
Outline

1 Introduction

2 Learning Algorithms

3 Learning Models

4 Deep Learning

5 Case Studies
5.1. Heavy-Tailed PLDA
5.2. SNR-Invariant PLDA
5.3. Mixture of PLDA
5.4. DNN I-vectors
5.5. PLDA with RBM

6 Future Direction 180 / 274

Outline

1 Introduction

2 Learning Algorithms

3 Learning Models

4 Deep Learning

5 Case Studies
5.1. Heavy-Tailed PLDA
5.2. SNR-Invariant PLDA
5.3. Mixture of PLDA
5.4. DNN I-vectors
5.5. PLDA with RBM

6 Future Direction 181 / 274

Motivation

Motivation of i-vectors:
Insufficiency of joint factor analysis (JFA) in distinguishing between
speaker and channel information, as channel factors were shown to
contain speaker information.
Better to use a two-step approach: (1) use low-dimensional vectors
(called i-vectors) that comprise both speaker and channel information
to represent utterances; and (2) model the channel and variabilities of
the i-vectors during scoring.

Motivation of Heavy-tailed PLDA:
JFA assumes that the speaker and channel components follow Gaussian
distributions.
The Gaussian assumption prohibits large deviations from the mean.
But speaker effects (e.g., non-native speakers) and channel effect
(gross channel distortion) could cause large deviations.
Use heavy-tailed distributions instead of Gaussians for modeling the
speaker and channel components in i-vectors [Kenny, 2010].

182 / 274

Generative model with heavy-tailed priors

Assuming that we have Hi i-vectors Xi = {xij , j = 1, . . . ,Hi} from
speaker i , the generative model is

xij = m + Vhi + Grij + εij

where V and G represent the the speaker and channel subspaces,
respectively.
In heavy-tailed PLDA,

hi ∼ N (0, u−1
1 I) u1 ∼ G(n1/2, n1/2)

rij ∼ N (0, u−1
2j I) u2j ∼ G(n2/2, n2/2)

εij ∼ N (0, (vjΛ)−1) vj ∼ G(νj/2, νj/2)

By integrating out the hyperparameters (u1, u2j , and vj), one can
show [Eq. 2.161 of Bishop (2006)] that the priors of hi , rij , and εij
follow Student’s t. So, xij also follows Student’s t.

183 / 274

Performance on NIST 2008 SRE

Telephone speech, without score normalization

Microphone speech, with score normalization

[Kenny, 2010]

184 / 274

From HT-PLDA to Gaussian PLDA

In 2011, [Garcia-Romero and Espy-Wilson, 2011] discovered that
Gaussian PLDA performs as good as HT-PLDA provided that
i-vectors have been subjected to the following pre-processing steps:

Whitening + Length normalization

These steps have the effect of making the i-vectors more Gaussian.
As Gaussian PLDA is computationally much simpler than HT-PLDA,
the former has been extensively used in speaker verification.

185 / 274

Outline

1 Introduction

2 Learning Algorithms

3 Learning Models

4 Deep Learning

5 Case Studies
5.1. Heavy-Tailed PLDA
5.2. SNR-Invariant PLDA
5.3. Mixture of PLDA
5.4. DNN I-vectors
5.5. PLDA with RBM

6 Future Direction 186 / 274

Motivation

While i-vector extraction followed by PLDA is very effective in
addressing channel variability
Performance degrades rapidly in the presence of background noise
with a wide range of signal-to-noise ratios (SNR)
Classical approach: Multi-condition training where i-vectors from
various background noise level are pooled to train a PLDA model.

187 / 274

Motivation

We argue that the variation caused by SNR variability can be
modeled by an SNR subspace and utterances falling within a narrow
SNR range should share the same set of SNR factors.
SNR-specific information were separated from speaker-specific
information through marginalizing out the SNR factors during scoring

188 / 274

Motivation

I-vectors derived from utterances of similar SNR will be mapped to a
small region in the SNR subspace.

189 / 274

SNR-Invariant PLDA

Classical PLDA: xij = m + Vhi + εij

By adding an SNR factor to the conventional PLDA, we have
SNR-invariant PLDA [Li and Mak, 2015]:

xk
ij = m + Vhi + Uwk + εk

ij , k = 1, . . . ,K

where U denotes the SNR subspace, wk is an SNR factor, and hi is
the speaker (identity) factor for speaker i .
Note that it is not the same as PLDA with channel subspace:

xk
ij = m + Vhi + Grij + εij ,

where G defines the channel subspace and rij represents the channel
factors.

