20]:= t = StringTake@cleanText, 200D

Out[20]= INTRODUCTION. When on board HMS 'Beagle,' as

naturalist, I was much struck with certain facts in

the distribution of the inhabitants of South America,

and in the geological relations of the present to

Now split on a small set of delimiters.

In[21]:= s = StringSplit@cleanText, Characters@".!?"D ..D;
Short@s, 5D

Out[22]//Short= 8INTRODUCTION, á4225à,

There is grandeur in this view of life, with

its several powers, hav …

s most beautiful and most wonderful have been,

and are being, evolved<
The same thing can be accomplished with a regular expression.

In[23]:= s = StringSplit@cleanText, RegularExpression@"@.!?D+"DD;
Using a regular expression, this counts the number of words in each sentence.

In[24]:= sentenceLens = StringCount@s, RegularExpression@"\\w+"DD;
Finally, here is a histogram displaying the distribution of sentence lengths.

In[25]:= Histogram@sentenceLensD
Out[25]=

It looks like there are some very long sentences!

9 Strings 145

In[26]:= Select@s, StringCount@Ò, RegularExpression@"\\w+"DD > 200 &D
Out[26]= 8 I have attempted to show that the geological record is

extremely imperfect; that only a small portion of the

globe has been geologically explored with care; that

only certain classes of organic beings have been largely

preserved in a fossil state; that the number both of

specimens and of species, preserved in our museums, is

absolutely as nothing compared with the incalculable

number of generations which must have passed away even

during a single formation; that, owing to subsidence

being necessary for the accumulation of fossiliferous

deposits thick enough to resist future degradation,

enormous intervals of time have elapsed between the

successive formations; that there has probably been more

extinction during the periods of subsidence, and more

variation during the periods of elevation, and during the

latter the record will have been least perfectly kept;

that each single formation has not been continuously

deposited; that the duration of each formation is, perhaps,

short compared with the average duration of specific

forms; that migration has played an important part in

the first appearance of new forms in any one area and

formation; that widely ranging species are those which

have varied most, and have oftenest given rise to new

species; and that varieties have at first often been local<
8. First read in some sample phrases.

In[27]:= searchPhrases = 8"Find my favorite phone",

"How deep is the ocean?", "What is the meaning of life?"<;
There are several ways to approach this problem. We will break it up into two steps: first eliminating
punctuation, then a sample set of stop words.

In[28]:= tmp =

StringSplit@"How deep is the ocean?", Characters@":,;.!? "D ..D
Out[28]= 8How, deep, is, the, ocean<

In[29]:= stopwords = 8"how", "the", "is", "an"<;
In[30]:= Apply@Alternatives, stopwordsD

Out[30]= how the is an

Note the need for WordBoundary in what follows; otherwise, ocean would be split leaving oce
because an is a stop word.

146 Solutions to exercises

In[31]:= StringSplit@tmp, WordBoundary ~~ Apply@Alternatives, stopwordsD ~~

WordBoundary, IgnoreCase Ø TrueD êê Flatten

Out[31]= 8deep, ocean<
In[32]:= FilterText@str_String, stopwords_ListD := Module@8tmp<,

tmp = StringSplit@str, Characters@":,;.!? "D ..D;
FlattenüStringSplit@tmp,

WordBoundary ~~ Apply@Alternatives, stopwordsD ~~ WordBoundary,

IgnoreCase Ø TrueDD
In[33]:= SetDirectoryü

FileNameJoin@8$BaseDirectory, "Applications", "PwM", "Data"<D
Out[33]= êLibraryêMathematicaêApplicationsêPWMêData

In[34]:= stopwords = RestüImport@"StopWords.dat", "List"D;
In[35]:= FilterText@"What is the meaning of life?", stopwordsD

Out[35]= 8meaning, life<
9. A slight modification is needed to accept a list of punctuation.

In[36]:= CharactersüStringJoin@8".", "?"<D êê FullForm

Out[36]//FullForm= List@".", "?"D
First remove the punctuation.

In[37]:= tmp = StringSplit@"What is the meaning of life?",

CharactersüStringJoin@8".", "?"<D ..D
Out[37]= 8What is the meaning of life<

Split into words.

In[38]:= FirstüStringCases@tmp, RegularExpression@"\\w+"DD
Out[38]= 8What, is, the, meaning, of, life<

Remove stop words.

In[39]:= StringSplit@%,
WordBoundary ~~ Apply@Alternatives, stopwordsD ~~ WordBoundaryD

Out[39]= 88What<, 8<, 8<, 8meaning<, 8<, 8life<<
Put these pieces together in a reusable function.

9 Strings 147

In[40]:= FilterText@str_String, stopwords_List, punctuation_ListD :=

Module@8tmp<,
tmp = StringSplit@str, CharactersüStringJoin@punctuationD ..D;
Flattenü

StringSplit@FirstüStringCases@tmp, RegularExpression@"\\w+"DD,
WordBoundary ~~ Apply@Alternatives, stopwordsD ~~ WordBoundary,

IgnoreCase Ø TrueDD
In[41]:= FilterText@"What is the meaning of life?", stopwords, 8".", "?"<D

Out[41]= 8meaning, life<
Try it out on a list of phrases.

In[42]:= Map@FilterText@Ò, stopwords, 8".", "?"<D &, searchPhrasesD
Out[42]= 88Find, favorite, phone<, 8deep, ocean<, 8meaning, life<<

9.5 Examples and applications
1. Generalize the RandomString function to allow for a Weights option so that you can provide a

weight for each character in the generated string. Include a rule to generate a message if the number
of weights does not match the number of characters. For example:

In[1]:= RandomString@8"A", "T", "C", "G"<, 30, Weights Ø 8.1, .2, .3, .4<D
Out[1]= GCGTCGTCGGGTCAGGTCCTCGTGTGGGCG

In[2]:= RandomString@8"A", "T", "C", "G"<,85, 10<, Weights Ø 8.1, .4, .4, .1<D
Out[2]= 8TTCACTTCCC, ACAACTGGCC, GATTCTTTTC, TGTCCTTTGA, TTCCTGCTGT<

In[3]:= RandomString@8"A", "T", "C", "G"<, 85, 10<, Weights Ø 8.1, .4<D
RandomString::badwt : The length of the list of weights must be the same as the length of the list of characters.

2. Write the function Anagrams developed in Section 9.2 without resorting to the use of
Permutations. Consider using the Sort function to sort the characters. Note the difference in
speed of the two approaches: one involving string functions and the other list functions that operate
on lists of characters. Increase the efficiency of your search by only searching for words of the same
length as your source word.

3. Rewrite the function FindWordsContaining using regular expressions instead of the patterns
used in this section.

4. Using the text from several different sources, compute and then compare the number of punctua-
tion characters per 1000 characters of text. ExampleData@"Text"D gives a listing of many
different texts that you can use.

5. The function StringPartition was developed specifically to deal with genomic data where one
often needs uniformly-sized blocks to work with. Generalize StringPartition to fully accept
the same argument structure as the built-in Partition .

148 Solutions to exercises

Rewrite the text encoding example from Section 9.2 using StringReplace and regular expres-
sions. First create an auxiliary function to encode a single character based on a key list of the form 99pt

1
, ct1=, …= where pti is a plaintext character and cti is its ciphertext encoding. For example, the

pair 8z, a< would indicate the character z in the plaintext will be encoded as an a in the ciphertext.
Then create an encoding function encodeAstr, keyE using regular expressions to encode any string

str using the key consisting of the plaintext/ciphertext character pairs.

9.5 Solutions
1. One rule is needed for one-dimensional output and another for multi-dimensional output.

In[1]:= ClearAll@RandomStringD
In[2]:= Options@RandomStringD = 8Weights Ø 8<<;
In[3]:= RandomString::badwt =

"The length of the list of weights must be the

same as the length of the list of characters.";

In[4]:= RandomString@8c__String<, n_Integer: 1, OptionsPattern@DD :=

Module@8wts = OptionValue@WeightsD<,
Which@
Length@wtsD ã 0, StringJoin@RandomChoice@8c<, nDD,
Length@wtsD ã Length@8c<D,
StringJoin@RandomChoice@wts Ø 8c<, nDD,
True, Message@RandomString::badwtDDD

In[5]:= RandomString@8c__String<, 8n_Integer, len_Integer<,
OptionsPattern@DD := Module@8wts = OptionValue@WeightsD<,
Which@
Length@wtsD ã 0, Map@StringJoin, RandomChoice@8c<, 8n, len<DD,
Length@wtsD ã Length@8c<D,
Map@StringJoin, RandomChoice@wts Ø 8c<, 8n, len<DD,
True, Message@RandomString::badwtDDD

In[6]:= RandomString@8"A", "C", "T"<D
Out[6]= A

In[7]:= RandomString@8"A", "C", "T"<, 10D
Out[7]= TCCTCACCCC

In[8]:= RandomString@8"A", "C", "T"<, 84, 10<D
Out[8]= 8ACATCTCATC, TCCCACTATC, AAACCCTCTC, CAATATAATC<

In[9]:= RandomString@8"A", "C", "T"<, 84, 10<, Weights Ø 8.2, .7, .1<D
Out[9]= 8CAAAACCCCC, CCCCACCCTC, CACCCCCACC, CAACCCCCCT<

9 Strings 149

In[10]:= RandomString@8"A", "C", "T"<, 84, 10<, Weights Ø 8.2, .7<D
RandomString::badwt : The length of the list of weights must be the same as the length of the list of characters.

2. Two words are anagrams if they contain the same letters but in a different order. This function is
fairly slow as it sorts and compares every word in the dictionary with the sorted characters of the
input word.

In[11]:= Anagrams2@word_StringD := Module@8chars = Sort@Characters@wordDD<,
DictionaryLookup@x__ ê; Sort@Characters@xDD ã charsDD

In[12]:= Anagrams2@"parsley"D êê Timing

Out[12]= 82.1535, 8parleys, parsley, players, replays, sparely<<
You can speed things up a bit by only working with those words in the dictionary of the same length
as the source word.

In[13]:= Anagrams3@word_StringD :=

Module@8len = StringLength@wordD, words<,
words = DictionaryLookup@w__ ê; StringLength@wD ã lenD;
Select@words, Sort@Characters@ÒDD ã Sort@Characters@wordDD &DD

In[14]:= Anagrams3@"parsley"D êê Timing

Out[14]= 80.890161, 8parleys, parsley, players, replays, sparely<<
In fact, you can speed this up a bit further by using regular expressions even though the construc-
tion of the regular expression in this case is a bit clumsy looking. The lesson here is that conditional
string patterns tend to be slower.

In[15]:= Anagrams4@word_StringD :=

Module@8len = StringLength@wordD, words<,
words = DictionaryLookup@

RegularExpression@"\\w8" <> ToString@lenD <> "<"DD;
Select@words, Sort@Characters@ÒDD ã Sort@Characters@wordDD &DD

In[16]:= Anagrams4@"parsley"D êê Timing

Out[16]= 80.098408, 8parleys, parsley, players, replays, sparely<<
3. The pattern "\\bcite.*\\b" matches any string starting with a word boundary followed by the

string cite, followed by characters repeated one or more times, followed by a word boundary.

In[17]:= DictionaryLookup@RegularExpression@"\\bcite.*\\b"DD
Out[17]= 8cite, cited, cites<

With suitable modifications to the above for the target string occurring in the middle, end, or
anywhere, here is the rewritten function. Note the need for StringJoin here to properly pass the
argument str, as a string, into the body of the regular expression.

150 Solutions to exercises

In[18]:= Options@FindWordsContainingD = 8WordPosition Ø "Start"<;
In[19]:= FindWordsContaining@str_String, OptionsPattern@DD :=

Module@8wp = OptionValue@WordPositionD<,
Which@
wp == "Start", DictionaryLookup@
RegularExpression@StringJoin@"\\b", str, ".*\\b"DDD,

wp == "Middle", DictionaryLookup@
RegularExpression@StringJoin@"\\b.+", str, ".+\\b"DDD,

wp == "End", DictionaryLookup@
RegularExpression@StringJoin@"\\b.*", str, "\\b"DDD,

wp ã "Anywhere", DictionaryLookup@
RegularExpression@StringJoin@"\\b.*", str, ".*\\b"DDDDD

In[20]:= FindWordsContaining@"cite"D
Out[20]= 8cite, cited, cites<

In[21]:= FindWordsContaining@"cite", WordPosition Ø "End"D
Out[21]= 8anthracite, calcite, cite, excite,

incite, Lucite, overexcite, plebiscite, recite<
In[22]:= FindWordsContaining@"cite", WordPosition Ø "Middle"D

Out[22]= 8elicited, excited, excitedly, excitement, excitements,

exciter, exciters, excites, incited, incitement,

incitements, inciter, inciters, incites, Lucites,

overexcited, overexcites, plebiscites, recited, reciter,

reciters, recites, solicited, unexcited, unsolicited<
In[23]:= FindWordsContaining@"cite", WordPosition Ø "Anywhere"D

Out[23]= 8anthracite, calcite, cite, cited, cites, elicited, excite,

excited, excitedly, excitement, excitements, exciter, exciters,

excites, incite, incited, incitement, incitements, inciter,

inciters, incites, Lucite, Lucites, overexcite, overexcited,

overexcites, plebiscite, plebiscites, recite, recited,

reciter, reciters, recites, solicited, unexcited, unsolicited<
4. First read in a sample piece of text.

In[24]:= text = ExampleData@8"Text", "PrideAndPrejudice"<D;
Check the length. Then partition into blocks consisting of 1000 characters each.

In[25]:= StringLength@textD
Out[25]= 682262

9 Strings 151

In[26]:= blocks = StringPartition@text, 1000D;
Using regular expressions, we extract all characters from the first block that are not amongst A
through z or 0 through 9 or whitespace.

In[27]:= StringCases@blocks@@1DD,
RegularExpression@"@^A-z»0-9»\\sD"DD

Out[27]= 8,, ,, ., ,, ,, ., ", ., ,, ", ,, ", ?, ", ., ., ", ,, ", ;, ",

., ,, ., ", ., ., ", ?, ", ., ", ,, ., ", ., ", ,, ,, ,, ., ;<
In[28]:= Tally@%D êê InputForm

Out[28]//InputForm=

{{",", 12}, {".", 13}, {"\"", 13},
 {"?", 2}, {";", 2}}

Now perform the same computation over all blocks and then compute the mean.

