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Gaussian mixture model

e Gaussian mixture model (GMM) is a weighted sum of Gaussians

p(x|0) = Zw, ;
0= {71-1'7 U,‘,Zi}
;. mixture weight

u;: mixture mean vector
> ;1 mixture covariance matrix

1 1 _
bi(x) = Wexp (—2(x —u) L (x — u,-))

@ Mixture component z; is a latent variable which is either zero or one
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Maximum likelihood

@ In ML estimation, we need to

— compute the likelihood of a sequence of features given a GMM
— estimate the parameters of GMM given a set of feature vectors

@ Assuming independence between features in a sequence, we have

-
p(X|0) = p(x1,...,x7]0) = H p(x:|0)
t=1

@ ML estimation is performed by

T M
O = arg méa\x p(X|0) = arg mgx Z log [Z ﬂ;b;(xt)]

t=1
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Parameter estimation

@ E-step is to calculate the auxiliary function

Q(0,6°7) = z[logP(X 2/6)|X, 6°]

ZP zi = 11X, 0°) log p(x¢, zii = 1|0)
t=1i=1

@ ML estimates are obtained via M-step as

new
7'([. =

new __

1

:'\H |

T 1
Z Y(zti )%t = ?I_Ei[x]

1
Thew — Zv 22i) (xe — i) (xe — )" = ZEiboc ] — e
1

’tl

where T; = 32, v(z) and ~(z4) = p(z = 1| X, 0°9)
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Probabilistically align samples to each mixture

Accumulate sufficient statistics
Pz =11X)
T
Ty =Y plz = 11X)
=1
X (e =1|X) ) )

plzs = 1|X)

p(zi=1|X) = —A;ribi(x)
Zl m;ib;(x)
j=

T
Ei(ex) = 32 plz = 11X)xixi
i=1
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Update model parameters
X GMM parameters
X
X =4
N;mw — Tl,]EL [X]
S = ZEipox] — sl

X

X
X
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Speaker verification

@ Realization of log likelihood ratio test from signal detection theory

SLR(X|0target’ aubm) — |0g(X’9target) _ |0g(X|9ubm)

Xl eeey XT0

Target model \ II

> ———» OLR

Background /J

model

SR > A Accept
Stk < A Reject

Feature
extractor

@ GMMs are used for both target and background models

— target model trained using enrollment speech
— universal background model trained using speech from many speakers
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Target model & UBM

Target model is adapted from universal background model (UBM)
— good with limited target training data

e Maximum a posteriori (MAP) adaptation
— align target training vectors to UBM
— accumulate sufficient statistics
— update target model parameters with smoothing to UBM parameters

Adaptation for those parameters of seen acoustic events
— sparse regions of feature space filled in by UBM parameters
Side benefits

— keep correspondence between target and UBM mixtures
— allow for fast scoring when using many target models (top-M scoring)
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Maximum a posteriori adaptation

@ Prior density for GMM mean vector p = {u;} is introduced

p(;) = N (pi| ™, 1)

@ MAP estimation [Gauvain and Lee, 1994] is performed by using the
enrollment data Xs = {x}f;l from a target speaker s
— E-step is to calculate

TS
Qi 18%) = >~ V(z4) log p(xe|zei = 1, 1) + log p(ps;| 1™, o°1)

t=1

— M-step is to maximize Q(u;, u2) to find

2o V(Zei)Xe rp" b
pi = + ! = oiEi[x] + (1 — ;)i
2ezi)+r o Xoy(zi) +r e )

Zt’Y(ZU)

where o = W
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MAP adaptation for GMM-UBM

o UBM is based on GMM and trained by using EM algorithm

@ Speaker GMM is established by adjusting UBM by using MAP
adaptation

Training data

Speaker
GMM

Enrollment data
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Speaker recognition procedure

Scoring
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@ 3.2. Joint factor analysis
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Joint factor analysis

@ Factor analysis is a statistical method which is used to describe the
variability among the observed variables in terms of potentially lower
number of unobserved variables called factors

@ Factor analysis is a latent variable model for feature extraction

e Joint factor analysis (JFA) was the initial paradigm for speaker

recognition
Speaker Residual
factors factors
u=m+ Vy + Ux + Dz
Speaker
Supervector UBM Channel

factors
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Intuition & interpretation

