e Deep Learning
@ 4.1. Deep neural network
@ 4.2. Deep belief network
@ 4.3. Stacking auto-encoder
@ 4.4, Variational auto-encoder
@ 4.5. Deep transfer learning

136 /274

e Deep Learning
@ 4.1. Deep neural network

137 /274

Neural network

Yii
2tM (2)
waz,,,.Q
4
Tip / // .
/

Inputs . Outputs

Tyl

T

T
Zt0

Hidden units

Multilayer perceptron

138 /274

Nonlinear activation

M D
ek = Yk(xe,w) = F [Y V"j(kz)f (Wi.(il)xti>
j=0 i=0

0.5

()
°

ReLU
—— sigmoid
Tanh

activation function 7(-)

139 /274

Deep learning

@ Deep belief networks (DBN) obtained great results due to good
initialization and deep model structure
— pre-train each layer from bottom up
— each pair of layers is a restricted Boltzmann machine
— jointly fine tune all layers using back-propagation
@ Deep neural network (DNN)
— discriminative model works for classification tasks

— empirically works well for image recognition, speech recognition,
information retrieval and many others
— no theoretical guarantee

140 /274

o0
=
S

[0}

—
-
=
=
e
=
2]

()

141 /274

Why go deep?

@ Deep architecture can be representationally efficient
— fewer computational units for the same function

@ Deep representation might allow for a hierarchical representation
— allows non-local generalization
— comprehensibility
@ Multiple levels of latent variables allow combinatorial sharing of
statistical strength
@ Deep architecture works well for representation of vision, audio, NLP,

music and many other technical data

142 /274

@ Hierarchical learning

3rd layer
— natural progression from low “Objects”
level to high level structure as
seen in natural complexity
— easier to monitor what is 2nd layer
being learnt and to guide the “Object parts”
machine to better subspaces
— a good lower level 1st layer
representation can be used in “Edges”
different tasks
Pixels

143 /274

Trainable feature hierarchy

Hierarchy of representations with increasing level of abstraction

Each stage is a kind of trainable feature transform

Image
— Pixel — edge — texton — motif — part — object
o Text
— Character — word — word group — clause — sentence — story

Speech

— Sample — spectral band — sound — ... — phone — phoneme —
word

144 /274

Deep architecture

o Feed-forward: multilayer neural nets, convolutional nets

@ Feed-back: stacked sparse coding, deconvolutional nets

o Bi-directional: deep Boltzmann machines, stacked auto-encoders

145 /274

Training strategy

@ Purely supervised

— initialize parameters randomly
— train in supervised mode

— typically with SGD, using backprop to compute gradients
— used in most practical systems for speech and image recognition
@ Unsupervised, layerwise 4 supervised classifier on top

— train each layer unsupervised, one after the other
— train a supervised classifier on top, keeping the other layers fixed
— good when very few labeled samples are available

@ Unsupervised, layerwise + global supervised fine-tuning

— train each layer unsupervised, one after the other
— add a classifier layer, and retrain the whole thing supervised
— good when label set is poor

@ Unsupervised pre-training often uses the regularized auto-encoders

146 /274

Generalizable learning

@ Shared representation o Partial feature sharing
— multi-task learning — mixed mode learning
— unsupervised training — composition of functions
Task 1 Task N
Task 1 Task 2 Task 3 Ouptut Y1 Ouptut Y

output output output
C) () () e ... o

High-level features

Shared
intermediate
representation

Raw input

147 /274

Forward & backward passes

@ Forward propagation
— sum inputs, produce activation, feed-forward

@ Training: back propagation of error
— calculate total error at the top
— calculate contributions to error at each step going backwards

148 /274

Deep neural network

@ Simple to construct

— sigmoid nonlinearity for hidden layers
— softmax for the output layer

@ Backpropagation does not work well if
randomly initialized
[Bengio et al., 2007]
— deep networks trained without
unsupervised pretraining perform
worse than shallow networks

train. valid. test

DBN, unsupervised pre-training 0% 12% 12%
Deep net, auto-associator pre-training 0% 14% 1.4%
Deep net, supervised pre-training 0% 1.7% 2.0%
[Deep net, no pre-training 004% 2.1% 2.4%)|
Shallow net, no pre-training .004% 1.8% 1.9%

