
Outline

1 Introduction

2 Learning Algorithms

3 Learning Models
3.1. GMM-UBM system
3.2. Joint factor analysis
3.3. Probabilistic linear discriminant analysis
3.4. Support vector machine
3.5. Restricted Boltzmann machine

4 Deep Learning

5 Case Studies

6 Future Direction 80 / 274

Outline

1 Introduction

2 Learning Algorithms

3 Learning Models
3.1. GMM-UBM system
3.2. Joint factor analysis
3.3. Probabilistic linear discriminant analysis
3.4. Support vector machine
3.5. Restricted Boltzmann machine

4 Deep Learning

5 Case Studies

6 Future Direction 81 / 274

GMM distribution from three Gaussians

-20 -10 0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

x

p(
x)

82 / 274

Gaussian mixture model

Gaussian mixture model (GMM) is a weighted sum of Gaussians

p(x|θ) =
M∑

i=1
πibi (x)

θ = {πi ,ui ,Σi}

πi : mixture weight
ui : mixture mean vector
Σi : mixture covariance matrix

bi (x) = 1
(2π)D/2|Σi |1/2 exp

(
−1

2(x− ui)>Σ−1
i (x− ui)

)
Mixture component zi is a latent variable which is either zero or one

83 / 274

Maximum likelihood

In ML estimation, we need to
− compute the likelihood of a sequence of features given a GMM
− estimate the parameters of GMM given a set of feature vectors

Assuming independence between features in a sequence, we have

p(X |θ) = p(x1, . . . , xT |θ) =
T∏

t=1
p(xt |θ)

ML estimation is performed by

θML = arg max
θ

p(X |θ) = arg max
θ

T∑
t=1

log
[M∑

i=1
πibi (xt)

]

84 / 274

Parameter estimation

E-step is to calculate the auxiliary function

Q(θ,θold) = Ez[log p(X , z|θ)|X ,θold]

=
T∑

t=1

M∑
i=1

p(zti = 1|X ,θold) log p(xt , zti = 1|θ)

ML estimates are obtained via M-step as

πnew
i = Ti

T

µnew
i = 1

Ti

T∑
t=1

γ(zti)xt = 1
Ti

Ei [x]

Σnew
i = 1

Ti

T∑
t=1

γ(zti)(xt − µi)(xt − µi)> = 1
Ti

Ei [xx>]− µiµ
>
i

where Ti =
∑

t γ(zti) and γ(zti) = p(zti = 1|X ,θold)
85 / 274

E-step

x

p(z1 =1jX)

p(z2 =1jX)

p(z3 =1jX)

p(zi = 1jX) =
¼ibi(x)

M

j=1

¼jbj(x)

Ti =
TP

t=1

p(zti = 1jX)

Ei(x) =
TP

t=1

p(zti = 1jX)xt

Ei(xxT) =
TP

t=1

p(zti = 1jX)xtx
T
t

Accumulate sufficient statistics

Probabilistically align samples to each mixture

86 / 274

M-step

x ¼new
i = Ti

T

¹new
i = 1

Ti
Ei[x]

§new
i = 1

Ti
Ei[xx

T]¡¹i¹
T
i

GMM parameters

Update model parameters

x
x
x

x
x
x

x

87 / 274

Speaker verification

Realization of log likelihood ratio test from signal detection theory

SLR(X |θtarget,θubm) = log(X |θtarget)− log(X |θubm)

Feature

extractor

Target model

Background

model

x1; ::::;xT
+

¡

GMMs are used for both target and background models
− target model trained using enrollment speech
− universal background model trained using speech from many speakers

88 / 274

Target model & UBM

Target model is adapted from universal background model (UBM)
− good with limited target training data

Maximum a posteriori (MAP) adaptation
− align target training vectors to UBM
− accumulate sufficient statistics
− update target model parameters with smoothing to UBM parameters

Adaptation for those parameters of seen acoustic events
− sparse regions of feature space filled in by UBM parameters

Side benefits
− keep correspondence between target and UBM mixtures
− allow for fast scoring when using many target models (top-M scoring)

89 / 274

Maximum a posteriori adaptation

Prior density for GMM mean vector µ = {µi} is introduced

p(µi) = N (µi |µubm
i , σ2I)

