
1

Working	with	Jupyter	Notebooks	
Andrew Binley & Guillaume Blanchy

1.	What	is	a	Jupyter	Notebook?	

Jupyter notebooks (.ipynb) are text files that can be viewed as interactive web page in a
browser. A Jupyter notebook consists of different cells that can contain code (such as Python)
or text (such as Markdown). The code cells can be run in the browser and their output directly
viewed. The notebooks can be considered as scripts or macros, allowing the user to rerun
with different settings, or apply to other datasets. As such they are ideal for exploratory
analysis or teaching. Jupyter notebooks need to be served by a server that can be run locally
(http://localhost:8888/tree) or remotely (https://mybinder.org).
	
2.	How	to	install	a	local	copy?	

Running Jupyter notebooks locally (on your own computer) requires that you have a Python
environment installed. For Windows user, we recommend the installation of the WinPython
distribution (note that anaconda distribution is also an option). Once downloaded and
installed, go the WinPython directory. To run the notebook just click on Jupyter
Notebook.exe. The notebooks will be stored inside the “notebooks” folder.
	
3.		Running	the	notebook	

After running the Jupyter Notebook.exe file, the home webpage should open in your
default browser (see figure below). From there you can create a new notebook with code and
text cells or import one (upload) from your file system. To create a new notebook select New
and Python 3.

Add the text print (‘hello world’) and then Run the notebook.

Then add the Markdown text shown in the figure below.

2

When you run it you should see the formatting below.

You can run each section of the notebook step by step with the Run command (or SHIFT+enter)

or you can restart and run the entire notebook with the command (see below).

You can rename the notebook by clicking on the name (in this example Untitled1) at the top
of the page. The notebook will be saved as a .ipynb file but you can also select Download
from the File menu and to save in .html format, which can be useful for displaying later
and/or sharing. 	

3

4.		Running	ResIPy	in	a	notebook		

To install the “resipy” package which contains the Python application interface (API) around the
R family of codes open the WinPython Command Prompt.exe and type pip install resipy.
If you are planning to run 3D visualization, we also recommend that you install pyvista (pip
install pyvista) – this gives additional plotting options. Note that these commands only
need to be run once, i.e. when you have installed WinPython but if you need to install an updated
version of ResIPy then you can use pip install ‐U resipy

If you are creating a new notebook for ResIPy the first command (i.e. code section) will be
from resipy import R2 which will link to the suite of R family of codes The first thing to do
is to create an instance of the R2 class (also called an ‘object’), that we will call 'k '. This object
will be used throughout. Assuming we are working with R2 then we need the command
k=R2(typ=’R2’) or k=R2() since R2 is the default type. When you run this you should see
something like the screenshot below.

The notebook we will build will contain a series of methods of the form k.text(), for example,
k.createMesh(). The method k.createMesh() is a function of a class k, defined above. You
can get help on the attributes/parameters of each of these by typing, for example,
help(k.createMesh). A list of methods/functions can be found at
https://hkex.gitlab.io/pyr2/api.html.

We will begin with reading in a dataset in the standard R2 format. Assuming a Windows user
with the file protocol.dat in the folder C:\ResIPy\Notebook examples\Figure_5.1\, we
can read this in with

k.createSurvey(r'C:\ResIPy\Notebook examples\Figure_5.1\protocol.dat',
ftype='ProtocolDC')

Note the r prefix to the file name is needed in Windows because of the \ in the file name.

4

As this file contains a set of normal and reciprocal measurements we can display the reciprocal
errors using k.showError() – this should give the following plot

	
We can fit an error model to this plot using k.fitErrorPwl()	
	

	

We now read in the electrode coordinates from the file electrodes.csv with
k.importElec(r'C:\ResIPy\Notebook examples\Figure_5.1\electrodes.csv') and
then plot the pseudosection with k.showPseudo()	
	

	

A triangular mesh is then created with k.createMesh(typ='trian') and we can display the
mesh with k.showMesh()
	

	

5

	
	
	
To invert the data we type k.invert(). Before doing this we have to specify k.err = True
to ensure that the fitted error model is used in the inversion, otherwise default settings will be
applied.

R2 will then run and display its output log.
	

	
	
When R2 is complete, to display the results we can type k.showResults(contour=True,
sens=False, zlim=[‐20,20], color_map='jet')
	

	
	

Running k.showPseudoInvError(vmin=‐3, vmax=3) allows us then to look at the
distribution of normalized errors in a pseudosection

6

The entire notebook for the above is saved as Figure 5.1 notebook.ipynb in the notebook
examples folder	
	
5.		Other	notebooks	

In the notebook examples folder the following Jupyter Notebooks are included (along with
html versions that can be viewed in any browser):

Forward modelling.ipynb – this illustrates how to do forward modelling of a synthetic model
and subsequent inversion of the forward modelled data. The notebook is setup to allow the user
to explore the effect of different quadrupole geometries and data noise on the recovery of the
anomalies created in the synthetic model.

Time‐lapse inversion.ipynb – this illustrates how to time-lapse inversion using the
problem illustrated in Figure 5.21.

3D inversion.ipynb – this illustrates a 3D inversion using the problem covered in Tutorial 06
of the ResIPy graphical interface tutorials. This example shows how to use the pyvista plotting
options for 3D problems.

Many more example ResIPy Jupyter Notebooks are available at
https://hkex.gitlab.io/pyr2/auto_examples/index.html

Andrew Binley & Guillaume Blanchy
Lancaster University
August 2020

