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Model-based method

Machine learning provides a wide range of model-based approaches
for speaker recognition
Model-based approach aims to incorporate the physical phenomena,
measurements, uncertainties and noises in the form of mathematical
models
This approach is developed in a unified manner through different
algorithms, examples, applications, and case studies
Main-stream methods are based on the statistical models
Latent variable models in speaker recognition include
− joint factor analysis (JFA)
− probabilistic linear discriminant analysis (PLDA)
− Gaussian mixture model (GMM)
− mixture of PLDA
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Neural network

Deep structured/hierarchical learning
Rapidly developed and widely applied for many applications
Multiple layers of nonlinear processing units
High-level abstraction

Run

Jump
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Model-based method vs. neural network

Model-based method Neural network

Structure Top-down Bottom-up
Representation Intuitive Distributed
Interpretation Easy Harder

Semi/unsupervised Easier Harder
Incorp. domain knowl. Easy Hard
Incorp. constraint Easy Hard
Incorp. uncertainty Easy Hard
Learning Many algorithms Back-propagation
Inference/decode Harder Easier
Evaluation on ELBO End performance
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Modern machine learning
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Parameter estimation

Assume we have a collection of acoustic frames X = {xt}T
t=1 for

estimation of model parameters θ
Maximum likelihood (ML) estimation

θML = arg max
θ

p(X |θ)

Maximum a posteriori (MAP) estimation

θMAP = arg max
θ

p(θ|X ) = arg max
θ

p(X |θ)p(θ)

where p(θ) denotes the prior distribution of θ
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Expectation-maximization algorithm

Likelihood function for observations x in latent variable model with
latent variable z

p(x|θ) =
∑

z
p(x, z|θ)

Expectation (E) step: calculate an auxiliary function

Q(θ,θold) = Ez[log p(x, z|θ)|x,θold]

Maximization (M) step: find a new estimate θnew via

θnew = arg max
λ

Q(θ,θold)

EM algorithm [Dempster et al., 1977] for ML can be extended for
MAP
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Lower bound & KL divergence

Introduce an approximate or variational distribution q(z) and adopt
the Jensen’s inequality for convex function − log(·) to obtain

log p(x|θ) = log
∑

z

p(x, z|θ)
q(z) q(z) = logEq

[p(x, z|θ)
q(z)

]
≥ Eq

[
log p(x, z|θ)

q(z)

]
, L(q,θ)

∑
z

q(z) log p(x|θ)− L(q,θ) = −
∑

z
q(z) log

{p(z|x,θ)
q(z)

}
, KL(q‖p)

Evidence Decomposition

log p(x|θ) = KL(q‖p) + L(q,θ)
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Maximum Likelihood

KL(q‖p) = −Eq[log p(z|x,θ)]−Hq[z]

L(q,θ) = Eq[log p(x, z|θ)] + Hq[z]

Maximizing p(x|θ) is equivalent to first setting KL(q‖p) = 0 or
approximating (E-step)

q(z) = p(z|x,θold )

then maximizing the resulting lower bound (M-step)

L(q,θ) , Q(θ,θold) + const

where Q(θ,θold) , Eq[log p(x, z|θ)|x,θold] is a concave function
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EM algorithm

00

KL(qkp)KL(qkp)

L(q;µ)L(q;µ)

log p(xjµ)log p(xjµ)
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EM algorithm: E-step

00

KL(qkp)KL(qkp)

L(q;µold)L(q;µold)

= 0= 0

log p(xjµold)log p(xjµold)
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EM algorithm: M-step

00

KL(qkp)KL(qkp)
log p(xjµnew)log p(xjµnew)

L(q;µnew)L(q;µnew)
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EM algorithm: lower bound

µoldµold µnewµnew

L(q;µold)L(q;µold)

L(q;µnew)L(q;µnew)

log p(xjµ)log p(xjµ)
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Why approximate inference?

There are a number of latent variables in model-based speaker
recognition
− i-vectors
− common factors
− variability matrix
− mixture labels
− channel, speaker and noise information

Posterior distribution of latent variables should be analytical and
factorizable
Evolution of inference algorithms
− maximum likelihood
− maximum a posteriori
− variational Bayesian
− Gibbs sampling
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Posterior distribution

Posterior
Likelihood Prior

Marginal Likelihood aaa
(model evidence)

p(zjx) =
p(xjz) p(z)

R
p(xjz)p(z)dz

p(zjx) =
p(xjz) p(z)

R
p(xjz)p(z)dz

p(x)p(x)