MAP estimation [Gauvain and Lee, 1994] is performed by using the
enrollment data Xs = {x}Ts

t=1 from a target speaker s
− E-step is to calculate

Q(µi ,µ
old
i) =

Ts∑
t=1

γ(zti) log p(xt |zti = 1,µi) + log p(µi |µubm
i , σ2I)

− M-step is to maximize Q(µi ,µ
old
i) to find

µnew
i =

∑
t γ(zti)xt∑

t γ(zti) + r + rµubm
i∑

t γ(zti) + r = αiEi [x] + (1− αi)µubm
i

where αi =
∑

t
γ(zti)∑

t
γ(zti)+r

90 / 274

MAP adaptation for GMM-UBM

UBM is based on GMM and trained by using EM algorithm
Speaker GMM is established by adjusting UBM by using MAP
adaptation

EM

MAP

UBM

Speaker

GMM

Training data

Enrollment data

91 / 274

Speaker recognition procedure

Feature

extractor
Modeling GMM-UBM

Feature

extractor
Scoring Results

Enrollment

Test utterance

92 / 274

Outline

1 Introduction

2 Learning Algorithms

3 Learning Models
3.1. GMM-UBM system
3.2. Joint factor analysis
3.3. Probabilistic linear discriminant analysis
3.4. Support vector machine
3.5. Restricted Boltzmann machine

4 Deep Learning

5 Case Studies

6 Future Direction 93 / 274

Joint factor analysis

Factor analysis is a statistical method which is used to describe the
variability among the observed variables in terms of potentially lower
number of unobserved variables called factors
Factor analysis is a latent variable model for feature extraction
Joint factor analysis (JFA) was the initial paradigm for speaker
recognition

u = m + Vy + Ux + Dz

Speaker

Supervector
UBM

Speaker

factors

Channel

factors

Residual

factors

94 / 274

Intuition & interpretation

A supervector for a speaker should be decomposable into speaker
independent, speaker dependent, channel dependent, and residual
components
Each component is represented by low-dimensional factors, which
operate along the principal dimensions of the corresponding
component
Speaker dependent component, known as the eigenvoice, and the
corresponding factors

V ¢ y =

2

4
j j j j

v1 v2 : : : vN

j j j j

3

5

2

6
6
4

y1

y2
...

yN

3

7
7
5

Eigenvoice matrix

Low dimensional eigenvoice factors

Each speaker factor controls

an eigendimension of the

eigenvoice matrix

95 / 274

Factor decomposition

GMM supervector u for a speaker can be decomposed as

u = m + Vy + Ux + Dz

Speaker

supervector
Speaker-independent

component

Speaker-dependent

component

Channel-dependent

component

Speaker-dependent

resuidual component

where
m is a speaker-independent supervector from UBM
V is the eigenvoice matrix
y ∼ N (0, I) is the speaker factor vector
U is the eigenchannel matrix
x ∼ N (0, I) is the channel factor vector
D is the residual matrix, and is diagonal
z ∼ N (0, I) is the speaker-specific residual factor vector

96 / 274

Dimensionality

For a 512-mixture GMM-UBM system, the dimensions of each JFA
component are typically as follows
− V 20,000 by 300 (300 eigenvoices)
− y 300 by 1 (300 speaker factors)
− U 20,000 by 100 (100 eigenchannels)
− x 100 by 1 (100 channel factors)
− D 20,000 by 20,000 (20,000 residuals)
− z 20,000 by 1 (20,000 speaker-specific residuals)

These dimensions have been empirically determined to produce the
best results
Bayesian model selection can help
Judge by the marginal likelihood over latent component under
different dimensions

97 / 274

Training procedure

We train the JFA matricies in the following order
[Kenny et al., 2007a]

1. Train the eigenvoice matrix V, assuming that U and D are zero
2. Train the eigenchannel matrix U given the estimate of V, assuming

that D is zero
3. Train the residual matrix D given the estimates of V and U

Using these matrices, we compute y for speaker, x for channel, and z
for residual factors
We compute the final score by using these matrices and factors

