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© Case Studies
@ 5.1. Heavy-Tailed PLDA
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o Motivation of i-vectors:

o Insufficiency of joint factor analysis (JFA) in distinguishing between
speaker and channel information, as channel factors were shown to
contain speaker information.

o Better to use a two-step approach: (1) use low-dimensional vectors
(called i-vectors) that comprise both speaker and channel information
to represent utterances; and (2) model the channel and variabilities of
the i-vectors during scoring.

@ Motivation of Heavy-tailed PLDA:

o JFA assumes that the speaker and channel components follow Gaussian
distributions.

e The Gaussian assumption prohibits large deviations from the mean.

o But speaker effects (e.g., non-native speakers) and channel effect
(gross channel distortion) could cause large deviations.

o Use heavy-tailed distributions instead of Gaussians for modeling the
speaker and channel components in i-vectors [Kenny, 2010].
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Generative model with heavy-tailed priors

e Assuming that we have H; i-vectors X; = {x;,j =1,..., H;} from
speaker i, the generative model is

x,J:m+Vh,+Gr,J+e,J

where V and G represent the the speaker and channel subspaces,
respectively.

@ In heavy-tailed PLDA,

hi ~ N0, u7 ) u1 ~G(m/2,m/2)
rij ~ N(0, ugjll) uzj ~ G(n2/2,n/2)
ej ~ NO,(yN)Y) v~ G(/2,1/2)
@ By integrating out the hyperparameters (u1, up;, and v;), one can

show [Eq. 2.161 of Bishop (2006)] that the priors of hj, rj;, and €j;
follow Student’s t. So, x;; also follows Student’s t.
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Performance on NIST 2008 SRE

@ Telephone speech, without score normalization

Gaussian heavy-tailed
short2-short3 | 3.6%/0.014 22%/0.010
8conv-short3 | 3.7% /0.009 1.3% / 0.005
10sec-10sec | 16.4% /0.070 | 10.9% / 0.053

@ Microphone speech, with score normalization

partially heavy-tailed | fully heavy-tailed
detl 33%/0.017 3.4% /0.017
det4 28% /0.016 3.1%/0.018
det5 4.0% /0.020 3.8% /0.020

[Kenny, 2010]
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From HT-PLDA to Gaussian PLDA

@ In 2011, [Garcia-Romero and Espy-Wilson, 2011] discovered that
Gaussian PLDA performs as good as HT-PLDA provided that
i-vectors have been subjected to the following pre-processing steps:

Whitening + Length normalization

@ These steps have the effect of making the i-vectors more Gaussian.

@ As Gaussian PLDA is computationally much simpler than HT-PLDA,
the former has been extensively used in speaker verification.
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© Case Studies

@ 5.2. SNR-Invariant PLDA
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@ While i-vector extraction followed by PLDA is very effective in
addressing channel variability

@ Performance degrades rapidly in the presence of background noise
with a wide range of signal-to-noise ratios (SNR)

o Classical approach: Multi-condition training where i-vectors from
various background noise level are pooled to train a PLDA model.
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@ We argue that the variation caused by SNR variability can be
modeled by an SNR subspace and utterances falling within a narrow
SNR range should share the same set of SNR factors.

@ SNR-specific information were separated from speaker-specific
information through marginalizing out the SNR factors during scoring
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@ l-vectors derived from utterances of similar SNR will be mapped to a
small region in the SNR subspace.
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SNR-Invariant PLDA

o Classical PLDA: x;; = m + Vh; + ¢

@ By adding an SNR factor to the conventional PLDA, we have
SNR-invariant PLDA |[Li and Mak, 2015]:

xi=m+Vh+Uw;+€f, k=1,... K

where U denotes the SNR subspace, wy is an SNR factor, and h; is
the speaker (identity) factor for speaker i.