In[29]:= counts = Map@
StringCount@Ò, RegularExpression@"@^A-z»0-9»\\sD"DD &, blocksD;

In[30]:= N@Mean@countsDD
Out[30]= 34.3021

Finally, perform the same computations on a different text.

In[31]:= text = ExampleData@8"Text", "OriginOfSpecies"<D;
blocks = StringPartition@text, 1000D;
counts = Map@

StringCount@Ò, RegularExpression@"@^A-z»0-9»\\sD"DD &, blocksD;
N@Mean@countsDD

Out[34]= 21.9877

5. Here is the function as developed in the text.

In[35]:= StringPartition@str_String, blocksize_D := Map@StringJoin,
Partition@Characters@strD, blocksize, blocksize, 1, 8<DD

This passes the argument structure directly to Partition .

In[36]:= Clear@StringPartitionD
In[37]:= StringPartition@str_String, seq__D :=

Map@StringJoin, Partition@Characters@strD, seqDD
In[38]:= str = RandomString@8"A", "C", "G", "T"<, 20D

Out[38]= AGCCGCTGATGCGAAAAATG

Try out some of the argument structures commonly used with Partition . For example, this
partitions the string into blocks of length 3 with offset 1, with no padding

152 Solutions to exercises

In[39]:= StringPartition@str, 3, 3, 1, 8<D
Out[39]= 8AGC, CGC, TGA, TGC, GAA, AAA, TG<

6. Start by creating a substitution cipher by simply shifting the alphabet three characters to the left.

In[40]:= keyRL3 = Transpose@8CharacterRange@"a", "z"D,
RotateLeft@CharacterRange@"a", "z"D, 3D<D

Out[40]= 88a, d<, 8b, e<, 8c, f<, 8d, g<, 8e, h<, 8f, i<, 8g, j<, 8h, k<, 8i, l<,8j, m<, 8k, n<, 8l, o<, 8m, p<, 8n, q<, 8o, r<, 8p, s<, 8q, t<, 8r, u<,8s, v<, 8t, w<, 8u, x<, 8v, y<, 8w, z<, 8x, a<, 8y, b<, 8z, c<<
Next, encode a single character using a designated key.

In[41]:= encodeChar@char_String, key_ListD :=

FirstüCases@key, 8char, next_< ß nextD
In[42]:= encodeChar@"z", keyRL3D

Out[42]= c

Finally, here is the encoding function. Recall the "$1" on the right-hand side of the rule refers to the
first (and only in this case) regular expression on the left that is enclosed in parentheses.

In[43]:= encode@str_String, key_ListD := StringReplace@str,
RegularExpression@"H@a-zDL"D ß encodeChar@"$1", keyDD

The decoding uses the same key, but reverses the pairs.

In[44]:= decode@str_String, key_ListD := encode@str, Map@Reverse, keyDD
In[45]:= encode@"squeamish ossifrage", keyRL3D

Out[45]= vtxhdplvk rvvliudjh

In[46]:= decode@%, keyRL3D
Out[46]= squeamish ossifrage

You might want to modify the encoding rule to deal with uppercase letters. One solution is simply
to convert them to lowercase.

In[47]:= encode@str_String, key_ListD := StringReplace@ToLowerCase@strD,
RegularExpression@"H@a-zDL"D ß encodeChar@"$1", keyDD

In[48]:= encode@"Squeamish Ossifrage", keyRL3D
Out[48]= vtxhdplvk rvvliudjh

9 Strings 153

10

Graphics and visualization
10.1 Structure of graphics
1. Create a primitive color wheel by coloring successive sectors of a disk according to the Hue

directive.

2. Create a graphic that contains a circle, a triangle, and a rectangle. Your graphic should include an
identifying label for each object.

3. Create a three-dimensional graphic containing six Cuboid graphics primitives, randomly placed in
the unit cube. Add an opacity directive to make them transparent.

4. Create a graphic consisting of a unit cube together with a rotation of 45° about the vertical axis
through the center of that cube. Then create a dynamically rotating cube using Manipulate.

5. Create a graphic that consists of 500 points randomly distributed about the origin with standard
deviation 1. Then, set the points to have random-size radii between 0.01 and 0.1 units and are
colored randomly according to a Hue function.

6. Create a graphic that represents the solution to the following algebraic problem that appeared in the
Calculus&Mathematica courseware (Porta, Davis, and Uhl 1994). Find the positive numbers r such that
the following system has exactly one solution in x and y.Hx - 1L2 + H y - 1L2 = 2Hx + 3L2 + H y - 4L2 = r2

Once you have found the right number r, then plot the resulting circles in true scale on the same
axes, plotting the first circle with solid lines and the two solutions with dashed lines together in one
graphic.

7. Create a graphic of the sine function over the interval (0, 2 p) that displays vertical lines at each
point calculated by the Plot function to produce its plot.

8. Using options to the Plot function, create a plot showing the probability density function (pdf) of
a normal distribution together with vertical lines at the first and second standard deviations. Your
plot should look something like the following for a normal distribution with m = 0 and s = 1:

154 Solutions to exercises

9. Modify ProteinDotPlot from the introduction to this chapter to accept options from
ArrayPlot .

10. Modify the Hypocycloid code to create epicycloids, which are like hypocycloids except the smaller
circle rotates on the outside of the larger circle. Then create an animation showing the epicycloid
being sketched out as the smaller circle rotates around the larger circle. If your animation includes a
way to select different radii for the circles, you will need to deal with the plot range as the size of the
smaller circle changes.

10.1 Solutions
1. The color wheel can be generated by mapping the Hue directive over successive sectors of a disk.

Note that the argument to Hue must be scaled so that it falls within the range 0 to 1.

In[1]:= colorWheel@n_D := Graphics@H8Hue@Rescale@Ò, 80, 2 p<DD, Disk@80, 0<, 1, 8Ò, Ò + n<D< &L êü
Range@0, 2 p, nDD

Here is a color wheel created from 256 separate sectors (hues).

In[2]:= colorWheelB p

256
F

Out[2]=

2. Here is the circle graphic primitive together with a text label.

In[3]:= circ = Circle@80, 0<, 1D;
In[4]:= ctext = TextBStyle@"Circle", FontFamily Ø "Times",

FontSlant Ø "Italic", FontSize Ø 12D, :CosB3 p

2
F, SinB 5 p

4
F>F;

This generates the graphics primitive for the triangle and its text label.

In[5]:= tri = Line@88-1, 0<, 80, 1<, 81, 0<, 8-1, 0<<D;
In[6]:= ttext = Text@Style@"Triangle", FontFamily Ø "Times",

FontSlant Ø "Italic", FontSize Ø 12D, 80, 0 + .15<D;
Here is the rectangle and label.

In[7]:= rect = Line@88-1, -1<, 8-1, 1<, 82, 1<, 82, -1<, 8-1, -1<<D;
In[8]:= rtext = Text@Style@"Rectangle", FontFamily Ø "Times",

FontSlant Ø "Italic", FontSize Ø 12D, 81.35, -1 + .15<D;

10 Graphics and visualization 155

Finally, this displays each of these graphics elements all together.

In[9]:= Graphics@8circ, tri, rect, ctext, ttext, rtext<D
3. Cuboid takes a list of three numbers as the coordinates of its lower-left corner. This maps the object

across two such lists.

In[10]:= Map@Cuboid, RandomReal@1, 82, 3<DD
Out[10]= 8Cuboid@80.603456, 0.627422, 0.210121<D,

Cuboid@80.157798, 0.810453, 0.96354<D<
Below is a list of six cuboids and the resulting graphic. Notice the large amount of overlap of the
cubes. You can reduce the large overlap by specifying minimum and maximum values of the cuboid.

In[11]:= cubes = Map@Cuboid, RandomReal@1, 86, 3<DD;
In[12]:= Graphics3D@8Opacity@.5D, cubes<D

Out[12]=

4. Start by creating a unit cube centered on the origin. An opacity directive adds transparency.

In[13]:= Graphics3D@8Opacity@.25D, Cuboid@8-0.5, -0.5, -0.5<D<,
Boxed Ø False, Axes Ø AutomaticD

Out[13]=

Next rotate 45°. Note the third argument of Rotate used to specify the axis about which the
rotation should occur.

In[14]:= Graphics3D@8Opacity@.25D, Cuboid@8-.5, -.5, -.5<D,
Rotate@Cuboid@8-.5, -.5, -.5<D, 45 °, 80, 0, 1<D<D

Out[14]=

Here is the dynamic version. The angle q is the parameter that is manipulated here.

156 Solutions to exercises

In[15]:= Manipulate@
Graphics3D@
Rotate@Cuboid@8-.5, -.5, -.5<D, q, 80, 0, 1<D, PlotRange Ø 1D,8q, 0, 2 p<D

Out[15]=

q

5. First we create the Point graphics primitives using a normal distribution with mean 0 and standard
deviation 1.

In[16]:= randomcoords :=

Point@RandomVariate@NormalDistribution@0, 1D, 81, 2<DD
This creates the point sizes according to the specification given in the statement of the problem.

In[17]:= randomsize := PointSize@RandomReal@8.01, .1<DD
This will assign a random color to each primitive. The four-argument form of Hue specifies hue,
saturation, brightness, opacity.

In[18]:= randomcolor := Hue@RandomReal@D, 1, 1, .4D
Here then are 500 points. (You may find it instructive to look at just one of these points.)

In[19]:= pts = Table@8randomcolor, randomsize, randomcoords<, 8500<D;
And here is the graphic.

In[20]:= Graphics@ptsD
Out[20]=

6. The algebraic solution is given by the following steps. First solve the equations for x and y.

In[21]:= Clear@x, y, rD

10 Graphics and visualization 157

In[22]:= soln = SolveA9Hx - 1L2 + Hy - 1L2 ã 2, Hx + 3L2 + Hy - 4L2 ã r2=, 8x, y<E

Out[22]= ::x Ø
1

50
-58 + 4 r2 - 3 -529 + 54 r2 - r4 ,

y Ø
1

50
131 - 3 r2 - 4 -529 + 54 r2 - r4 >,:x Ø

1

50
-58 + 4 r2 + 3 -529 + 54 r2 - r4 ,

y Ø
1

50
131 - 3 r2 + 4 -529 + 54 r2 - r4 >>

Then find those values of r for which the x and y coordinates are identical.

In[23]:= Solve@8
Hx ê. solnP1TL ã Hx ê. solnP2TL,
Hy ê. solnP1TL ã Hy ê. solnP2TL<,

rD

Out[23]= ::r Ø -5 - 2 >, :r Ø 5 - 2 >, :r Ø -5 + 2 >, :r Ø 5 + 2 >>
Here then are those values of r that are positive.

In[24]:= Cases@%, 8r Ø _?Positive<D

Out[24]= ::r Ø 5 - 2 >, :r Ø 5 + 2 >>
To display the solution, we will plot the first circle with solid lines and the two solutions with
dashed lines together in one graphic. Here is the first circle centered at (1, 1).

In[25]:= circ = CircleB81, 1<, 2 F;

Here are the circles that represent the solution to the problem.

In[26]:= r1 = 5 - 2 ;

r2 = 5 + 2 ;

In[28]:= Graphics@8circ, Circle@8-3, 4<, r1D, Circle@8-3, 4<, r2D<,
Axes Ø AutomaticD

Out[28]=

-8 -6 -4 -2 2
-2

2

4

6

8

10

We wanted to display the solutions (two circles) using dashed lines. The graphics directive
Dashing@8x, y<D directs all subsequent lines to be plotted as dashed, alternating the dash x units

158 Solutions to exercises

q p g
and the space y units. We use it as a graphics directive on the two circles c1 and c2. The circles
inherit only those directives in whose scope they appear.

In[29]:= dashc1 = 8Dashing@8.025, .025<D, Circle@8-3, 4<, r1D<;
dashc2 = 8Dashing@8.05, .05<D, Circle@8-3, 4<, r2D<;

In[31]:= Graphics@8circ, dashc1, dashc2<, Axes Ø AutomaticD
Out[31]=

-8 -6 -4 -2 2
-2

2

4

6

8

10

7. Here is a plot of the sine function.

In[32]:= sinplot = Plot@Sin@xD, 8x, 0, 2 p<D
Out[32]=

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Using pattern matching, here are the coordinates.

In[33]:= Short@coords = Cases@sinplot, Line@8x__<D ß x, InfinityD, 2D
Out[33]//Short= 991.28228 μ 10-7, 1.28228 μ 10-7=, á429à, 8á1à<=

Create vertical lines from each coordinate.

In[34]:= Short@lines = Map@Line@88Ò@@1DD, 0<, Ò<D &, coordsD, 2D
Out[34]//Short= 9LineA991.28228 μ 10-7, 0=, 8á23à, á23à<=E, á430à=

Here then is the final graphic.

In[35]:= Show@sinplot, Graphics@8Thickness@.001D, lines<DD
Out[35]=

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

8. First set the distribution and compute the mean and standard deviation.

In[36]:= = NormalDistribution@0, 1D;
s = StandardDeviation@ D;
m = Mean@ D;

10 Graphics and visualization 159

Next we manually construct four vertical lines at the standard deviations going from the horizontal
axis to the pdf curve.

In[39]:= PlotAPDF@ , xD, 8x, -4, 4<, Filling Ø Axis,

Epilog Ø 8White, Line@888m + s, 0<, 8m + s, PDF@ , m + sD<<, 88m - s, 0<,8m - s, PDF@ , m - sD<<, 88m + 2 s, 0<, 8m + 2 s, PDF@ , m + 2 sD<<,88m - 2 s, 0<, 8m - 2 s, PDF@ , m - 2 sD<<<D<, AxesOrigin Ø 8-4, 0<,
Ticks Ø 888-2 s, "-2s"<, 8-s, "-s"<, 8m, "m"<, 8s, "s"<, 82 s, "2s"<<,

Automatic<, AspectRatio Ø 0.4, PlotLabel Ø

StringFormA"Normal distribution: m=`1`, s=`2` ", m, sEE
Out[39]=

And here is a little utility function to make the code a bit more readable and easier to use.

