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CHAPTER 8

PROBLEM 8.1. A Fast Dynamo.
Demonstrate the stretch-fold-shear dynamo mechanism by considering the
action of a ideal Beltrami flow v = 2 cos2 t (0, sin x, cosx) in Cartesian co-
ordinates, acting for a time t = π, on a field B = (1, 0, 0) cosx in the large
magnetic Reynolds limit.

SOLUTION. For this flow and field, the three components of the ideal
induction equation become

∂Bx

∂t
= 0,

∂By

∂t
=

∂

∂x
(vyBx) = 2 cos2 t

∂

∂x
(sin x cos x) = 2 cos2 t cos 2x,

∂Bz

∂t
=

∂

∂x
(vzBx) = 2 cos2 t

∂

∂x
(cosx cosx) = −2 cos2 t sin 2x.

Thus, Bx does not change in time but both By and Bz increase monoton-
ically. For example, between t = 0 and t = π, the amplitudes of By and Bz

increase by
∫ π

0

2 cos2 tdt = π,

and the same is true for each subsequent interval of π.

PROBLEM 8.2. Differential Rotation.
Consider the effect of a toroidal velocity v = RΩ(R, z)φ̂ in cylindrical polars
on a poloidal field (B0ẑ), which remains steady and uniform.

(a) Show that, if there is no diffusion initially, then the toroidal field
increases linearly in time and reaches a value of order RmB0 before diffusion
sets in.

(b) Find the ultimate steady state when Ω is a function of r = (R2+z2)1/2

alone.

SOLUTION after Moffatt (1978) Magnetic field generation in electri-

cally conducting fluids.
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The action of a toroidal flow v = RΩ(R, z)φ̂ on a poloidal field Bp = B0ẑ

is to produce a toroidal field Bφ̂ by the induction equation

∂B

∂t
= RB0

∂Ω

∂z
+ η

(

∇2 − 1

R2

)

B. (1)

Thus, if Ω is constant on Bp-lines and B = 0 initially, then B = 0 for t > 0
too (the law of isorotation), since each Bp-line is rotated without distortion.
However, if ∂Ω/∂z 6= 0, then B(R, z, t) will grow in time.

(a) Initial Phase
In the initial phase, when diffusion is negligible, the solution of (1) is

simply

B(R, z, t) = RB0
∂Ω

∂R
t,

so that the toroidal field grows linearly in time, as required.
The neglected diffusion term in (1) is of order ηB0/L

2
0, where L0 is the

scale over which Ω varies. This becomes comparable with the other term
RB0∂Ω/∂z when t ≈ L2

0/η, so that the toroidal field becomes of size RmB0,
where Rm = Ω0L

2
0/η, as required.

(b) Steady State

As t → ∞ the solution of (1) approaches a steady state B(R, z) satisfying

0 = RB0
∂Ω

∂z
+ η

(

∇2 − 1

R2

)

B. (2)

In the particular case when Ω = Ω(r), where r = (R2 + z2)1/2, the solution
of (2) is

B(r, θ) = −B0 sin θ cos θ

3ηr3

∫ r

0

r4Ω(r)dr,

as proved in detail in Moffatt’s book.

PROBLEM 8.3. An Antidynamo Theorem.
Prove that a planar velocity v = vx(x, y, z, t)x̂+vy(x, y, z, t)ŷ cannot produce
dynamo action.

SOLUTION.
For this velocity the z-component of the induction equation is

∂Bz

∂t
= − ∂

∂x
(vxBz)−

∂

∂y
(vyBz) + η∇2Bz.
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However, this does not allow regeneration of Bz from Bx or By since neither
Bx nor By appears on the right-hand side. Also, it implies that Bz decays in
time. In other words, this planar velocity does not produce dynamo action
for Bz.

PROBLEM 8.4. Parker Dynamo.
Examine the properties of Parker’s dynamo in Cartesian geometry (Sec.
8.3.1.1) in the particular case when Bz = 0 and ∂/∂z = 0.

SOLUTION.
Parker (1955) used a simple cartesian model to examine the properties

of an oscillatory α-ω dynamo. Suppose a shear Vy acts on a poloidal field
(Bx, Bz) to produce a toroidal field By. For simplicity, assume Bz = 0 and
∂/∂z = 0, and suppose α and ω = ∂Vy/∂x are both constant. Then, following
Roberts (1967) An Introduction to MHD, the dynamo equations become

∂By

∂t
=

∂2By

∂z2
+RωBx,

∂Bx

∂t
=

∂2Bx

∂z2
+Rα

∂By

∂z
,

where Rω = (L3/η)∂ω/∂r and Rα =.
Solutions to these of the form

[Bx(z, t), By(z, t)] = [Bx, By] exp(ikz + λt),

give
(λ2 + k2) = ikD,

whose solution is

λ = −k2 + [1 + i sgn(kD)](1
2
kD)1/2.

Splitting λ into real and imaginary parts λi + iλr gives

λr = −k2 + (1
2
kD)1/2,

λi = sgn(kD)(1
2
kD)1/2.

Thus, there is a critical dynamo number D = Dcrit given by

|Dcrit| = 2|k|3,
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such that when D < Dcrit the solution decays in time, whereas when D >
Dcrit it grows. The marginal oscillatory state (D = Dcrit) is oscillatory. When
D > Dcrit, the magnetic field propagates in the z-direction as a dynamo wave
with phase velocity −|k|(sgnDcrit), whose direction depends on the sign of
D.