@ Note that it is not the same as PLDA with channel subspace:

Xf(j:m—l-Vh,'—I—Gl’,'j—I—G,'j,

where G defines the channel subspace and rj; represents the channel
factors.
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SNR-invariant PLDA

Generative model:

xf-J‘-:m+Vhi+UWk+€Z', k=1,...,.K

h; is speaker factors with prior distribution A/(0, 1)

xfj- is the j-th i-vector from speaker i in the k-th SNR subgroup
V is the eigenvoice matrix

U defines the SNR subspace

wy is SNR factor with prior distribution N (0, )

€k is a residual term with prior distribution A’(0, X); X is a full

ij
covariance matrix aiming to model the channel variability
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SNR-invariant PLDA

@ Training utterances are divided into K groups, accroding to their SNR

Speaker

=Y
Algorithm | 1M, V, U, 25

Utterance ——— >
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PLDA vs. SNR-invariant PLDA

@ Comparing the use of training i-vectors with conventional PLDA
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PLDA vs. SNR-invariant PLDA

o Comparing generative models:

PLDA SNR-Invariant PLDA

xj=m+Vh;+e; | xf=m+Vh;+Uw, +¢€f
x ~ N(xm,VVT + ) |x ~ N(xjm,VWT + UUT 4+ X)
0={mV,Xx} 60={mV,UZX}
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Aucxiliary function for SNR-invariant PLDA

@ The parameters @ = {m,V, U, X} can be learned from a training set

X using maximum likelihood estimation.
o X ={xf;i=1,....5j=1,... H(k)ik=1,...,K}
e S: No. of training speakers
e K: No. of SNR groups

e Hi(k): No. of utterances from speaker i in the k-th SNR group.

@ Given an initial value 6, we aim to find a new estimate 0 that
maximizes the auxiliary function:

Q(8)6) = Eh,w[zikj In (p(xf;.\h,-,wk,é)p(h,-,wk))\x,a}
- Eh,w[zikj (In N (xfm + Vhi + Uw, ¥)

+1n p(h,-,wk)>’/'l’,0]
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Posterior distributions of latent variables

@ We show 3 ways to compute the posteriors:
@ Computing the posterior of h; and wy separately.
© Computing the posterior h; while fixing wy using the Gauss-Seidel
method.
© Computing the joint posterior of h; and wy using variational Bayes.
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Method 1: Computing posteriors separately

@ Given i-vectors x%, the posterior density of h; has the form:

p(hilxis, 8) oc (xf-;-|h,-, 0)p(h;)
I/P(Xﬁwwk!hiﬁ)lv(hi)dwk
= [ Py, wi 6)p(wi ) p(hy )
— //\/ (x4 1m + Vh; + Uwi, £)A (w0, DA/ (hi[0, 1)dwy
= N(x4|m + Vh;, ®)A(hi]0, 1)
x exp {thch L(xk —m) — th(I + VTdJlV)h,-}

where ® = UUT + X.
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Method 1: Computing posteriors separately

o If all of the i-vectors of speaker i, say A}, are given,

K Hi(k)
(h|xUVJandk6 ocHHp |h,,9 p(h;)
k=1 j=1
K Hi(k
ocexp{hTVTdJ_lZZx —m) —th (H—ZH _IV)h}
k=1 j=1

@ This is a Gaussian with mean and 2nd-order (uncentralized) moment
-1 K Hi(k)
-1 Td—1 ! k
( + Z V) Ve Zkzl Zj;l (XU - m)

() = ( iy 1v) (]2 (| )T
(1)

1 B B 1o
N(h|p;, Cp) o< exp {—2(h — 1) TC (h - uh)} o exp {hTC,, "y = 5h'C, lh}
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Method 1: Computing posteriors separately

@ Similarly, to compute the posterior expectations of wy, we marginalize
over h;'s. Thus, the posterior density of wy is

p(wilx§.8) ox [ p(xIhy. wi, 8)p(h;)p(wi b
- /N(xg.|m + Vh; + Uwg, SN (hi]0, DA (w0, 1)dh
= N (xf|m + Uwy, W)N (w0, 1)
x exp{ TUTw- (x —m) — %wk(l +UTw- 1U)wk}
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Method 1: Computing posteriors separately

o Given all of the i-vectors (X*) from the k-th SNR group, we can
compute the posterior expectations as follows:

Hi(k

S )
(| XKy = <I+ZH uTw—1u> UTw3% " 3" (xi —m)
i=1 j=1
-1

(wewy | X€) = <|+ZH(/<)UT"’ 1U> (Wi X5) (wy | AT
i=1

(2)

where W = VWV + ¥
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Method 2: Computing posteriors by Gauss-Seidel method

@ Another approach to computing p(h;|X;) is to assume that wy's are
fixed for all k=1,..., K.