In[40]:= sdLine@ _, m_, s_D := Line@888m + s, 0<, 8s + m, PDF@ , m + sD<<,88m - s, 0<, 8-s + m, PDF@ , m - sD<<<D
In[41]:= PlotAPDF@ , xD, 8x, -4, 4<, Filling Ø Axis,

Epilog Ø 8White, Thickness@.0035D, sdLine@ , m, sD,
sdLine@ , m, 2 sD<, AxesOrigin Ø 8-4, 0<,

Ticks Ø 888-2 s, "-2s"<, 8-s, "-s"<, 8m, "m"<, 8s, "s"<, 82 s, "2s"<<,
Automatic<, AspectRatio Ø 0.4, PlotLabel Ø

StringFormA"Normal distribution: m=`1`, s=`2` ", m, sEE
Out[41]=

9. Following the discussion of options in Section 5.7, we use OptionsPattern to inherit options
from ArrayPlot .

In[42]:= ProteinDotPlot@p1_, p2_, opts : OptionsPattern@ArrayPlotDD :=

ArrayPlot@
Outer@Boole@Ò1 == Ò2D &, Characters@p1D, Characters@p2DD,
opts, Frame Ø TrueD

In[43]:= seq1 = ProteinData@"SCNN1A"D;
seq2 = ProteinData@"SCNN1G"D;

160 Solutions to exercises

In[45]:= ProteinDotPlot@seq1, seq2,

FrameLabel Ø 8"SCNN1A", "SCNN1G"<,
LabelStyle Ø 8FontFamily Ø "Times", 11<D

Out[45]=

SCNN1G

SC
N
N
1A

10.2 Efficient structures
1. Create a hexagonal grid of polygons like the one below.

First create the grid by performing appropriate translations using either Translate or the geomet-
ric transformation TranslationTransform. Compare this approach with a multi-polygon
approach.

2. Create a graphic consisting of a three-dimensional lattice, that is, lines on the integer coordinates in
3-space. Compare approaches that use multi-lines as opposed to those that do not.

3. A common problem in computational geometry is finding the boundary of a given set of points.
One way to think about this is to imagine the points as nails in a board and then to stretch a rubber
band around all the nails. The stretched rubber band lies on a convex polygon commonly called the
convex hull of the point set. The problem of determining the convex hull of a set of points has
application in computer vision, pattern recognition, image processing, and many other areas. Using

10 Graphics and visualization 161

pp p p g g p g y g
the ConvexHull function defined in the Computational Geometry package, create a function
ConvexHullPlot for visualizing the convex hull together with its point set. The resulting graphic
should include the points labeled with text as well as the convex polygon drawn as a line around the
point set.

In[1]:= pts = RandomReal@1, 820, 2<D;
In[2]:= Needs@"ComputationalGeometry`"D
In[3]:= ConvexHull@ptsD

Out[3]= 812, 19, 2, 1, 9, 6, 4, 10, 7, 8<
In[4]:= ConvexHullPlot@ptsD

Out[4]=

1 2

3
4

5

6

7 8

9

10

11
12

13

14

15
16

17
18

19

20

4. Extend Exercise 9 from Section 8.4 to random walks on the base n digits of p. For example, in base 3,
a 1 corresponds to an angle of 120° from the current position, 2 corresponds to 240°, and 0 to 360°.
In base 4 the step angles will be multiples of 90° and in general, for base n, the step angles will be
multiples of 360 ° ên. Use GraphicsComplex to visualize the walks. Include a color function that
depends upon the length of the walk. For more on random walks on digits of p in various bases, see
Bailey et al. H2012L .

10.2 Solutions
1. Here is the implementation using TranslationTransform.

In[1]:= vertices@n_D := TableB:CosB 2 p a

n
F, SinB 2 p a

n
F>, 8a, 0, n<F

In[2]:= hexagon = Polygon@vertices@6DD;
Graphics@8EdgeForm@GrayD, LightGray, hexagon<D

Out[2]=

162 Solutions to exercises

In[3]:= GraphicsB:
EdgeForm@GrayD, LightGray,

TableBGeometricTransformationBhexagon,
TranslationTransformB:3 i +

3

4
IH-1Lj + 1M, 3 j

2
>FF, 8i, 5<, 8j, 8<F>F

Out[3]=

Or use Translate directly.

In[4]:= gr1 = GraphicsB:
EdgeForm@GrayD, LightGray,

TableB
TranslateBhexagon, :3 i +

3

4
IH-1Lj + 1M, 3 j

2
>F, 8i, 5<, 8j, 8<F>F

Out[4]=

This implementation contains one Polygon per hexagon.

In[5]:= Count@gr1, _Polygon, InfinityD
Out[5]= 40

Now use multi-polygons. The following version of hexagon is defined so that it can take a pair of
translation coordinates. Note also the need to flatten the table of vertices so that Polygon can be
applied to the correct list structure.

In[6]:= Clear@hexagonD;
hexagon@8x_, y_<D :=

TableB:CosB 2 p i

6
F + x, SinB 2 p i

6
F + y>, 8i, 1, 6<F

10 Graphics and visualization 163

In[8]:= gr2 = GraphicsB:EdgeForm@GrayD, LightGray, PolygonBFlattenB
TableBhexagonB:3 i +

3

4
IH-1Lj + 1M, 3 j

2
>F, 8i, 5<, 8j, 8<F, 1FF>F

Out[8]=

In[9]:= Count@gr2, _Polygon, InfinityD
Out[9]= 1

2. One approach to creating the lattice is to manually specify the coordinates for the lines and then
map the Line primitive across these coordinates. We will work with a small lattice.

In[10]:= xmin = 0; xmax = 3;

ymin = 0; ymax = 3;

zmin = 0; zmax = 3;

Table@88x, ymin, zmin<, 8x, ymax, zmin<<, 8x, xmin, xmax<D
Out[13]= 8880, 0, 0<, 80, 3, 0<<, 881, 0, 0<, 81, 3, 0<<,882, 0, 0<, 82, 3, 0<<, 883, 0, 0<, 83, 3, 0<<<

Here are the three grids.

In[14]:= gridX = Table@88xmin, y, z<, 8xmax, y, z<<,8y, ymin, ymax<, 8z, zmin, zmax<D;
gridY = Table@88x, ymin, z<, 8x, ymax, z<<,8x, xmin, xmax<, 8z, zmin, zmax<D;
gridZ = Table@88x, y, zmin<, 8x, y, zmax<<,8x, xmin, xmax<, 8y, ymin, ymax<D;

Finally, map Line across these grids and display as a Graphics3D object.

164 Solutions to exercises

In[17]:= gr1 = Graphics3D@8
Map@Line, gridX, 82<D,
Map@Line, gridY, 82<D,
Map@Line, gridZ, 82<D<, Boxed Ø FalseD

Out[17]=

In[18]:= Count@gr1, _Line, InfinityD
Out[18]= 48

Using multi-lines reduces the number of Line objects substantially.

In[19]:= gr2 = Graphics3D@8
Map@Line, gridXD,
Map@Line, gridYD,
Map@Line, gridZD<, Boxed Ø FalseD

Out[19]=

In[20]:= Count@gr2, _Line, InfinityD
Out[20]= 12

3. The Computational Geometry package contains a function for computing the convex hull.
ConvexHull@ptsD returns a list of the indices of the points on the convex hull.

In[21]:= Needs@"ComputationalGeometry`"D
In[22]:= pts = RandomReal@1, 812, 2<D;

ch = ConvexHull@ptsD
Out[23]= 810, 1, 2, 9, 11, 7, 8<

Use those indices as the positions in pts through which we wish to pass a line. Note the need to
close up the polygon, connecting the last point with the first.

10 Graphics and visualization 165

In[24]:= Graphics@GraphicsComplex@pts, Line@ch ê. 8a_, b__< ß 8a, b, a<DDD
Out[24]=

Now add the text.

In[25]:= ran = Range@Length@ptsDD;
Graphics@GraphicsComplex@pts, 8Line@ch ê. 8a_, b__< ß 8a, b, a<D,

PointSize@.015D, Point@ranD, Map@
Text@StringForm@"`1`", ÒD, pts@@ÒDD, 8-1.25, -1.25<D &, ranD<DD

Out[26]=

1

2
3

4

5

6

7

8

9

10

11

12

Putting everything together, note that because Module is a scoping construct, you need to give full
context names for any function that is defined in a package loaded inside Module.

In[27]:= Clear@ConvexHullPlotD
In[28]:= ConvexHullPlot@pts_, opts : OptionsPattern@GraphicsDD :=

Module@8ch, ran = Range@Length@ptsDD<,
Needs@"ComputationalGeometry`"D;
ch = ComputationalGeometry`ConvexHull@ptsD;
Graphics@8GraphicsComplex@

pts,8Line@ch ê. 8a_, b__< ß 8a, b, a<D,
PointSize@.015D, Point@ranD,
Map@Text@StringForm@"`1`", ÒD,

pts@@ÒDD, 8-1.25, -1.25<D &, ranD<D<, optsDD

166 Solutions to exercises

In[29]:= ConvexHullPlot@ptsD
Out[29]=

1

2
3

4

5

6

7

8

9

10

11

12

4. Here is the random walk on the digits of p in bases given by the second argument.

In[30]:= RandomWalkPi@d_, base_ ê; base > 2D :=

Module@8digits, angles, rules<,
digits = First@RealDigits@N@p, dD, baseDD;
angles = RestüRange@0., 2 p, 2 p ê HbaseLD;
rules = MapThread@Ò1 Ø Ò2 &, 8Range@0, base - 1D, angles<D;
Accumulate@Map@8Cos@ÒD, Sin@ÒD< &, digits ê. rulesDDD

Using ListPlot, here is a quick visualization on base 5 digits:

In[31]:= ListLinePlot@RandomWalkPi@10000, 5D, AspectRatio Ø AutomaticD
Out[31]=

-100 -50
-20

20

40

60

80

100

120

Here is the GraphicsComplex.

In[32]:= walk = RandomWalkPi@10000, 5D;
len = Length@walkD;

In[34]:= Graphics@
GraphicsComplex@walk, 8AbsoluteThickness@.2D, Line@Range@lenDD<D,
AspectRatio Ø AutomaticD

Out[34]=

10 Graphics and visualization 167

And here it is with color mapped to the distance from the origin.

In[35]:= GraphicsBGraphicsComplexBwalk,

MapB:HueB
ÒP1T

len
F, AbsoluteThickness@.25D, Line@ÒD> &,

Partition@Range@2, lenD, 2, 1DFF, AspectRatio Ø AutomaticF

Out[35]=

10.3 Sound
1. Evaluate Play@Sin@1000 ê xD, 8x, -2, 2<D. Explain the dynamics of the sound generated

from this function.

2. Experiment with the Play function by creating arithmetic combinations of sine functions. For
example, you might try the following.

In[1]:= PlayB Sin@440 μ 2 p tD
Sin@660 μ 2 p tD, 8t, 0, 1<F

Out[1]=

3. Create a tone that doubles in frequency each second.

4. Create a “composition” using the digits of p as representing notes on the C scale where a digit n is
interpreted as a note n semitones from middle C. For example, the first few digits, 1, 4, 1, 5 would give
the notes one, four, one, and five semitones from middle C.

5. A square wave consists of the addition of sine waves, each an odd multiple of a fundamental fre-
quency, that is, it consists of the sum of sine waves having frequencies f0, 3 f0, 5 f0, 7 f0, etc. Create a
square wave with a fundamental frequency f0 of 440 hertz. The more overtones you include, the
“squarer” the wave.

6. Create a square wave consisting of the sum of sine waves with frequencies f0, 3 f0, 5 f0, 7 f0, etc., and
amplitudes 1, 1/3, 1/5, 1/7, respectively. This is actually a truer square wave than that produced in the
previous exercise.

168 Solutions to exercises

7. Create a square wave consisting of overtones that are randomly out of phase. How does this wave
differ from the previous two?

8. A sawtooth wave consists of the sum of both odd- and even-numbered overtones: f0, 2 f0, 3 f0, 4 f0, etc.
with amplitudes in the ratios 1, 1/2, 1/3, 1/4, etc. Create a sawtooth wave and compare its tonal
qualities with the square wave.

9. A wide variety of sounds can be generated using frequency modulation (FM) synthesis. The basic idea of
FM synthesis is to use functions of the form

a sinH2 p Fc, t + mod sinH2 p Fm tLL.
where a is the peak amplitude, Fc is the carrier frequency in hertz, mod is the modulation index, and
Fm is the modulating frequency in hertz.

Determine what effect varying the parameters has on the resulting tones by creating a series of
FM synthesized tones. First, create a function FM@Amp, Fc, mod, Fm, timeD that implements
the above formula and generates a tone using the Play function. Then you should try several
examples to see what effect varying the parameters has on the resulting tones. For example, you can
generate a tone with strong vibrato at a carrier frequency at middle A for one second by evaluating
FM@1, 440, 45, 5, 1D.

10.3 Solutions
1. When x is close to -2, the frequency is quite low. As x increases, the fraction 1000 êx increases,

making the frequency of the sine function bigger. This in turn makes the tone much higher in pitch.
As x approaches 0, the function is oscillating more and more, and at 0, the function can be thought
of as oscillating infinitely often. In fact, it is oscillating so much that the sampling routine is not able
to compute amplitudes effectively and, hence, we hear noise near x = 0.

In[1]:= PlayBSinB 1000
x

F, 8x, -2, 2<F
3. To generate a tone whose rate increases one octave per second, you need the sine of a function

whose derivative doubles each second (frequency is a rate). That function is 2t. You need to carefully
choose values for t that generates tones in a reasonable range.

In[2]:= PlayASinA2tE, 8t, 10, 14<E êê EmitSound

4. First generate 100 digits for a 100-note “composition”.

In[3]:= digs = First@RealDigits@N@p, 100DDD;
Fix note duration at 0.5 seconds.

In[4]:= Sound@SoundNote@Ò, 0.5D & êü digsD êê EmitSound

Change the duration to be dependent upon the digit. Also change the midi instrument.

In[5]:= Sound@SoundNote@Ò, 1 ê HÒ + 1L, "Vibraphone"D & êü digsD êê EmitSound

10 Graphics and visualization 169

Go a bit further, expanding the range of notes that will be played.

In[6]:= Sound@SoundNote@1 + 2 Ò, 1 ê HÒ + 1L, "Vibraphone"D & êü digsD êê
EmitSound

5. Here is a function that creates a square wave with decreasing amplitudes for higher overtones.

In[7]:= squareWave@freq_, n_D := SumB Sin@freq i 2 p tD
i

, 8i, 1, n, 2<F
In[8]:= Plot@squareWave@440, 17D, 8t, 0, .01<D

Out[8]=
0.002 0.004 0.006 0.008 0.010

-0.5

0.5

Here then, is an example of playing a square wave.

In[9]:= Play@squareWave@440, 17D, 8t, 0, .5<D êê EmitSound

8. This function creates a sawtooth wave. The user specifies the fundamental frequency and the
number of terms in the approximation.