190 / 274

SNR-invariant PLDA

Generative model:

xk
ij = m + Vhi + Uwk + εk

ij , k=1,. . . ,K

hi is speaker factors with prior distribution N (0, I)
xk

ij is the j-th i-vector from speaker i in the k-th SNR subgroup
V is the eigenvoice matrix
U defines the SNR subspace
wk is SNR factor with prior distribution N (0, I)
εk

ij is a residual term with prior distribution N (0,Σ); Σ is a full
covariance matrix aiming to model the channel variability

191 / 274

SNR-invariant PLDA

Training utterances are divided into K groups, accroding to their SNR

192 / 274

PLDA vs. SNR-invariant PLDA

Comparing the use of training i-vectors with conventional PLDA

193 / 274

PLDA vs. SNR-invariant PLDA

Comparing generative models:

PLDA SNR-Invariant PLDA

xij = m + Vhi + εij xk
ij = m + Vhi + Uwk + εk

ij

x ∼ N (x|m,VVT + Σ) x ∼ N (x|m,VVT + UUT + Σ)

θ = {m,V,Σ} θ = {m,V,U,Σ}

194 / 274

Auxiliary function for SNR-invariant PLDA

The parameters θ = {m,V,U,Σ} can be learned from a training set
X using maximum likelihood estimation.
X = {xk

ij ; i = 1, . . . ,S; j = 1, . . . ,Hi (k); k = 1, . . . ,K}
S: No. of training speakers
K : No. of SNR groups
Hi (k): No. of utterances from speaker i in the k-th SNR group.

Given an initial value θ, we aim to find a new estimate θ̂ that
maximizes the auxiliary function:

Q(θ̂|θ) = Eh,w
[∑

ikj
ln
(
p(xk

ij |hi ,wk , θ̂)p(hi ,wk)
)∣∣∣X ,θ]

= Eh,w
[∑

ikj

(
lnN (xk

ij |m + Vhi + Uwk ,Σ)

+ ln p(hi ,wk)
)∣∣∣X ,θ]

195 / 274

Posterior distributions of latent variables

We show 3 ways to compute the posteriors:
1 Computing the posterior of hi and wk separately.
2 Computing the posterior hi while fixing wk using the Gauss-Seidel

method.
3 Computing the joint posterior of hi and wk using variational Bayes.

196 / 274

Method 1: Computing posteriors separately

Given i-vectors xk
ij , the posterior density of hi has the form:

p(hi |xk
ij ,θ) ∝ p(xk

ij |hi ,θ)p(hi)

=
∫

p(xk
ij ,wk |hi ,θ)p(hi)dwk

=
∫

p(xk
ij |hi ,wk ,θ)p(wk)p(hi)dwk

=
∫
N (xk

ij |m + Vhi + Uwk ,Σ)N (wk |0, I)N (hi |0, I)dwk

= N (xk
ij |m + Vhi ,Φ)N (hi |0, I)

∝ exp
{

hT
i VTΦ−1(xk

ij −m)− 1
2hT

i (I + VTΦ−1V)hi

}
where Φ = UUT + Σ.

197 / 274

Method 1: Computing posteriors separately
If all of the i-vectors of speaker i , say Xi , are given,

p(hi |xk
ij ∀j and k,θ) ∝

K∏
k=1

Hi (k)∏
j=1

p(xk
ij |hi ,θ)p(hi)

∝ exp

hT
i VTΦ−1

K∑
k=1

Hi (k)∑
j=1

(xk
ij −m)− 1

2hT
i

(
I +

K∑
k=1

Hi (k)VTΦ−1V
)

hi


This is a Gaussian with mean and 2nd-order (uncentralized) moment

〈hi |Xi〉 =
(

I +
∑K

k=1
Hi (k)VTΦ−1V

)−1
VTΦ−1

∑K

k=1

∑Hi (k)

j=1
(xk

ij −m)

〈hi hT
i |Xi〉 =

(
I +
∑K

k=1
Hi (k)VTΦ−1V

)−1
+ 〈hi |Xi〉〈hi |Xi〉T,

(1)

N (h|µh,Ch) ∝ exp
{
−1

2 (h− µh)TC−1
h (h− µh)

