Working with Jupyter Notebooks
Andrew Binley & Guillaume Blanchy

1. What is a Jupyter Notebook?

Jupyter notebooks (.ipynb) are text files that can be viewed as interactive web page in a
browser. A Jupyter notebook consists of different cells that can contain code (such as Python)
or text (such as Markdown). The code cells can be run in the browser and their output directly
viewed. The notebooks can be considered as scripts or macros, allowing the user to rerun
with different settings, or apply to other datasets. As such they are ideal for exploratory
analysis or teaching. Jupyter notebooks need to be served by a server that can be run locally
(http://localhost:8888/tree) or remotely (https://mybinder.org).

2. How to install a local copy?

Running Jupyter notebooks locally (on your own computer) requires that you have a Python
environment installed. For Windows user, we recommend the installation of the WinPython
distribution (note that anaconda distribution is also an option). Once downloaded and
installed, go the WinPython directory. To run the notebook just click on Jupyter
Notebook.exe. The notebooks will be stored inside the “notebooks” folder.

3. Running the notebook

After running the Jupyter Notebook.exe file, the home webpage should open in your
default browser (see figure below). From there you can create a new notebook with code and
text cells or import one (upload) from your file system. To create a new notebook select New
and Python 3.

— Jupyter Quit | | Logout
Files Running IPython Clusters
Select items to perform actions on them. Upload [New~| &
Notebook:
Do |~ W Name ¥ e
Octave
[J [docs Python 3
- - _ L Create a new notebook with Python 3
(0 & My First ResIPy notebook.ipynb Runnin ol e

Add the text print (‘hello world’) and then Run the notebook.

- Ju pyter Untitled3 Last Checkpoint: a few seconds ago (unsaved changes) P Logout

File Edit View Insert Cell Kernel Widgets Help Trusted | &* | Python3 O

B |+ @B 42 ¢ MRin B C W Code v = || & Voila || Ll

In [1]: |print('hello world')

hello world

In [J:

Then add the Markdown text shown in the figure below.

’ Ju pyter Untitled1 Last Checkpoint: 03/08/2020 (unsaved changes) ﬂ Logout
File Edit View Insert Cell Kernel Widgets Help Trusted | Python 3 O

+E]@ B 4 ¢ [Hrn B[C|» |[vakiown | (=] D Voia || L

In [1]: print ('hello world')
hello world
this is a title
this is a subtitle

This is some text

And an equation $$y=\sum_{i=1}"n \frac{\sqrt{x_i}}{2}$$

When you run it you should see the formatting below.

" Jupyter Untitled1 Last Checkpoint: 03/08/2020 (unsaved changes) @ Logout
File Edit View Insert Cell Kernel Widgets Help Trusted | & |Python3 (o]
+ < @ B A ¥ MR | H C W code v @ &dVoila ||l

In [1]: print ('hello world')

hello world

this is a title

this is a subtitle
This is some text

And an equation

You can run each section of the notebook step by step with the Run command (or SHIFT+enter)

or you can restart and run the entire notebook with the ” ' command (see below).

“ Jupyter Untitled1 Last Checkpoint: 03/08/2020 (unsaved changes) P Logout
File Edit View Insert Cell Kernel Widgets Help Trusted | ¢ | Python3 O
+ < @& B A ¥ MRun |H C | W | cCode v| = | & Voila || Ll

restart the kernel, then re-run the whole notebook (with dialog)

In [1]: print ('hello world')

hello world

this is a title

this is a subtitle
This is some text

And an equation

3
“[%

You can rename the notebook by clicking on the name (in this example Untitled1) at the top
of the page. The notebook will be saved as a . ipynb file but you can also select Download
from the File menu and to save in .html format, which can be useful for displaying later
and/or sharing.

4. Running ResIPy in a notebook

To install the “resipy” package which contains the Python application interface (API) around the
R family of codes open the WinPython Command Prompt.exe and type pip install resipy.
If you are planning to run 3D visualization, we also recommend that you install pyvista (pip
install pyvista) - this gives additional plotting options. Note that these commands only
need to be run once, i.e. when you have installed WinPython but if you need to install an updated
version of ResIPy then you can use pip install -U resipy

If you are creating a new notebook for ResIPy the first command (i.e. code section) will be
from resipy import R2 which will link to the suite of R family of codes The first thing to do
is to create an instance of the R2 class (also called an ‘object’), that we will call 'k ". This object
will be used throughout. Assuming we are working with R2 then we need the command
k=R2(typ="R2’) or k=R2() since R2 is the default type. When you run this you should see
something like the screenshot below.

- JUpyter My First ReslIPy notebook Last Checkpoint: a minute ago (unsaved changes) ﬂ Logout
File Edit View Insert Cell Kernel Widgets Help Trusted | ¢* | Python3 O
+ < & B 4 ¥ MRun B C P Code v 23| &d Voila ||l

In [1]: from resipy import R2
k = R2(typ='R2")

C:\Program Files (x86)\WPy64-3770\python-3.7.7.amd64\1lib\site-packages\resipy\meshTools.py:45: UserWarning: pyvista not install

ed, 3D meshing viewing options will be limited
warnings.warn('pyvista not installed, 3D meshing viewing options will be limited')

API path = C:\Program Files (x86)\WPy64-3770\python-3.7.7.amd64\1lib\site-packages\resipy

ResIPy version = 2.1.8

cR2.exe found and up to date.

