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Fundamentals of speaker recognition

@ Speaker recognition is a technique to recognize the identity of a
speaker from a speech utterance.
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Speaker identification

@ Determine whether unknown speaker matches one of a set known
speakers

@ One-to-many mapping

@ Often assumed that unknown voice must come from a set of known
speakers — referred to as close-set identification

@ Adding “none of the above” option to closed-set identification gives
open-set identification

| Whose voice is this?
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Speaker verification

Determine whether unknown speaker matches a specific speaker
One-to-one mapping
Close-set verification: The population of clients is fixed

Open-set verification: New clients can be added without having to
redesign the system.

| Is this Bob’s voice?
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Speaker diarization

@ Determine when a speaker change has occurred in speech signal
(segmentation)

@ Group together speech segments corresponding to the same speaker
(clustering)

@ Prior speaker information may or may not be available

Where are speaker
changes?

Which segments are from
the same speaker?
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Input mode

o Text-dependent
e Recognition system knows text spoken by persons
o Fixed phrases or prompted phrases
o Used for applications with strong control over user input, e.g.,
biometric authentication
e Speech recognition can be used for checking spoken text to improve
system performance
e Sentences typically very short
@ Text-independent
o No restriction on the text, typically conversational speech
o Used for applications with less control over user input, e.g., forensic
speaker ID
More flexible but recognition is more difficult
Speech recognition can be used for extracting high-level features to
boost performance
e Sentences typically very long
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@ 1.2. Feature extraction and scoring
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Feature extraction

@ Speech is a time-varying signal conveying multiple layers of
information
e Words
e Speaker
e Language
e Emotion
@ Information in speech is observed in the time and frequency domains

Fourier
Transform

L
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Feature extraction from speech

@ Feature extraction consists in transforming the speech signal to a set
of feature vectors. Most of the feature extraction used in speaker
recognition systems relies on a cepstral representation of speech.
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Figure: Modular representation of MFCC feature extractor
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Computing MFCC
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D : DCT Transformation matrix [P x M]
M : No. of triangular filters in the filter bank, typically 20 ~ 30

P : No. of cepstral coefficients, typically 12
¢, : Logarithm of energy of the current frame

Figure: Computing MFCC from one frame of speech
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Modeling sequence of features

@ For most recognition tasks, we need to model the distribution of
feature vector sequences
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@ In practice, we often use the Gaussian mixture models (GMMs)

Signal Space
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GMM-UBM speaker verification

@ A Gaussian mixture model, namely the universal background model
(UBM)), is trained to represent the speech of the general population.

C
p(x|UBM) = p(x|AUP™) = 3~ 7ubmA7(x|pubm Fubm)

c=1

c
o The UBM parameters AU"P™ = {W?bm, pibm, ngm} are estimated

by the expectation-maximization algorithm using the speech of many
speakers.
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Expectation maximization (EM)

@ Denote the acoustic vectors from a large population as
X ={xpt=1,...,T}
o Expectation step:
e Conditional distribution of mixture component c:

TN (x| pdPm, Zubm)
SOELy TEPMAS (x| pobm, FUOM)

Ye(c) = p(clxt) =

@ Maximization step:
. . T

o Mixture weights: 79P™ = L 57T~ (c)
ubm _ Z; ve(o)xe
)

T T
b . Ye(C)xex,

TP = 722% e G (N

t=1

o Mean vectors: p

o Covariance matrices:
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Target-speakers’ GMMs

@ Each target speaker is represented by a Gaussian mixture model:

p(x|Spk 5) = p(x|A()) = ZW(S)N x|pul), £H))
c=1

C
where A(S) = {wﬁs),pﬁs), ZS:S)} are learned by using maximum a

posteriori (MAP) adaptation [R:ynolds et al., 2000].
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Maximum a posteriori (MAP)

@ The MAP algorithm finds the parameters of target-speaker's GMM

C
given UBM parameters AUbM — { “bm,ugbm,}:“bm}czl

o First step is the same as EM. Given T, acoustic vectors
x(s) = {x1,...,x7.} from speaker s, we compute the statistics:

Ts
nc:nyt(c) and E (X0 = nyt(c)xt

Ne i3
o Adapt UBM parameters by
1l = acE (X)) + (1 - ag)uldm
where
Ne
ne+r

Aqe =

and r is called the relevance factor. Typically, r = 16.
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MAP adaptation

o Adapt the UBM model to each speaker using the MAP algorithm:?

UBM o

Speaker Data X © Speaker Model

=
. g)
v
1=
g
@
GMM Mean Supervector

NS:S) = O‘CEC(X(S)) +(1— aC)I‘gbm

@ a. — 1 when X comprises lots of data and a. — 0 otherwise.