}
∝ exp

{
hTC−1

h µh −
1
2hTC−1

h h
}

198 / 274

Method 1: Computing posteriors separately

Similarly, to compute the posterior expectations of wk , we marginalize
over hi ’s. Thus, the posterior density of wk is

p(wk |xk
ij ,θ) ∝

∫
p(xk

ij |hi ,wk ,θ)p(hi)p(wk)dhi

=
∫
N (xk

ij |m + Vhi + Uwk ,Σ)N (hi |0, I)N (wk |0, I)dhi

= N (xk
ij |m + Uwk ,Ψ)N (wk |0, I)

∝ exp
{

wT
k UTΨ−1(xk

ij −m)− 1
2wT

k (I + UTΨ−1U)wk

}

199 / 274

Method 1: Computing posteriors separately

Given all of the i-vectors (X k) from the k-th SNR group, we can
compute the posterior expectations as follows:

〈wk |X k〉 =
(

I +
S∑

i=1
Hi (k)UTΨ−1U

)−1

UTΨ−1
S∑

i=1

Hi (k)∑
j=1

(xk
ij −m)

〈wkwT
k |X k〉 =

(
I +

S∑
i=1

Hi (k)UTΨ−1U
)−1

+ 〈wk |X k〉〈wk |X k〉T

(2)

where Ψ = VVT + Σ

200 / 274

Method 2: Computing posteriors by Gauss-Seidel method

Another approach to computing p(hi |Xi) is to assume that wk ’s are
fixed for all k = 1, . . . ,K .
This is called the Gauss-Seidel method [Barrett et al., 1994]
We fix wk to its posterior mean: w∗k ≡ 〈wk |X k〉
The posterior density of hi becomes:

p(hi |Xi ,w∗k ,θ) ∝
K∏

k=1

Hi (k)∏
j=1

p(xk
ij |hi ,w∗k ,θ)p(hi)

=
K∏

k=1

Hi (k)∏
j=1
N (xk

ij |m + Vhi + Uw∗k ,Σ)N (hi |0, I)

∝ exp

hT
i VTΣ−1

K∑
k=1

Hi (k)∑
j=1

(xk
ij −m−Uw∗k) −

1
2hT

i

(
I +

K∑
k=1

Hi (k)VTΣ−1V
)

hi

}
201 / 274

Method 2: Computing posteriors by Gauss-Seidel method

Comparing this posterior density with a standard Gaussian, we have

〈hi |Xi〉 =
(

L(1)
i

)−1
VTΣ−1

K∑
k=1

Hi (k)∑
j=1

(xk
ij −m−Uw∗k)

〈hi hT
i |Xi〉 =

(
L(1)

i

)−1
+ 〈hi |Xi〉〈hi |Xi〉T,

(3)

where L(1)
i ≡ I +

∑K
k=1 Hi (k)VTΣ−1V

Note that these formulations is similar to the JFA model estimation in
[Vogt and Sridharan, 2008].

202 / 274

Method 2: Computing posteriors by Gauss-Seidel method

Apply the same approach to computing the posterior density of wk ,
we have

〈wk |X k〉 =
(

L(2)
k

)−1
UTΣ−1

S∑
i=1

Hi (k)∑
j=1

(xk
ij −m− Vh∗i)

〈wkwT
k |X k〉 =

(
L(2)

k

)−1
+ 〈wk |X k〉〈wk |X k〉T

(4)

where L(2)
k = I +

∑S
i=1 Hi (k)UTΣ−1U and h∗i ≡ 〈hi |Xi〉

203 / 274

Method 3: Computing posteriors by variational Bayes

Denote w = [w1, . . . ,wK] and h = [h1, . . . ,hS]
In variational Bayes [Bishop, 2006, Kenny, 2010], we factorize the
joint posterior as follows:

ln p(h,w|X) ≈ ln q(h) + ln q(w) =
S∑

i=1
ln q(hi) +

K∑
k=1

ln q(wk)

where

ln q(h) = Ew{ln p(h,w,X)}+ const
ln q(w) = Eh{ln p(h,w,X)}+ const

where Ew means taking expectation with respect to w.