@ This is called the Gauss-Seidel method |Barrett et al., 1994]

o We fix wy to its posterior mean: wi = (wy|X'¥)

@ The posterior density of h; becomes:

K Hi(k)

p(h,-|/'\f',-,WI,9) X H H P(X5|hiawi70)P(hi)
k=1 j=1
K Hi(k)

I
—
—

N(xf|m + Vh; + Uwj, £)N (h;|0,1)

k=1 1

—.
I

K Hi(k)

hIVIZ ™D ) (xf —m — Uwp) —

=1 j=

X exp

——

k 1

1 K

Lht VTSIV | hs
oh <|+k§_ Hi(k)VTE v) h,}

1
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Method 2: Computing posteriors by Gauss-Seidel method

o Comparing this posterior density with a standard Gaussian, we have

K Hi(k)

i = (1) v+ 3 5 g
k=1 j=1 (3)

1)\ 1
(hih] |2 = (L) + (hl) )T,
where LW =14 YK | H(kVTE 1V

@ Note that these formulations is similar to the JFA model estimation in
[Vogt and Sridharan, 2008].
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Method 2: Computing posteriors by Gauss-Seidel method

@ Apply the same approach to computing the posterior density of wy,

we have
. S Hi(k)
(wi %) = (L) TUTETST 3 (xk - m— Vi)
i=1 j=1 (4)
-1
(wewit|X%) = (L) + (wi %) (w04 T

where L& =14+ 55 | Hi(k)UTEIU and h} = (h;| X))
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Method 3: Computing posteriors by variational Bayes

@ Denote w = [wy,...,wk]| and h = [hy, ... hg]

@ In variational Bayes [Bishop, 2006, Kenny, 2010/, we factorize the
joint posterior as follows:

K
Inp(h,w|X) =~ Ing(h) + In g(w Zlnq i)+ > Ing(wg)

where

Ing(h) = Ew{In p(h,w, X)} + const
In g(w) = En{In p(h,w, X')} + const

where E,, means taking expectation with respect to w.
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Method 3: Computing posteriors by variational Bayes

e Consider Ing(h):
In g(h) = Ew{In p(h, w, X')} + const
= (Inp(X|h, w))w + (In p(h, w))w + const

- ZJ (InNV(xjlm + Vh; + Uw,, X))
+ Zi<ln/\/(h,-|0, 1))w + Zr<ln/\/(wr\0, 1))w + const
_ _% Zijr(x,g. —m—Vh — Uw) = (x) — m — Vh; — Uw))
— % Z; h,-Th,- + const (5)
> [h,Tsz*1 > 6 —m—Uw;) - %h,—T (I +y, sz*lv) h,T] + const
@ g(h;) a Gaussian with mean and precision identical to Eq. 3:
(hi| X)) = (L§1)>71 viz-! er(xg. —m—Uw}) n
LY =14 Z,-, \VAD =Y,
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Method 3: Computing posteriors by variational Bayes

Ing(w) = (In p(X'|h, w))n + (In p(h,w))n + const
= ZUk <|n/\/'(x,—kj|m + Vh; + Uwy, z)>h;

+ Z_(In/\/’(h,-|0, 1))n, + Z (In N (w0, 1)), + const

1
=—5_ (xj—m—Vhi — Uw,) X" (xj — m — Vh{ — Uw,)
iji

— 1 Z wak -+ const
1 1 Te—1 T
= u's- = Vh} = 1+ Uux u + t
Z [wk Z (xj m— ) — wk< Z:‘j )wk} cons
@ g(wg) is a Gaussian with mean and precision identical to Eq. 4:
-1
(wil ) = (L) TUTETY (xf - m — V)
L =1+ > Uz

Note : (InN'(h;]0, 1))y, is the differential entropy of normal distribution and is
independent of wy, see [Norwich, 1993](Ch 8).