@ A supervector for a speaker should be decomposable into speaker
independent, speaker dependent, channel dependent, and residual
components

@ Each component is represented by low-dimensional factors, which
operate along the principal dimensions of the corresponding
component

@ Speaker dependent component, known as the eigenvoice, and the
corresponding factors

Eigenvoice matrix
SRR B A ey
V . y = Vi Vo ... VN Each speaker factor controls
| | i an eigendimension of the

| | eigenvoice matrix
YN

Low dimensional eigenvoice factors
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Factor decomposition

@ GMM supervector u for a speaker can be decomposed as

Speaker-dependent

component Speaker-dependent

resuidual component

u=m+ Vy+ Ux+ Dz

~

Speaker
supervector
Speaker-independent Channel-dependent
component component

where

e m is a speaker-independent supervector from UBM

e V is the eigenvoice matrix

y ~ N(0,1) is the speaker factor vector

U is the eigenchannel matrix

x ~ N(0,1) is the channel factor vector

D is the residual matrix, and is diagonal

z ~ N(0,1) is the speaker-specific residual factor vector
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Dimensionality

@ For a 512-mixture GMM-UBM system, the dimensions of each JFA
component are typically as follows
— V 20,000 by 300 (300 eigenvoices)
— y 300 by 1 (300 speaker factors)
— U 20,000 by 100 (100 eigenchannels)
x 100 by 1 (100 channel factors)
D 20,000 by 20,000 (20,000 residuals)
— 220,000 by 1 (20,000 speaker-specific residuals)

@ These dimensions have been empirically determined to produce the
best results

@ Bayesian model selection can help

@ Judge by the marginal likelihood over latent component under
different dimensions
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Training procedure

@ We train the JFA matricies in the following order
[Kenny et al., 2007a]

1. Train the eigenvoice matrix V, assuming that U and D are zero
2. Train the eigenchannel matrix U given the estimate of V, assuming
that D is zero
3. Train the residual matrix D given the estimates of V and U
@ Using these matrices, we compute y for speaker, x for channel, and z
for residual factors

@ We compute the final score by using these matrices and factors
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Total variability

@ Subspaces U and V are not completely independent
@ A combined total variability space was used [Dehak et al., 2011]

Speaker .
factors Residual
l factors

u=m+ Vy + Ux+ Dz

/

Speaker
supervector UBM Channel
factors
u=m+ Tw —
/ Intermediate/identity
Speaker vector (i-vector)
supervector

UBM
Total variability matrix
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Training total variability space

Rank of T is set prior to training
T and w are latent variables

EM algorithm is used

Training total variability matrix T is similar to training V except that
training T is performed by using all utterances from a given speaker
but as produced by different speakers

@ Random initialization for T

@ Each o; has dimension D. Number of Gaussian components is M.
Dimension of supervector is M - D

e UBM diagonal covariance matrix X (MD x MD) is introduced to
model the residual variability not captured by T
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Sufficient statistics

e 0" order statistics N.(u) = 3, 7c(0;) of an utterance u
o 1% order statistics F(u) = 3, vc(0:)0r

o 2" order statistics S (u) = diag (thyc(ot)ototT> where
7TcP(°t|mC7 zc)

r)/c(ot) = p(C|ot~,9ubm) -
Ejlvzll mip(o¢|m;, X;)

o Centralized 1t and 2" order statistics

-
Fe(u) = Z'VC(Ot)(Ot -mc)

t=1

-
SC(U) = diag <Z Ye(or)(0r —mc)(or — mC)T>

t=1

where mc is the subvector corresponding to mixture component ¢
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EM algorithm

o Sufficient statistics

Nl(“)"DxD 0 0 f:l(u)

N(u) _ 0 Na(u)-lpxp 0 : I:_(u) _ F2:(u)
0 0 L

0 0 Nu(u) lpxp Fi(v)

e EM algorithm [Kenny et al., 2005]
— Initialize m, X and T
— E-step: for each utterance u, calculate the parameters of the posterior
distribution of w(u) using the current estimates of m X, T
— M-step: update T and X by solving a set of linear equations in which
w(u)'s play the role of explanatory variables
— lterate until data likelihood given the estimated parameters converges
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E-step: posterior distribution of w(u)

