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Why Dimension Reduction

@ Many applications produce high-dimensional vectors
e In face recognition, if an image has size 360 x 260 pixels, the
dimension is 93600.
o In hand-writing digit recognition, if a digit occupies 28 x 28 pixels, the
dimension is 784.
o In speaker recognition, the dim can be as high as 61440 per utterance.
@ High-dim feature vectors can easily cause the curse-of-dimensionality

problem.
@ Redundancy: Some of the elements in the feature vectors are
strongly correlated, meaning that knowing one element will also know
some other elements.
Irrelevancy: Some elements in the feature vectors are irrelevant to
the classification task.
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Dimension Reduction

o Given a feature vector x € R”, dimensionality reduction aims to find
a low dimensional representation h € RM that can approximately
explain x:

x ~ f(h,8) (1)

where f(-,-) is a function that takes the hidden variable h and a set
of parameters 8 and M < D.

e Typically, we choose the function family f(-,-) and then learn h and
0 from training data.

o Least squares criterion: Given N training vectors
X = {x1,...,xn}, X; € RP, we find the parameters 6 and latent
variables h;'s that minimize the sum of squared error:

0,{h;},

=1

0, {h;};L; = argmin {Z f(0,0)]" [x; f(hl,f))]} (2)
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Dimension Reduction: Reduce to 1-Dim

@ Approximate vector x; by a scalar value h; plus the global mean u:
1
x; & ¢h; + @, whereu:Nin, ¢ € RP*!

@ Assuming p = 0 or vectors have been mean-subtracted, i.e.,
X; < X; — p Vi, we have

X; =~ ¢hz

@ The least squares criterion becomes:

&7 {iLz}z]\Ll = argmin E(¢7 {hl})
¢)7{h1}'f\7:1

(3)
= argmin {Z — ¢ph; ]}

d)v{hz}i\rzl

=1
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Dimension Reduction: Reduce to 1-Dim

@ Eqg. 3 has a problem in that it does not have a unique solution. If we
multiply ¢ by any constant « and divide h;'s by the same constant
we get the same cost, i.e., ag - % = ¢h;.

@ We make the solution unique by constraining ||¢||> = 1 using a
Lagrange multiplier:

(xi — ohy) T (x; — i) + NPT — 1)
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Dimension Reduction: Reduce to 1-Dim

@ Setting % =0 and g—,ﬁ_ =0, we obtain:

ZXJM = )\qu and éTxi = ]AIZ = X;r(b

@ Hence,

where S is the covariance matrix of training data.!

@ Therefore, (}S is the first eigenvector of S.

!Note that x;'s have been mean subtracted.
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Dimension Reduction: Reduce to 1-Dim
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Figure 13.19 Reduction to a single dimension. a) Original data and direction
¢ of maximum variance. b) The data are projected onto ¢ to produce a one
dimensional representation. ¢) To reconstruct the data, we re-multiply by
¢. Most of the original variation is retained. PCA extends this model to
project high dimensional data onto the K orthogonal dimensions with the
most variance, to produce a K dimensional representation.
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Dimension Reduction: 3D to 2D
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Principle Component Analysis

@ In PCA, the hidden variables {h;} are multi-dimensional and ¢
becomes a rectangular matrix ® = [¢; ¢y -+ Pyy), where M < D.

@ Each components of h; weights one column of matrix ® so that data
is approximated as

x; = ®h;, 1=1,....,N

@ The cost function is?

&, {h;}Y, = argmin E (&, {h;})

& {(h}¥,
N (4)
= argmin {Z [x; — ®h;]" [x; — i’hi]}
‘P:{hi}«fvz1 =1

2Note that we have defined 8 = ® in Eq. 2.
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Principle Component Analysis

@ To solve the non-uniqueness problem in Eq. 4, we enforce ¢dT¢d =1,
d=1,...,M, using a set of Lagrange multipliers {\s}3.,:

M
(xi — ®hy) T (x; — Bhy) + > Na(@fdy — 1)
=1

WE

L(®, {h}) =

@
Il
—

(x; — ®h;)T(x; — ®hy) + tr{®Ay, BT — A}

|
.MZ

S
Il
—

x"x; — 2h] ®'x; + h h; + tr{®A)®"T — A}

(5)

I
.MZ

-
I
-

where h; € RM | A = diag{\1,..., A\, 0,...,0} € RP*XP,
Ay =diag{)1,..., Ay} € RMXM and
D =[p) by -+ by € RPM,
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Principle Component Analysis

@ Setting g—é =0 and g—é = 0, we obtain:
Zi lel;r = ‘i’AM and P x;, = fll — h, = XT'i’

where we have used:

0 T _ T T
@ Therefore,
Y oxix{®=dAy = S&=>3Ay (6)

e So, & comprises the M eigenvectors of S.
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Interpretation of A,

@ Denote X as a D x N centered data matrix whose n-th column is
. N
given by (x, — + YN x,).
@ The projected data matrix is given by

Y=3'X
@ The covariance matrix of the projected data is
T - T ST\ T
YYT = (<I> X) (<1> X)
- $'xxXTo
= <i>T<i>AM (see the eigen-equation in Eq. 6)

@ Therefore, the eigenvalues represent the variances of individual
elements of the projected vectors.
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Interpretation of A,

@ The eigenvalues are typically arranged in descending order:
A1 > A 2> > Ap.

@ This means that the first few principal components capture most of
the variances.