98 / 274

Total variability

Subspaces U and V are not completely independent
A combined total variability space was used [Dehak et al., 2011]

u = m + Vy + Ux + Dz

Speaker

supervector
UBM

Speaker

factors

Channel

factors

Residual

factors

u = m + Tw

Speaker

supervector
UBM

Total variability matrix

Intermediate/identity

vector (i-vector)

99 / 274

Training total variability space

Rank of T is set prior to training
T and w are latent variables
EM algorithm is used
Training total variability matrix T is similar to training V except that
training T is performed by using all utterances from a given speaker
but as produced by different speakers
Random initialization for T
Each ot has dimension D. Number of Gaussian components is M.
Dimension of supervector is M · D
UBM diagonal covariance matrix Σ (MD ×MD) is introduced to
model the residual variability not captured by T

100 / 274

Sufficient statistics

0th order statistics Nc(u) =
∑

t γc(ot) of an utterance u
1th order statistics Fc(u) =

∑
t γc(ot)ot

2nd order statistics Sc(u) = diag
(∑

t γc(ot)oto>t
)

where

γc(ot) = p(c|ot ,θubm) = πcp(ot |mc ,Σc)∑M
j=1 πip(ot |mj ,Σj)

Centralized 1th and 2nd order statistics

F̃c(u) =
T∑

t=1
γc(ot)(ot −mc)

S̃c(u) = diag
(T∑

t=1
γc(ot)(ot −mc)(ot −mc)>

)

where mc is the subvector corresponding to mixture component c
101 / 274

EM algorithm

Sufficient statistics

N(u) =


N1(u) · ID×D 0 · · · 0

0 N2(u) · ID×D 0
...

... 0
. . . 0

0 · · · 0 NM (u) · ID×D

 F̃ (u) =


F̃1(u)
F̃2(u)

...
F̃M (u)



EM algorithm [Kenny et al., 2005]
– Initialize m, Σ and T
– E-step: for each utterance u, calculate the parameters of the posterior

distribution of w(u) using the current estimates of m,Σ,T
– M-step: update T and Σ by solving a set of linear equations in which

w(u)’s play the role of explanatory variables
– Iterate until data likelihood given the estimated parameters converges

102 / 274

E-step: posterior distribution of w(u)

For each utterance u, we calculate the matrix

L(u) = I + T>Σ−1N(u)T

Posterior distribution of w(u) conditioned on the acoustic
observations of an utterance u is Gaussian with mean

E[w(u)] = L−1(u)T>Σ−1F̃ (u)

and covariance matrix

Cov(w(u),w(u)) = L−1(u)

Variational Bayesian JFA was developed for speaker verification
[Zhao and Dong, 2012]

103 / 274

Linear discriminant analysis

I-vectors from JFA model are used in linear discriminant analysis
(LDA)

u = m + Tw

W = Aw

Factor analysis

Linear discriminant analysis

Both methods used to reduce the dimensionality of speaker model
A is chosen such that within-speaker variability Sw is minimized and
between-speaker variability Sb is maximized within the space
A is found by eigenvalue method via maximizing

J (A) = Tr{S−1
w Sb}

104 / 274

Outline

1 Introduction

2 Learning Algorithms

3 Learning Models
3.1. GMM-UBM system
3.2. Joint factor analysis
3.3. Probabilistic linear discriminant analysis
3.4. Support vector machine
3.5. Restricted Boltzmann machine

4 Deep Learning

5 Case Studies

6 Future Direction 105 / 274

Factor analysis

Assuming a factor analysis model of the i-vectors of the form

w = u + Fh + ε

w is the i-vector, u is the mean of i-vectors, and h ∼ N (0, I) is the
latent factors
First compute the maximum likelihood estimate of the factor loading
matrix F, also known as the eigenvoice subspace
Full covariance of residual noise ε explains the variability not captured
through the latent variables

PLDA
Under Gaussian assumption, this model is known in face recognition as
PLDA [Prince and Elder, 2007]

106 / 274

Gaussian PLDA

Assume that there are low dimensional, normally distributed hidden
variables x1 and x2r such that

Dr = m + U1x1︸ ︷︷ ︸
S

+ U2x2r + εr︸ ︷︷ ︸
Cr

Residual εr is normally distributed with mean 0 and precision matrix Λ
m is the center of acoustic space and x1 is the speaker factors
Columns of U1 are the eigenvoices