In[10]:= sawtoothWave@freq_, n_D := SumB Sin@freq i 2 p tD
i

, 8i, 1, n<F
In[11]:= Plot@sawtoothWave@440, 17D, 8t, 0, .01<D

Out[11]=
0.002 0.004 0.006 0.008 0.010

-1.5
-1.0
-0.5

0.5
1.0
1.5

This plays the wave for a half-second duration.

In[12]:= Play@sawtoothWave@440, 17D, 8t, 0, .5<D êê EmitSound

10.4 Examples and applications
1. Create a function ComplexListPlot that plots a list of complex numbers in the complex plane

using ListPlot. Set initial options so that the PlotStyle is red, the PointSize is a little larger
than the default, and the horizontal and vertical axes are labeled “Re” and “Im,” respectively. Set it
up so that options to ComplexListPlot are inherited from ListPlot.

2. Create a function ComplexRootPlot that plots the complex solutions to a polynomial in the
plane. Use your implementation of ComplexListPlot that you developed in the previous
exercise.

3. Modify PathPlot so that it inherits options from Graphics as well as having its own option,
PathClosed, that can take on values of True or False and closes the path accordingly by
appending the first point to the end of the list of coordinate points.

170 Solutions to exercises

4. Extend the code for ListLinePlot3D so that the rule for multiple datasets incorporates the
options that were used for the single dataset rule in the text.

5. Although the program SimpleClosedPath works well, there are conditions under which it will
occasionally fail. Experiment by repeatedly computing SimpleClosedPath for a set of ten points
until you see the failure. Determine the conditions that must be imposed on the selection of the base
point for the program to work consistently.

6. Modify SimpleClosedPath so that the point with the smallest x-coordinate of the list of data is
chosen as the base point; repeat but with the largest y-coordinate.

7. Another way of finding a simple closed path is to start with any closed path and progressively make
it simpler by finding intersections and changing the path to avoid them. Prove that this process
ends, and that it ends with a closed path. Write a program to implement this procedure and then
compare the paths given by your function with those of SimpleClosedPath given in the text.

8. Following on the framework of the RootPlot example in this section, create a function
ShowWalkAwalkE that takes the coordinates of a random walk and plots them in one, two, or three
dimensions, depending upon the structure of the argument walk. For example:

In[1]:= << PwM`RandomWalks`

In[2]:= ShowWalk@RandomWalk@500, Dimension Ø 1D,
Frame Ø True, GridLines Ø AutomaticD

Out[2]=

0 100 200 300 400 500
-25

-20

-15

-10

-5

0

5

In[3]:= ShowWalk@RandomWalk@500, Dimension Ø 2D,
Mesh Ø All, MeshStyle Ø Directive@Brown, PointSize@SmallDDD

Out[3]=

-5 5 10

-12

-10

-8

-6

-4

-2

2

10 Graphics and visualization 171

In[4]:= ShowWalk@RandomWalk@2500, Dimension Ø 3D,
Background Ø LightGray, BoxRatios Ø 81, 1, 1<D

Out[4]=

9. Use Mesh in a manner similar to its use in the RootPlot function to highlight the intersection of
two surfaces, say sinH2 x - cosH yLL and sinHx - cosH2 yLL. You may need to increase the value of
MaxRecursion to get the sampling just right.

10. Rewrite TrendPlot to compute a more robust plot range, one based on the minimum and
maximum values of the data together with the minimum and maximum user-specified rates.

11. Modify the graphics code at the end of the PointInPolygonQ example so that GatherBy always
orders the two lists so that the list of points that pass occurs before the list of points that fail the test.

12. Write a function pentatonic that generates 1ë f 2 music choosing notes from a five-tone scale. A

pentatonic scale can be played on a piano by beginning with C¤, and then playing only the black
keys: C¤, EŸ, F¤, AŸ, C¤. The pentatonic scale is common to Chinese, Celtic, and Native American
music.

13. Modify the routine for generating 1ë f 0 music so that frequencies are chosen according to a speci-

fied probability distribution. For example, you might use the following distribution that indicates a
note and its probability of being chosen: C – 5%, C¤ – 5%, D – 5%, EŸ – 10%, E – 10%, F – 10%, F¤ –
10%, G – 10%, AŸ – 10%, A – 10%, BŸ – 5%, B – 5%, C – 5%.

14. Modify the routine for generating 1ë f 0 music so that the durations of the notes obey 1ë f 0 scaling.

15. If you read musical notation, take a musical composition such as one of Bach’s Brandenburg Concertos
and write down a list of the frequency intervals x between successive notes. Then find a function
that interpolates the power spectrum of these frequency intervals and determine if this function is
of the form f HxL = c êx for some constant c. (Hint: To get the power spectrum, you will need to square

the magnitude of the Fourier transform: take Abs@Fourier@…DD2 of your data.) Compute the
power spectra of different types of music using this procedure.

10.4 Solutions
1. The function ComplexListPlot plots a list of numbers in the complex plane – the real part is

identified with the horizontal axis and the imaginary part is identified with the vertical axis. Start by

setting the options for ComplexListPlot to inherit those for ListPlot.
In[1]:= Options@ComplexListPlotD = Options@ListPlotD;

172 Solutions to exercises

In[2]:= ComplexListPlot@points_, opts : OptionsPattern@DD :=

ListPlot@Map@8Re@ÒD, Im@ÒD< &, pointsD,
opts, PlotStyle Ø 8Red, PointSize@.025D<,
AxesLabel Ø 8Style@"Re", 10D, Style@"Im", 10D<,
LabelStyle Ø Directive@"Menu", 7DD

This plots four complex numbers in the plane and uses some options, inherited from ListPlot.

In[3]:= ComplexListPlot@8-1 + I, 2 + I, 1 - 2 I, 0, 1<,
PlotStyle Ø 8Blue, PointSize@MediumD<D

Out[3]= -1.0 -0.5 0.5 1.0 1.5 2.0
Re

-2.0

-1.5

-1.0

-0.5

0.5

1.0

Im

2. The function ComplexRootPlot takes a polynomial, solves for its roots, and then uses
ComplexListPlot from the previous exercise to plot these roots in the complex plane.

In[4]:= ComplexRootPlot@poly_, z_, opts : OptionsPattern@DD :=

ComplexListPlot@z ê. NSolve@poly == 0, zD,
opts, AspectRatio Ø AutomaticD

In[5]:= ComplexRootPlot@Cyclotomic@17, zD, z, GridLines Ø AutomaticD
Out[5]=

-1.0 -0.5 0.5
Re

-1.0

-0.5

0.5

1.0

Im

3. First, set up the options structure.

In[6]:= Options@PathPlotD = Join@8ClosedPath Ø True<, Options@GraphicsDD;
Make two changes to the original PathPlot: add an If statement that checks the value of
ClosedPath and if True, appends the first point to the end of the list; if False, it leaves the
coordinate list as is. The second change is to filter those options that are specific to Graphics and
insert them in the appropriate place.

In[7]:= PathPlot@lis_List, opts : OptionsPattern@DD :=

Module@8coords = lis<, If@OptionValue@ClosedPathD,
coords = coords ê. 8a_, b__< ß 8a, b, a<D;

Graphics@8Line@coordsD, PointSize@MediumD, Red, Point@coordsD<,
FilterRules@8opts<, Options@GraphicsDDDD

In[8]:= SeedRandom@424D;
coords = RandomReal@1, 810, 2<D;

10 Graphics and visualization 173

In[10]:= PathPlot@coords, ClosedPath Ø True, GridLines Ø AutomaticD
Out[10]=

5. Choosing a base point randomly and then sorting according to the arc tangent could cause a number

of things to go wrong with the algorithm. The default branch cut for ArcTan gives values between

-p ê2 and p ê2. (You are encouraged to think about why this could occasionally cause the algorithm

in the text to fail.) By choosing the base point so that it lies at some extreme of the diameter of the set

of points, the polar angle algorithm given in the text will work consistently. If you choose the base

point so that it is lowest and left-most, then all the angles will be in the range (0, p].
In[11]:= SimpleClosedPath1@lis_ListD := Module@8base, angle, sorted<,

base = First@SortBy@lis, LastDD;
angle@a_, b_D := ArcTan üü Hb - aL;
sorted = Sort@Complement@lis, 8base<D,

angle@base, Ò1D § angle@base, Ò2D &D;
Join@8base<, sorted, 8base<DD

In[12]:= pts = RandomReal@1, 820, 2<D;
In[13]:= PathPlot@coords_ListD :=

Show@Graphics@8Line@coordsD, PointSize@MediumD,
RGBColor@1, 0, 0D, Point êü coords<DD

In[14]:= PathPlot@SimpleClosedPath1@ptsDD
Out[14]=

6. A simple change to the program SimpleClosedPath chooses the base point with the largest y-

coordinate.

In[15]:= SimpleClosedPath3@lis_D := Module@8base, angle, sorted<,
base = Last@SortBy@lis, LastDD;
angle@a_, b_D := ArcTan üü Hb - aL; sorted = Sort@

Complement@lis, 8base<D, angle@base, Ò1D § angle@base, Ò2D &D;
Join@8base<, sorted, 8base<DD

In[16]:= pts = RandomReal@1, 820, 2<D;
In[17]:= PathPlot@SimpleClosedPath3@ptsDD

174 Solutions to exercises

8. Create three rules, one for each of the three dimensions of random walk that will be passed to
ShowWalk. Some pattern matching will help to identify the rule to use for the one-, two-, and three-
dimensional cases.

In[15]:= MatchQ@81, 2, 3<, _?VectorQD
Out[15]= True

In[16]:= MatchQ@881, 1<, 81, 2<, 80, 2<<, 88_, _< ..<D
Out[16]= True

In[17]:= MatchQ@881, 1, 0<, 81, 2, 0<, 80, 2, 0<<, 88_, _, _< ..<D
Out[17]= True

The first rule uses a pattern that will be matched by a one-dimensional vector.

In[18]:= ShowWalk@coords_?VectorQ, opts : OptionsPattern@DD :=

ListLinePlot@coords,
FilterRules@8opts<, Options@ListLinePlotDDD

The second rule uses a pattern that will be matched by a list of one or more pairs of numbers.

In[19]:= ShowWalk@coords : 88_?NumberQ, _?NumberQ< ..<,
opts : OptionsPattern@DD :=

ListLinePlot@coords, Append@FilterRules@8opts<,
Options@ListLinePlotDD, AspectRatio Ø AutomaticDD

The third rule uses a pattern that will be matched by one or more triples of numbers.

In[20]:= ShowWalk@coords : 88_?NumberQ, _?NumberQ, _?NumberQ< ..<,
opts : OptionsPattern@DD :=

Graphics3D@Line@coordsD,
FilterRules@8opts<, Options@Graphics3DDDD

9. Use PlotStyle to highlight the two different surfaces and MeshStyle and Mesh to highlight
their intersection.

In[21]:= f@x_, y_D := Sin@2 x - Cos@yDD;
g@x_, y_D := Sin@x - Cos@2 yDD;

In[23]:= Plot3D@8f@x, yD, g@x, yD<, 8x, -p, p<, 8y, -p, p<, Mesh Ø 880.<<,
MaxRecursion Ø 4, MeshFunctions Ø Hf@Ò1, Ò2D - g@Ò1, Ò2D &L,
MeshStyle Ø 8Thick, Red<, PlotStyle Ø 8Cyan, Yellow<D

Out[23]=

10 Graphics and visualization 175

10. One approach is to compute a plot range using something like the following, where minR is the
minimum rate and maxR is the maximum rate specified by the user.8H1.05 + minRL min, H.95 + maxRL max<

In[24]:= ClearAll@TrendPlotD
In[25]:= TrendPlot::usage =

"TrendPlot@data,8r1,r2,…<D plots data with trend

lines showing growth rates over time.";

In[26]:= TrendlineStyle::usage =

"TrendlineStyle is an option for TrendPlot

that specifies the style of the trend lines.";

In[27]:= Options@TrendPlotD =

Join@8TrendlineStyle Ø Automatic<, Options@DateListPlotDD;
In[28]:= TrendPlot@data_, rates_List, opts : OptionsPattern@DD :=

Module@8min, max, tlStyle, tLine,

rtTicks, init = data@@1, 2DD, minR, maxR<,8min, max< = 8Min@data@@All, 2DDD, Max@data@@All, 2DDD<;8minR, maxR< = 8Min@ratesD, Max@ratesD<;
tlStyle = If@OptionValue@TrendlineStyleD === Automatic,8Dashed, Gray<, OptionValue@TrendlineStyleDD;
tLine@r_D := Flattenü8tlStyle,

Line@8First@dataD, Last@dataD ê.8d_List, val_?NumberQ< ß 8d, H1 + r L init<<D<;
rtTicks = MapThread@8H1 + ÒL init, StringForm@" `1`%", Ò2D< &, 8rates, 100 rates<D;
DateListPlot@data, Joined Ø True,

FilterRules@8opts<, Options@DateListPlotDD,
Epilog ß Map@tLine, ratesD,
PlotRange Ø 8H1.05 + minRL min, H.95 + maxRL max<,
FrameTicks Ø 88Automatic, rtTicks<, 8Automatic, None<<DD

In[29]:= data =

FinancialData@"^DJI", 8"August 30 2011", "December 30 2011"<D;

176 Solutions to exercises

In[30]:= rates = 80.05, 0.12, -0.05, -0.12<;
TrendPlot@data, rates,

PlotStyle Ø 8Thick, Blue<,
TrendlineStyle Ø 8Thick, Dashed, LighterüGray<D

Out[31]=

Sep Oct Nov Dec
10 000

10 500

11 000

11 500

12 000

12 500

13 000

5.%

12.%

-5.%

-12.%

11. If the first point returned by GatherBy fails the PointInPolygonQ test, then reverse the two lists
(out and in), otherwise, leave it alone.

