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Fundamentals of speaker recognition

Speaker recognition is a technique to recognize the identity of a
speaker from a speech utterance.

Speaker recognition

Speaker identification

Speaker verification 

Speaker diarization

Text dependent

Text independent

Open set

Close set
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Speaker identification

Determine whether unknown speaker matches one of a set known
speakers
One-to-many mapping
Often assumed that unknown voice must come from a set of known
speakers – referred to as close-set identification
Adding “none of the above” option to closed-set identification gives
open-set identification
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Speaker verification

Determine whether unknown speaker matches a specific speaker
One-to-one mapping
Close-set verification: The population of clients is fixed
Open-set verification: New clients can be added without having to
redesign the system.
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Speaker diarization

Determine when a speaker change has occurred in speech signal
(segmentation)
Group together speech segments corresponding to the same speaker
(clustering)
Prior speaker information may or may not be available
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Input mode

Text-dependent
Recognition system knows text spoken by persons
Fixed phrases or prompted phrases
Used for applications with strong control over user input, e.g.,
biometric authentication
Speech recognition can be used for checking spoken text to improve
system performance
Sentences typically very short

Text-independent
No restriction on the text, typically conversational speech
Used for applications with less control over user input, e.g., forensic
speaker ID
More flexible but recognition is more difficult
Speech recognition can be used for extracting high-level features to
boost performance
Sentences typically very long
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Feature extraction

Speech is a time-varying signal conveying multiple layers of
information

Words
Speaker
Language
Emotion

Information in speech is observed in the time and frequency domains

Acoustic Features 
•  Speech is a continuous evolution of the vocal tract 
•  Need to extract a sequence of spectra or sequence of spectral 

coefficients 
•  Use a sliding window  - 25 ms window, 10 ms shift 



DCT log|X(ω)| 
MFCC 
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Feature extraction from speech

Feature extraction consists in transforming the speech signal to a set
of feature vectors. Most of the feature extraction used in speaker
recognition systems relies on a cepstral representation of speech.

Figure: Modular representation of MFCC feature extractor
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Computing MFCC

Parameterization 34 

Mel-Frequency Cepstrum Coefficients (MFCCs) 
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D : DCT Transformation matrix [P × M] 
M : No. of triangular filters in the filter bank, typically 20 ~ 30 
P  : No. of cepstral coefficients, typically 12 
c0  : Logarithm of energy of the current frame 

Filter Bank 

H15(k) :  the 15th triangular filter
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Figure: Computing MFCC from one frame of speech
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Modeling sequence of features

For most recognition tasks, we need to model the distribution of
feature vector sequences

In practice, we often use the Gaussian mixture models (GMMs)
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GMM–UBM speaker verification

A Gaussian mixture model, namely the universal background model
(UBM), is trained to represent the speech of the general population.

p(x|UBM) = p(x|Λubm) =
C∑

c=1
πubm

c N (x|µubm
c ,Σubm

c )

The UBM parameters Λubm =
{
πubm

c ,µubm
c ,Σubm

c

}C

c=1
are estimated

by the expectation-maximization algorithm using the speech of many
speakers.

14 / 274



Expectation maximization (EM)

Denote the acoustic vectors from a large population as
X = {xt ; t = 1, . . . ,T}
Expectation step:

Conditional distribution of mixture component c:

γt(c) = p(c|xt) = πcN (xt |µubm
c ,Σubm

c )∑C
c=1 π

ubm
c N (xt |µubm

c ,Σubm
c )

Maximization step:
Mixture weights: πubm

c = 1
T
∑T

t=1 γt(c)

Mean vectors: µubm
c =

∑T
t=1

γt (c)xt∑T
t=1

γt (c)

Covariance matrices: Σubm
c =

∑T
t=1

γt (c)xt xT
t∑T

t=1
γt (c)

− µubm
c (µubm

c )T
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Target-speakers’ GMMs

Each target speaker is represented by a Gaussian mixture model:

p(x|Spk s) = p(x|Λ(s)) =
C∑

c=1
π(s)

c N (x|µ(s)
c ,Σ(s)

c )

where Λ(s) =
{
π

(s)
c ,µ

(s)
c ,Σ(s)

c

}C

c=1
are learned by using maximum a

posteriori (MAP) adaptation [Reynolds et al., 2000].
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Maximum a posteriori (MAP)

The MAP algorithm finds the parameters of target-speaker’s GMM
given UBM parameters Λubm =

{
πubm

c ,µubm
c ,Σubm

c

}C

c=1
First step is the same as EM. Given Ts acoustic vectors
X (s) = {x1, . . . , xTs} from speaker s, we compute the statistics:

nc =
Ts∑

t=1
γt(c) and Ec(X (s)) = 1

nc

Ts∑
t=1

γt(c)xt

Adapt UBM parameters by

µ(s)
c = αcEc(X (s)) + (1− αc)µubm

c

where
αc = nc

nc + r
and r is called the relevance factor. Typically, r = 16.
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MAP adaptation

Adapt the UBM model to each speaker using the MAP algorithm:1

µ(s)
c = αcEc(X (s)) + (1− αc)µubm

c

αc → 1 when X (s) comprises lots of data and αc → 0 otherwise.