204 / 274

Method 3: Computing posteriors by variational Bayes
Consider ln q(h):
ln q(h) = Ew{ln p(h, w,X)}+ const
= 〈ln p(X|h, w)〉w + 〈ln p(h, w)〉w + const

=
∑

ijr

〈
lnN (xr

ij |m + Vhi + Uwr , Σ)
〉

wr

+
∑

i
〈lnN (hi |0, I)〉w +

∑
r
〈lnN (wr |0, I)〉w + const

= −1
2
∑

ijr
(xr

ij −m− Vhi −Uw∗r)TΣ−1(xr
ij −m− Vhi −Uw∗r)

− 1
2
∑

i
hT

i hi + const (5)

=
∑

i

[
hT

i VTΣ−1
∑

jr
(xr

ij −m−Uw∗r)− 1
2 hT

i

(
I +
∑

jr
VTΣ−1V

)
hT

i

]
+ const

q(hi) a Gaussian with mean and precision identical to Eq. 3:

〈hi |Xi〉 =
(

L(1)
i

)−1
VTΣ−1

∑
jr

(xr
ij −m−Uw∗r)

L(1)
i = I +

∑
jr

VTΣ−1V
(6)

205 / 274

Method 3: Computing posteriors by variational Bayes

lnq(w) = 〈ln p(X|h, w)〉h + 〈ln p(h, w)〉h + const

=
∑

ijk

〈
lnN (xk

ij |m + Vhi + Uwk , Σ)
〉

hi

+
∑

i
〈lnN (hi |0, I)〉hi +

∑
k
〈lnN (wk |0, I)〉h + const

= −1
2
∑

ijk
(xk

ij −m− Vh∗i −Uwk)TΣ−1(xk
ij −m− Vh∗i −Uwk)

− 1
2
∑

k
wT

k wk + const

=
∑

k

[
wT

k UTΣ−1
∑

ij
(xk

ij −m− Vh∗i)− 1
2 wT

k

(
I +
∑

ij
UTΣ−1U

)
wT

k

]
+ const

q(wk) is a Gaussian with mean and precision identical to Eq. 4:

〈wk |X k〉 =
(

L(2)
k

)−1
UTΣ−1

∑
ij

(xk
ij −m− Vh∗i)

L(2)
k = I +

∑
ij

UTΣ−1U
(7)

Note : 〈lnN (hi |0, I)〉hi is the differential entropy of normal distribution and is
independent of wk , see [Norwich, 1993](Ch 8).

206 / 274

Computing posterior moment

The exact posterior moment 〈wkhT
i |X 〉 will be complicated because

hi and wk are correlated in the posterior.
If Gauss-Seidel’s method is used, we may approximate the posterior
moments by (Kenny 2010, p.6)

〈wkhT
i |X 〉 ≈ 〈wk |X k〉(h∗i)T

〈hi wT
k |X 〉 ≈ 〈hi |Xi〉(w∗k)T

where h∗i and w∗k are the most up-to-date posterior means in the EM
iterations.
Alternatively, we may compute the exact joint posterior.3 But it will
be computationally intensive.

3http://www.eie.polyu.edu.hk/∼mwmak/papers/si-plda.pdf
207 / 274

Computing posterior moment

A better approach is to use variational Bayes:

p(hi ,wk |X) ≈ q(hi)q(wk) (8)

Note that as both q(hi) and q(wk) are Gaussians. Based on the law
of total expectation,4 the factorization in Eq. 8 gives

〈wkhT
i |X 〉 ≈ 〈wk |X k〉〈hi |Xi〉T

〈hi wT
k |X 〉 ≈ 〈hi |Xi〉〈wk |X k〉T

4https://en.wikipedia.org/wiki/Product distribution
208 / 274

Maximization Step

In the M-step, we maximize the auxiliary function:

Q(θ) = Eh,w

{∑
ijk

lnN
(

xk
ij
∣∣m + Vhi + Uwk ,Σ

)
p(hi ,wk)

∣∣∣∣X ,θ}
=
∑
ijk

Eh,w

{
−1

2 log |Σ| − 1
2
(

xk
ij −m− Vhi −Uwk

)T
Σ−1

×
(

xk
ij −m− Vhi −Uwk

)
+ ln p(hi ,wk)

∣∣∣∣X ,θ}
As p(hi ,wk) is independent of the model parameters V, U, and Σ,
they could be taken out of Q(θ) in the M-step
[Prince and Elder, 2007].

