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Overview

© Motivations
@ Why Study Constrained Optimization
e Why Study SVM

@ Constrained Optimization
@ Hard-Constrained Optimization
@ Lagrangian Function
@ Inequality Constraint
@ Multiple Constraints
@ Software Tools

e Support Vector Machines
@ Linear SVM: Separable Case
@ Linear SVM: Fuzzy Separation (Optional)
@ Nonlinear SVM
@ SVM for Pattern Classification
@ Software Tools
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Why Study Constrained Optimization?

o Constrained optimization is used in almost every discipline:

e Power Electronics: “Design of a boost power factor correction
converter using optimization techniques,” IEEE Transactions on Power
Electronics, vol. 19, no. 6, pp. 1388-1396, Nov. 2004.

o Wireless Communication: “Energy-constrained modulation
optimization,” IEEE Transactions on Wireless Communications, vol. 4,
no. 5, pp. 2349-2360, Sept. 2005

o Photonics: “Module Placement Based on Resistive Network
Optimization,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 3, no. 3, pp. 218-225, July 1984.

e Multimedia: “Nonlinear total variation based noise removal
algorithms.” Physica D: Nonlinear Phenomena 60.1-4 (1992): 259-268.
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Why Study SVM?

@ SVM is a typical application of constraint optimization.

@ SVMs are used everywhere:

Power Electronics: “Support Vector Machines Used to Estimate the
Battery State of Charge,” IEEE Transactions on Power Electronics, vol.
28, no. 12, pp. 5919-5926, Dec. 2013.

Wireless Communication: “Localization In Wireless Sensor Networks
Based on Support Vector Machines,” IEEE Transactions on Parallel
and Distributed Systems, vol. 19, no. 7, pp. 981-994, July 2008.
Photonics: “Development of robust calibration models using support
vector machines for spectroscopic monitoring of blood glucose.”
Analytical chemistry 82.23 (2010): 9719-9726.

Multimedia: “Support vector machines using GMM supervectors for
speaker verification,” IEEE Signal Processing Letters, vol. 13, no. 5,
pp. 308-311, May 2006.

Bioinformatics: “Gene selection for cancer classification using support
vector machines.” Machine Learning, 46.1-3 (2002): 389-422.
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Constrained Optimization

@ Constrained optimization is the process of optimizing an objective
function with respect to some variables in the presence of constraints
on those variables.

@ The objective function is either

e a cost function or energy function which is to be minimized, or
e a reward function or utility function, which is to be maximized.
@ Constraints can be either
e hard constraints which set conditions for the variables that are
required to be satisfied, or
e soft constraints which have some variable values that are penalized in
the objective function if the conditions on the variables are not

satisfied.
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Constrained Optimization

@ A general constrained minimization problem:

min f(x)
subject to g;(x) =¢; fori =1,...,n (Equality constraints)
hj(x) > dj for j =1,...,m (Inquality constraints)
(1)
where g;(x) = ¢; and h;(x) > d; are called hard constraints.

@ If the constrained problem has only equality constraints, the method
of Lagrange multipliers can be used to convert it into an
unconstrained problem whose number of variables is the original
number of variables plus the original number of equality constraints.
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Constrained Optimization

o Example: Maximization of a function of two variables with equality
constraints:

max f(:L‘, Y) (2)
subject to g(x,y) =0
Jxy)

y
A

X

@ At the optimal point (z*,y*), the gradient of f(z,y) and g(x,y) are

anti-parallel, i.e., Vf(z*,y*) = —=AVg(z*, y*), where X\ is called the
Lagrange multiplier. (See Tutorial for explanation.)
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Constrained Optimization

e Example:
max  f(z,y) =2y
subject to 22 +7%2 =1

¥ PlE

@ Note that the red curve (22 + y% = 1) is of 2-dimension.
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Constrained Optimization

o f(z,y)=2%y and z2+32=1

* 1

P 2.
@ Solution: x* =4/%; y* =4/3

Y
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Constrained Optimization

o Left: Gradients of the objective function f(x,1

e Right: Gradients of g(z,y) = z? + y>.