1Source: J. H. L. Hansen and T. Hasan, IEEE Signal Processing Magazine, 2015.
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MAP adaptation

In practice, only the mean vectors will be adapted:
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GMM-UBM scoring

Given the acoustic vectors X (t) from a test speaker and a claimed
identity s, speaker verification can be formulated as a 2-class
hypothesis problem:

H0: X (t) comes from the true speaker s
H1: X (t) comes from an impostor

Verification score is a log-likelihood ratio:

SLR(X (t)|Λ(s),Λubm) = log p(X (t)|Λ(s))− log p(X (t)|Λubm)

20 / 274



Sources of variability
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How to account for variability
GMM-SVM [Campbell et al., 2006]:

Create supervectors from target-speaker GMMs.
Then, project the supervectors to a subspace in which inter-speaker
variability is maximized and nuisance variability is minimized.
Perform SVM classification on the projected subspace.

Joint Factor Analysis:
Speaker and session variabilities are represented by latent variables
(speaker factors and channel factors) in a factor analysis model.
During scoring, session variabilities are accounted for by integrating
over the latent variables, e.g., the channel factors as in
[Kenny et al., 2007a].

I-Vector + PLDA:2
Utterances are represented by the posterior means of latent factors,
called the i-vectors [Dehak et al., 2011].
I-vectors capture both speaker and channel information.
During scoring, the unwanted channel variability is removed by LDA
projection or by integrating out the latent factors in the PLDA model.

2For the relationship between JFA and I-vectors and their derivations, see
http://www.eie.polyu.edu.hk/∼mwmak/papers/FA-Ivector.pdf
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Performance measures

For speaker identification

Recogntion Rate = No. of correct recognitions
Total no. of trials

For speaker verification

False Rejection Rate (FRR) = Miss probability

= No. of true-speakers rejected
Total no. of true-speaker trials

False Acceptance Rate (FAR) = False alarm probability

= No. of impostors accepted
Total no. of impostor attempts

Equal error rate (EER) corresponds to the operating point at which
FAR = FRR
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Performance measures for speaker verification

Detection error tradeoff (DET) curves are similar to receiver
operating characteristic curves but with nonlinear x- and y-axis.
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Detection cost functions

Detection cost function (DCF) is a weighted sum of the FRR
(PMiss|Target) and FAR (PFalseAlarm|Nontarget):

CDet(θ) = CMiss × PMiss|Target(θ)× PTarget +
CFalseAlarm × PFalseAlarm|Nontarget(θ)× (1− PTarget)

where θ is a decision threshold.
Normalized cost:

CNorm = CDet(θ)/CDefault

where
CDefault = min

{
CMiss × PTarget
CFalseAlarm × (1− PTarget)

NIST 2008 SRE and earlier:
CMiss = 10; CFalseAlarm = 1; PTarget = 0.01

NIST 2010 SRE:
CMiss = 1; CFalseAlarm = 1; PTarget = 0.001

25 / 274



Detection cost functions

Dectection cost function for NIST 2012 SRE:
CDet(θ) = CMiss × PMiss|Target(θ)× PTarget +

CFalseAlarm × (1− PTarget) ×
[PFalseAlarm|KnownNontarget(θ)× PKnown +

PFalseAlarm|UnKnownNontarget × (1− PKnown])
CNorm(θ) = CDet(θ)/(CMiss × PTarget)

Parameters for core test conditions
CMiss = 1; CFalseAlarm = 1; PTarget1 = 0.01; PTarget2 = 0.001;
PKnown = 0.5

PTarget1 → CNorm1(θ1) and PTarget2 → CNorm2(θ2)
Primary cost:

CPrimary = CNorm1(θ1) + CNorm2(θ2)
2
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Detection cost functions

Detection cost function for NIST 2016 SRE:

CDet(θ) = CMiss × PMiss|Target(θ)× PTarget +
CFalseAlarm × PFalseAlarm|Nontarget(θ)× (1− PTarget)

CNorm(θ) = CDet(θ)/(CMiss × PTarget)

Parameters for core test conditions

CMiss = 1; CFalseAlarm = 1; PTarget1 = 0.01; PTarget2 = 0.005

PTarget1 → CNorm1(θ1) and PTarget2 → CNorm2(θ2)
Primary cost:

CPrimary = CNorm1(θ1) + CNorm2(θ2)
2
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Main approach
Parametric model

Artificial neural 
network

Gaussian mixture 
model

Joint factor analysis

i-vector

Auto-encoder

Deep neural network

Support vector 
machine

Probabilistic linear 
discriminant analysis  

Restricted Boltzmann 
machine  

Nonparametric 
model
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