@ If we project x to M-dimensional space (i.e., keeping the first M
PCs), the loss in variances is J = 3" 1,1 Ai.

o The variance “explained” by the first M PCsis S22 \;.
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PCA on High-Dimensional Data

@ When, the dimension D of x; is very high, computing S and its
eigenvectors directly are impractical.

@ However, the rank of S is limited by the number of training examples:
If there are IV training examples, there will be at most N — 1
eigenvectors with non-zero eigenvalues. If N < D, the principal
components can be computed more easily.

o Let X be a data matrix comprising the mean-subtracted x;'s in its
columns. Then, S = XX and the eigen-decomposition of S is given
by

S¢, = XX, = Nigh;

o Instead of performing eigen-decomposition of XX, we perform

eigen-decomposition of

XTXep; = \i; (7)
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Principle Component Analysis

@ Pre-multipling both side of Eq. 7 by X, we obtain
XXT(X’l/’i) = Ai(Xep)
@ This means that if 1, is an eigenvector of XX, then ¢; = X1, is

an eigenvector of S = XX .

@ So, all we need is to compute the N — 1 eigenvectors of XX, which
has size N x N.

@ Note that ¢, computed in this way is un-normalized. So, we need to
normalize them by

¢': Z7 221,...7N_1
C X

Man-Wai MAK (EIE) PCA and LDA October 24, 2019 16 / 29



Example Application of PCA: Eigenface

o Eigenface is one of the most well-known applications of PCA.
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Example Application of PCA: Eigenface

@ Faces reconstructed using different numbers of principal components
(eigenfaces):

50100 150 200 250 50100 150 200 250 50 100 150 200 250 50 100 150 200 250 50 100 150 200 250 50100 150 200 250 50100 150 200 250

Original 1PC 20 PCs 50 PCs 100 PCs 200 PCs 399 PCs

@ See Lab2 of EIE4105 in
http://www.eie.polyu.edu.hk/~mwmak/myteaching.htm for
implementation.
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o PCA will fail if the subspace is non-linear

|- PCA can only
find this

Linear subspace (PCA is fine) Nonlinear subspace (PCA fails)

@ Solution: Use non-linear embedding such as ISOMAP or DNN
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Fisher Discriminant Analysis

@ FDA is a classification method to separate data into two classes.

@ FDA could also be considered as a supervised dimension reduction
method that reduces the dimension to 1.
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Fisher Discriminant Analysis

@ The idea of FDA is to find a 1-D line so that the projected data give
a large separation between the means of two classes while also
giving a small variance within each class, thereby minimizing the
class overlap.

@ Assume that training data are projected onto a 1-D space using

T
Yn = W Xp, n=1,...,N.
o Fisher criterion:
Between-class scatter w'Spw

J(W) = ——— =

Within-class scatter ~ w!Spyw

where

Sp = (to—p1)(o—p1)" and Sy = Z Z Xn—po) (Xn—pp,) T

neck

are the between-class and within-class scatter matrices, respectively,
and gy and p, are the class means.
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Fisher Discriminant Analysis

@ Note that only the direction of w matters. Therefore, we can always
find a w that leads to w'Syyw = 1.
@ The maximization of J(w) can be rewritten as:

maXwy w'Spw
subject to w'Syw =1

@ The Lagrangian function is
1
L(w,\) = §WTSBW —Aw'Syw —1)

@ Setting gTLv = 0, we obtain
Spw — ASyyw =0
= Spw = ASyyw (8)
= (Syy'Sp)W = \w

@ So, w is the first eigenvector of S;VlSB.
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LDA on Multi-class Problems

e For multiple classes (K > 2 and D > K), we can use LDA to project
D-dimensional vectors to M-dimensional vectors, where 1 < M < K.

@ w is extended to a matrix W = [wy --- wyy] and the projected
scalar y; is extended to a vector y;:

y, = WT(x, —p), where Ynj = ij(xn —w),j=1....M

where p is the global mean of training vectors.
@ The between-class and within-class scatter matrices become

K
Sp=> Nelmy— )y, — )"
k;l
Sw = Y (xn— )0 — )"
k=1 neCy

where Ny is the number of samples in the class k, i.e., Ny = |Cx|.
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LDA on Multi-class Problems

@ The LDA criterion function:

Bet -cl tt -1
J(W) = etween-class scatter _ __ { <WTSBW> <WTSWW> }

Within-class scatter
o Constrained optimization:

maxw TI’{WTSBW}
subject to WTSyyW =1

where I is an M x M identity matrix.

@ Note that unlike PCA in Eq. 5, because of the matrix Sy in the
constraint, we need to find one w; at a time.

o Note also that the constraint W' Sy W = I suggests that w;'s may
not be orthogonal to each other [2].
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LDA on Multi-class Problems

e To find w;, we write the Lagrangian function as:

L(Wj, )\j) = W;!—SBW]' — /\j(W;!—SWWj - 1)

Using Eq. 8, the optimal solution of w; satisfies
(Sy'Sp)wW; = A\jw;

@ Therefore, W comprises the first M eigenvectors of SQ}SB. A more
formal proof can be find in [1].

@ As the maximum rank of Sg is K — 1, S;VISB has at most K — 1
non-zero eigenvalues. As a result, M can be at most K — 1.

After the projection, the vectors y,,'s can be used to train a classifier
(e.g., SVM) for classification.
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PCA vs. LDA

@ Project 784-dim vectors derived from 28 x 28 handwritten digits to
3-D space:
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PCA vs. LDA

\FDA solution
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