'Source: J. H. L. Hansen and T. Hasan, IEEE Signal Processing Magazine, 2015.

18 /274



MAP adaptation

@ In practice, only the mean vectors will be adapted:

Adapted speaker
model

Universal k
Background Model "= --
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GMM-UBM scoring

o Given the acoustic vectors X(t) from a test speaker and a claimed
identity s, speaker verification can be formulated as a 2-class
hypothesis problem:

o Hy: X®) comes from the true speaker s
o Hi: X®) comes from an impostor

@ Verification score is a log-likelihood ratio:

Sir(X DAL AP™) — log p(XA)) — log p(A 1 |AO™)

Speaker
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How to account for variability

e GMM-SVM |[Campbell et al., 2006]:
o Create supervectors from target-speaker GMMs.
e Then, project the supervectors to a subspace in which inter-speaker
variability is maximized and nuisance variability is minimized.
e Perform SVM classification on the projected subspace.
o Joint Factor Analysis:
o Speaker and session variabilities are represented by latent variables
(speaker factors and channel factors) in a factor analysis model.
e During scoring, session variabilities are accounted for by integrating
over the latent variables, e.g., the channel factors as in
[Kenny et al., 2007a].
o I-Vector + PLDA:?
o Utterances are represented by the posterior means of latent factors,
called the i-vectors [Dehak et al., 2011].
o |-vectors capture both speaker and channel information.
o During scoring, the unwanted channel variability is removed by LDA
projection or by integrating out the latent factors in the PLDA model.
2For the relationship between JFA and I-vectors and their derivations, see
http://www.eie.polyu.edu.hk/~mwmak/papers/FA-lvector.pdf
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Performance measures

@ For speaker identification

No. of correct recognitions
Total no. of trials

Recogntion Rate =

@ For speaker verification

False Rejection Rate (FRR) = Miss probability
No. of true-speakers rejected
~ Total no. of true-speaker trials
False Acceptance Rate (FAR) = False alarm probability
No. of impostors accepted
~ Total no. of impostor attempts

e Equal error rate (EER) corresponds to the operating point at which
FAR = FRR
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Performance measures for speaker verification

o Detection error tradeoff (DET) curves are similar to receiver
operating characteristic curves but with nonlinear x- and y-axis.
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Detection cost functions

@ Detection cost function (DCF) is a weighted sum of the FRR
(PMiss|Target) and FAR (PFalseAlarm|Nontarget):
CDet(e) = CmMiss X PMiss|Target(0) X PTarget +
CralseAlarm X P, FalseAlarm|Nontarget(0) X (1 - P Target)

where 6 is a decision threshold.
@ Normalized cost:
CNorm = CDet(g)/ CDefault
where
CMiss x P Target

CDefault = min
CFalseAlarm X (1 - P Target)

e NIST 2008 SRE and earlier:

Cumiss = 10; CralseAlarm = 1 Prarget = 0.01
o NIST 2010 SRE:

Cuiss = 1 CralseAlarm = 1;  Prarger = 0.001
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Detection cost functions

@ Dectection cost function for NIST 2012 SRE:
Cpet(0) = Cuiss X Putiss|Target (0) X PTarget +
CralseAlarm X (1 — Prarget) X
[PralseAlarm|KnownNontarget () X Pknown +

P FalseAlarm|UnKnownNontarget X (1 - P Known])
CNorm(a) - CDet(H)/(CMiss X PTarget)

o Parameters for core test conditions
CMiss =1 CFalseAlarm =1 PTargetl = 0.01; PTarget2 = 0.001;
PKnown =05

° PTargetl — CNorm1(91) and PTarget2 — CNorm2(92)
@ Primary cost:

G o CNorml(el) + CNoer(az)
Primary — 5
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Detection cost functions

@ Detection cost function for NIST 2016 SRE:

CDet(g) = CMiss X PMiss\Target(g) X PTarget +
CFalseAlarm X PFalseAlarm\Nontarget(e) X (1 - PTarget)
CNorm(e) - CDet(e)/(CMiss X PTarget)

o Parameters for core test conditions
Guiss = 1; CralseAlarm = 1; PTargetl = 0.01, PTargetQ = 0.005

° PTargetl — CNorml(el) and PTarget2 — CNorm2 (92)

@ Primary cost:

C ~ GNorm1(01) + CNorm2(62)
Primary — 5
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@ 1.3. Modern speaker recognition approaches
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Nonparametric
model

Support vector
machine

Gaussian mixture

Probabilistic linear
discriminant analysis

=
o
Q
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Main approach Parametric model

Joint factor analysis
i-vector

Auto-encoder

Artificial neural
Deep neural network
network

Restricted Boltzmann
machine

29 /274



