
Outline

1 Introduction

2 Learning Algorithms

3 Learning Models

4 Deep Learning
4.1. Deep neural network
4.2. Deep belief network
4.3. Stacking auto-encoder
4.4. Variational auto-encoder
4.5. Deep transfer learning

5 Case Studies

6 Future Direction 136 / 274

Outline

1 Introduction

2 Learning Algorithms

3 Learning Models

4 Deep Learning
4.1. Deep neural network
4.2. Deep belief network
4.3. Stacking auto-encoder
4.4. Variational auto-encoder
4.5. Deep transfer learning

5 Case Studies

6 Future Direction 137 / 274

Neural network

Inputs

Hidden units

xtD

xt1

xt0

zt0

zt1

yt1

ytKztM

w
(1)

DM

w
(2)

MK

Outputs

Multilayer perceptron

138 / 274

Nonlinear activation

ytk = yk(xt ,w) = f

 M∑
j=0

w (2)
jk f

(D∑
i=0

w (1)
ij xti

)

−6 −4 −2 0 2 4 6

−1

−0.5

0

0.5

1

f(
x)

x

ReLU
Sigmoid
Tanh

activation function f (·)

139 / 274

Deep learning

Deep belief networks (DBN) obtained great results due to good
initialization and deep model structure
− pre-train each layer from bottom up
− each pair of layers is a restricted Boltzmann machine
− jointly fine tune all layers using back-propagation

Deep neural network (DNN)
− discriminative model works for classification tasks
− empirically works well for image recognition, speech recognition,

information retrieval and many others
− no theoretical guarantee

140 / 274

DBN-DNN training

o

z1

z3

GRBM

RBM

RBM

z1

z2

o

y

z1

w1

w2

w3

w4

z3

z2

141 / 274

Why go deep?

Deep architecture can be representationally efficient
− fewer computational units for the same function

Deep representation might allow for a hierarchical representation
− allows non-local generalization
− comprehensibility

Multiple levels of latent variables allow combinatorial sharing of
statistical strength
Deep architecture works well for representation of vision, audio, NLP,
music and many other technical data

142 / 274

Different level of abstraction

Hierarchical learning
− natural progression from low

level to high level structure as
seen in natural complexity

− easier to monitor what is
being learnt and to guide the
machine to better subspaces

− a good lower level
representation can be used in
different tasks

143 / 274

Trainable feature hierarchy

Hierarchy of representations with increasing level of abstraction
Each stage is a kind of trainable feature transform
Image
− Pixel → edge → texton → motif → part → object

Text
− Character → word → word group → clause → sentence → story

Speech
− Sample → spectral band → sound → . . .→ phone → phoneme →

word

144 / 274

Deep architecture

Feed-forward: multilayer neural nets, convolutional nets

Feed-back: stacked sparse coding, deconvolutional nets

Bi-directional: deep Boltzmann machines, stacked auto-encoders

145 / 274

Training strategy

Purely supervised
− initialize parameters randomly
− train in supervised mode

− typically with SGD, using backprop to compute gradients
− used in most practical systems for speech and image recognition

Unsupervised, layerwise + supervised classifier on top
− train each layer unsupervised, one after the other
− train a supervised classifier on top, keeping the other layers fixed
− good when very few labeled samples are available

Unsupervised, layerwise + global supervised fine-tuning
− train each layer unsupervised, one after the other
− add a classifier layer, and retrain the whole thing supervised
− good when label set is poor

Unsupervised pre-training often uses the regularized auto-encoders

146 / 274

Generalizable learning

Shared representation
− multi-task learning
− unsupervised training

Raw input

Shared

intermediate

representation

Task 1

output

Task 2

output
Task 3

output

Partial feature sharing
− mixed mode learning
− composition of functions

…

…

…

…

Low-level features

…
High-level features

Task 1

Ouptut

Task N

Ouptut y1 yN

147 / 274

Forward & backward passes

Forward propagation
− sum inputs, produce activation, feed-forward

Inputs

x2

x1

z1

z2

z3

y2

y1

Outputs

Training: back propagation of error
− calculate total error at the top
− calculate contributions to error at each step going backwards

Inputs

x2

x1

z1

z2

z3

y2

y1

Outputs

148 / 274

Deep neural network

Simple to construct
− sigmoid nonlinearity for hidden layers
− softmax for the output layer

Backpropagation does not work well if
randomly initialized
[Bengio et al., 2007]
− deep networks trained without

unsupervised pretraining perform
worse than shallow networks

(Bengio et al., NIPS 2007)

149 / 274

Problems and solvers with back propagation

Gradient is progressively getting more dilute
− below top few layers, correction signal is minimal

Gets stuck in local minima
− random initialization: may start out far from good regions

In usual settings, we can use only labeled data
− almost all data are unlabeled
− the brain can learn from unlabeled data