209 / 274

Maximization Step

Differentiating Q(θ) with respect to V, U, and Σ and set the results
to 0, we obtain

V =

∑
ijk

[
(xk

ij −m)〈hi |Xi〉 −U〈wkhT
i |X 〉

]
∑

ijk
〈hi hT

i |X 〉

−1

U =

∑
ijk

[
(xk

ij −m)〈wk |X k〉 − V〈hi wT
k |X 〉

]
∑

ijk
〈wkwT

k |X 〉

−1

Σ = 1
N
∑
ijk

[
(xk

ij −m)(xk
ij −m)T

− V〈hi |Xi〉(xk
ij −m)T −U〈wk |X k〉(xk

ij −m)T
]

210 / 274

Likelihood Ratio Scores

Given target-speaker’s i-vector xs and test-speaker’s i-vector xt
If xs and xt are from the same speaker, they should share the same
speaker factor h:[

xs
xt

]
=
[

m
m

]
+
[

V U 0
V 0 U

] h
ws
wt

+
[
εs
εt

]
=⇒ x̂st = m̂ + Âẑst + ε̂st .

Same-speaker likelihood:

p(x̂st |same-speaker) =
∫

p(x̂st |ẑst)p(ẑst)dẑst

=
∫
N (x̂st |m̂ + Âẑst , Σ̂)N (ẑst |0, I)dẑst

= N (x̂st |m̂, ÂÂT + Σ̂)

= N
([

xs
xt

] ∣∣∣∣ [m
m

]
,

[
Σtot Σac
Σac Σtot

])
where Σ̂ = diag{Σ,Σ}, Σtot = VVT + UUT + Σ and Σac = VVT

211 / 274

Likelihood Ratio Scores

If xs and xt are from different speakers, they should have their own
speaker factor (hs ,ht):

[
xs
xt

]
=
[

m
m

]
+
[

V 0 U 0
0 V 0 U

]
hs
ht
ws
wt

+
[
εs
εt

]

=⇒ x̂st = m̂ + Āz̄st + ε̂st

Different-speaker likelihood:

p(x̂st |diff-speaker) =
∫

p(x̂st |z̄st)p(z̄st)dz̄st

=
∫
N (x̂st |m̂ + Āz̄st , Σ̂)N (z̄st |0, I)dz̄st

= N (x̂st |m̂, ĀĀT + Σ̂)

= N
([

xs
xt

] ∣∣∣∣
[

m
m

]
,

[
Σtot 0

0 Σtot

])
212 / 274

Likelihood Ratio Scores

Log-likelihood ratio score (assuming i-vectors have been mean
subtracted, x← x−m)

SLR(xs , xt) = log p(xs , xt |Same-speaker)
p(xs , xt |Diff-speaker)

= log
N
([

xs
xt

] ∣∣∣∣
[

0
0

]
,

[
Σtot Σac
Σac Σtot

])

N
([

xs
xt

] ∣∣∣∣
[

0
0

]
,

[
Σtot 0

0 Σtot

])

= 1
2[xT

s Qxs + 2xT
s Pxt + xT

t Qxt] + const

(9)

where

Q = Σ−1
tot − (Σtot −ΣacΣ−1

totΣac)−1

P = Σ−1
totΣac(Σtot −ΣacΣ−1

totΣac)−1

213 / 274

Likelihood Ratio Scores

The LLR in Eq. 9 assumes that the SNR of both target-speaker’s
utterance and test utterance are unknown.
If both SNRs (`s , `t) are known, we may compute the score as follows:

SLR(xs , xt |`s , `t) = log p(xs , xt |Same-speaker, `s , `t)
p(xs , xt |Diff-speaker, `s , `t)

214 / 274

Likelihood Ratio Scores

Given i-vector x and utterance SNR `, the likelihood of x is

p(x|`) =
∫

h

∫
w

p(x|h,w, `)p(h,w|`)dhdw

=
∫

h

∫
w

p(x|h,w, `)p(h|w, `)p(w|`)dhdw

=
∫

h

∫
w

p(x|h,w, `)p(h)dhp(w|`)dw

where we have assumed that h is a priori independent of w and `.
Note that if ` ∈ k-th SNR group, we have w = w∗k ≡ 〈wk |X k〉

p(x|` ∈ k-th SNR group) =
∫

h
p(x|h,w∗k)p(h)dh

=
∫

h
N (x|m + Vh + Uw∗k ,Σ)N (h|0, I)dh

= N (x|m + Uw∗k ,VVT + Σ)

215 / 274

Likelihood Ratio Scores

SLR(xs , xt |`s , `t) = log p(xs , xt |Same-speaker, `s , `t)
p(xs , xt |Diff-speaker, `s , `t)