In[32]:= poly = 88-0.5, 0<, 80.5, -1<, 81.5, 0<,82., -1.1<, 82.5, 0<, 81.5, 2<, 81., 1<, 80., 1<<;
pts = RandomReal@8-1, 3<, 87500, 2<D;

In[34]:= TriangleArea@tri : 8v1_, v2_, v3_<D :=

Det@Map@PadRight@Ò, 3, 1D &, triDD ê 2
In[35]:= PointInPolygonQ@poly : 88_, _< ..<, pt : 8x_, y_<D :=

Module@8edges, e2, e3, e4<,
edges = Partition@poly ê. 8a_, b__< ß 8a, b, a<, 2, 1D;
e2 = DeleteCases@edges, 88x1_, y1_<, 8x2_, y2_<< ê; y1 ã y2D;
e3 = DeleteCases@e2,88x1_, y1_<, 8x2_, y2_<< ê; HMin@y1, y2D ¥ y »» Max@y1, y2D < yLD;
e4 = Map@ReverseüSortBy@Ò, LastD &, e3D;
OddQ@Count@TriangleArea@Join@Ò, 8pt<DD & êü e4, _?PositiveDDD

10 Graphics and visualization 177

In[36]:= gbPts = GatherBy@pts, PointInPolygonQ@poly, ÒD &D;
Graphics@88PointSize@SmallD, If@PointInPolygonQ@poly, gbPts@@1, 1DDD,

gbPts, Reverse@gbPtsDD ê. 8in_List, out_List< ß88Black, Pointüin<, 8LightGray, Pointüout<<<,
Thick, Line@poly ê. 8a_, b__< ß 8a, b, a<D,
PointSize@LargeD, Point@polyD<D

Out[37]=

12. First create the pentatonic scale using symbolic notes.

In[38]:= pscale = 8"CÒ", "Eb", "FÒ4", "Ab", "CÒ2"<;
In[39]:= With@8steps = 12, instr = "Vibraphone"<,

notes = RandomChoice@pscale, 8steps<D;
durs = RandomChoice@Range@1 ê 16, 1, 1 ê 16D, 8steps<D;
SoundüMapThread@SoundNote@Ò1, Ò2, instrD &, 8notes, durs<DD êê EmitSound

14. First set up the options structure.

In[40]:= Options@BrownianComposeD = 8Weights Ø Automatic<;
In[41]:= BrownianCompose@steps_Integer, instr_: "Vibraphone",

OptionsPattern@DD := Module@8walk, durs, weights<,
weights = If@OptionValue@WeightsD === Automatic,

Table@1 ê 9, 89<D, OptionValue@WeightsDD;
walk@n_D := Accumulate@RandomChoice@weights Ø Range@-4, 4D, nDD;
durs = RandomChoice@Range@1 ê 16, 1, 1 ê 16D, 8steps<D;
Soundü

MapThread@SoundNote@Ò1, Ò2, instrD &, 8walk@stepsD, durs<DD

178 Solutions to exercises

In[42]:= BrownianCompose@18, "Marimba"D êê EmitSound

In[43]:= BrownianCompose@18, "Marimba", Weights Ø

AbsüRandomVariate@NormalDistribution@0, 4D, 9DD êê EmitSound

10 Graphics and visualization 179

11

Dynamic expressions
11.1 Manipulating expressions
1. Create a dynamic interface that displays various diagrams and plots of the amino acids. A list of the

amino acids is given by:

In[1]:= ChemicalData@"AminoAcids"D
Out[1]= 8Glycine, LAlanine, LSerine, LProline, LValine, LThreonine,

LCysteine, LIsoleucine, LLeucine, LAsparagine, LAsparticAcid,

LGlutamine, LLysine, LGlutamicAcid, LMethionine, LHistidine,

LPhenylalanine, LArginine, LTyrosine, LTryptophan<
The diagrams and plots that should be included are built into ChemicalData:

In[2]:= StringCases@ChemicalData@"Properties"D,
__ ~~ "Diagram" H__ ~~ "Plot"LD êê Flatten

Out[2]= 8CHColorStructureDiagram, CHStructureDiagram,

ColorStructureDiagram, MoleculePlot,

SpaceFillingMoleculePlot, StructureDiagram<
2. Create a dynamic interface that applies several built-in effects to an image. The effects are given by

ImageEffect and include "Charcoal", "Solarization", "GaussianNoise" and many
others. See the documentation for ImageEffect for a complete list.

3. Modify the dynamic Venn diagram created in this section to display a truth table like that developed
in Exercise 9 from Section 5.8. Include the truth table side-by-side with the Venn diagram, like in the
following:

180 Solutions to exercises

Logical function Xor

A B A B

T T F
T F T
F T T
F F F

4. Create a dynamic interface that displays some sample text using two different fonts from your
system’s list of fonts. Set it up so that you can select which two fonts to compare by using a pull-
down menu. The list of fonts on your system is given by the following:

In[3]:= fonts = FE`Evaluate@FEPrivate`GetPopupList@"MenuListFonts"DD;
In[4]:= RandomSample@fonts, 3D

Out[4]= 8Gurmukhi Sangam MN Ø Gurmukhi Sangam MN, Impact Ø Impact,

DTL Albertina TOT Italic Ø DTL Albertina TOT Italic<
5. Take one of the two-dimensional random walk programs developed elsewhere in this book (for

example, Sections 8.1 and 13.1) and create an animation that displays successive steps of the random
walk.

6. Create a plot of sinHqL side-by-side with a circle and a dynamic point that moves along the curve and
the circle as q varies from 0 to 2p.

q

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

11 Dynamic expressions 181

7. Modify the Manipulate expression that animates the hypocycloid so that the plot range deals
with the situation when the radius of the inner circle is larger than the radius of the outer circle.

8. An epicycloid is a curve that can be generated by tracing out a fixed point on a circle that rolls around
the outside of a second circle. The formula for an epicycloid is quite similar to that for the hypocy-
cloid. The epicycloid is given parametrically by the following:

x = Ha + bL cosHqL - b cosK a+b
b

qO,

y = Ha + bL sinHqL - b sinK a+b
b

qO.

Create a dynamic interface to animate the epicycloid similar to that for the hypocycloid in this
section.

9. In the 1920s and 1930s the artist Marcel Duchamp created what he termed rotoreliefs, spinning
concentric circles (and variants thereof) giving a three-dimensional illusion of depth

(Duchamp 1926). Create you own rotoreliefs by starting with several concentric circles of different
radii, then varying their centers around a path given by another circle, and animating.

10. Create a dynamic table that displays the temperature of several cities around the world. Include a
control (pulldown menu or setter bar) to switch the display between Celsius and Fahrenheit.

11. Looking forward to Chapter 13 where we develop a full application for computing and visualizing
random walks, create a dynamic interface that displays random walks, adding controls to select the
number of steps from a pulldown menu, the dimension from a setter bar, and a checkbox to turn on
and off lattice walks.

12. Create a visualization of two-dimensional vector addition. The interface should include either a 2D
slider for each of two vectors in the plane or locators to change the position of each vector; the
display should show the two vectors as well as their vector sum. Extend the solution to three
dimensions. (The solution of this vector arithmetic interface is due to Harry Calkins of Wolfram
Research.)

182 Solutions to exercises

red vector

blue vector

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

13. Create a dynamic interface to display information about a word drawn from WordData. The
interface should include an input field for the word and use tabs to display either a definition, the
Porter stem, or synonyms (try other word properties in WordData).

11.1 Solutions
1. We will put this together in two parts: first create a function to display any amino acid using one of

the various diagrams; then pour it into a Manipulate. Note, this function is dependent upon
ChemicalData to create the displays. You could modify it to use you own visualizations, such as
the space-filling plots in Section 10.4.

In[1]:= AminoAcidPlot@aa_String, diagram_: "ColorStructureDiagram"D :=

Labeled@Framed@ChemicalData@aa, diagramD, ImageSize Ø AllD,
ChemicalData@aa, "Name"D, LabelStyle Ø Directive@"Menu", 9DD

In[2]:= AminoAcidPlot@"Glycine"D
Out[2]=

N

O

O

N
H

N
H

O
H

glycine

11 Dynamic expressions 183

In[3]:= Manipulate@
AminoAcidPlot@aminoacid, diagramD,88aminoacid, "LAlanine", "Amino acid"<, aa<,8diagram, 8"StructureDiagram", "CHColorStructureDiagram",

"CHStructureDiagram", "ColorStructureDiagram",

"MoleculePlot", "SpaceFillingMoleculePlot"<<,
Initialization ß 8aa = ChemicalData@"AminoAcids"D<D

Out[3]=

Amino acid LAlanine

diagram StructureDiagram

OO
H

O

NN
H

N

H

L-alanine

2. This is a straightforward use of Manipulate. The lengthy parameter list forces a pulldown menu to
be used as the control.

184 Solutions to exercises

In[4]:= ManipulateB
ImageEffectB , effectF,
8effect, 8"Charcoal", "Embossing", "OilPainting",

"Posterization", "Solarization", "MotionBlur", "Noise",

"GaussianNoise", "SaltPepperNoise", "PoissonNoise"<<F

Out[4]=

effect Charcoal

3. Here is the code for the TruthTable function from Exercise 9 in Section 5.8:

In[5]:= TruthTable@expr_, vars_D :=

Module@8len = Length@varsD, tuples, rules, table, head<,
tuples = Tuples@8True, False<, lenD;
rules = HThread@vars Ø Ò1D &L êü tuples;
table = Transpose@Join@Transpose@tuplesD, 8expr ê. rules<DD;
head = Append@vars, TraditionalForm@exprDD;
Grid@Prepend@table ê. 8True Ø "T", False Ø "F"<, headD,
Dividers Ø 881 Ø 8Thin, Black<, -1 Ø 8Thin, Black<,

-2 Ø 8Thin, LightGray<<, 81 Ø 8Thin, Black<,
2 Ø 8Thin, LightGray<, -1 Ø 8Thin, Black<<<DD

This puts the truth table together with the Venn diagram using Row.

11 Dynamic expressions 185

In[6]:= ManipulateB
Row@8TruthTable@f@A, BD, 8A, B<D, Show@RegionPlot@f üü eqns,8x, -2, 2<, 8y, -2, 2<, Frame Ø None, PlotLabel Ø f@A, BD,

PlotRange Ø 88-2, 2<, 8-1.2, 1.2<<, AspectRatio Ø Automatic,

MaxRecursion Ø 5D, Graphics@8Circle@c1D, Circle@c2D,
Text@Style@"A", FontSlant Ø "Italic"D, 8-.5, .8<D,
Text@Style@"B", FontSlant Ø "Italic"D, 8.5, .8<D<D,

ImageSize Ø SmallD<D, 88f, Xor, "Logical function"<,8And, Or, Xor, Implies, Nand, Nor<<,
Initialization ß :c1 = :- 1

2
, 0>; c2 = : 1

2
, 0>;

eqns = ApplyAHÒ1 + xL2 + HÒ2 + yL2 < 1 &, 8c1, c2<, 81<E>,
SaveDefinitions Ø TrueF

Out[6]=

Logical function Xor

A B A B

T T F

T F T

F T T

F F F

4. You might want to add some additional options to each of the Style expressions; for example,
FontSize or FontWeight.

In[7]:= fonts = FE`Evaluate@FEPrivate`GetPopupList@"MenuListFonts"DD;

186 Solutions to exercises

In[8]:= Manipulate@
Column@8

Style@"Lorem ipsum dolor sit amet – 0123456789",

FontFamily Ø font1D,
Style@"Lorem ipsum dolor sit amet – 0123456789",

FontFamily Ø font2D<D,88font1, "Times", "Font 1"<, fonts<,88font2, "Helvetica", "Font 2"<, fonts<, SaveDefinitions Ø TrueD
Out[8]=

Font 1 Times

Font 2 Helvetica

Lorem ipsum dolor sit amet – 0123456789

Lorem ipsum dolor sit amet – 0123456789

5. First load the package that contains the random walk code. You could use you own implementation
as well.

In[9]:= << PwM`RandomWalks`

Create a 1000-step, two-dimensional, lattice walk.

In[10]:= rw = RandomWalk@1000, Dimension Ø 2, LatticeWalk Ø TrueD;
This is a basic start. Take is used to display successive increments. Note the need for the 1 in the
parameter list to insure that steps only take on integer values.

11 Dynamic expressions 187

In[11]:= Animate@
Graphics@Line@Take@rw, nDDD,8n, 2, Length@rwD, 1<D

Out[11]=

n

The output above suffers from the fact that the display jumps around a lot as Mathematica tries to
figure out a sensible plot range for each frame. Instead, we should fix the plot range for all frames to
avoid this jumpiness. This is done in the definitions for xran and yran in the Initialization
below.

In[12]:= Manipulate@
Graphics@Line@Take@rw, nDD, PlotRange Ø 8xran, yran<D,8n, 2, Length@rwD, 1<,
Initialization ß 8

rw = RandomWalk@1000, Dimension Ø 2, LatticeWalk Ø TrueD;8xran, yran< = Map@8Min@Ò1D, Max@Ò1D< &, Transpose@rwDD<D

Out[12]=

n

188 Solutions to exercises

6. Putting the two graphics pieces (Graphics@…D and Plot@…D) in a grid gives you finer control over
their placement and formatting.

In[13]:= Manipulate@Grid@88Graphics@8Circle@D, Blue, PointSize@.04D, Point@8Cos@qD, Sin@qD<D<,
Axes Ø TrueD, Plot@Sin@xD, 8x, 0, 2 p<, ImageSize Ø 300,

Epilog Ø 8Blue, Line@88q, 0<, 8q, Sin@qD<<D, PointSize@.025D,
Point@8q, Sin@qD<D<D<<, Frame Ø AllD, 8q, 0, 2 p<D

Out[13]=

q

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

8. Just a few modifications to the code for the hypocycloid are needed: use the formula for the epicy-
cloid; change the center of the rotating circle so that its radius is R + r, not R - r; and modify the plot
range.

In[14]:= EpicycloidPlot@R_, r_, q_D := ModuleB8epicycloid, center<,
epicycloid@8a_, b_<, t_D :=:Ha + bL Cos@tD - b CosBt a + b

b
F, Ha + bL Sin@tD + b SinBt a + b

b
F>;

center@th_, R1_, r2_D := HR1 + r2L 8Cos@thD, Sin@thD<;
Show@8

ParametricPlot@epicycloid@8R, r<, tD,8t, 0, q<, PlotStyle Ø Red, Axes Ø NoneD,
Graphics@88Blue, Thick, Circle@80, 0<, RD<,8Circle@center@q, R, rD, rD<,8PointSize@.015D, Point@center@q, R, rDD<,8Thick, Line@8center@q, R, rD, epicycloid@8R, r<, qD<D<,8Red, PointSize@.015D, Point@epicycloid@8R, r<, qDD<<D<, PlotRange Ø 1.5 HR + rL, GridLines Ø AutomaticDF

First, create a static image.