Use unsupervised learning via greedy layer-wise training
− allow abstraction to develop naturally from one layer to another
− help the network initialize with good parameters

Perform supervised top-down training as final step
− refine the features in intermediate layers more relevant for the task

150 / 274

Outline

1 Introduction

2 Learning Algorithms

3 Learning Models

4 Deep Learning
4.1. Deep neural network
4.2. Deep belief network
4.3. Stacking auto-encoder
4.4. Variational auto-encoder
4.5. Deep transfer learning

5 Case Studies

6 Future Direction 151 / 274

Deep belief network

Deep belief network (DBN) is a probabilistic generative model
Deep architecture with multiple hidden layers
Unsupervised pre-learning provides a good initialization
− maximizing the lower-bound of the log-likelihood of data

Supervised fine-tuning
− generative: up-down algorithm
− discriminative: back propagation

152 / 274

Model structure

Hidden Layers

Visible Layers

h3

h1

h2

v

RBM

Directed

belief nets

p(v,h1,h2, . . . ,hl) = p(v|h1)p(h1|h2) . . . p(hl−2|hl−1)p(hl−1|hl)

153 / 274

Greedy training

First step:
− construct an RBM with an

input layer v and a hidden
layer h

− train the RBM

h

v

W1

154 / 274

Greedy training

Second step:
− Stack another hidden layer on

top of the RBM to form a
new RBM

− Fix W1, sample h1 from
q(h1|v) as input. Train W2 as
RBM

h1

h2

v

W1

W2

q(h1jv)

155 / 274

Greedy training

Third step:
− continue to stack layers on

top of the network, train it as
previous step, with sample
sampled from q(h2|h1)

And so on...

h3

h1

h2

v

W1

W2

W3

q(h2jh1)

q(h1jv)

156 / 274

Deep Boltzmann machine

p(v) =
∑

h1,h2,h3

1
Z exp[vT W1h + (h1)>W2h2 + (h2)>W3h3]

W3

W2

W1

v

h1

h2

h3

[Salakhutdinov and Hinton, 2009]

Undirected connections between all
layers. No connections between the
nodes in the same layer
High-level representations are built from
unlabeled inputs. Labeled data is used
to only slightly fine-tune the model

157 / 274

Training procedure

Pre-training
− initialize from stacked RBMs

Generative fine-tuning
− positive phase: variational or

mean-field approximation
− negative phase: persistent

chain & stochastic
approximation

Discriminative fine-tuning
− back-propagation

W3

W2

W1

v

h1

h2

h3

158 / 274

Why greedy layer wise training works

Regularization hypothesis
− pre-training is constraining the parameters in a region relevant to

unsupervised dataset
− better generalization - representations that better describe unlabeled

data are more discriminative for labeled data
Optimization hypothesis
− unsupervised training initializes lower level parameters near localities of

better minima than random initialization can

159 / 274

Outline

1 Introduction

2 Learning Algorithms

3 Learning Models

4 Deep Learning
4.1. Deep neural network
4.2. Deep belief network
4.3. Stacking auto-encoder
4.4. Variational auto-encoder
4.5. Deep transfer learning

5 Case Studies

6 Future Direction 160 / 274

Denoising auto-encoder

Corrupted input

Hidden code

(representation)

Raw input Reconstruction

KL (reconstruction | raw input)

X X

[Vincent et al., 2008]

Corrupt the input, e.g. set 25% of inputs to 0
Reconstruct the uncorrupted input
Use the uncorrupted encoding as input to next level

161 / 274

Manifold learning perspective

Learn a vector field towards higher probability regions
Minimize the variational lower bound on a generative model
Correspond to the regularized score matching on an RBM

162 / 274

Stacked denoising auto-encoders

h1

x

W1 W>
1

h1

x

W1 W>
1

x̂

h2

ĥ1

W2
W>

2

h1 ĥ1

W1 W>
1

W>
2

W2

x x̂

h2

U

y

163 / 274

Greedy layer-wise learning

Start with the lowest level and stack upwards
Train each layer of auto-encoder using the intermediate codes or
features from the layer below
Top layer can have a different output, e.g. softmax non-linearity, to
provide an output for classification

h1

x

W1 U1

h1

x

W1 U1

ŷ

h2

ŷ

W2 U2

h1

W1 U1

W2

x ŷ

h2

U2

ŷ

ŷ

164 / 274

Outline

1 Introduction

2 Learning Algorithms

3 Learning Models

4 Deep Learning
4.1. Deep neural network
4.2. Deep belief network
4.3. Stacking auto-encoder
4.4. Variational auto-encoder
4.5. Deep transfer learning

5 Case Studies

6 Future Direction 165 / 274

Auto-encoder

:::
:::

:::
:::

:::
:::

xx x̂̂x

zz

Encoder Decoder

ÁÁ μμ

166 / 274

Variational auto-structure

:::
:::