(7)
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Computing posterior moment

o The exact posterior moment (wxh/|X') will be complicated because
h; and wy are correlated in the posterior.

o If Gauss-Seidel's method is used, we may approximate the posterior
moments by (Kenny 2010, p.6)

(wich] | X) ~ (wi X7 (h))T

(hiwg | X) = (hi A7) (wi)T
where h; and wj, are the most up-to-date posterior means in the EM
iterations.

o Alternatively, we may compute the exact joint posterior.3 But it will
be computationally intensive.

3http://www.eie.polyu.edu.hk/~mwmak/papers/si-plda.pdf
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Computing posterior moment

@ A better approach is to use variational Bayes:

p(hi, wi|X) ~ q(h;)q(wy) (8)

e Note that as both g(h;) and g(wy) are Gaussians. Based on the law
of total expectation,* the factorization in Eq. 8 gives

(wih] [X) ~ (w | X%) (b X;) T
(hiw |X) =~ (hi] X;) (wy | X5)T

*https://en.wikipedia.org/wiki/Product_distribution
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Maximization Step

@ In the M-step, we maximize the auxiliary function:

Q(G) = Eb,y {ZUk In <ij|m 4+ Vh; + Uwy, Z) p(hhwk)

X

B 1 1/, T,
_ZEh7W{—2|og|Z|—2(x,-J-—m—Vh,-—ka) >
ijk
v.0)

@ As p(h;,wy) is independent of the model parameters V, U, and X,
they could be taken out of Q(0) in the M-step
[Prince and Elder, 2007].

x (xb — m — Vh; — Uwy) +In p(hi, wi)
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Maximization Step

e Differentiating Q(0) with respect to V, U, and X and set the results
to 0, we obtain

-1

> _(hih]|x)

ijk

V— {Z [(xf-j- —m)(h;| ;) — U(thiT|X>} }

ik

-1

> (wiewy | X)

ijk

U= {Z [k — m) (wi| %) = V{hw] X)) }

ijk

T =23 [ = m)(xf - m)T

ik

= V(hi] ) (xf — m)T = Uwi | X5) (xf — m)T]
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Likelihood Ratio Scores

o Given target-speaker’s i-vector xs and test-speaker’s i-vector x;
o If x5 and x; are from the same speaker, they should share the same
speaker factor h:

MENEMEIEIES

— ﬁst = ﬁ1 + Aist + ést'

@ Same-speaker likelihood:
p(Xst|same-speaker) = /p()“(st|25t)p(ist)dist
= / N (Ree| i + Ay, )N (24]0, 1)d 24
= N (Rs|rin, AAT + %)
> >
(] B E)
([Xt m T T

where ¥ = diag{X, X}, Z;0r = VV' +UU" + £ and £, = VV'
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Likelihood Ratio Scores

o If x5 and x; are from different speakers, they should have their own
speaker factor (hs, h):

Xs | | m v 0 U 0 h; €s
HMEMNEREERTIFE M

— *St == nA] + Aist + ést

o Different-speaker likelihood:
p(Xst|diff-speaker) = /p(ﬁst|2st)p(ist)d25t
- / N (Rt + Bzer, £V (240, 1)dZo0
= N(ks|t, AAT + %)

(/) 2
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Likelihood Ratio Scores

o Log-likelihood ratio score (assuming i-vectors have been mean
subtracted, x +— x — m)

Str(xs, xe) = lo p(xs, x¢|Same-speaker)
L X008 p(xs, x¢| Diff-speaker)

I ),
(Bl B =)

0 X
1
= §[XIQXS + 2x] Px; + x] Qx;] + const

where
Q = Z;;% - (Ztot - Zacz;)%zac)il
P = Zggltzac(ztot - zaczt_o%zac)_l
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Likelihood Ratio Scores

@ The LLR in Eq. 9 assumes that the SNR of both target-speaker’s
utterance and test utterance are unknown.