11 Dynamic expressions 189

In[15]:= EpicycloidPlot@3, 1, 2 pD

Out[15]=

And here is the dynamic version.

In[16]:= Manipulate@EpicycloidPlot@R, r, qD,8q, 0 + 0.01, 2 Denominator@HR - rL ê rD p<,8R, 83, 4, 5, 6, 7, 8<, Setter<,8r, 81, 2, 3, 4, 5<, Setter<, SaveDefinitions Ø TrueD

Out[16]=

q

R 3 4 5 6 7 8

r 1 2 3 4 5

9. Modify the radii and the centers to get different effects. Try using transparent disks instead of circles.

190 Solutions to exercises

In[17]:= Manipulate@
Graphics@
Table@Circle@r ê 4 8Cos@tD, Sin@tD<, 1.1 - rD, 8r, .2, 1, .05<D,
PlotRange Ø 1D,8t, 0, 2 p, .1<,

TrackedSymbols ß 8t<D

Out[17]=

t

10. The Units package contains the function ConvertTemperature as well as Centigrade and
Fahrenheit scales. We load it as part of the initialization. Since this might take some time, we also
set SyncrhonousUpdating to False to make sure the evaluation does not time out before the
default five second limit in Manipulate is reached.

11 Dynamic expressions 191

In[18]:= Manipulate@
Grid@Join@88

Style@"City", FontWeight Ø "Bold"D,
Style@
StringForm@"Temp H°`1`L", symD, FontWeight Ø "Bold"D<<,

Map@8Ò,
If@sym === "C",

WeatherData@Ò, "Temperature"D,
Units`ConvertTemperature@WeatherData@Ò, "Temperature"D,
Units`Centigrade, Units`FahrenheitDD< &, 8"Brasilia", "Cairo", "Chicago",

"Melbourne", "Paris", "Tokyo"<DD,
Frame Ø All, Background Ø LightYellow,

Alignment Ø 88Left, Right, Right<, Automatic<,
BaseStyle Ø 8FontFamily Ø "Helvetica"<D,88sym, "C", "Temp"<, 8"F", "C"<<,

Initialization ß 8Needs@"Units`"D<, SynchronousUpdating Ø False,

FrameMargins Ø 0, Deployed Ø TrueD

Out[18]=

Temp F C

City Temp H°CL
Brasilia 22.

Cairo 14.

Chicago 0.

Melbourne 16.2

Paris 8.

Tokyo 3.8

11. Using the programs developed in Section 13.1, here is the code, including a pulldown menu for the
steps parameter, a setter bar for the dimension parameter, and a checkbox for the lattice parameter.

192 Solutions to exercises

In[19]:= Manipulate@
ShowWalkü

RandomWalk@steps, Dimension Ø dim, LatticeWalk Ø latticeQD,8steps, 8100, 250, 500, 750, 1000, 10000<<,88dim, 1, "Dimension"<, 81, 2, 3<<,88latticeQ, True, "Lattice walk"<, 8True, False<<,
Initialization ß Needs@"PWM`RandomWalks`"D,
SaveDefinitions Ø TrueD

Out[19]=

steps 1000

Dimension 1 2 3

Lattice walk

12. Here is the solution using Slider2D. Using Locator instead is left for the reader.

11 Dynamic expressions 193

In[20]:= Manipulate@
Graphics@8

Red, Arrow@880, 0<, pt1<D,
Blue, Arrow@880, 0<, pt2<D,
Green, Arrow@880, 0<, pt1 + pt2<D,
Dashed, Orange, Line@8pt1, pt1 + pt2, pt2<D<,

PlotRange Ø 6, Axes Ø True, GridLines Ø AutomaticD,88pt1, 81, 4<, "Red vector"<, 8-5, -5<, 85, 5<<,88pt2, 83, 1<, "Blue vector"<, 8-5, -5<, 85, 5<<,
ControlPlacement Ø LeftD

Out[20]=

Red vector

Blue vector -6 -4 -2 2 4 6

-6

-4

-2

2

4

6

13. First create a TabView for one word.

In[21]:= With@8word = "lighting"<,
TabView@8

"Definitions" Ø TableFormüWordData@word, "Definitions"D,
"PorterStem" Ø WordData@word, "PorterStem"D,
"Synonyms" Ø TableFormüWordData@word, "Synonyms"D<DD

Out[21]=
8lighting, Noun, Burning< Ø the act of setting something on fire8lighting, Noun, InteriorDesign< Ø the craft of providing artificia8lighting, Noun, Setup< Ø apparatus for supplying artificial light8lighting, Noun, Illumination< Ø having abundant light or illuminat

Definitions PorterStem Synonyms

Then make the word the parameter inside a Manipulate, using InputField as the
ControlType . Use ToString to insure that the expression passed to WordData is a string,
regardless of what is typed in the input field.

194 Solutions to exercises

In[22]:= Manipulate@
TabView@8

"Definitions" Ø WordData@ToStringüword, "Definitions"D,
"PorterStem" Ø WordData@ToStringüword, "PorterStem"D,
"Synonyms" Ø WordData@ToStringüword, "Synonyms"D<D,8word, "training"<, ControlType Ø InputField,

ContentSize Ø 8400, 200<D

Out[22]=

word "training"

88training, Noun, Activity< Ø activity leading to skilled behavior,8training, Noun, Upbringing< Ø

the result of good upbringing Hespecially
knowledge of correct social behaviorL<

Definitions PorterStem Synonyms

11.2 The structure of dynamic expressions
1. Display a random word from the dictionary (DictionaryLookup) that changes every second.

2. Create a dynamic interface consisting of a locator constrained to the unit circle.

3. Create a dynamic interface that controls one sphere rotating about another.

11.2 Solutions
1. Use the UpdateInterval option to Dynamic .

In[23]:= Dynamic@RandomChoice@DictionaryLookup@DD, UpdateInterval Ø 5D
Out[23]= Waksman

2. Normalize takes a vector as input and returns a unit vector.

11 Dynamic expressions 195

In[24]:= DynamicModule@8pt = 81, 0<<, Graphics@8
Circle@D,
Locator@Dynamic@pt, Hpt = Normalize@ÒDL &DD<DD

Out[24]=

11.3 Examples and applications
1. Here are data on Nobel prizes in the fields of chemistry, medicine, and physics, available from the

National Bureau of Economic Research.

In[1]:= data = Import@
"http:êêwww.nber.orgênobelêJones_Weinberg_2011_PNAS.xlsx",8"XLSX", "Data", 1<D;

In[2]:= Take@data, 4D
Out[2]= 88name, field, year_birth, year_prize, year_research_mid,

year_death, TheoryOrTheoryAndEmpirical, age_highdegree<,8Van'T Hoff, Jacobus Henricus, Chemistry,

1852., 1901., 1885., 1911., 1., 22.<,8Fischer, Hermann Emil, Chemistry, 1852., 1902.,

1895., 1919., 0., 22.<, 8Arrhenius, Svante August,

Chemistry, 1859., 1903., 1884., 1927., 1., 25.<<
Create a TabView visualization showing the age of each prize recipient vs. the year of prize award.
Include one tab for each of the three fields given in the data and also include a plot label that displays
the mean age at award for each field.

2. Using FunctionsWithAttribute developed in Section 5.6, create a paneled interface that
displays all built-in functions with a specified attribute. Include an input field control to allow the
user to type in an attribute. Do likewise for FunctionsWithOption also developed in Section 5.6.

3. Create a dynamic interface that displays twenty random points in the unit square whose locations
are randomized each time you click your mouse on the graphic display of these points. Add a
checkbox to toggle the display of the shortest path (FindShortestTour) through the points.

4. Create a similar dynamic interface to that in the industrial production index problem in this section
but comparing industrial production with unemployment rates with retail sales data over the last
twenty years or some other suitable time period. Annual and historical retail sales data are available
at the US Census Bureau (www.census.gov/retail); unemployment data are available at the US
Bureau of Labor Statistics (www.bls.gov/cps/cpsatabs.htm); industrial production indices are
available at the US Federal Reserve System (www.federalreserve.gov/releases/g17/).

196 Solutions to exercises

11.3 Solutions
1. Import the data only; the first four columns give name, field, birth year, award year.

In[1]:= data = Import@
"http:êêwww.nber.orgênobelêJones_Weinberg_2011_PNAS.xlsx",8"XLSX", "Data", 1, All, 81, 2, 3, 4<<D;

In[2]:= data@@81, -1<DD
Out[2]= 88name, field, year_birth, year_prize<,8Nambu, Yoichiro, Physics, 1921., 2008.<<

In[3]:= data@@-1DD ê. 8a__String, birth_Real, award_Real< ß8a, birth, award, award - birth<
Out[3]= 8Nambu, Yoichiro, Physics, 1921., 2008., 87.<

In[4]:= nobelData = data@@2 ;; -1DD ê. 8a__String, birth_Real, award_Real< ß8a, birth, award, award - birth<;
In[5]:= chem = Cases@nobelData, 8name_String, "Chemistry", rest__<D;

med = Cases@nobelData, 8name_String, "Medicine", rest__<D;
physics = Cases@nobelData, 8name_String, "Physics", rest__<D;

In[8]:= timeChem = chem@@All, 84, 5<DD;
timeMed = med@@All, 84, 5<DD;
timePhysics = physics@@All, 84, 5<DD;

In[11]:= DateListPlot@Tooltip@timeChem ê. 8a_, b_< ß 88Roundüa<, b<D,
Joined Ø True, Mesh Ø All, PlotLabel Ø

StringForm@"Average age for chemistry Nobel award = `1`",

Mean@timeChem@@All, 2DDDDD
Out[11]=

11 Dynamic expressions 197

In[12]:= TabView@
MapThread@
Ò1 Ø DateListPlot@Tooltip@Ò2 ê. 8a_, b_< ß 88Roundüa<, b<D,

Joined Ø True, Mesh Ø All, PlotLabel Ø

StringForm@"Average age for `1` Nobel award = `2`",

Ò1, Mean@Ò2@@All, 2DDDDD &,88"Chemistry", "Medicine", "Physics"<,8timeChem, timeMed, timePhysics<<DD

Out[12]=

Chemistry Medicine Physics

2. First, here is the interface for listing all functions with a given attribute. We have used the
Initialization option to DynamicModule to define the function
FunctionsWithAttributes.

In[13]:= Panel@DynamicModule@8att = Constant<,
Column@8

Style@"Built-in attribute:", "Menu"D,
InputField@Dynamic@attDD,
DynamicüTextCell@FunctionsWithAttribute@attDD<D, Initialization ß 8FunctionsWithAttribute@attrib_SymbolD :=

Select@Names@"System`*"D, MemberQ@Attributes@ÒD, attribD &D<D, ImageSize Ø 8360, Automatic<D
Out[13]=

Built-in attribute:

Constant8Catalan, Degree, E, EulerGamma, Glaisher,

GoldenRatio, Khinchin, MachinePrecision, Pi<
Here is the panel for FunctionsWithOption.

198 Solutions to exercises

In[14]:= Panel@DynamicModule@8option = StepMonitor<,
Column@8

Style@"Built-in option:", "Menu"D,
InputField@Dynamic@optionDD,
Dynamic@FunctionsWithOption@optionDD<D, Initialization ß8FunctionsWithOption@opt_SymbolD := Quiet@Select@Names@

"System`*"D, MemberQ@Options@Symbol@ÒDD, opt, 82<D &DD<D, ImageSize Ø 8360, Automatic<D
Out[14]=

Built-in option:

StepMonitor8FindArgMax, FindArgMin, FindFit, FindMaximum, FindMaxValue,
FindMinimum, FindMinValue, FindRoot, NArgMax, NArgMin, NDSolve,
NMaximize, NMaxValue, NMinimize, NMinValue, NonlinearModelFit, NRoots<

3. Create a static version of the problem; we use GraphicsComplex to display the points and the
tour.

In[15]:= pts = RandomReal@1, 820, 2<D;
In[16]:= Graphics@GraphicsComplex@pts, PointüRange@Length@ptsDDD,

Axes Ø AutomaticD

Out[16]=

0.4 0.6 0.8

0.2

0.4

0.6

0.8

11 Dynamic expressions 199

In[17]:= tour = Last@FindShortestTour@ptsDD;
Graphics@GraphicsComplex@pts, 8Line@tourD, Red,

PointSize@.015D, Point@tourD<D, Axes Ø AutomaticD

Out[18]=

0.4 0.6 0.8

0.2

0.4

0.6

0.8

Here is the dynamic interface using EventHandler to choose a new set of random points with
each mouse click.

In[19]:= Manipulate@
DynamicModule@8pts = RandomReal@1, 820, 2<D, tour<,
tour = Dynamic@Last@FindShortestTour@ptsDDD;
EventHandler@
Dynamic@Graphics@GraphicsComplex@pts, If@Not@showtourD,

PointüRange@Length@ptsDD, 8Line@tourD, Red,

PointSize@MediumD, Point@tourD<DD, Axes Ø AutomaticDD,8"MouseClicked" ß Hpts = RandomReal@1, 820, 2<DL<DD,88showtour, False, "Show tour"<, 8True, False<<,
ContentSize Ø 8220, 140<D

Out[19]=

Show tour

0.6

0.8

A suggested addition would be to add a control to change the number of points that are used. But be
careful: traveling salesman type problems are notoriously hard; in fact they are known to be NP-

200 Solutions to exercises

g yp p y y
hard, meaning they cannot be computed in polynomial time. See Lawler et al. (1985) for more on
traveling salesman problems.

11 Dynamic expressions 201

12

Optimizing Mathematica programs
12.2 Efficient programs
1. Modify AverageTiming to return both the average time and the result of evaluating its argument,

mirroring the behavior of Timing and AbsoluteTiming .

2. The nth triangular number is defined as the sum of the integers 1 through n. They are so named
because they can be represented visually by arranging rows of dots in a triangular manner (Figure
12.1). Program several different approaches to computing triangular numbers and compare their
efficiency.

Figure 12.1. Pictorial representation of the first five triangular numbers.

3. Several different implementations of the Hamming distance computation were given in Section 5.8;
some run much faster than others. For example, the version with bit operators runs about one-and-
a-half orders of magnitude faster than the version using Count and MapThread . Using some of the
concepts from this section, determine what is causing these differences.