R3t.exe found and up to date.

cR3t.exe needs to be updated...done

Working directory is: C:\Program Files (x86)\WPy64-377@\python-3.7.7.amd64\1lib\site-packages\resipy\invdir
clearing the dirname

[1]

The notebook we will build will contain a series of methods of the form k. text (), for example,
k.createMesh(). The method k.createMesh() isa function of a class k, defined above. You
can get help on the attributes/parameters of each of these by typing, for example,
help(k.createMesh). Alist of methods/functions can be found at
https://hkex.gitlab.io/pyr2/api.html.

We will begin with reading in a dataset in the standard R2 format. Assuming a Windows user
with the file protocol.dat in the folder C: \ResIPy\Notebook examples\Figure 5.1\, we
can read this in with

k.createSurvey(r'C:\ResIPy\Notebook examples\Figure 5.1\protocol.dat’,
ftype="ProtocolDC")

Note the r prefix to the file name is needed in Windows because of the \ in the file name.

In [2]: |k.createSurvey(r'C:\ResIPy\Notebook examples\Figure_5.1\All_data.dat', ftype='ProtocolDC")

1448/1466 reciprocal measurements found.
© measurements error > 20 %

As this file contains a set of normal and reciprocal measurements we can display the reciprocal
errors using k. showError () - this should give the following plot

In [3]: k.showError()

Observed Errors

We can fit an error model to this plot using k. fitErrorPwl ()

In [4]: k.fitErrorPwl()
Error model is R_err = ©.002 R_avg”@.692 (R"2 = 0.881)

Multi bin power-law resistance error plot
Remor = 0.002R%,%? (R? = 0.881)

+ Raw + 1
® Bin Means AN
—— Power Law Fit

We now read in the electrode coordinates from the file electrodes. csv with

k.importElec(r'C:\ResIPy\Notebook examples\Figure 5.1\electrodes.csv') and
then plot the pseudosection with k.showPseudo()

In [5]: k.importElec(r'C:\ResIPy\Notebook examples\Figure_5.1\electrodes.csv')
In [6]: k.showPseudo()

Apparent Resistivity
pseudo section

Pseudo depth [m]
¥ 8 8 8B G B

]

&

W 20 30 40 50 & 70 8
Distance [m]

A triangular mesh is then created with k.createMesh(typ="trian"') and we can display the
mesh with k.showMesh ()

In [7]: k.createMesh(typ='trian')
k.showMesh()

Creating triangular mesh...Reading mesh.msh

Gmsh version == 3.x

reading node coordinates...

Determining element type...Triangle

Reading connection matrix...

ignoring @ elements in the mesh file, as they are not required for R2/R3t
Finished reading .msh file

ResIPy Estimated RAM usage = ©.845903 Gb

done

20

Elevation [m]
o B

|
na
5

|
~
S

40 60
Distance [m]

To invert the data we type k.invert (). Before doing this we have to specify k.err = True

to ensure that the fitted error model is used in the inversion, otherwise default settings will be
applied.

R2 will then run and display its output log.

In [8]: |k.err = True # setting this flag is necessary for adopting the fitted error model, otherwise a default error is set
k.invert()
Writing .in file and protocol.dat... done!
--------------------- MAIN INVERSION ==========cmceanan
>> R 2 Resistivity Inversion v4.0 <«

When R2 is complete, to display the results we can type k.showResults(contour=True,
sens=False, zlim=[-20,20], color_map='jet")

In [9]: k.showResults(contour=True, sens=False, z1im=[-20,20], color_map='jet")

Elevation [m]
Resistivity(log10)

Distance [m]

Running k.showPseudoInvError(vmin=-3, vmax=3) allows us then to look at the
distribution of normalized errors in a pseudosection

In [10]: k.showPseudoInvError(vmin=-3, vmax=3) # the range is set as -3 to 3

Electrode number
1 6 11 1 21 26 31 36 41 46

5

~
=}

Pseudo depth [m]

1

°
Normalised Error

8

Distance [m]

The entire notebook for the above is saved as Figure 5.1 notebook.ipynb inthe notebook
examples folder

5. Other notebooks

In the notebook examples folder the following Jupyter Notebooks are included (along with
html versions that can be viewed in any browser):

Forward modelling.ipynb - this illustrates how to do forward modelling of a synthetic model
and subsequent inversion of the forward modelled data. The notebook is setup to allow the user
to explore the effect of different quadrupole geometries and data noise on the recovery of the
anomalies created in the synthetic model.

Time-lapse inversion.ipynb - this illustrates how to time-lapse inversion using the
problem illustrated in Figure 5.21.

3D inversion.ipynb - this illustrates a 3D inversion using the problem covered in Tutorial 06
of the ResIPy graphical interface tutorials. This example shows how to use the pyvista plotting
options for 3D problems.

Many more example ResIPy Jupyter Notebooks are available at
https://hkex.gitlab.io/pyr2 /auto_examples/index.html

Andrew Binley & Guillaume Blanchy
Lancaster University
August 2020