The relative phases of Bx and By depend on Rα and Rω. Thus

Bx

By
= [1 + i sgn(kD)]

k2

Rω
,

and so the argument of Bx/By is positive if sgn(kRα) > 0 and negative if
sgn(kRα) < 0.

PROBLEM 8.5. Flux Expulsion.
Consider the effect of a differential rotation v = RΩ(R)φ̂ in cylindrical polars
(R, φ, z) on a field (BR, Bφ, 0) that is initially uniform (B0x̂).

(a) Show that, if there is initially no diffusion and dΩ/dR 6= 0, then
the azimuthal field (Bφ) grows in time, and that it reaches a value of order

R
1/2
m B0 before diffusion sets in (assuming Rm ≡ Ω0R

2
0/η ≫ 1).

(b) Prove that, if Ω(R) is constant inside R = R0 and vanishes outside,
then the ultimate steady state has a vanishing field inside R = R0, a state
called flux expulsion.

SOLUTION after Moffatt (1978) Magnetic field generation in electri-

cally conducting fluids.
For vφ(R) = RΩ(R), BR(R, φ, t) and Bφ(R, φ, t), and B = −ẑ×∇A, the

ideal induction equation becomes

∂A

∂t
+ Ω(R)

∂A

∂φ
= η∇2A,

where the condition at t = 0 that BR = B0 cosφ and Bφ = −B0 sinφ implies
that

A(R, φ, 0) = B0R sin φ.

The appropriate solution for A(R, φ, t) is therefore of the form

A(R, φ, t) = Im[B0f(R, t)eiφ],

where
∂f

∂t
+ iΩ(R)f = η

(

1

R

∂

∂R
R
∂f

∂R
− 1

R2

)

f (3)
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and
f(R, 0) = R.

(a) Initial Phase
When t = 0 we have a uniform field with no diffusion, so, in the initial

phase, diffusion is negligible and the field evolves by the ideal induction
equation, so that the solution to Eq.(3) with η = 0 is

f(R, t) = R−iω(R)t,

which gives
A(R, φ, t) = BoR sin[φ− Ω(R)t]. (4)

The resulting field components are

BR =
1

R

∂A

∂φ
= B0 cos[φ− Ω(R)t],

Bφ = −∂A

∂R
= −B0 sin[φ− Ω(R)t] +B0R

dΩ

dR
t cos[φ− Ω(R)t]. (5)

Thus, when dΩ/dR = 0, we have solid-body rotation and the field is
rotated without distortion. But, dΩ/dR 6= 0, Bφ grows linearly with time
due to the stretching of the field lines by the differential rotation.

How long is it before diffusion becomes important? The diffusion term
during the above ideal motion (4) is

η∇2A = ηB0
1

R2

d

dR

(

R3 dΩ

dR

)

t cos[φ−Ω(R)t]−ηB0R

(

dΩ

dR

)2

t2 sin[φ−Ω(R)t],

(6)
whereas the advection term is

Ω
∂A

∂φ
= B0ΩR cos[φ− Ω(R)t]. (7)

Thus, writing in order of magnitude Ω = Ω0 and dΩ/dR = Ω0/R0, diffu-
sion is negligible provided both coefficients of the trig terms in (6) are much
smaller than the corresponding coefficient in (7), namely, provided

Ω0t ≪ Rm and Ω0t ≪ R1/2
m ,

where Rm = Ω0R
2
0/η.
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Since Rm ≫ 1 the second condition is the appropriate condition, as re-
quired. Moreover, at a time such that Ω0t ≈ R

1/2
m , the second term in the

expression for Bφ in Eq.(6) dominates, which implies a value of

Bφ ≈ R1/2
m B0,

as required.
(b) Steady State

As t → ∞, the solution of (3) is likely to tend to a steady state [f(R)]
satisfying

iΩ(R)f = η

(

1

R

d

dR
R

df

dR
− 1

R2

)

f, (8)

subject to the condition at large distances that

f(R) → R as R → ∞,

so that the field there is unaffected.
For the particular angular velocity profile

Ω(R) = k2
0/η for R < R0,

Ω(R) = 0 for R > R0,

where k2
0 = ηΩ0, the required solution to (8) has the form

f(R) = DJ1(pR) for R < R0

and
f(R) = R + C/R for R > R0,

where J1(pR) is a Bessel function and p = (1− ik0)/
√
2.

The constants C and D are determined by the conditions that BR and
Bφ be continuous at R = R0, which imply

D =
2

pJ0(pR0)

and

C =
R0[2J1(pR0)− pR0J0(pR0)]

pJ0(pR0)
.
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In the limit as Rm → ∞, we have k0 → ∞ and p → ∞, so that D → 0
and C → −R2

0. In other words f(R) becomes

f(R) = 0 for R < R0

and
f(R) = R −R2

0/R for R > R0,

with flux function
A = 0 for R < R0

and
A = B0

(

R− R2
0/R

)

sin φ for R > R0.

In other words, the magnetic field is totally expelled from the rotating region,
as required, and there is a current sheet on the boundary R = R0.
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