@ For each utterance u, we calculate the matrix
L) =1+T'ZN0)T

@ Posterior distribution of w(u) conditioned on the acoustic
observations of an utterance u is Gaussian with mean

E[w(u)] = L7 (u)TTZ1F(v)
and covariance matrix
Cov(w(u),w(u)) = L7Y(u)

@ Variational Bayesian JFA was developed for speaker verification
[Zhao and Dong, 2012]
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Linear discriminant analysis

@ l-vectors from JFA model are used in linear discriminant analysis
(LDA)

u=m+ Tw <«— Factor analysis

|

W = Aw <—— Linear discriminant analysis

@ Both methods used to reduce the dimensionality of speaker model

@ A is chosen such that within-speaker variability S, is minimized and
between-speaker variability Sp, is maximized within the space

@ A is found by eigenvalue method via maximizing
J(A) = Tr{S,"Sp}
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@ 3.3. Probabilistic linear discriminant analysis
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Factor analysis

@ Assuming a factor analysis model of the i-vectors of the form
w=u+Fh+e

@ w is the i-vector, u is the mean of i-vectors, and h ~ A/(0,1) is the
latent factors

@ First compute the maximum likelihood estimate of the factor loading
matrix F, also known as the eigenvoice subspace

@ Full covariance of residual noise € explains the variability not captured
through the latent variables

Under Gaussian assumption, this model is known in face recognition as
PLDA [Prince and Elder, 2007]
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Gaussian PLDA

@ Assume that there are low dimensional, normally distributed hidden
variables x; and x5, such that

D, = m+ Uixy + Uoxar + €,
S G

Residual €, is normally distributed with mean 0 and precision matrix A

m is the center of acoustic space and x; is the speaker factors

Columns of U are the eigenvoices

Cov(S,S) = Uy U/

Xy, varies from one recording to another (channel factors)

Columns of U, are the eigenchannels
Cov(Cr, ) = N1 4 UaUy)
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Graphical representation

Loy

@ Including x2, enables the decomposition of speaker and channel
factors

@ Xp, can always be eliminated at recognition time

@ Between-speaker covariance matrix Cov(S, S) & within-speaker
covariance matrix Cov(GC;, C,)

@ These matrices cannot be treated as full rank
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PLDA speaker recognition

@ Given two i-vectors D1 and D», we would like to perform the
hypothesis test
Hi: the speakers are the same
Hp: the speakers are different

o Likelihood ratio is calculated by

p(Dy, D2|H;)
P(D1|Ho)p(D2|Ho)

@ Likelihood ratio for any type of speaker recognition or speaker
clustering problem

@ The evidence integral should be calculated

/p(D,z)dz
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Model assumption

@ Assume that

— we have succeeded in estimating the model parameters
0= {m, Ul, U2,/\}

— given a collection D = (Dy, ..., Dg) of i-vectors associated with a
speaker, we have figured out how to evaluate the marginal likelihood or
the evidence

p(D) = [ p(D.2)dz = [ p(Dl2)p(2)oz

— z = {xy, %z, } is the hidden variables associated with the speaker

@ We show how to do speaker recognition in this situation and how
both problems are tackled by using variational Bayes to approximate
the posterior distribution p(z|D)
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Variational approximation

e Evidence p(D) can be evaluated exactly in the Gaussian case but this
involves inverting the large sparse block matrices

e If g(z) is any distribution on z, variational lower bound is yielded as
p(D,Z)]

q(2)
where log p(D) > L with equality iff g(z) = p(z|D)

@ Variational Bayes provides a principled way to find a good
approximation q(z) to p(z|D)

LEE, [Iog

@ Model parameters 8 = {m, Uy, U, A} are estimated by maximizing
the evidence lower bound (ELBO) £ which is calculated over all of
the speakers in a training set
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Bayesian speaker recognition

@ Full Bayesian avoids the point estimates of model parameters

@ Coupling of multiple latent variables is tackled in VB
[Villalba and Lleida, 2014]

@ Uncertainties are compensated for model regularization in speaker
recognition

Prior densities p(U1) and p(U>) can be flexibly incorporated
Selection for the number of speaker factors or channel factors