Latent variables and parameters z = {z1, . . . , zm} are coupled
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Approximate posterior

q(z)q(z)
Divergence

p(zjx)p(zjx)

KL(qkp)KL(qkp) true

posterior
proxy

Find an approximate distribution q(z) that is factorizable and
maximally similar to the true posterior p(z|x)
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Variational Bayesian inference

q(z1:m|ν1:m) =
m∏

j=1
q(zj |νj)

Variational
calculus

Optimization 
problem

functional

L(q) : q 7! L(q)L(q) : q 7! L(q)

maxq L(q)

s.t.
R

z
q(dz) = 1

maxq L(q)

s.t.
R

z
q(dz) = 1

p(x) = KL(qkp) + L(q)

where KL(qkp) = ¡Eq[ln p(zjx)] ¡Hq[z]

L(q) = Eq[ln p(x;z)] + Hq[z]

p(x) = KL(qkp) + L(q)

where KL(qkp) = ¡Eq[ln p(zjx)] ¡Hq[z]

L(q) = Eq[ln p(x;z)] + Hq[z]

(Evidence Lower BOund, ELBO)
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ln p(x)ln p(x)ln p(x)ln p(x)

00 00

KL(qkp)KL(qkp)

L(q)L(q)

L(q)L(q)

KL(qkp)KL(qkp)

Estimation for variational distribution
max
q(z)

Eq[log p(x, z)] + Hq[z]

s.t.
∫

z
q(dz) = 1

q̂(zj |νj) = exp(Ei 6=j [log p(x, z|ν)])∫
exp(Ei 6=j [log p(x, z|ν)])dzj
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Variational Bayesian (VB) inference is implemented via a
doubly-looped algorithm

VB-EM algorithm
VB-E step: calculate the variational distribution q(z) in inner loop

q̂(z) = arg max
q(z)
L(q,θ)

VB-M step: calculate the model parameter θ in outer loop

θ̂ = arg max
θ
L(q̂,θ)

Convex optimization is performed
VB-EM steps converge by a number of iterations
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Gibbs sampling algorithm

Initialize z(1), where z = z1:m

for τ ← 1 to T − 1 do

for j ← 1 to m do

Sample z(τ+1)
j ∼ p(zj |z(τ+1)

1:(j−1), z
(τ)
j+1:m)

end for

end for
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Gibbs sampling

Two dimensional Gaussian mixture model with two mixture components
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Gibbs sampling

zj » p( ¢ j z¡j;x)zj » p( ¢ j z¡j;x)

Randomly assign mixture component for each sample j
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Gibbs sampling

zj » p( ¢ j z¡j;x)zj » p( ¢ j z¡j;x)

Extract one sample and compute the conditional distribution
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Gibbs sampling
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Gibbs sampling

zj » p( ¢ j z¡j;x)zj » p( ¢ j z¡j;x)

Finally obtain an appropriate clustering result
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Variational Bayes

deterministic approximation
find an analytical proxy q(z)
that is maximally similar to
p(z|x)
inspect distribution statistics
never generate exact results
fast
often hard work to derive
convergence guarantees
need a specific parametric
form

Gibbs sampling

stochastic approximation
design an algorithm that
draws samples z(1), . . . , z(τ)

from p(z|x)
inspect sample statistics
asymptotically exact
computationally expensive
tricky engineering concerns
no convergence guarantees
no need parametric form
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Challenges in model-based approach

Thomas Bayes (1701-1761)

We are facing the challenges of big data
An enormous amount of multimedia data is available in internet which
contains speech, text, image, music, video, social networks and any
specialized technical data
The collected data are usually noisy, non-labeled, non-aligned, mismatched,
and ill-posed
Probabilistic models may be improperly-assumed, over-estimated, or
under-estimated
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Uncertainty modeling

We need tools for modeling, analyzing, searching, recognizing and
understanding real-world data
Our modeling tools should
− faithfully represent uncertainty in model structure and its parameters
− reflect noise condition in observed data
− be automated and adaptive
− assure robustness
− scalable for large data sets

Uncertainty can be properly expressed by prior distribution or process
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Model regularization

Regularization refers to a process of introducing additional information
in order to solve the ill-posed problem or to prevent overfitting
Occam’s razor is imposed to deal with the issue of model selection
Scalable modeling
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Bayesian speaker recognition

Real-world speaker recognition
− unsupervised learning
− number of factors is unknown
− very short enrollment utterance
− high inter/intra speaker variabilities
− variabilities from channel and noise

Why Bayesian? [Watanabe and Chien, 2015]
− exploration for latent variables
− model regularization
− uncertainty modeling
− approximate Bayesian inference
− better prediction
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