@ Note that A < 0 in this example, which means that the gradients of
f(z,y) and g(x,y) are parallel at the optimal point.
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Constrained Optimization

@ Extension to function of D variables:

max f(x)
subject to  g(x) =0

where x € RP. Optimal occurs when
Vf(x)+ AVg(x) = 0. (4)

Vf(x)

XA

g(x)=0

@ Note that the red curve is of dimension D — 1.
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Lagrangian Function

@ Define the Lagrangian function as
L(x,A) = f(x) + Ag(x) (5)

where A # 0 is the Lagrange multiplier.
@ The optimal condition (Eq. 4) will be satisfied when VL = 0.
@ Note that 9L/OX = 0 leads to the constrained equation g(x) = 0.
@ The constrained maximization can be written as:

max L(x,\) = f(x) + Ag(x)
subject to A #0,g(x) =0
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Lagrangian Function: 2D Example

e Find the stationary point of the function f(x1,x2):

max  f(ey,02) =1 —af — a3

subject to g(z1,22) =21 +22—1=0

(7)

T2

(21, 73)
7
NS
9(z1,72) =0

@ Lagrangian function:
Lx,\)=1—2%— 22+ \Nap +x0— 1)
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Lagrangian Function: 2D Example

o Differenting L(x,\) w.r.t. z1, x2, and A and set the results to 0, we

obtain
—2r14+A=0
—2()32—|—)\:0
1 +20—1=0

e The solution is (z},23) = (3, 3), and the corresponding A = 1.
@ As A > 0, the gradients of f(x1,z2) and g(x1,z2) are anti-parallel at

(x7, 23).
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Inequality Constraint

@ Maximization with inequality constraint

max f(x)
subject to  g(x) >0 (8)

@ Two possible solutions for the max of L(x, u) = f(x) + pg(x):

Inactive Constraint : g(x) >0, p=0, Vf(x)=0
Active Constraint:  ¢g(x) =0, u>0, Vf(x)=—-uVg(x)

@ Therefore, the maximization can be rewritten as

max  L(x, p) = f(x) + pg(x) (10)
subject to  g(x) > 0, >0, ug(x) =0

which is known as the Karush-Kuhn-Tucker (KKT) condition.
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Inequality Constraint

@ For minimization,
min f(x) (11)

subject to  g(x) >0

@ We can also express the minimization as

min  L(x,p) = f(x) — pg(x) (12)
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Multiple Constraints

@ Maximization with multiple equality and inequality constraints:

max f(x)
subject to gj(x) =0forj=1,...,J (13)
hp(x) >0fork=1,..., K.

@ This maximization can be written as

J K
max  L(x, {\;}, {m}) = f(x) + Zl Ajgi (%) + kZI pihi(x)
= -
subject to  \; # 0,gj(x) =0for j=1,...,J and
k> 0, hg(x) >0, uphi(x) =0for k=1,..., K.

(14)
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Software Tools for Constrained Optimization

e Matlab Optimization Toolbox: fmincon can find the minimum of
a function subject to nonlinear multivariable constraints.

o Python: scipy.optimize.minimize provides a common interface
to unconstrained and constrained minimization algorithms for
multivariate scalar functions
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Linear SVM: Separable Case

e Consider a training set {x;,y;; i =1,...,N} € X x {+1,—1} shown
below, where X is the set of input data in R and y; are the labels.
Margin: d

—w/|lwll © :xy

o o

[}
a N
] \\\\/w~x+b:+1
O AN
/\\w~x+b:0
x1

w-x+b=-—1

Figure: Linear SVM on 2-D space

o [ yy=+1; 00 y; = —1.
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Linear SVM: Separable Case

@ A linear support vector machine (SVM) aims to find a decision plane
(a line for the case of 2D)

X-w+b=0

that maximizes the margin of separation (see Fig. 1).