:::
:::

:::
:::

Encoder Decoder
:::
:::

qÁ(zjx)qÁ(zjx)

pμ(xjz)pμ(xjz)xx

zz

x̂̂x

Sampling

ÁÁ
μμ

167 / 274

Graphical model

zz

x

μμÁÁ
Recognition

model
Generative

model

qÁ(zjx)qÁ(zjx) pμ(xjz)pμ(xjz)

[Kingma and Welling, 2014]
Mean-field approach requires analytical solutions Eq, which are
intractable in the case of neural network

Use neural network and sample the latent variables z from variational
posterior

168 / 274

Variational inference

Variational Bayesian inference aims to find a variational distribution
q(z|x) that is maximally close to the original true posterior
distribution p(z|x)

According to the evidence decomposition, we have

p(x) = L(q) + KL(q‖p)

L(q) = Eq[log p(x, z)] + Hq[z]

KL(q‖p) = −Eq[log p(z|x)]−Hq[z]

169 / 274

Mean field variational inference

Assume that q(z|x) can be factorized into the product of individual
probability distributions

q(z|x) =
N∏

n=1
q(zn|xn)

We can perform the coordinate ascent for each factorized variational
distributions by

q̂(zj |xj) ∝ exp(Eq(zi 6=j)[log p(x, z)])

170 / 274

Variational lower bound

Model parameters are learned by maximizing the variational lower
bound

log p(x) ≥ Eqφ(z|x)[log pθ(x|z)]− KL(qφ(z|x)||pω(z))
= Eqφ(z|x)[log pθ(x, z)− log qφ(z|x)]
, Eqφ(z|x)[fΘ(x, z)]
, LΘ

where Θ = {θ, φ, ω}

171 / 274

Stochastic backpropagation

L£ = EqÁ(zjx)[f£(x; z)]L£ = EqÁ(zjx)[f£(x; z)]

sample z(l) from qÁ(zjx)sample z(l) from qÁ(zjx)

L£ ' f£(xjz(l))L£ ' f£(xjz(l))

r£L£ ' r£f£(x; z(l))r£L£ ' r£f£(x; z(l))

Objective:

Gradient:

Step1

Step2

Step3

Problem: high variance by directly sampling z [Rezende et al., 2014]

172 / 274

Stochastic gradient variational Bayes

L£ = EqÁ(zjx)[f£(x; z)]L£ = EqÁ(zjx)[f£(x; z)]

L£ ' f£(xjz(l))L£ ' f£(xjz(l))

r£L£ ' r£f£(x; z(l))r£L£ ' r£f£(x; z(l))

Objective:
Gradient:

Step1

Step2

Step3

z(l) = ¹z + ¾z¯ ²(l)z(l) = ¹z + ¾z¯ ²(l)

sample ²(l) from N (0; I)sample ²(l) from N (0; I)

Step4

Reduce the variance caused by directly sampling z

173 / 274

Outline

1 Introduction

2 Learning Algorithms

3 Learning Models

4 Deep Learning
4.1. Deep neural network
4.2. Deep belief network
4.3. Stacking auto-encoder
4.4. Variational auto-encoder
4.5. Deep transfer learning

5 Case Studies

6 Future Direction 174 / 274

Why transfer learning?

Mismatch between training and test data in speaker recognition
always exists
Traditional machine learning works well under an assumption that
training and test data follow the same distribution
− real-world data may not follow this assumption

Feature-based domain adaptation is a common approach
− allow knowledge to be transferred across domains through learning a

good feature representation
Co-train for feature representation and speaker recognition without
labeling in target domain

175 / 274

Transfer learning

Let D = {X , p(X)} denote a domain
− feature space X
− marginal probability distribution p(X)
− X = {x1, · · · , xT} ⊂ X

Let T = {Y, f (·)} denote a task
− label space Y
− objective predictive function f (·)

can be written as p(Y |X)

Assumptions in transfer learning
− source and target domains are different DS 6= DT
− source and target tasks are different TS 6= TT

176 / 274

Multi-task learning

min
θ
`(D, θ) + λΩ(θ)

Joint

Learning

Task

{apple, not apple} {pear, not pear}

Input

Target

Auxiliary TaskMain Task

177 / 274

Multi-task neural network learning

min
θ
`(D, θ) + λΩ(θ)

z1 zJz2 z3

Ym Y1 YK

Main task Auxiliary tasks

Output

Input

Shared feature

representation

178 / 274

Learning strategy and task

Classifier

Feature

Extractor

Unlabeled Data

in Target Domain

Unlabeled Data

in Target Domain

Auxiliary TaskMain Task Main Task

Training Test

Labeled Data

in Source Domain

z0 zM

bx1 bxD

x0 xD

by1 byV

fewkjg

fwjig

fwkjg

Distribution

Matching

Semi-supervised learning is conducted under multiple objectives

179 / 274