Manually tuning for unknown variables is avoided

Analogous to the the treatment of the number of mixture
components in Bayesian estimation of GMM

@ Bayesian mixture of PLDA [Mak et al., 2016 was recently developed
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@ 3.4. Support vector machine
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What is a good decision boundary?

o Consider a two-class, linearly :
separable classification problem . Class 2
@ Many decision boundaries! m [

— perceptron algorithm can be .
used to find such a boundary . - =
— different algorithms have been o o
proposed ®
@ Are all decision boundaries ® @ \ "
equally good? Class 1
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Large-margin decision boundary

@ Decision boundary should be as far away from the data of both
classes as possible [Vapnik, 2013]
— we should maximize the margin m
k

— distance between the origin and the line w'x = k is ™I

AN w Class 2
N
N [
N -
N [ |
) -
. N )
N m = 2
e @ ™
N
N N
@ N
wix+b=1
Class 1\
\‘ >
wlix+b=—1 wix+b=0
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Finding the decision boundary

@ {Xx1,...,Xp} is the data set and y; € {1, —1} is the class label of x;

@ Decision boundary should classify all points correctly
yiw'x;+b)>1, fori=1,...,n

@ Decision boundary can be found by solving the constrained
optimization problem

1
Minimize EHWH2

subject to y;(w'x;+b)>1, fori=1,...,n
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Constrained optimization

@ Original problem
1,
Minimize §||w||
subject to y;(w'x;+b) > 1, fori=1,...,n

@ We introduce the Lagrange multipliers a; > 0 to form the Lagrangian
function

L2 S (T
L= lwl —;a, (vilw"x; + b) = 1)

@ Setting the gradient of L w.r.t w and b to zero, we have

n
w = Z A YiXi
i=1

n
> aiyi=0
i=1
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Dual problem

New objective function is expressed in terms of a; only
If we know w, we know all «;. If we know all «;, we know w

Original problem is known as the primal problem

A quadratic programming objective is formed by

maximize L(«) = Za, S ZZ@ aJy,ny X;

11_/1

subject to a; > 0, Zoéfyi =0
i—1

@ Global maximum of «; can be found
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Characteristics of the solution

@ Many of «; are zero

— W is a linear combination of a small number of data points
— This sparse representation can be viewed as data compression as in the
construction of KNN classifier

@ Xx; with non-zero «; are called support vectors

— decision boundary is determined only by support vectors
— t;,j =1,...,s are the indices of s support vectors

S
W = E QY Xy
Jj=1

@ For testing with a new data z
— compute f =w'z+b =37, ayysx; 2+ b and classify z as class 1 if
the sum is positive, and class 2 otherwise
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arable problem

o We allow error &; in classification. It is based on the output of the
discriminant function w'x + b
@ &; approximates the number of misclassified samples

N w Class 2
\
N
<
N
N = (|
N
. [ |
N ||
N
N
N
N
e @ \
\
N
N
N
wix+b=1
<
Class 1"\
\‘ '’
wix+b=—-1 wix+b=0
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Soft margin hyperplane

o If we minimize ), &;, & can be computed by

wix;+b>1-¢

yi=1
WTX,' +b<-14¢& yi=-1
& >0 Vi

— &; are slack variables in optimization
— & = 0 if there is no error for x;

— & is an upper bound of the number of errors
C 1 2
o We want to minimize 5|lw||" 4+ C> 7 &

— C is a tradeoff parameter between error and margin
@ Optimization problem becomes

1 n
Minimize §Hw||2 + CZfi
i=1
subject to y,-(wa,- +b)>1-¢&, >0
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Dual problem

@ Dual of this new constrained optimization problem is

maximize L(a) = Za, - = ZZ& ajyiyiX; X

i=1j=1
subject to C > «; > 0, Zoéi}/i =0
i=1

@ w is recovered as w = Zj-':l Qg Y Xy
@ This is very similar to the optimization problem in the linear separable
case, except that there is an upper bound C on a; now

@ Once again, a quadratic programming solver can be used to find «;
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Non-linear decision boundary

@ So far, we have only considered large-margin classifier with a linear
decision boundary

@ How to generalize it to become non-linear?