(Bengio et al., NIPS 2007)

149 /274

Problems and solvers with back propagation

Gradient is progressively getting more dilute
— below top few layers, correction signal is minimal

Gets stuck in local minima

— random initialization: may start out far from good regions

@ In usual settings, we can use only labeled data

— almost all data are unlabeled
— the brain can learn from unlabeled data

Use unsupervised learning via greedy layer-wise training

— allow abstraction to develop naturally from one layer to another
— help the network initialize with good parameters

Perform supervised top-down training as final step
— refine the features in intermediate layers more relevant for the task

150 /274

e Deep Learning

@ 4.2. Deep belief network

151 /274

Deep belief network

Deep belief network (DBN) is a probabilistic generative model

Deep architecture with multiple hidden layers

Unsupervised pre-learning provides a good initialization
— maximizing the lower-bound of the log-likelihood of data

Supervised fine-tuning

— generative: up-down algorithm
— discriminative: back propagation

152 /274

Model structure

Hidden Layers

Directed
belief nets

p(v,h', h? ... h') = p(v|h!)p(h!|h?) ... p(h"~2|h'1)p(h'~1|n')

153 /274

Greedy training

o First step:

— construct an RBM with an
input layer v and a hidden
layer h

— train the RBM

154 /274

Greedy training

@ Second step:

— Stack another hidden layer on
top of the RBM to form a
new RBM
— Fix W1, sample h! from
q(ht|v) as input. Train W? as
RBM q(h'[v)

< -

155 /274

Greedy training

@ Third step:
— continue to stack layers on
top of the network, train it as

previous step, with sample
sampled from g(h?|h?)

@ And so on...

156 /274

Deep Boltzmann machine

1
p(v)= > > exp[v Wth + (h1) TW2h? + (h?) "W3h3]
hl h2 h3

@ Undirected connections between all
layers. No connections between the
nodes in the same layer

@ High-level representations are built from
unlabeled inputs. Labeled data is used
to only slightly fine-tune the model

[Salakhutdinov and Hinton, 2009]

157 /274

Training procedure

@ Pre-training
— initialize from stacked RBMs

@ Generative fine-tuning
— positive phase: variational or
mean-field approximation
— negative phase: persistent
chain & stochastic
approximation

@ Discriminative fine-tuning

— back-propagation

158 /274

Why greedy layer wise training works

@ Regularization hypothesis
— pre-training is constraining the parameters in a region relevant to
unsupervised dataset
— better generalization - representations that better describe unlabeled
data are more discriminative for labeled data
e Optimization hypothesis

— unsupervised training initializes lower level parameters near localities of
better minima than random initialization can

159 /274

e Deep Learning

@ 4.3. Stacking auto-encoder

160 /274

Denoising auto-encoder

Hidden code
(representation) KL (reconstruction | raw input)

®ROOO—00000 00000

Corrupted input Raw input Reconstruction

[Vincent et al., 2008]

o Corrupt the input, e.g. set 25% of inputs to 0
@ Reconstruct the uncorrupted input

@ Use the uncorrupted encoding as input to next level

161 /274

Manifold learning perspective

@ Learn a vector field towards higher probability regions
@ Minimize the variational lower bound on a generative model

@ Correspond to the regularized score matching on an RBM

Corrupted input \ Vi

162 /274

Stacked denoising auto-encoders

0000000
0000000 (0000000 0000000 0000000

W, wi w w

) C10[0]0]0] 0C]0/C]0 LI 0]C]0[0]0) ~[0O00J0

163 /274

Greedy layer-wise learning

@ Start with the lowest level and stack upwards

@ Train each layer of auto-encoder using the intermediate codes or
features from the layer below

@ Top layer can have a different output, e.g. softmax non-linearity, to
provide an output for classification