Cov(S, S) = U1U>1

x2r varies from one recording to another (channel factors)
Columns of U2 are the eigenchannels

Cov(Cr ,Cr) = Λ−1 + U2U>2

107 / 274

Graphical representation

x1

x2r Dr "r

m

r = 1; 2; :::; R

¤

Including x2r enables the decomposition of speaker and channel
factors
x2r can always be eliminated at recognition time
Between-speaker covariance matrix Cov(S,S) & within-speaker
covariance matrix Cov(Cr ,Cr)
These matrices cannot be treated as full rank

108 / 274

PLDA speaker recognition

Given two i-vectors D1 and D2, we would like to perform the
hypothesis test

H1: the speakers are the same
H0: the speakers are different

Likelihood ratio is calculated by

p(D1,D2|H1)
p(D1|H0)p(D2|H0)

Likelihood ratio for any type of speaker recognition or speaker
clustering problem
The evidence integral should be calculated∫

p(D, z)dz

109 / 274

Model assumption

Assume that
− we have succeeded in estimating the model parameters
θ = {m,U1,U2,Λ}

− given a collection D = (D1, . . . ,DR) of i-vectors associated with a
speaker, we have figured out how to evaluate the marginal likelihood or
the evidence

p(D) =
∫

p(D, z)dz =
∫

p(D|z)p(z)dz

− z = {x1, x2r} is the hidden variables associated with the speaker

We show how to do speaker recognition in this situation and how
both problems are tackled by using variational Bayes to approximate
the posterior distribution p(z|D)

110 / 274

Variational approximation

Evidence p(D) can be evaluated exactly in the Gaussian case but this
involves inverting the large sparse block matrices
If q(z) is any distribution on z, variational lower bound is yielded as

L , Eq

[
log p(D, z)

q(z)

]
where log p(D) ≥ L with equality iff q(z) = p(z|D)
Variational Bayes provides a principled way to find a good
approximation q(z) to p(z|D)
Model parameters θ = {m,U1,U2,Λ} are estimated by maximizing
the evidence lower bound (ELBO) L which is calculated over all of
the speakers in a training set

111 / 274

Bayesian speaker recognition

Full Bayesian avoids the point estimates of model parameters
Coupling of multiple latent variables is tackled in VB
[Villalba and Lleida, 2014]
Uncertainties are compensated for model regularization in speaker
recognition
Prior densities p(U1) and p(U2) can be flexibly incorporated
Selection for the number of speaker factors or channel factors
Manually tuning for unknown variables is avoided
Analogous to the the treatment of the number of mixture
components in Bayesian estimation of GMM
Bayesian mixture of PLDA [Mak et al., 2016] was recently developed

112 / 274

Outline

1 Introduction

2 Learning Algorithms

3 Learning Models
3.1. GMM-UBM system
3.2. Joint factor analysis
3.3. Probabilistic linear discriminant analysis
3.4. Support vector machine
3.5. Restricted Boltzmann machine

4 Deep Learning

5 Case Studies

6 Future Direction 113 / 274

What is a good decision boundary?

Consider a two-class, linearly
separable classification problem
Many decision boundaries!
− perceptron algorithm can be

used to find such a boundary
− different algorithms have been

proposed
Are all decision boundaries
equally good? Class 1

Class 2

114 / 274

Large-margin decision boundary

Decision boundary should be as far away from the data of both
classes as possible [Vapnik, 2013]
− we should maximize the margin m
− distance between the origin and the line w>x = k is k