@ Key idea: transform x; to a higher dimensional space to make life
easier
— input space: the points x; are located
— feature space: the space of ¢(x;) after transformation
@ Why transform?
— linear operation in the feature space is equivalent to non-linear
operation in input space
— classification can become easier with a proper transformation.
— In the XOR problem, for example, adding a new feature make the
problem linearly separable
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Dimensionality in feature space

Input space Feature space

o Computation in the feature space can be costly because it is highly
dimensional

— feature space is typically infinite-dimensional!

@ Kernel trick comes to rescue
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Kernel trick

maximize L(«a) = Za, — fZZa ajy,ij X

i=1 j=1
subject to C > «a; > 0, Zai)/i =0
i=1

e x; x; is inner product

@ As long as we can calculate the inner product in the feature space, we
do not need the mapping explicitly

@ Many common geometric operations, e.g. angle, distance, can be
expressed by inner products

@ Define the kernel function K by
T
K(xi, %)) = ¢(xi) ¢(x;)
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Kernel function in SVM

@ Change all inner products to kernel functions
@ For training
— original

maximum L(«a E a; — E E OéOéJylij X;
i=1 j=1

subject to C > «; > 0, Zaiy,- =0
i=1

— with kernel function
maximum L(a) = Za, ZZ& a;yiyiK(xi, X;)

I]._]l

subject to C > «; > 0, Za,y,- =0

i=1
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Kernel function in SVM

@ For testing, the new data z is classified as class 1 if f > 0 and as class
2if f <0

— original

s
w = E Q; Y Xy
j=1

— with kernel function
s
W = Z atJYtj¢(xtj)
j=1

f=(wo@)+b=> ayyK(xy,2z)+b
j=1
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Similarity measure

@ Since the training of SVM only requires the value of K(x;,x;), there

is no restriction of the form of x; and x;
— X; can be a sequence or a tree instead of a feature vector

e K(x;j,x;) is just a similarity measure comparing x; and x;

@ Kernel function needs to satisfy the Mercer function, i.e., the function
is positive-definite

@ For a test object z, the discriminant function essentially is a weighted
sum of the similarity between z and a pre-selected set of objects, also
called the support vectors

f(Z) = Z Oé,'y,'K(Z, X,') + b
x;€S

where S denotes the set of support vectors
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@ 3.5. Restricted Boltzmann machine
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Restricted Boltzmann machine

Bipartite the undirected graphical model with visible variable v and
hidden variable h

Building-block for deep belief networks and deep Boltzmann machines
RBMs are generative models of v based on the marginal distribution
Joint distribution of (v, h) is an exponential family

Discriminative fine-tuning can be applied

Variables are typically binary, however no such restriction exists

Bidirectional graphical model
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Graphical model

@ No connection between nodes of the same layer (i.e. sparsity)

Allow fast training (blocked-Gibbs sampling)

Correlations between nodes in v are still present in the marginal
p(v|W)
@ Hidden variable h captures the higher level information
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Joint distribution

@ Energy-based distribution is defined by
p(v.hl6) = Z(6)p" (v, h|6)
where
p*(v,h|@) = exp (Z vib; + Z h;ja; + Z vihj VV,-J->
i Jj

i7j
—E(v,h)

and 8 = {W,b,a}

e {b,a} denote the biases and are usually assumed to be zero for
compact notation

® Z(0) = >, np*(v,h|0) is the partition function
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Individual distribution

Consider binary (v, h) with zero biases {b,a}
p(hlv) = I1; p(hj|v) where p(hj|v) = m

p(V’h) = Hi P(V,|h) where P(V,‘h) = 1+eXp(7lz'thVU)
]

@ Product form is due to the restricted structure

h

A%
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Learning with RBM

Maximize the likelihood of 8 given v"

")—HZ 1Z:exp (Zv"h" )

We obtain 81(?5‘/(;' ) — EpaaealVihi] = Eppoge [Vihi]

where pgata(v?,h™) = p(h"|v")p(v")

@ p(h"|v") is an easy and exact calculation for RBM
@ p(v") is an empirical distribution

OlogZ(6) __
° oW, = Ep,.lvihj] is hard to compute

Learning using contrastive divergence with mini-batches is performed
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