o If both SNRs (/s, ¢+) are known, we may compute the score as follows:

p(xs, x¢|Same-speaker, (s, ¢;)
p(xs, x¢|Diff-speaker, {5, £+)

SLR(x57 xt|£$7 Et) = Iog
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Likelihood Ratio Scores

@ Given i-vector x and utterance SNR ¢, the likelihood of x is
pMQ:A/thM@MhMWMM
w
:A/thMMWMﬁMMWMM
w
= | [ plxih.w, )p(n)dhp(wt)dw

where we have assumed that h is a priori independent of w and /.
o Note that if £ € k-th SNR group, we have w = w} = (w|X*)

p(x|¢ € k-th SNR group) = /p(x|h,w’£)p(h)dh
h
:/Num+vmumpmNmmnw
h
= N(x|m + Uw},VVT + X)
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Likelihood Ratio Scores

p(xs, x¢|Same-speaker, {5, {;)
p(xs, x¢| Diff-speaker, (s, £+)

N(le] ‘ m -+ Uw",;s] [\u zaCD
Xt m -+ kat . Vv (10)

Xs| | [m+Uwj | (W 0
aGlE=IEte)

m + Uw},
[x] Qxs + 2x{ Px; 4+ X] QX;] + const

SLR(X57 Xt’£57 et) - IOg

= log

1

2
where
Xs = xs —m — Uwj_
X: = x¢ —m — Uwj,
Q=v"'-(W-xX, v, )"
P=vlyr (v-x, wilx )!
v=wWT4+3x ¥, . =VvV'
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Compare with scoring in JFA

@ Scoring in JFA is based on the sequential mode
[Kenny et al., 2007b]:

Prs)(Or)

Sika-Lr(Os, O¢) = PO
t

where A(s) denotes the adapted speaker model based on enrollment
speech Os from speaker s.

e Computing Py 5)(O¢) requires the posterior density of speaker factors
[y(s) and z(s) in Kenny 2007], which are posteriorly correlated.

@ The scoring function in Eq. 9 is based on the batch mode.

@ Batch mode is similar to speaker comparison in which no model
adaptation is performed. So, the posterior correlation between
speaker factors and SNR factors does not occur in Eq. 9.
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Scoring based on sequential mode

@ The batch-mode scoring (Eq. 10) requires inverting a big matrix if the
target speaker has a large number of enrollment utterances.
@ The sequential-mode scoring can mitigate this problem.

@ For notational simplicity, we assume that the target speaker only have
one enrollment utterance with i-vector xs:

P(Xs,ths,et)
SLR(XSa thsa ét) — p(Xsws)p(tht)
_ p(xt‘XSags;et)P(xsws)
— p(xsls)p(xel )
p(xt‘xs>£57€t)
p(xe|lt)
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Scoring based on sequential mode

@ For simplicity, we omit /5 and ¢; from now on.

plxelx.) = | [ plxiIh. w)p(h, wix;)dhdw

@ As h and w are posteriorly dependent, we use variational Bayes to
approximate the joint posterior:

pixeixs) = [ [ p(xilh, w)q(h)a(w)dhdw

- /h / N (xelm + Vh + Uw, E)N (hl g, Zn, )N (W]t Ew, )dhdw
(11)

where py,_, Xy, p,,, and X, are posterior means and posterior
covariances.
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Scoring based on sequential mode

@ Eq. 11 is a convolution of Gaussians

p(xe|xs) ~ / /N(xt|m + Vh + Uw, )N (h|p, , Xy, )dhN (w|p,, , Zy, ) dw
wJh

— / N (xelm + Vg, +Uw, VE, V' + DN (w|p,, , Zu,)dw

= N(xe/m + Vp,, +Up,, ,VE,V' + UL, UT +X)

e If /s falls on the k-th SNR group, we may replace pu,,_ by
w} = (w,|XK) and assume that X, —0:

p(xt[xs) = N(xe/m + Vpy, + Uwj, VE, VT + ¥)
@ p(x¢) is a marginal density
p(xe) = [ plxcIn,w)p(h, w)dhdw
- //\/(xt|m + Vh + Uw, )N (h|0, )/ (w|0, 1) dhdw
= N(x:/m,VVT + UUT 4 X)
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Scoring based on sequential mode