= log
N
([

xs
xt

] ∣∣∣∣
[

m + Uw∗ks
m + Uw∗kt

]
,

[
Ψ Σac

Σac Ψ

])

N
([

xs
xt

] ∣∣∣∣
[

m + Uw∗ks
m + Uw∗kt

]
,

[
Ψ 0
0 Ψ

])

= 1
2[x̄T

s Qx̄s + 2x̄T
s Px̄t + x̄T

t Qx̄t] + const

(10)

where
x̄s = xs −m−Uw∗ks

x̄t = xt −m−Uw∗kt

Q = Ψ−1 − (Ψ−ΣacΨ−1Σac)−1

P = Ψ−1Σac(Ψ−ΣacΨ−1Σac)−1

Ψ = VVT + Σ; Σac = VVT
216 / 274

Compare with scoring in JFA

Scoring in JFA is based on the sequential mode
[Kenny et al., 2007b]:

SJFA-LR(Os ,Ot) =
PΛ(s)(Ot)
PΛ(Ot)

where Λ(s) denotes the adapted speaker model based on enrollment
speech Os from speaker s.
Computing PΛ(s)(Ot) requires the posterior density of speaker factors
[y(s) and z(s) in Kenny 2007], which are posteriorly correlated.
The scoring function in Eq. 9 is based on the batch mode.
Batch mode is similar to speaker comparison in which no model
adaptation is performed. So, the posterior correlation between
speaker factors and SNR factors does not occur in Eq. 9.

217 / 274

Scoring based on sequential mode

The batch-mode scoring (Eq. 10) requires inverting a big matrix if the
target speaker has a large number of enrollment utterances.
The sequential-mode scoring can mitigate this problem.
For notational simplicity, we assume that the target speaker only have
one enrollment utterance with i-vector xs :

SLR(xs , xt |`s , `t) = p(xs , xt |`s , `t)
p(xs |`s)p(xt |`t)

= p(xt |xs , `s , `t)p(xs |`s)
p(xs |`s)p(xt |`t)

= p(xt |xs , `s , `t)
p(xt |`t)

218 / 274

Scoring based on sequential mode

For simplicity, we omit `s and `t from now on.

p(xt |xs) =
∫ ∫

p(xt |h,w)p(h,w|xs)dhdw

As h and w are posteriorly dependent, we use variational Bayes to
approximate the joint posterior:

p(xt |xs) ≈
∫ ∫

p(xt |h,w)q(h)q(w)dhdw

=
∫

h

∫
w
N (xt |m + Vh + Uw,Σ)N (h|µhs ,Σhs)N (w|µws ,Σws)dhdw

(11)

where µhs , Σhs , µws , and Σws are posterior means and posterior
covariances.

219 / 274

Scoring based on sequential mode
Eq. 11 is a convolution of Gaussians

p(xt |xs) ≈
∫

w

∫
h
N (xt |m + Vh + Uw,Σ)N (h|µhs ,Σhs)dhN (w|µws ,Σws)dw

=
∫

w
N (xt |m + Vµhs + Uw,VΣhs V

T + Σ)N (w|µws ,Σws)dw

= N (xt |m + Vµhs + Uµws ,VΣhs V
T + UΣws U

T + Σ)
If `s falls on the k-th SNR group, we may replace µws by
w∗k ≡ 〈wk |X k〉 and assume that Σw∗k → 0:

p(xt |xs) = N (xt |m + Vµhs + Uw∗k ,VΣhs VT + Σ)
p(xt) is a marginal density

p(xt) =
∫

p(xt |h,w)p(h,w)dhdw

=
∫
N (xt |m + Vh + Uw,Σ)N (h|0, I)N (w|0, I)dhdw

= N (xt |m,VVT + UUT + Σ)
220 / 274

Scoring based on sequential mode

The posteriors means and covariances can be obtained from Eq. 6
and Eq. 7 by considering a single utterance from target-speaker s:

µhs = 〈hs |xs〉 = Σhs VTΣ−1(xs −m−Uµws)
µws = 〈ws |xs〉 = Σws UTΣ−1(xs −m− Vµhs)
Σhs = (I + VTΣ−1V)−1

Σws = (I + UTΣ−1U)−1

Note that µhs and µws depend on each other, meaning that they
should be found iteratively.