‖w‖

Class 2

Class 1

w

wTx + b = ¡1

wTx + b = 1

wTx + b = 0

m

m = 2
kwk

115 / 274

Finding the decision boundary

{x1, . . . , xn} is the data set and yi ∈ {1,−1} is the class label of xi

Decision boundary should classify all points correctly

yi (w>xi + b) ≥ 1, for i = 1, . . . , n

Decision boundary can be found by solving the constrained
optimization problem

Minimize 1
2‖w‖

2

subject to yi (w>xi + b) ≥ 1, for i = 1, . . . , n

116 / 274

Constrained optimization

Original problem

Minimize 1
2‖w‖

2

subject to yi (w>xi + b) ≥ 1, for i = 1, . . . , n

We introduce the Lagrange multipliers αi ≥ 0 to form the Lagrangian
function

L = 1
2‖w‖

2 −
n∑

i=1
αi
(
yi (w>xi + b)− 1

)
Setting the gradient of L w.r.t w and b to zero, we have

w =
n∑

i=1
αiyi xi

n∑
i=1

αiyi = 0

117 / 274

Dual problem

New objective function is expressed in terms of αi only
If we know w, we know all αi . If we know all αi , we know w
Original problem is known as the primal problem
A quadratic programming objective is formed by

maximize L(α) =
n∑
i
αi −

1
2

n∑
i=1

n∑
j=1

αiαjyiyjx>i xj

subject to αi ≥ 0,
n∑

i=1
αiyi = 0

Global maximum of αi can be found

118 / 274

Characteristics of the solution

Many of αi are zero
− w is a linear combination of a small number of data points
− This sparse representation can be viewed as data compression as in the

construction of KNN classifier
xi with non-zero αi are called support vectors
− decision boundary is determined only by support vectors
− tj , j = 1, . . . , s are the indices of s support vectors

w =
s∑

j=1
αtj ytj xtj

For testing with a new data z
− compute f = w>z + b =

∑s
j=1 αtj ytj x>tj

z + b and classify z as class 1 if
the sum is positive, and class 2 otherwise

119 / 274

Non-separable problem

We allow error ξi in classification. It is based on the output of the
discriminant function w>x + b
ξi approximates the number of misclassified samples

Class 2

Class 1

w

wTx + b = ¡1

wTx + b = 1

wTx + b = 0

»i

»j

xj

xi

120 / 274

Soft margin hyperplane

If we minimize
∑

i ξi , ξi can be computed by
w>xi + b ≥ 1− ξi yi = 1
w>xi + b ≤ −1 + ξi yi = −1
ξi ≥ 0 ∀i

− ξi are slack variables in optimization
− ξi = 0 if there is no error for xi
− ξi is an upper bound of the number of errors

We want to minimize 1
2‖w‖

2 + C
∑n

i=1 ξi
− C is a tradeoff parameter between error and margin

Optimization problem becomes

Minimize 1
2‖w‖

2 + C
n∑

i=1
ξi

subject to yi (w>xi + b) ≥ 1− ξi , ξi ≥ 0

121 / 274

Dual problem

Dual of this new constrained optimization problem is

maximize L(α) =
n∑
i
αi −

1
2

n∑
i=1

n∑
j=1

αiαjyiyjx>i xj

subject to C ≥ αi ≥ 0,
n∑

i=1
αiyi = 0

w is recovered as w =
∑s

j=1 αtj ytj xtj

This is very similar to the optimization problem in the linear separable
case, except that there is an upper bound C on αi now
Once again, a quadratic programming solver can be used to find αi

122 / 274

Non-linear decision boundary

So far, we have only considered large-margin classifier with a linear
decision boundary
How to generalize it to become non-linear?
Key idea: transform xi to a higher dimensional space to make life
easier
− input space: the points xi are located
− feature space: the space of φ(xi) after transformation

Why transform?
− linear operation in the feature space is equivalent to non-linear

operation in input space
− classification can become easier with a proper transformation.
− In the XOR problem, for example, adding a new feature make the

problem linearly separable

123 / 274

Dimensionality in feature space

Á(²)
Á()

Á()

Á()

Á()

Á()
Á()

Á()

Á()

Á()
Á()

Á()

Á()

Á()

Á()

Input space Feature space

Computation in the feature space can be costly because it is highly
dimensional
− feature space is typically infinite-dimensional!

