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e Deep Learning
@ 4.1. Deep neural network
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Neural network
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Nonlinear activation
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Deep learning

@ Deep belief networks (DBN) obtained great results due to good
initialization and deep model structure
— pre-train each layer from bottom up
— each pair of layers is a restricted Boltzmann machine
— jointly fine tune all layers using back-propagation
@ Deep neural network (DNN)
— discriminative model works for classification tasks

— empirically works well for image recognition, speech recognition,
information retrieval and many others
— no theoretical guarantee
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Why go deep?

@ Deep architecture can be representationally efficient
— fewer computational units for the same function

@ Deep representation might allow for a hierarchical representation
— allows non-local generalization
— comprehensibility
@ Multiple levels of latent variables allow combinatorial sharing of
statistical strength
@ Deep architecture works well for representation of vision, audio, NLP,

music and many other technical data
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@ Hierarchical learning

3rd layer
— natural progression from low “Objects”
level to high level structure as
seen in natural complexity
— easier to monitor what is 2nd layer
being learnt and to guide the “Object parts”
machine to better subspaces
— a good lower level 1st layer
representation can be used in “Edges”
different tasks
Pixels
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Trainable feature hierarchy

Hierarchy of representations with increasing level of abstraction

Each stage is a kind of trainable feature transform

Image
— Pixel — edge — texton — motif — part — object
o Text
— Character — word — word group — clause — sentence — story

Speech

— Sample — spectral band — sound — ... — phone — phoneme —
word

144 /274



Deep architecture

o Feed-forward: multilayer neural nets, convolutional nets

@ Feed-back: stacked sparse coding, deconvolutional nets

o Bi-directional: deep Boltzmann machines, stacked auto-encoders
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Training strategy

@ Purely supervised

— initialize parameters randomly
— train in supervised mode

— typically with SGD, using backprop to compute gradients
— used in most practical systems for speech and image recognition
@ Unsupervised, layerwise 4 supervised classifier on top

— train each layer unsupervised, one after the other
— train a supervised classifier on top, keeping the other layers fixed
— good when very few labeled samples are available

@ Unsupervised, layerwise + global supervised fine-tuning

— train each layer unsupervised, one after the other
— add a classifier layer, and retrain the whole thing supervised
— good when label set is poor

@ Unsupervised pre-training often uses the regularized auto-encoders
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Generalizable learning

@ Shared representation o Partial feature sharing
— multi-task learning — mixed mode learning
— unsupervised training — composition of functions
Task 1 Task N
Task 1 Task 2 Task 3 Ouptut Y1 Ouptut Y

output output output
C ) ( ) ( ) e ... o

High-level features

Shared
intermediate
representation

Raw input
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Forward & backward passes

@ Forward propagation
— sum inputs, produce activation, feed-forward

@ Training: back propagation of error
— calculate total error at the top
— calculate contributions to error at each step going backwards
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Deep neural network

@ Simple to construct

— sigmoid nonlinearity for hidden layers
— softmax for the output layer

@ Backpropagation does not work well if
randomly initialized
[Bengio et al., 2007]
— deep networks trained without
unsupervised pretraining perform
worse than shallow networks

train. valid.  test

DBN, unsupervised pre-training 0% 12% 12%
Deep net, auto-associator pre-training 0% 14% 1.4%
Deep net, supervised pre-training 0% 1.7% 2.0%
[ Deep net, no pre-training 004% 2.1% 2.4%)|
Shallow net, no pre-training .004% 1.8% 1.9%

(Bengio et al., NIPS 2007)
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Problems and solvers with back propagation

Gradient is progressively getting more dilute
— below top few layers, correction signal is minimal

Gets stuck in local minima

— random initialization: may start out far from good regions

@ In usual settings, we can use only labeled data

— almost all data are unlabeled
— the brain can learn from unlabeled data

Use unsupervised learning via greedy layer-wise training

— allow abstraction to develop naturally from one layer to another
— help the network initialize with good parameters

Perform supervised top-down training as final step
— refine the features in intermediate layers more relevant for the task
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e Deep Learning

@ 4.2. Deep belief network
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Deep belief network

Deep belief network (DBN) is a probabilistic generative model

Deep architecture with multiple hidden layers

Unsupervised pre-learning provides a good initialization
— maximizing the lower-bound of the log-likelihood of data

Supervised fine-tuning

— generative: up-down algorithm
— discriminative: back propagation
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Model structure

Hidden Layers

Directed
belief nets

p(v,h', h? ... h') = p(v|h!)p(h!|h?) ... p(h"~2|h'1)p(h'~1|n')
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Greedy training

o First step:

— construct an RBM with an
input layer v and a hidden
layer h

— train the RBM
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Greedy training

@ Second step:

— Stack another hidden layer on
top of the RBM to form a
new RBM
— Fix W1, sample h! from
q(ht|v) as input. Train W? as
RBM q(h'[v)

< -
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Greedy training

@ Third step:
— continue to stack layers on
top of the network, train it as

previous step, with sample
sampled from g(h?|h?)