221 / 274

Experiments on SRE12

Evaluation dataset: Common evaluation condition 1 and 4 of NIST
SRE 2012 core set.
Parameterization: 19 MFCCs together with energy plus their 1st
and 2nd derivatives =⇒ 60-Dim acoustic vectors
UBM: Gender-dependent, mic+tel, 1024 mixtures
Total Variability Matrix: Gender-dependent, mic+tel, 500 total
factors
I-Vector Preprocessing: Whitening by WCCN then length
normalization followed by non-parametric feature analysis (NFA)5 and
WCCN (500-dim → 200-dim)

5Z. Li, D. Lin, and X. Tang, “Nonparametric discriminant analysis for face
recognition,” IEEE Trans. on PAMI, 2009.

222 / 274

Prepare training speech files

223 / 274

SNR distributions

SNR Distribution of training and test utterances in CC4

224 / 274

Performance on SRE12

225 / 274

Performance on SRE12

226 / 274

Performance on SRE12

227 / 274

Outline

1 Introduction

2 Learning Algorithms

3 Learning Models

4 Deep Learning

5 Case Studies
5.1. Heavy-Tailed PLDA
5.2. SNR-Invariant PLDA
5.3. Mixture of PLDA
5.4. DNN I-vectors
5.5. PLDA with RBM

6 Future Direction 228 / 274

Mixture of PLDA: Motivation

Conventional i-vector/PLDA systems use a single PLDA model to
handle all SNR conditions

229 / 274

Mixture of PLDA: Motivation

We argue that a PLDA model should focus on a small range of SNR.

230 / 274

Distribution of SNR

231 / 274

Proposed solution

The full spectrum of SNRs is handled by a mixture of PLDA in which
the posteriors of the indicator variables depend on the utterance’s
SNR.
Verification scores depend not only on the same-speaker and
different-speaker likelihoods but also on the posterior probabilities of
SNR.

232 / 274

Mixture of PLDA [Mak et al., 2016]

Model parameters:

θ = {π, µ, σ,m,V,Σ}
= { πk , µk , σk︸ ︷︷ ︸

Modeling SNR

, mk ,Vk ,Σk︸ ︷︷ ︸
Speaker subspaces

}K
k=1

Generative model:

xij ∼
K∑

k=1
P(yijk = 1|`ij)N (xij |mk ,VkVT

k + Σk)

where
P(yijk = 1|`ij) = πkN (`ij |µk , σ

2
k)∑K

k′=1 πk′N (`ij |µk′ , σ
2
k′))

and `ij is the SNR of the utterance j from speaker i .

233 / 274

Mixture of PLDA

Graphical model:

234 / 274

PLDA vs. Mixture of PLDA

Graphical models:

𝒙𝑖𝑗 𝒛𝑖

𝑁

𝒎

𝑽

𝚺

𝐻𝑖 ℓ ij

xij zi

yijk

NHi

K
π

µ , σ

V

m Σ

PLDA Mixture of PLDA

235 / 274

Experiments on SRE12

Evaluation dataset: Common evaluation condition 1 and 4 of NIST
SRE 2012 core set.
Parameterization: 19 MFCCs together with energy plus their 1st
and 2nd derivatives =⇒ 60-Dim acoustic vectors
UBM: Gender-dependent, mic+tel, 1024 mixtures
Total Variability Matrix: Gender-dependent, mic+tel, 500 total
factors
I-Vector Preprocessing: Whitening by WCCN then length
normalization followed by LDA and WCCN (500-dim → 200-dim)

236 / 274

Experiments on SRE12

In NIST 2012 SRE, training utterances from telephone channels are
clean, but some of the test utterances are noisy.
We used the FaNT tool to add babble noise to the clean training
utterances

237 / 274

DET Performance

Train on tel+mic speech and test on noisy tel speech (CC4).

238 / 274

I-vector Cluster Alignment

0 10 20 30 40 50 60

1

2

3

SNR (dB)

C
lu

st
er

 ID

Aligned to Mixture 1

Aligned to Mixture 3

Without using SNR

0 10 20 30 40 50 60

1

2

3

SNR (dB)

C
lu

st
er

 ID

Aligned to Mixture 1
Aligned to Mixture 2
Aligned to Mixture 3

With SNR as guidance
239 / 274

Outline

1 Introduction

2 Learning Algorithms

3 Learning Models

4 Deep Learning

5 Case Studies
5.1. Heavy-Tailed PLDA
5.2. SNR-Invariant PLDA
5.3. Mixture of PLDA
5.4. DNN I-vectors
5.5. PLDA with RBM

6 Future Direction 240 / 274

DNN for speaker recognition

Main idea: replacing the universal background model (UBM) with a
phonetically-aware DNN for computing the frame posterior
probabilities.
The most successful application of DNN to speaker recognition
[Lei et al., 2014, Ferrer et al., 2016, Richardson et al., 2015]

Source: Richardson, F., et al. IEEE Signal Processing Letters, 2015 241 / 274

DNN I-vector extraction

Source: Ferrer, L. et al. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 2016.