4e

»(0O0O0000J »OO0000J
\0O00000 0000000 B ~0000000

*OO000 Oy <0O0000 ~OOO000O

164 /274

e Deep Learning

@ 4.4. Variational auto-encoder

165 /274

166 /274

Variational auto-structure

Encoder ! Decoder

167 /274

Graphical model

__________ ¢ e 0
Recognition J/ Generative
model / model
1
q0(2[x) 1 po(x|z)
\

[Kingma and Welling, 2014]
@ Mean-field approach requires analytical solutions E,, which are
intractable in the case of neural network

@ Use neural network and sample the latent variables z from variational

posterior
168 / 274

Variational inference

@ Variational Bayesian inference aims to find a variational distribution
q(z|x) that is maximally close to the original true posterior
distribution p(z|x)

@ According to the evidence decomposition, we have
p(x) = L(q) + KL(qllp)

L(q) = Eqllog p(x,z)] + Hy[z]
KL(qlp) = —Eq[log p(z|x)] — Hgl2]

169 /274

Mean field variational inference

@ Assume that g(z|x) can be factorized into the product of individual
probability distributions

N
q(zx) = I a(zulxn)
n=1

@ We can perform the coordinate ascent for each factorized variational
distributions by

a(ZJ‘XJ) X exp(Eq(Z,‘#j)[log p(x7 Z)])

170 /274

Variational lower bound

@ Model parameters are learned by maximizing the variational lower
bound

log p(x) > Eq, (z/x)[log po(x|2)] — KL(qs(z|x)p.(2))
= Eq,(z1x) [log po(x, z) — log q4(z[x)]
2 Eq, (20 [fo (%, 2)]
£ Lo

where © = {0, ¢, w}

171 /274

Stochastic backpropagation

Objective: ‘ Lo = Eqaplfolx,2)]
Gradient:
Step1 sample z®) from gy(z|x)
|
StepZ Lo~ f@(x|z(l))
1
Step3 Vele = Ve fo(x,2z")

@ Problem: high variance by directly sampling z [Rezende et al., 2014]

172 /274

Stochastic gradient variational Bayes

Objective: ‘ Lo = Eyy(zpfo(x,2)]
Gradient:
Step1 sample €?) from N(0,T)
1
Step2 20 =p,+0o,0e
1
Step3 Le =~ fo(x|z?)
|
Step4 Vele = Ve fo(x,2z")

@ Reduce the variance caused by directly sampling z

173 /274

e Deep Learning

@ 4.5. Deep transfer learning

174 /274

Why transfer learning?

@ Mismatch between training and test data in speaker recognition
always exists

@ Traditional machine learning works well under an assumption that
training and test data follow the same distribution

— real-world data may not follow this assumption
@ Feature-based domain adaptation is a common approach
— allow knowledge to be transferred across domains through learning a
good feature representation
@ Co-train for feature representation and speaker recognition without
labeling in target domain

175 /274

Transfer learning

o Let D ={X,p(X)} denote a domain

— feature space X
— marginal probability distribution p(X)
— X={xy, -, x7} CX

o Let 7 ={),f(:)} denote a task

— label space Y
— objective predictive function f(-)
can be written as p(Y|X)

@ Assumptions in transfer learning

— source and target domains are different Ds £ D
— source and target tasks are different 75 = T

176 /274

Multi-task learning

m@in (D, 0)+ AQ(0)

| MainTask | | Auxiliary Task |

Target {apple, not apple} {pear, not pear}

Joint
Learning
Task

-0 e

177 /274

Multi-task neural network learning

m@in (D, 0) + AQ(0)
Main task Auxiliary tasks
Output Y. (Y,) e o o Y

Shared feature

s Z1)(22)(%3 e o o zZy
representation

()
o)

178 /274

Learning strategy and task

Training Test
Main Task Auxiliary Task Main Task B
E@ @J [@ J [O O J Classifier
fw} I A iy} iy

Distribution
{w_“} @ ? ? Feature

Extractor
o @

Unlabeled Data Unlabeled Data
in Target Domain in Target Domain

Labeled Data
in Source Domain

@ Semi-supervised learning is conducted under multiple objectives

179 /274