@ And so on...
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Deep Boltzmann machine

1
p(v)= > > exp[v Wth + (h1) TW2h? + (h?) "W3h3]
hl h2 h3

@ Undirected connections between all
layers. No connections between the
nodes in the same layer

@ High-level representations are built from
unlabeled inputs. Labeled data is used
to only slightly fine-tune the model

[Salakhutdinov and Hinton, 2009]
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Training procedure

@ Pre-training
— initialize from stacked RBMs

@ Generative fine-tuning
— positive phase: variational or
mean-field approximation
— negative phase: persistent
chain & stochastic
approximation

@ Discriminative fine-tuning

— back-propagation
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Why greedy layer wise training works

@ Regularization hypothesis
— pre-training is constraining the parameters in a region relevant to
unsupervised dataset
— better generalization - representations that better describe unlabeled
data are more discriminative for labeled data
e Optimization hypothesis

— unsupervised training initializes lower level parameters near localities of
better minima than random initialization can
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e Deep Learning

@ 4.3. Stacking auto-encoder
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Denoising auto-encoder

Hidden code
(representation) KL (reconstruction | raw input)

®ROOO—00000 00000

Corrupted input Raw input Reconstruction

[Vincent et al., 2008]

o Corrupt the input, e.g. set 25% of inputs to 0
@ Reconstruct the uncorrupted input

@ Use the uncorrupted encoding as input to next level
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Manifold learning perspective

@ Learn a vector field towards higher probability regions
@ Minimize the variational lower bound on a generative model

@ Correspond to the regularized score matching on an RBM

Corrupted input \ Vi

162 /274



Stacked denoising auto-encoders
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Greedy layer-wise learning

@ Start with the lowest level and stack upwards

@ Train each layer of auto-encoder using the intermediate codes or
features from the layer below

@ Top layer can have a different output, e.g. softmax non-linearity, to
provide an output for classification
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e Deep Learning

@ 4.4. Variational auto-encoder
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Variational auto-structure

Encoder ! Decoder

___________________________________________
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Graphical model

__________ ¢ e 0
Recognition J/ Generative
model / model
1
q0(2[x) 1 po(x|z)
\

[Kingma and Welling, 2014]
@ Mean-field approach requires analytical solutions E,, which are
intractable in the case of neural network

@ Use neural network and sample the latent variables z from variational

posterior
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Variational inference

@ Variational Bayesian inference aims to find a variational distribution
q(z|x) that is maximally close to the original true posterior
distribution p(z|x)

@ According to the evidence decomposition, we have
p(x) = L(q) + KL(qllp)

L(q) = Eqllog p(x,z)] + Hy[z]
KL(qlp) = —Eq[log p(z|x)] — Hgl2]
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Mean field variational inference

@ Assume that g(z|x) can be factorized into the product of individual
probability distributions

N
q(zx) = I a(zulxn)
n=1

@ We can perform the coordinate ascent for each factorized variational
distributions by

a(ZJ‘XJ) X exp(Eq(Z,‘#j)[log p(x7 Z)])

170 /274



Variational lower bound

@ Model parameters are learned by maximizing the variational lower
bound

log p(x) > Eq, (z/x)[log po(x|2)] — KL(qs(z|x)p.(2))
= Eq,(z1x) [log po(x, z) — log q4(z[x)]
2 Eq, (20 [fo (%, 2)]
£ Lo

where © = {0, ¢, w}
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Stochastic backpropagation

Objective: ‘ Lo = Eqaplfolx,2)]
Gradient:
Step1 sample z®) from gy(z|x)
|
StepZ Lo~ f@(x|z(l))
1
Step3 Vele = Ve fo(x,2z")

@ Problem: high variance by directly sampling z [Rezende et al., 2014]
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Stochastic gradient variational Bayes

Objective: ‘ Lo = Eyy(zpfo(x,2)]
Gradient:
Step1 sample €?) from N(0,T)
1
Step2 20 =p,+0o,0e
1
Step3 Le =~ fo(x|z?)
|
Step4 Vele = Ve fo(x,2z")

@ Reduce the variance caused by directly sampling z
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e Deep Learning

@ 4.5. Deep transfer learning
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Why transfer learning?

@ Mismatch between training and test data in speaker recognition
always exists

@ Traditional machine learning works well under an assumption that
training and test data follow the same distribution

— real-world data may not follow this assumption
@ Feature-based domain adaptation is a common approach
— allow knowledge to be transferred across domains through learning a
good feature representation
@ Co-train for feature representation and speaker recognition without
labeling in target domain

175 /274



Transfer learning

o Let D ={X,p(X)} denote a domain

— feature space X
— marginal probability distribution p(X)
— X={xy, -, x7} CX

o Let 7 ={),f(:)} denote a task

— label space Y
— objective predictive function f(-)
can be written as p(Y|X)

@ Assumptions in transfer learning

— source and target domains are different Ds £ D
— source and target tasks are different 75 = T
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Multi-task learning

m@in (D, 0)+ AQ(0)

| MainTask | | Auxiliary Task |

Target  {apple, not apple} {pear, not pear}

Joint
Learning
Task

-0 e
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Multi-task neural network learning

m@in (D, 0) + AQ(0)
Main task Auxiliary tasks
Output Y. ( Y, ) e o o Y

Shared feature

s Z1)( 22 )( %3 e o o zZy
representation

( )
o )
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Learning strategy and task

Training Test
Main Task Auxiliary Task Main Task B
E@ @J [@ J [ O O J Classifier
fw} I A iy} iy

Distribution
{w_“} @ ? ? Feature

Extractor
o @

Unlabeled Data Unlabeled Data
in Target Domain in Target Domain

Labeled Data
in Source Domain

@ Semi-supervised learning is conducted under multiple objectives
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