@ The posteriors means and covariances can be obtained from Eq. 6
and Eq. 7 by considering a single utterance from target-speaker s:

(hs|xs) = Zp VTZ Y (xs — m — Up,, )
(ws|xs) = ZWSUTZ_l(xs —m—Vpy, )
(1+VTE-1y)-!
(1+uTztu)!

o Note that puy,_ and p,, depend on each other, meaning that they
should be found iteratively.
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Experiments on SRE12

@ Evaluation dataset: Common evaluation condition 1 and 4 of NIST
SRE 2012 core set.

o Parameterization: 19 MFCCs together with energy plus their 1st
and 2nd derivatives = 60-Dim acoustic vectors

o UBM: Gender-dependent, mic+tel, 1024 mixtures

o Total Variability Matrix: Gender-dependent, mic—+tel, 500 total
factors

o |-Vector Preprocessing: Whitening by WCCN then length

normalization followed by non-parametric feature analysis (NFA)> and
WCCN (500-dim — 200-dim)

Z. Li, D. Lin, and X. Tang, " Nonparametric discriminant analysis for face
recognition,” |EEE Trans. on PAMI, 2009.
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Prepare training speech files

Original tel speech files

l Noisy

15dB speech files
— _

FaNT

Original t[l speech files

Noisy
14d8 speech files
—> FaNT >

Original tel speech files

Noisy
6dB speech files
E—— FaNT —_—

selection

Training Utterances

1800
utterances/interval

No. of occurrences

B o > Union I

SNR<4dB Interval 1
4dB<SNR<5dB Interval 2

Original utts (mic+tel)

13dB<SNR<14dB  Interval 11
14dB<SNR Interval 12
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SNR distributions

@ SNR Distribution of training and test utterances in CC4

200 T T T T T

Training Utterances

)
3
c 150+
o
5
§ 100
©
8 50
=z
0
0 10 20 30 40 50
SNR/dB
100

Test Utterances
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o
[=]
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SNR/dB
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Performance on SRE12

Mixture of PLDA (Mak, Interspeech14)

CC1
Method
- EER(%) minDCF EER(%) minDCF
PLDA - - 5.42 0.371 7.53 0.531
—> mPLDA - - 5.28 0.415 7.70 0.539
3 40 5.42 0.382 6.93 0.528
SNR- 5 40 5.28 0381  6.89 0.522
Invariant
PLDA 6 40 5.29 0388  6.90 0.536
8 30 5.56 0.384 7.05 0.545
.Y
No. of/S|NR No. of SNR factors

Groups (dim of wk)
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Performance on SRE12

Mixture of PLDA (Mak, Interspeech14)

PLDA . :
> mPLDA - L
3 40
SNR- 5 40
Invariant
PLDA 6 40
8 30

/

No. of SNR
Groups

“m

CC4

EER(%) minDCF EER(%) minDCF

3.13 0.312 2.82 0.341
2.88 0.329 271 0.332
2.72 0.289 2.36 0.314
2.67 0.291 2.38 0.322
2.63 0.287 243 0.319
2.70 0.292 2.29 0.313

N\

No. of SNR factors
(dim of wk)
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Performance on SRE12

SO ~ . PLDA
3 e N-PLDA
S-PLDA
——— NS-PLDA
10 :
e
c
< 5
£ cca,
g Female
5
5 2 it
8 SNR-Invariant
= PLDA
05 |
02t
0.1 L— — : i ‘
01 02 05 1 2 5 10 20

False Alarm probability (in %)
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© Case Studies

@ 5.3. Mixture of PLDA
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Mixture of PLDA: Motivation

e Conventional i-vector/PLDA systems use a single PLDA model to
handle all SNR conditions

I-Vector/PLDA | PLDA Score
Scoring

I

Enroliment
Utterances
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Mixture of PLDA: Motivation

o We argue that a PLDA model should focus on a small range of SNR.