242 / 274

UBM I-vectors

Factor analysis model for UBM i-vectors:

µc = µ(b)
c + Tcw c = 1, . . . ,C

Given the MFCC vectors of an utterance O = {o1, . . . , oT}, its
i-vector is the posterior mean of w

x ≡ 〈w|O〉 = L−1
C∑

c=1
TT

c

(
Σ(b)

c

)−1 T∑
t=1

γc(ot)(ot − µ(b)
c)

where

L = I +
C∑

c=1

T∑
t=1

γc(ot)TT
c (Σ(b)

c)−1Tc

γc(ot) ≡ Pr(Mixture = c|ot) = λ
(b)
c N (ot |µ(b)

c ,Σ(b)
c)∑C

j=1 λ
(b)
j N (ot |µ(b)

j ,Σ(b)
j)

243 / 274

DNN I-vectors

Replace γc(ot) by DNN output, γDNN
c (at)

The DNN is trained to produce posterior probabilities of senones,
given multiple frames of acoustic features, at , as input.

Acoustic features for speech recognition in the DNN are not necessary
the same as the features for the i-vector extractor.

244 / 274

DNN I-vectors

Given MFCC or bottleneck (BN) feature vectors O = {o1, . . . , oT},
the DNN i-vector is6

x ≡ 〈w|O〉 = L−1
C∑

c=1
TT

c

(
ΣDNN

c

)−1 T∑
t=1

γDNN
c (at)(ot − µDNN

c)

where

µDNN
c =

∑N
i=1

∑Ti
t=1 γ

DNN
c (ait)oit∑N

i=1
∑Ti

t=1 γ
DNN
c (ait)

ΣDNN
c =

∑N
i=1

∑Ti
t=1 γ

DNN
c (ait)oitoT

it∑N
i=1

∑Ti
t=1 γ

DNN
c (ait)

− µDNN
c (µDNN

c)T

6For a full set of formulae, see
http://www.eie.polyu.edu.hk/∼mwmak/papers/FA-Ivector.pdf

245 / 274

Denoising deep classifier [Tan et al., 2016]

246 / 274

DNN I-vectors from denoising deep classifier

247 / 274

Performance on NIST 2012 SRE

Performance on CC4 with test utterances contaminated with babble
noise.

248 / 274

Outline

1 Introduction

2 Learning Algorithms

3 Learning Models

4 Deep Learning

5 Case Studies
5.1. Heavy-Tailed PLDA
5.2. SNR-Invariant PLDA
5.3. Mixture of PLDA
5.4. DNN I-vectors
5.5. PLDA with RBM

6 Future Direction 249 / 274

PLDA–RBM [Stafylakis et al., 2012]
Main idea:

Use i-vectors as input to the Gaussian visible layer of an RBM
Divide RBM weights into two parts: speaker and channel
Consider RBM weights as analogue to PLDA’s loading matrices
Divide the Gaussian hidden layer into two parts: speaker and channel
Hidden nodes are considered as latent factors

RBM RBM–PLDA
250 / 274

PLDA vs. PLDA–RBM

PLDA (omitting global mean):
v = Vs + Uc + ε

where v is an i-vector, s and c are speaker and channel factors.
RBM-PLDA:

vn = σv

[
Ws

sst
σs

+ Wc
cst
σc

]
where vn is the expected value of visible layer in the negative phase of
CD-1 sampling, sst and cst are the states of Gaussian hidden nodes of
the RBM.

251 / 274

Scoring in PLDA–RBM

Given two i-vectors vi , i = 1, 2, compute si = WT
s vi .

The log-likelihood ratio is

LLR = −1
2(s1 − s2)T(s1 − s2) + const

If ‖si‖ = 1, the model is similar to cosine distance scoring.

252 / 274

Results on NIST 2010 SRE

NIST’10, female, core-extended:

253 / 274