@ Assume that all data points satisfy the constraints:

xi-w+b>+1 for i€ {1,..., N} where y; = +1. (15)
xi-w+b<—1 for i €{l,...,N} where y; = —1. (16)

@ Data points x1 and x5 in previous page satisfy the equality constraint:

x1-w+b=+41

17
X9 -w+b=-1 (17)
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Linear SVM: Separable Case

@ Using Eq. 17 and Fig. 1, the distance between the two separating
hyperplane (also called the margin of separation) can be computed:
w 2
d(W) = (XQ—Xl) T =
fwil [wl]
e Maximizing d(w) is equivalent to minimizing ||w|®. So, the
constrained optimization problem in SVM is

min %HWHQ

subject to yi(x;-w+b) >1Vi=1,...,N (18)

@ Equivalently, minimizing a Lagrangian function:

min  L(w,b,{a;}) = Hwl? = N, eulyi(xi - w +b) — 1]
subject to a; >0, yi(x;-w+b)—12>0,
ilyi(x; -w+0b)—1]=0, Vi=1,...,N
(19)
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Linear SVM: Separable Case

@ Setting
2L(w b,{a;}) =0 and iL(w b,{a;}) =0 (20)
b y 0, 1% p) = ow ,0,1¢045) = U,
subject to the constraint «; > 0, results in
N N
Zi:l o, =0 and w = Zi:l QY% (21)

@ Substituting these results back into the Lagrangian function:

N N N
1
Liw.b{ai}) = 5w w) = o w) = Y oapib + Y o
=1 =1 =1
1 al - S 3
T2 DY YOG = ) ayiXic ) gy + Yo
i—1 j=1 i=1 j=1 =1
N 1 N N
= ;ai 35 Z Zaiajyiyj(xi : Xj)-
1=

i=1 j=1
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Linear SVM: Separable Case

@ This results in the following Wolfe dual formulation:

maXZ:OzZ - = ZZaza]yzy] X;)

i=1 j=1
subject to (22)
N
Zaiyi:0 and aiZO,izl,...,N.
i=1

@ The solution contains two kinds of Lagrange multiplier:

© «; = 0: The corresponding x; are irrelevant
@ «; > 0: The corresponding x; are critical

@ xy, for which o, > 0 are called support vectors.
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Linear SVM: Separable Case

@ The SVM output is given by
F) = w-x+b

= Zakykxk'x+b
keS
where S is the set of indexes for which ay > 0.

@ b can be computed by using the KTT condition, i.e., for any k such
that yr = 1 and oy > 0, we have

aglyp (X -w+b)—1] =0
= b=1-—x -wW.
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Linear SVM: Fuzzy Separation (Optional)

o If the data patterns are not separable by a linear hyperplane, a set of
slack variables {& = &;,...,&n} is introduced with & > 0 such that
the inequality constraints in SVM become

o The slack variables {&;}¥, allow some data to violate the constraints
in Eq. 18.
@ The value of &; indicates the degree of violation of the constraint.

@ The minimization problem becomes
1
min§||w||2 +CD &, subjectto yi(xi-w+b)>1-&, (24)
i

where C' is a user-defined penalty parameter to penalize any violation
of the safety margin for all training data.
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Linear SVM: Fuzzy Separation (Optional)

@ The new Lagrangian is

L(w,b,a) = |w|r2+02@ Zaz (i (xi-W+Db)—1+&) Zﬁz@,
=1 =
(25)
where a;; > 0 and 3; > 0 are, respectively, the Lagrange multipliers to
ensure that y;(x; - w +b) > 1 —¢&; and that & > 0.

e Differentiating L(w,b, ) w.r.t. w, b, and &;, we obtain the Wolfe

dual:
N N

max Z o — = Z Z a0y (X - X5) (26)

2131

subject to 0 < a; < C,i=1,...,N, >N oy, = 0.
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Linear SVM: Fuzzy Separation (Optional)

Three types of support vectors:

1 i = = % .
1. On the margin: 0. Linear SVM, C=10.0, #SV=7, acc=95.00%, normW=0.94
C>a,>0,E, =0
y 9r 18 16 x 14
y,(w'x, +b) =1 - B
a”=()_44;?é”=0 8 11 x 12 x 17
a, =2.85E =0 7 1 o, =8,=0

2. Inside the margin:
o, =C;0<E <2

y(w'x, +b) <1
oy = 10;E,, = 0.667

3. Outside the margin:
o, =C§ =2

v (wW'x, +b) =<1
a,, =10;&,, = 2.667
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Nonlinear SVM

@ Assume that we have a nonlinear function ¢(x) that map x from the

input space to a much higher (possibly infinite) dimensional space
called the feature space.