In[1]:= HammingDistance1@lis1_, lis2_D :=

Count@MapThread@SameQ, 8lis1, lis2<D, FalseD
In[2]:= HammingDistance2@lis1_, lis2_D := Total@BitXor@lis1, lis2DD
In[3]:= sig1 = RandomIntegerA1, 9106=E;
In[4]:= sig2 = RandomIntegerA1, 9106=E;
In[5]:= Timing@HammingDistance1@sig1, sig2DD

Out[5]= 80.459499, 498955<
In[6]:= Timing@HammingDistance2@sig1, sig2DD

Out[6]= 80.00906, 498955<
12.2 Solutions
1. Collect the results of the Table and pull out the parts needed – the timings and the result.

In[1]:= SetAttributes@AverageTiming, HoldAllD
In[2]:= AverageTiming@expr_, trials_D := Module@8lis<,

lis = Table@AbsoluteTiming@exprD, 8trials<D;

202 Solutions to exercises

8Mean@lis@@All, 1DDD, lis@@1, 2DD<D
In[3]:= AverageTiming@FactorInteger@50! + 1D, 5D

Out[3]= 81.311202,88149, 1<, 83989, 1<, 874195127103, 1<, 86854870037011, 1<,8100612041036938568804690996722352077, 1<<<
2. The first implementation essentially performs a transpose of the two lists, wrapping SameQ around

each corresponding pair of numbers. It then does a pattern match (Count) to determine which
expressions of the form SameQAexpr

1
, expr

2
E return False.

In[4]:= HammingDistance1@lis1_, lis2_D :=

Count@MapThread@SameQ, 8lis1, lis2<D, FalseD
In[5]:= HammingDistance2@lis1_, lis2_D := Total@BitXor@lis1, lis2DD
In[6]:= sig1 = RandomIntegerA1, 9106=E;
In[7]:= sig2 = RandomIntegerA1, 9106=E;

In this case, it is the threading that is expensive rather than the pattern matching with Count.

In[8]:= res = MapThread@SameQ, 8sig1, sig2<D; êê Timing

Out[8]= 80.469637, Null<
In[9]:= Count@res, FalseD êê Timing

Out[9]= 80.049376, 499582<
The reason the threading is expensive can be seen by turning on the packing message as discussed in
this section.

In[10]:= SetSystemOptions@"PackedArrayOptions" Ø "UnpackMessage" Ø TrueD
Out[10]= PackedArrayOptions Ø 8ListableAutoPackLength Ø 250,

PackedArrayMathLinkRead Ø True, PackedArrayPatterns Ø True,

PackedRange Ø True, UnpackMessage Ø True<
In[11]:= res = MapThread@SameQ, 8sig1, sig2<D;

Developer`FromPackedArray::punpack1 : Unpacking array with dimensions 81000000<. à

The other factors contributing to the significant timing differences have to do with the fact that
BitXor has the Listable attribute. MapThread does not. And so, BitXor can take advantage
of specialized (compiled) codes internally to speed up its computations.

In[12]:= Attributes@BitXorD
Out[12]= 8Flat, Listable, OneIdentity, Orderless, Protected<

In[13]:= Attributes@MapThreadD
Out[13]= 8Protected<

12 Optimizing Mathematica programs 203

In[14]:= Timing@temp = BitXor@sig1, sig2D;D
Out[14]= 80.00373, Null<

And finally, compute the number of 1s using Total which is extremely fast at adding lists of
numbers.

In[15]:= Timing@Total@tempD;D
Out[15]= 80.003227, Null<

Return the packed array messaging to its default value.

In[16]:= SetSystemOptions@"PackedArrayOptions" Ø "UnpackMessage" Ø FalseD;
3. A first attempt, using a brute force approach, is to total the list 81, 2, …, n< for each n.

In[17]:= TriangularNumber@n_D := Total@Range@nDD
In[18]:= Table@TriangularNumber@iD, 8i, 1, 100<D

Out[18]= 81, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120,

136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378,

406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780,

820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275,

1326, 1378, 1431, 1485, 1540, 1596, 1653, 1711, 1770, 1830,

1891, 1953, 2016, 2080, 2145, 2211, 2278, 2346, 2415, 2485,

2556, 2628, 2701, 2775, 2850, 2926, 3003, 3081, 3160, 3240,

3321, 3403, 3486, 3570, 3655, 3741, 3828, 3916, 4005, 4095,

4186, 4278, 4371, 4465, 4560, 4656, 4753, 4851, 4950, 5050<
In[19]:= TimingATriangularNumberA107EE

Out[19]= 83.86688, 50000005000000<
A second approach uses iteration. As might be expected, this is the slowest of the approaches here.

In[20]:= TriangularNumber2@n_D := Fold@Ò1 + Ò2 &, 0, Range@nDD
In[21]:= TimingATriangularNumber2A107EE

Out[21]= 87.34643, 50000005000000<
This is a situation where some mathematical knowledge is useful. The nth triangular numbers is just

the (n + 1)th binomial coefficient
n + 1

2

 .

In[22]:= TriangularNumber3@n_D := Binomial@n + 1, 2D
In[23]:= TimingATriangularNumber3A107EE

Out[23]= 80.000045, 50000005000000<

204 Solutions to exercises

12.3 Parallel processing
1. In the eighteenth century, Leonhard Euler proved that all even perfect numbers must be of the form

2p-1 H2p - 1L for 2p - 1 prime. (No one has yet proved that any odd perfect numbers exist.) Use this
fact to find all even perfect numbers for p < 10

4.

2. The following code can be used to create a plot of the Mandelbrot set. It uses Table to compute the
value for each point in the complex plane on a small grid. We have deliberately chosen a relatively
coarse grid (n = 100) as this is an intensive and time-consuming computation. The last argument to
NestWhileList, 250 here, sets a limit on the number of iterations that can be performed for each
input.

In[1]:= Mandelbrot@c_D :=

Length@NestWhileList@Ò ^2 + c &, 0, Abs@ÒD < 2 &, 1, 250DD
In[2]:= data = WithB8n = 100<, TableBMandelbrot@x + I yD,:y, -0.5, 0.5,

1

n
>, :x, -1.75, -0.75,

1

n
>FF;

In[3]:= ArrayPlot@data, ColorFunction Ø "GreenPinkTones"D
Out[3]=

Increase the resolution of the graphic by running the computation in parallel.

12.3 Solutions
1. First we find those values of p for which 2p - 1 is prime. This first step is quite compute-intensive;

fortunately, it parallelizes well.

In[1]:= LaunchKernels@D
Out[1]= 8KernelObject@1, localD, KernelObject@2, localD,

KernelObject@3, localD, KernelObject@4, localD<
In[2]:= primes = ParallelizeASelectARange@10000D, PrimeQA2Ò - 1E &EE

Out[2]= 82, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521,

607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941<
So for each of the above values of the list primes, 2p-1 H2p - 1L will be perfect (thanks to Euler).

In[3]:= perfectLis = MapA2Ò-1 I2Ò - 1M &, primesE;

12 Optimizing Mathematica programs 205

And finally, a check.

In[4]:= perfectQ@j_D := Total@Divisors@jDD ã 2 j;

In[5]:= Map@perfectQ, perfectLisD
Out[5]= 8True, True, True, True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True, True, True, True<
In[6]:= CloseKernels@D;

These are very large numbers indeed.

In[7]:= 2Ò-1 I2Ò - 1M &@9941D êê N

Out[7]= 5.988854963873362 μ 105984

2. Only two changes are required to run this in parallel – distribute the definition for Mandelbrot and

change Table to ParallelTable. Of course, to increase the resolution, the grid now has many

more divisions in each direction (n = 500).
In[8]:= Mandelbrot@c_D :=

Length@NestWhileList@Ò ^2 + c &, 0, Abs@ÒD < 2 &, 1, 250DD
In[9]:= LaunchKernels@D

Out[9]= 8KernelObject@5, localD, KernelObject@6, localD,
KernelObject@7, localD, KernelObject@8, localD<

In[10]:= DistributeDefinitions@MandelbrotD
Out[10]= 8Mandelbrot<

In[11]:= data = WithB8n = 500<, ParallelTableBMandelbrot@x + Â yD,:y, -0.5, 0.5,
1

n
>, :x, -1.75, -0.75,

1

n
>FF;

In[12]:= ArrayPlot@data, ColorFunction Ø "CMYKColors"D
Out[12]=

12.4 Compiling
1. Create a compiled function that computes the distance to the origin of a two-dimensional point.

Then compare it to some of the built-in functions such as Norm and EuclideanDistance for a
large set of points. If you have a C compiler installed on your computer, use the Compile option,
CompilationTarget Ø "C" and compare the results.

206 Solutions to exercises

2. Modify the previous exercise under the assumption that complex numbers are given as input to
your compiled function.

3. Many other iteration functions can be used for the Julia set computation. Experiment with some
other functions such as c sinHzL, c ‰z, or Gaston Julia’s original function:

 z4 + z3 ëHz - 1L + z2 ëIz3 + 4 z2 + 5M + c.

For these functions, you will have to adjust the test to determine if a point is unbounded upon
iteration. Try HAbs@Im@ÒDD > 50 &L.

12.4 Solutions
1. First, create a test point with which to work.

In[1]:= pt = RandomReal@1, 82<D
Out[1]= 80.333881, 0.135321<

The following does not quite work because the default pattern is expected to be a flat expression.

In[2]:= distReal = CompileA88p, _Real<<, SqrtAFirst@pD2 + Last@pD2E,
RuntimeAttributes Ø 8Listable<, Parallelization Ø TrueE

Compile::part : Part specification pP1T cannot be compiled since the argument

is not a tensor of sufficient rank. Evaluation will use the uncompiled function. à

Out[2]= CompiledFunctionB8p<, First@pD2 + Last@pD2 , -CompiledCode-F
Give a third argument to the pattern specification to deal with this: 8p, _Real, 1<.

In[3]:= ArrayDepth@ptD
Out[3]= 1

In[4]:= distReal = CompileA88p, _Real, 1<<, SqrtAFirst@pD2 + Last@pD2E,
RuntimeAttributes Ø 8Listable<, Parallelization Ø TrueE

Out[4]= CompiledFunctionB8p<, First@pD2 + Last@pD2 , -CompiledCode-F
In[5]:= distReal@ptD

Out[5]= 0.360261

Check it against the built-in function:

In[6]:= Norm@ptD
Out[6]= 0.360261

Check that it threads properly over a list of points.

12 Optimizing Mathematica programs 207

In[7]:= pts = RandomReal@1, 83, 2<D
Out[7]= 880.223743, 0.810299<, 80.873595, 0.72168<, 80.951892, 0.547475<<

In[8]:= distReal@ptsD
Out[8]= 80.840622, 1.13313, 1.0981<

Norm does not have the Listable attribute so it must be mapped over the list.

In[9]:= Map@Norm, ptsD
Out[9]= 80.840622, 1.13313, 1.0981<

In[10]:= distReal@ptsD == Map@Norm, ptsD
Out[10]= True

Now scale up the size of the list of points and check efficiency.

In[11]:= pts = RandomRealA1, 9106, 2=E;
In[12]:= AbsoluteTiming@distReal@ptsD;D

Out[12]= 80.109824, Null<

In[13]:= AbsoluteTiming@Map@Norm, ptsD;D
Out[13]= 80.113652, Null<

In[14]:= distReal@ptsD ã Map@Norm, ptsD
Out[14]= True

Compiling to C (assuming you have a C compiler installed), speeds things up even more.

In[15]:= distReal = CompileA88p, _Real, 1<<,
SqrtAFirst@pD2 + Last@pD2E, RuntimeAttributes Ø 8Listable<,
Parallelization Ø True, CompilationTarget Ø "C"E

Out[15]= CompiledFunctionB8p<, First@pD2 + Last@pD2 , -CompiledCode-F

You can squeeze a little more speed out of these functions by using Part instead of First and
Last .

In[16]:= distReal2 = CompileA88p, _Real, 1<<,
SqrtAp@@1DD2 + p@@2DD2E, RuntimeAttributes Ø 8Listable<,
Parallelization Ø True, CompilationTarget Ø "C"E

Out[16]= CompiledFunctionB8p<, pP1T2 + pP2T2 , -CompiledCode-F

208 Solutions to exercises

In[17]:= AbsoluteTiming@distReal2@ptsD;D
Out[17]= 80.059632, Null<

As an aside, the mean distance to the origin for random points in the unit square approaches the
following, asymptotically.

In[18]:= NIntegrateB x2 + y2 , 8x, 0, 1<, 8y, 0, 1<F
Out[18]= 0.765196

In[19]:= MeanüdistReal@ptsD
Out[19]= 0.765452

2. We need to make just three slight modifications to the code from the previous exercise: remove the
rank specification; specify Complex as the type; extract the real and imaginary parts to do the norm
computation.

In[20]:= Clear@distComplexD;
distComplex = CompileA88z, _Complex<<, SqrtARe@zD2 + Im@zD2E,

RuntimeAttributes Ø 8Listable<, Parallelization Ø TrueE
Out[21]= CompiledFunctionB8z<, Re@zD2 + Im@zD2 , -CompiledCode-F

In[22]:= pts = RandomComplex@1, 83<D
Out[22]= 80.349519 + 0. Â, 0.506776 + 0. Â, 0.153516 + 0. Â<

In[23]:= distComplex@ptsD
Out[23]= 80.349519, 0.506776, 0.153516<

In[24]:= distComplex@ptsD == Map@Norm, ptsD
Out[24]= True

3. Here is the computation for the iteration function c sinHzL using c = 1 + 0.4 Â.

In[25]:= cJulia2 = Compile@88z, _Complex<, 8c, _Complex<<, Module@8cnt = 1<,
FixedPoint@Hcnt++; c Sin@ÒDL &,

z, 100, SameTest Ø HAbs@Im@Ò2DD > 50 &LD; cntD,
CompilationTarget Ø "C", RuntimeAttributes Ø 8Listable<,
Parallelization Ø True, "RuntimeOptions" Ø "Speed"D

Out[25]= CompiledFunction@8z, c<,
Module@8cnt = 1<, FixedPoint@Hcnt++; c Sin@Ò1DL &, z, 100,

SameTest Ø HAbs@Im@Ò2DD > 50 &LD; cntD, -CompiledCode-D

12 Optimizing Mathematica programs 209

In[26]:= WithB8res = 100<, ArrayPlotB
ParallelTableB-cJulia2@x + y I, 1 + 0.4 ID, :y, -2 p, 2 p,

1

res
>,

:x, -2 p, 2 p,
1

res
>F, ColorFunction Ø ColorData@"CMYKColors"DFF

Out[26]=

210 Solutions to exercises

13

Applications and packages
13.1 Random walk application
1. Although all the lattice walks in this chapter were done on the square lattice, we could also imple-

ment the walks on lattices with different geometries. For example, the hexagonal lattice in two
dimensions can be used as the grid on which our random walkers move.