PLDA PLDA Score
Model 1
PLDA PLDA Score
—_—
Model 2
PLDA PLDA Score
Model 3
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Distribution of SNR

SNR distribution of test utterances in CC4 for male
350 . . . T

300

Each SNR region is handled
by a PLDA Model

250 |

200 |
150 ¢

No. of occurrences

100
50

0
0 10 20 30 40 50

SNR/dB

231 /274



Proposed solution

@ The full spectrum of SNRs is handled by a mixture of PLDA in which
the posteriors of the indicator variables depend on the utterance's

SNR.

@ Verification scores depend not only on the same-speaker and
different-speaker likelihoods but also on the posterior probabilities of

SNR.

SNR
Estimator

' SNR Posterior Estimator ‘

PLDA
Model 1

PLDA
Model 2

PLDA
Model 3

PLDA
Score
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Mixture of PLDA

@ Model parameters:

0 - {E, E7Q,m, M7Z}

K
={ Tk, ks 0k, M, Vi, X Heg

Modeling SNR Speaker subspaces

@ Generative model:

K
xj ~ > Py = )N (xglmie, ViVT + Ei)
k=1
where
TI'kN Ei' k,0'2
Py = 1/t3) = o

S TN (Ll 0%))
and ¢j; is the SNR of the utterance j from speaker i.
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Mixture of PLD

@ Graphical model:

m z x;; i-vector of the j-th
utterance from the
i-th speaker

|<

{;: : SNRofthe j-th
utterance from the i-th

speaker

= {nk}kK=1

W, o K
W F . V={V}~

_ - K
0 = {m, pk, ok, Mk, Vi, Bie Hoey
\ ] |\ Y J

Y
For modeling For modeling SNR-
SNR of utts. dependent i-vectors 4
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PLDA vs. Mixture of PLDA

@ Graphical models:

=

:
|<
)

4
>
1A

]

o

O+
Ll

1
N Y H

i N

PLDA Mixture of PLDA

235 /274



Experiments on SRE12

o Evaluation dataset: Common evaluation condition 1 and 4 of NIST
SRE 2012 core set.

o Parameterization: 19 MFCCs together with energy plus their 1st
and 2nd derivatives =—> 60-Dim acoustic vectors

o UBM: Gender-dependent, mic+tel, 1024 mixtures

o Total Variability Matrix: Gender-dependent, mic+tel, 500 total
factors

o |-Vector Preprocessing: Whitening by WCCN then length
normalization followed by LDA and WCCN (500-dim — 200-dim)

236 /274



Experiments on SRE12

@ In NIST 2012 SRE, training utterances from telephone channels are
clean, but some of the test utterances are noisy.
@ We used the FaNT tool to add babble noise to the clean training

utterances

w
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[ I Target-tel 1508 CC2, CC4 & CC5

e
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=3
S

Frequency
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DET Performance

@ Train on tel+mic speech and test on noisy tel speech (CC4).

10 Male i Female
i - - -PLDA
— .~ HD-mPLDA (1,=0, n,=25)
—— SD-mPLDA (K=3)
PLDA
= ‘/ 5
z
3
g 1
4 )
i :
2 mPLDA 2
“w
\
\
"
.
v
1 i .
08 ! 10 o5

2 5
False Alarm probability (in %)

2 5
False Alarm probabilty (in %)
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I-vector Cluster Alignment

3F @ - - O @ O
a X Aligned to Mixture 1
% ol O  Aligned to Mixture 3 |{
=
o
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© Case Studies

@ 5.4. DNN I-vectors

240 /274



DNN for speaker recognition

e Main idea: replacing the universal background model (UBM) with a
phonetically-aware DNN for computing the frame posterior
probabilities.