Kernel trick comes to rescue

124 / 274

Kernel trick

maximize L(α) =
n∑
i
αi −

1
2

n∑
i=1

n∑
j=1

αiαjyiyjx>i xj

subject to C ≥ αi ≥ 0,
n∑

i=1
αiyi = 0

x>i xj is inner product
As long as we can calculate the inner product in the feature space, we
do not need the mapping explicitly
Many common geometric operations, e.g. angle, distance, can be
expressed by inner products
Define the kernel function K by

K (xi , xj) = φ(xi)>φ(xj)

125 / 274

Kernel function in SVM

Change all inner products to kernel functions
For training
− original

maximum L(α) =
n∑
i
αi −

1
2

n∑
i=1

n∑
j=1

αiαjyiyjx>i xj

subject to C ≥ αi ≥ 0,
n∑

i=1
αiyi = 0

− with kernel function

maximum L(α) =
n∑
i
αi −

1
2

n∑
i=1

n∑
j=1

αiαjyiyjK (xi , xj)

subject to C ≥ αi ≥ 0,
n∑

i=1
αiyi = 0

126 / 274

Kernel function in SVM

For testing, the new data z is classified as class 1 if f ≥ 0 and as class
2 if f < 0
− original

w =
s∑

j=1
αtj ytj xtj

f = w>z + b =
s∑

j=1
αtj ytj x>tj

z + b

− with kernel function

w =
s∑

j=1
αtj ytjφ(xtj)

f = 〈w, φ(z)〉+ b =
s∑

j=1
αtj ytj K (xtj , z) + b

127 / 274

Similarity measure

Since the training of SVM only requires the value of K (xi , xj), there
is no restriction of the form of xi and xj
− xi can be a sequence or a tree instead of a feature vector

K (xi , xj) is just a similarity measure comparing xi and xj

Kernel function needs to satisfy the Mercer function, i.e., the function
is positive-definite
For a test object z, the discriminant function essentially is a weighted
sum of the similarity between z and a pre-selected set of objects, also
called the support vectors

f (z) =
∑
xi∈S

αiyiK (z, xi) + b

where S denotes the set of support vectors

128 / 274

Outline

1 Introduction

2 Learning Algorithms

3 Learning Models
3.1. GMM-UBM system
3.2. Joint factor analysis
3.3. Probabilistic linear discriminant analysis
3.4. Support vector machine
3.5. Restricted Boltzmann machine

4 Deep Learning

5 Case Studies

6 Future Direction 129 / 274

Restricted Boltzmann machine

Bipartite the undirected graphical model with visible variable v and
hidden variable h
Building-block for deep belief networks and deep Boltzmann machines
RBMs are generative models of v based on the marginal distribution
Joint distribution of (v, h) is an exponential family
Discriminative fine-tuning can be applied
Variables are typically binary, however no such restriction exists
Bidirectional graphical model

130 / 274

Graphical model

h

v

W

No connection between nodes of the same layer (i.e. sparsity)
Allow fast training (blocked-Gibbs sampling)
Correlations between nodes in v are still present in the marginal
p(v|W)
Hidden variable h captures the higher level information

131 / 274

Joint distribution

Energy-based distribution is defined by

p(v,h|θ) = Z (θ)−1p∗(v,h|θ)

where

p∗(v,h|θ) = exp
(∑

i
vibi +

∑
j

hjaj +
∑
i ,j

vihjWij︸ ︷︷ ︸
−E(v,h)

)

and θ = {W ,b, a}
{b, a} denote the biases and are usually assumed to be zero for
compact notation
Z (θ) =

∑
v,h p∗(v,h|θ) is the partition function

132 / 274

Individual distribution

Consider binary (v,h) with zero biases {b, a}
p(h|v) =

∏
j p(hj |v) where p(hj |v) = 1

1+exp(−
∑

i vi Wij)

p(v|h) =
∏

i p(vi |h) where p(vi |h) = 1
1+exp(−

∑
j hj Wij)

Product form is due to the restricted structure

h

v

W

133 / 274

Learning with RBM

Maximize the likelihood of θ given vn

p(vn) =
∏

n
Z−1∑

h
exp

∑
ij

vn
i hn

j Wij


We obtain ∂logp(vn)

∂Wij
= Epdata [vihj]− Epmodel [vihj]

where pdata(vn,hn) = p(hn|vn)p(vn)
p(hn|vn) is an easy and exact calculation for RBM
p(vn) is an empirical distribution
∂logZ(θ)
∂Wij

= Epmodel [vihj] is hard to compute
Learning using contrastive divergence with mini-batches is performed

134 / 274