@ While data are not linearly separable in the input space, they will
become linearly separable in the feature space.

T2 Oyi=1 Oy =1

Decision boundary o yi=-1 oy =-1

Decision boundary

Input Space Feature Space
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Nonlinear SVM

@ A 1-D problem requiring two decision boundaries (thresholds).

@ 1-D linear SVMs could not solve this problem because they can only

provide one decision threshold.

Decision Boundaries

— — o o0o06+A A Alooo O > (@)

(b)

Decision Boundary on
the feature space

X 1 0 1 X
x=0
600 | v
. .
¥ 6}
X e (0]
L— >
L I o . S
A A
x=0
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Nonlinear SVM

@ We may use a nonlinear function ¢ to perform the mapping:

¢:x— [z 22T

@ The decision boundary in the previous slide is a straight line that can
perfectly separate the two classes.

o We may write the decision function as
2 Tl
z—c=1[0 1] [ 22 } c=0

@ Or equivalently,
w'é(x) +b=0, (27)

where w = [0 1]T, ¢(z) = [z 2?]T, and b = —c.
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Nonlinear SVM

o Left: A 2-D example in which linear SVMs will not be able to
perfectly separate the two classes.
o Right: By transforming x = [z; x»]" to:

¢:x = [23 V2rize 237, (28)

we will be able to use a linear SVM to separate the 2 classes in three
dimensional space

Man-Wai MAK (EIE) Constrained Optimization and SVM October 10, 2019



Nonlinear SVM

@ The SVM's decision function has the form
Fx) = cwip(x:)Tp(x) +b
€S
N ¥
=w ¢(x)+b
where S is the set of support vector indexes and
W= ies Qi (Xi)-
@ In this simple problem, the dot products ¢(x;)" ¢ (x;) for any x; and
X; in the input space can be easily evaluated

(%) P(x)) = 225, + 2w TioT iy + ThHrly = (X
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Nonlinear SVM

@ The SVM output becomes
N
Fx) = aigid(xi) - p(x) +b
i=1

@ However, the dimension of ¢(x) is very high and could be infinite in
some cases, meaning that this function may not be implementable.

e Fortunately, the dot product ¢(x;) - ¢(x) can be replaced by a kernel
function:

$(x:) - d(x) = p(x) o (x) = K (xi, %)

which can be efficiently implemented.
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Nonlinear SVM

@ Common kernel functions include

Polynomial Kernel
RBF Kernel

Sigmoidal Kernel

K(X7Xi) = (1 + XO..QXi>p7

k(e = e { XL

1
K(X7X7J) = 7x-xi+b

l14+e o2
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Nonlinear SVM

@ Comparing kernels:

o Linear SVM, C=1000.0, #SV=7, acc=95.00%, normW=0.94 RBF SVM, 2°sigm=8.0, G=1000.0, #SV=7, acc=100.00%
10

'"RBF Kernel °7 N

2 4 6 8 10 2 T 6 8
gl X
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Nonlinear SVM

Figure: Decision boundaries produced by a 2nd-order polynomial kernel (top), a
3rd-order polynomial kernel (left), and an RBF kernel (right).
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SVM for Pattern Classification

@ SVM is good for binary classification:
f(x)>0=x¢€Class 1; f(x) <0= z € Class 2

@ To classify multiple classes, we use the one-vs-rest approach to
converting K binary classifications to a K-class classification:

k" = argmax f®(x)
k

f(O)(X)= 2 yi‘ﬂ)af‘”x?x+b‘°)

€SV,

9 9 NeT. 9
o=y e x{x+ "

€SV

Classifying digit ‘9’

Classifying digit ‘0’
e e from the rest

and the rest
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Software Tools for SVM

Matlab: fitcsvm trains an SVM for two-class classification.

Python: svm from the sklearn package provides a set of supervised
learning methods used for classification, regression and outliers
detection.

C/C++: LibSVM is a library for SVM. It also has Java, Perl, Python,
Cuda, and Matlab interface.

e Java: SVM-JAVA implements sequential minimal optimization for
training SVM in Java.

e Javascript: http://cs.stanford.edu/people/karpathy/svmjs/demo/
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