@ The most successful application of DNN to speaker recognition
[Lei et al., 2014, Ferrer et al., 2016, Richardson et al., 2015]

. Feature Stack I I I
Extracnon Features _‘

Posteriory

Source: Richardson, F., et al. |IEEE Signal Processing Letters, 2015 241 /274



DNN [-vector extraction

UBM-based i-vector extraction

olh’ ls(
order stats

DNN-based i-vector extraction

0" order
stats

Senone posteriors

1% order
stats

Source: Ferrer, L. et al. IEEE/ACM Transactions on Audio, Speech, and Language

Processing, 2016.
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UBM I-vectors

@ Factor analysis model for UBM i-vectors:
p,C:p,(cb)—i—Tcw c=1,...,C

e Given the MFCC vectors of an utterance O = {01, ...,07}, its
i-vector is the posterior mean of w

x = (w]0) =L zcj 1 (=) i%(otxot — )

c=1 t=1
where
C T
L=14+" > 7(e) TH(EP) T,
c=1t=1

MON (0|l £0))
b b b
S AN (o, )

Ye(0t) = Pr(Mixture = clo;) =
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DNN I-vectors

@ Replace 7.(0:) by DNN output, YPNN(a,)

@ The DNN is trained to produce posterior probabilities of senones,
given multiple frames of acoustic features, a;, as input.

. Feature Stack I
Exrracnon Feamres

L

@ Acoustic features for speech recognition in the DNN are not necessary
the same as the features for the i-vector extractor.
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DNN I-vectors

@ Given MFCC or bottleneck (BN) feature vectors O = {01,...,07},
the DNN i-vector is®

C T

-1

x = (wjO0) =L"1 E T! (Z]CDNN> E ADNN(a)(0; — uPNY)
c=1 t=1

where

N T;
DNN _ 2ie1 ety Yo N (ait)oit
c - N T:
Doim1 2oty O N(aj;)

N T; . DNN T
$DNN _ Yim1 i1 Ve (Qit)0it0j _ DNN( DNN)T
c - N Ti DNN l’l’c l’l’C
izt et v N (ait)

5For a full set of formulae, see

http://www.eie.polyu.edu.hk/~mwmak/papers/FA-lvector.pdf
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Denoising deep classifier
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DNN I-vectors from denoising deep classifier

— Senones

Senone
Posteriors

BN

>
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Performance on NIST 2012 SRE

@ Performance on CC4 with test utterances contaminated with babble

noise.
15dB 6dB 0dB
| Acoustic Features | Posteriors from EER | minDCF | EER [ minDCF | EER | minDCF
MFCC GMM (1024 mixtures) | 3.366 0.322 3.243 0.353 5.353 0.631
MFCC GMM (2048 mixtures) | 4.215 0.352 3.819 0.379 5.332 0.646
BN Features GMM (1024 mixtures) | 3.269 0.263 3.493 0.368 4.608 0.551
BN Features DNN (2000 senones) 2.448 0.236 2.774 0.311 4.503 0.544
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© Case Studies

e 5.5. PLDA with RBM
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PLDA-RBM

e Main idea:

e Use i-vectors as input to the Gaussian visible layer of an RBM

e Divide RBM weights into two parts: speaker and channel
Consider RBM weights as analogue to PLDA’s loading matrices
Divide the Gaussian hidden layer into two parts: speaker and channel
Hidden nodes are considered as latent factors

Hidden layer Speaker factor ~ Channel factors

Si ; E cll ;é ciZ ;i ci3

-1/2

o, x n,

|
|

1 I E

! |

: 1

5 f\ l

I =1/2:
| n; "W, W,
1
I 1
| ]
|
1

M Viz Vi

Visible layer l-vectors from the j-th speaker

RBM RBM-PLDA
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PLDA vs. PLDA-RBM

o PLDA (omitting global mean):
v=Vs+Uc+e

where v is an i-vector, s and c are speaker and channel factors.
o RBM-PLDA:
Vp =0y |:WsSStL + chst]
Os Oc
where v, is the expected value of visible layer in the negative phase of
CD-1 sampling, sst and ¢ are the states of Gaussian hidden nodes of
the RBM.

Hidden layer Speaker factor ~ Channel factors

Q00

000

Visible layer

I-vectors from the i-th speaker
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Scoring in PLDA-RBM

@ Given two i-vectors v;, i = 1,2, compute s; = W;rv;.
@ The log-likelihood ratio is

1
LLR = —5(51 — sz)T(sl — sp) + const

o If ||s;|| = 1, the model is similar to cosine distance scoring.
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Results on NIST 0 SRE

@ NIST'10, female, core-extended:
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