Create a two-dimensional random walk that can move in one of six directions each separated by 60
degrees.

2. Generate random walks where the step length t occurs with a probability proportional to 1ë t2.

These walks are sometimes referred to as Lévy flights.

3. Create a version of ShowWalk that uses GraphicsComplex directly. The first argument to
GraphicsComplex is the coordinate information as given by RandomWalk; the second argument
should be graphics primitives (Line , Point) that indicate how the coordinates should be
displayed.

4. Create a visualization of random walks that takes advantage of the efficiency of Graph to store and
represent large amounts of graphical data. The first argument to Graph can be a list of rules that
represents the connectivity information. For example, 2 3 indicates that the second vertex is
connected to the third vertex with a directed edge. Use the option VertexCoordinates to pass
the explicit coordinate information from RandomWalk to Graph. Run some tests to determine the
efficiency (in terms of running time and memory) of this approach as compared to the ShowWalk
function that was developed in this chapter.

5. Create a function that generates random walks with random step length. Advanced: Do the same
but allow for arbitrary distributions.

6. Create a random walk that is bounded by a region in the Cartesian plane, for example, a circle
centered at the origin of radius 2.

7. Create a one-dimensional random walk over the digits of p – if the digit is even, take a step to the
right; if the digit is odd, take a step to the left.

13 Applications and packages 211

13.1 Solutions
3. Here is the usage message for GraphicsComplex,

In[1]:= ? GraphicsComplex

GraphicsComplexA8pt1, pt2, …<, dataE represents a graphics complex in which

coordinates given as integers i in graphics primitives in data are taken to be pti. à

The first argument to GraphicsComplex is a list of coordinate points, such as the output from
RandomWalk. The second argument is a set of graphics primitives indexed by the positions of the
points in the list of coordinates. Here are two examples, one in two dimensions and the other in
three.

In[2]:= Needs@"PWM`RandomWalks`"D

In[3]:= Graphics@GraphicsComplex@
RandomWalk@500, LatticeWalk Ø FalseD, Line@Range@500DDDD

Out[3]=

In[4]:= Graphics3D@GraphicsComplex@RandomWalk@500,
Dimension Ø 3, LatticeWalk Ø FalseD, Line@Range@500DDDD

Out[4]=

We can quickly modify the code for ShowWalk developed in the chapter to use
GraphicsComplex instead.

In[5]:= ShowWalkGC@walk_D :=

Module@8dim = Dimensions@walkD, ran = Range@Length@walkDD<,
If@Length@dimD ã 1 »» dimP2T ã 2,

Graphics@GraphicsComplex@walk, Line@ranDDD,
Graphics3D@GraphicsComplex@walk, Line@ranDDDDD

In[6]:= ShowWalkGC@RandomWalk@2500DD

Out[6]=

212 Solutions to exercises

In[7]:= ShowWalkGC@RandomWalk@2500, Dimension Ø 3, LatticeWalk Ø FalseDD
Out[7]=

Here are some comparisons of running times for this approach and the ShowWalk function
developed in the chapter.

In[8]:= rw = RandomWalk@1000000, Dimension Ø 3, LatticeWalk Ø FalseD;
In[9]:= Timing@gc = ShowWalkGC@rwD;D

Out[9]= 80.003836, Null<
In[10]:= Timing@sw = ShowWalk@rwD;D

Out[10]= 80.12881, Null<
4. Start by creating a list of rules that indicate the first point is connected to the second, the second

point is connected to the third, and so on. If you have ten points, partition them as follows.

In[11]:= Partition@Range@10D, 2, 1D
Out[11]= 881, 2<, 82, 3<, 83, 4<, 84, 5<, 85, 6<, 86, 7<, 87, 8<, 88, 9<, 89, 10<<

The graph rules are created by applying DirectedEdge at level 1.

In[12]:= Apply@DirectedEdge, %, 81<D
Out[12]= 81 2, 2 3, 3 4, 4 5, 5 6, 6 7, 7 8, 8 9, 9 10<

Here is a little function that puts these pieces together.

In[13]:= Clear@bondsD;
bonds@n_D := Apply@DirectedEdge, Partition@Range@nD, 2, 1D, 81<D

The bond information is the first argument to Graph; the coordinates given by RandomWalk are
the value of the option VertexCoordinates.

In[15]:= << PWM`RandomWalks`

13 Applications and packages 213

In[16]:= With@8steps = 1500<, Graph@bonds@stepsD,
VertexCoordinates Ø RandomWalk@steps, LatticeWalk Ø TrueDDD

Out[16]=

One of the advantages of representing these random walks as graphs is that you have all the graph
formatting and styling functions available to quickly modify your graph.

In[17]:= With@8steps = 1500<, Graph@bonds@stepsD,
DirectedEdges Ø False, EdgeStyle Ø Gray, VertexSize Ø81 Ø 8"Scaled", .025<, steps Ø 8"Scaled", .025<<, VertexStyle Ø81 Ø 8Opacity@0.4D, Green<, steps Ø 8Opacity@0.4D, Red<<,
VertexCoordinates Ø RandomWalk@steps, LatticeWalk Ø FalseDDD

Out[17]=

The disadvantage of this approach is that it is limited to two-dimensional walks. Graph does not
support three-dimensional objects and it does not make much sense in one dimension.

13.4 Creating packages
1. The following set of exercises will walk you through the creation of a package Collatz, a package

of functions for performing various operations related to the Collatz problem that we investigated
earlier (Exercises 3 and 4 of Section 4.1, Exercise 6 of Section 6.2, and Exercise 4 of Section 7.3).
Recall that the Collatz function, for any integer n, returns 3 n + 1 for odd n, and n ê2 for even n. The
(as yet unproven) Collatz Conjecture is the statement that, for any initial positive integer n, the
iterates of the Collatz function always reach the cycle 4, 2, 1,…. Start by creating an auxiliary
function collatz@nD that returns 3 n + 1 for n odd and n ê2 for n even.

a. Create the function CollatzSequence@nD that lists the iterates of the auxiliary function
collatz@nD. Here is some sample output of the CollatzSequence function.

In[1]:= CollatzSequence@7D
Out[1]= 87, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1<

214 Solutions to exercises

b. Create a usage message for CollatzSequence and warning messages for each of the following
situations:

notint: the argument to CollatzSequence is not a positive integer

argx: CollatzSequence was called with the wrong number of arguments

c. Modify the definition of CollatzSequence that you created in part a. above so that it does
some error trapping and issues the appropriate warning message that you created in part b.

d. Finally, put all the pieces together and write a package Collatz` that includes the appropriate
BeginPackage and Begin statements, usage messages, warning messages, and function
definitions. Make CollatzSequence a public function and collatz a private function. Put
your package in a directory where Mathematica can find it on its search path and then test it to see
that it returns correct output such as in the examples below.

In[11]:= Quit@D;
In[1]:= << PwM`Collatz`

In[2]:= ? CollatzSequence

CollatzSequence@nD computes the sequence of Collatz iterates starting
with initial value n. The sequence terminates as soon as it reaches the value 1.

Here are various cases in which CollatzSequence is given bad input.

In[3]:= CollatzSequence@-5D
CollatzSequence::notint : First argument, -5, to CollatzSequence must be a positive integer.

In[4]:= CollatzSequence@4, 6D
CollatzSequence::argx : CollatzSequence called with 2 arguments; 1 argument is expected. à

Out[4]= CollatzSequence@4, 6D
And this computes the sequence for starting value 27.

In[5]:= CollatzSequence@27D
Out[5]= 827, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484,

242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466,

233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890,

445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283,

850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079,

3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367,

4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732,

866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46,

23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1<
2. The square end-to-end distance of a two-dimensional walk is defined as Ix f - xiM2 + I y f - yiM2, where 8xi, yi< and 9x f , y f = are the initial and final locations of the walk, respectively. Assuming the initial

13 Applications and packages 215

point is the origin, then this simplifies to x f
2 + y f

2 . Write a function SquareDistance that takes a

two-dimensional walk as an argument and computes the square end-to-end distance. Write a usage
message and include this function as a publicly exported function in the RandomWalks package.

13.4 Solutions
1. Here are the definitions for the auxiliary collatz function.

In[1]:= collatz@n_?EvenQD := n ê 2
In[2]:= collatz@n_?OddQD := 3 n + 1

a. This is essentially the definition given in the solution to Exercise 5 from Section 6.2.

In[3]:= CollatzSequence@n_D := NestWhileList@collatz, n, Ò ∫ 1 &D
In[4]:= CollatzSequence@7D

Out[4]= 87, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1<
b. First we write the usage message for CollatzSequence, our public function. Notice that we write

no usage message for the private collatz function.

In[5]:= CollatzSequence::usage =

"CollatzSequence@nD computes the sequence of Collatz

iterates starting with initial value n. The sequence

terminates as soon as it reaches the value 1.";

Here is the warning message that will be issued whenever CollatzSequence is passed an argu-
ment that is not a positive integer.

In[6]:= CollatzSequence::notint =

"First argument, `1`, to CollatzSequence

must be a positive integer.";

c. Here is the modified definition which now issues the warning message created above whenever the
argument n is not a positive integer.

In[7]:= CollatzSequence@n_D :=

If@IntegerQ@nD && n ¥ 0, NestWhileList@collatz, n, Ò ∫ 1 &D,
Message@CollatzSequence::notint, nDD

The following case covers the situation when CollatzSequence is passed two or more argu-
ments. Note that it uses the built-in argx message, which is issued whenever built-in functions are
passed the wrong number of arguments.

In[8]:= CollatzSequence@_, args__D ê; Message@CollatzSequence::argx,
CollatzSequence, Length@8args<D + 1D := Null

d. The package begins by giving usage messages for every exported function. The functions to be
exported are mentioned here – before the subcontext Private` is entered – so that the symbol
CollatzSequence has context Collatz`. Notice that collatz is not mentioned here and
hence will not be accessible to the user of this package.

In[9]:= Quit@D

216 Solutions to exercises

In[1]:= BeginPackage@"PwM`Collatz`"D;
In[2]:= CollatzSequence::usage =

"CollatzSequence@nD computes the sequence of Collatz

iterates starting with initial value n. The sequence

terminates as soon as it reaches the value 1.";

In[3]:= CollatzSequence::notint =

"First argument, `1`, to CollatzSequence

must be a positive integer.";

A new context PwM`Collatz`Private` is then begun within PwM`Collatz. All the definitions
of this package are given within this new context. The context
PwM`Collatz`CollatzSequence is defined within the System` context. The context of
collatz, on the other hand, is PwM`Collatz`Private`.

In[4]:= Begin@"`Private`"D;
In[5]:= collatz@n_?EvenQD := n ê 2
In[6]:= collatz@n_?OddQD := 3 n + 1

In[7]:= CollatzSequence@n_D :=

If@IntegerQ@nD && n ¥ 0, NestWhileList@collatz, n, Ò ∫ 1 &D,
Message@CollatzSequence::notint, nDD

In[8]:= CollatzSequence@_, args__D ê; Message@CollatzSequence::argx,
CollatzSequence, Length@8args<D + 1D := Null

In[9]:= End@D;
In[10]:= EndPackage@D

After the End@D and EndPackage@D functions are evaluated, $Context and $ContextPath
revert to whatever they were before, except that PwM`Collatz` is added to $ContextPath.
Users can refer to CollatzSequence using its short name, but they can only refer to the auxiliary
function collatz by its full name. The intent is to discourage clients from using collatz at all,
and doing so should definitely be avoided, since the author of the package may change or remove
auxiliary definitions at a later time.

13 Applications and packages 217

	2 The Mathematica language
	2.1 Expressions
	2.1 Solutions

	2.2 Definitions
	2.2 Solutions

	2.3 Predicates and Boolean operations
	2.3 Solutions

	2.4 Attributes
	2.4 Solutions

	3 Lists
	3.1 Creating and displaying lists
	3.1 Solutions

	3.2 The structure of lists
	3.2 Solutions

	3.3 Operations on lists
	3.3 Solutions

	4 Patterns and rules
	4.1 Patterns
	4.1 Solutions

	4.2 Transformation rules
	4.2 Solutions

	4.3 Examples and applications
	4.3 Solutions

	5 Functional programming
	5.2 Functions for manipulating expressions
	5.2 Solutions

	5.3 Iterating functions
	5.3 Solutions

	5.4 Programs as functions
	5.4 Solutions

	5.5 Scoping constructs
	5.5 Solutions

	5.6 Pure functions
	5.6 Solutions

	5.7 Options and messages
	5.7 Solutions

	5.8 Examples and applications
	5.8 Solutions

	6 Procedural programming
	6.1 Loops and iteration
	6.1 Solutions

	6.2 Flow control
	6.2 Solutions

	6.3 Examples and applications
	6.3 Solutions

	7 Recursion
	7.1 Fibonacci numbers
	7.1 Solutions

	7.2 Thinking recursively
	7.2 Solutions

	7.3 Dynamic programming
	7.3 Solutions

	7.4 Classical examples
	7.4 Solutions

	8 Numerics
	8.1 Numbers in Mathematica
	8.1 Solutions

	8.2 Numerical computation
	8.2 Solutions

	8.3 Arrays of numbers
	8.3 Solutions

	8.4 Examples and applications
	8.4 Solutions

	9 Strings
	9.1 Structure and syntax
	9.1 Solutions

	9.2 Operations on strings
	9.2 Solutions

	9.3 String patterns
	9.3 Solutions

	9.4 Regular expressions
	9.4 Solutions

	9.5 Examples and applications
	9.5 Solutions

	10 Graphics and visualization
	10.1 Structure of graphics
	10.1 Solutions

	10.2 Efficient structures
	10.2 Solutions

	10.3 Sound
	10.3 Solutions

	10.4 Examples and applications
	10.4 Solutions

	11 Dynamic expressions
	11.1 Manipulating expressions
	11.1 Solutions

	11.2 The structure of dynamic expressions
	11.2 Solutions

	11.3 Examples and applications
	11.3 Solutions

	12 Optimizing Mathematica programs
	12.2 Efficient programs
	12.2 Solutions

	12.3 Parallel processing
	12.3 Solutions

	12.4 Compiling
	12.4 Solutions

	13 Applications and packages
	13.1 Random walk application
	13.1 Solutions

	13.4 Creating packages
	13.4 Solutions

