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Why Dimension Reduction

Many applications produce high-dimensional vectors

In face recognition, if an image has size 360× 260 pixels, the
dimension is 93600.
In hand-writing digit recognition, if a digit occupies 28× 28 pixels, the
dimension is 784.
In speaker recognition, the dim can be as high as 61440 per utterance.

High-dim feature vectors can easily cause the curse-of-dimensionality
problem.

Redundancy: Some of the elements in the feature vectors are
strongly correlated, meaning that knowing one element will also know
some other elements.

Irrelevancy: Some elements in the feature vectors are irrelevant to
the classification task.
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Dimension Reduction

Given a feature vector x ∈ RD, dimensionality reduction aims to find
a low dimensional representation h ∈ RM that can approximately
explain x:

x ≈ f(h,θ) (1)

where f(·, ·) is a function that takes the hidden variable h and a set
of parameters θ and M ≤ D.

Typically, we choose the function family f(·, ·) and then learn h and
θ from training data.

Least squares criterion: Given N training vectors
X = {x1, . . . ,xN}, xi ∈ RD, we find the parameters θ and latent
variables hi’s that minimize the sum of squared error:

θ̂, {ĥi}Ni=1 = argmin
θ,{hi}Ni=1

{
N∑

i=1

[xi − f(hi,θ)]T [xi − f(hi,θ)]
}

(2)
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Dimension Reduction: Reduce to 1-Dim

Approximate vector xi by a scalar value hi plus the global mean µ:

xi ≈ φhi + µ, where µ =
1

N

N∑

i=1

xi, φ ∈ RD×1

Assuming µ = 0 or vectors have been mean-subtracted, i.e.,
xi ← xi − µ ∀i, we have

xi ≈ φhi
The least squares criterion becomes:

φ̂, {ĥi}Ni=1 = argmin
φ,{hi}Ni=1

E(φ, {hi})

= argmin
φ,{hi}Ni=1

{
N∑

i=1

[xi − φhi]T [xi − φhi]
} (3)
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Dimension Reduction: Reduce to 1-Dim

Eq. 3 has a problem in that it does not have a unique solution. If we
multiply φ by any constant α and divide hi’s by the same constant
we get the same cost, i.e., αφ · hiα = φhi.

We make the solution unique by constraining ‖φ‖2 = 1 using a
Lagrange multiplier:

L(φ, {hi}) = E(φ, {hi}) + λ(φTφ− 1)

=
N∑

i=1

(xi − φhi)T(xi − φhi) + λ(φTφ− 1)

=

N∑

i=1

xTxi − 2hiφ
Txi + h2i + λ(φTφ− 1)
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Dimension Reduction: Reduce to 1-Dim

Setting ∂L
∂φ = 0 and ∂L

∂hi
= 0, we obtain:

∑
i
xiĥi = λφ̂ and φ̂

T
xi = ĥi = xT

i φ̂

Hence,

∑
i
xi

(
xT
i φ̂
)
=
(∑

i
xix

T
i

)
φ̂ = λφ̂

=⇒ Sφ̂ = λφ̂

where S is the covariance matrix of training data.1

Therefore, φ̂ is the first eigenvector of S.

1Note that xi’s have been mean subtracted.
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Dimension Reduction: Reduce to 1-Dim
346 13 Image preprocessing and feature extraction

a)

b)

c)

Figure 13.19 Reduction to a single dimension. a) Original data and direction
� of maximum variance. b) The data are projected onto � to produce a one
dimensional representation. c) To reconstruct the data, we re-multiply by
�. Most of the original variation is retained. PCA extends this model to
project high dimensional data onto the K orthogonal dimensions with the
most variance, to produce a K dimensional representation.

use for inference.

Dimensionality reduction is possible because a given type of image data (e.g.,
RGB values from face images) usually lie in a tiny subset of the possible data
space; not all sets of RGB values look like real images, and not all real images
look like faces. We refer to the subset of the space occupied by a given dataset
as a manifold. Dimensionality reduction can hence be thought of as a change of
variables: we move from the original coordinate system to the (reduced) coordinate
system within the manifold.

Our goal is hence to find a low-dimensional (or hidden) representation h which
can approximately explain the data x, so that

x ⇡ f [h,✓], (13.16)

where f [•, •] is a function that takes the hidden variable and a set of parameters
✓. We would like the lower-dimensional representation to capture all of the rele-
vant variation in the original data. Hence, one possible criterion for choosing the
parameters is to minimize the least squares reconstruction error, so that

✓̂, ĥ1...I = argmin
✓,h1...I

"
IX

i=1

(xi � f [hi,✓])
T

(xi � f [hi,✓])

#
, (13.17)

where xi is the ith of I training examples. In other words, we aim to find a set of low
dimensional variables {hi}I

i=1 and a mapping from h to x so that it reconstructs
the original data as closely as possible in a least squares sense.

Copyright c�2011,2012 by Simon Prince; published by Cambridge University Press 2012.
For personal use only, not for distribution.
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Dimension Reduction: 3D to 2D

5	

Principal	Component	Analysis	(PCA)

•  A	classical	approach	to	reducing	dimension	is	to	

find	a	small	number	of	axes	in	which	the	data	have	
the	highest	variability.	

•  The	axes	may	not	parallel	to	the	original	axes.	
•  E.g.,	projec@on	from	3D	to	2D	space	
	

	
	

x1x2

x3
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Principle Component Analysis

In PCA, the hidden variables {hi} are multi-dimensional and φ
becomes a rectangular matrix Φ = [φ1 φ2 · · · φM ], where M ≤ D.

Each components of hi weights one column of matrix Φ so that data
is approximated as

xi ≈ Φhi, i = 1, . . . , N

The cost function is2

Φ̂, {ĥi}Ni=1 = argmin
Φ,{hi}Ni=1

E
(
Φ, {hi}Ni=1

)

= argmin
Φ,{hi}Ni=1

{
N∑

i=1

[xi −Φhi]
T [xi −Φhi]

} (4)

2Note that we have defined θ ≡ Φ in Eq. 2.
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Principle Component Analysis

To solve the non-uniqueness problem in Eq. 4, we enforce φT
dφd = 1,

d = 1, . . . ,M , using a set of Lagrange multipliers {λd}Md=1:

L(Φ, {hi}) =
N∑

i=1

(xi −Φhi)
T(xi −Φhi) +

M∑

d=1

λd(φ
T
dφd − 1)

=

N∑

i=1

(xi −Φhi)
T(xi −Φhi) + tr{ΦΛMΦT −Λ}

=

N∑

i=1

xTxi − 2hT
i ΦTxi + hT

i hi + tr{ΦΛMΦT −Λ}

(5)

where hi ∈ RM , Λ = diag{λ1, . . . , λM , 0, . . . , 0} ∈ RD×D,
ΛM = diag{λ1, . . . , λM} ∈ RM×M , and
Φ = [φ1 φ2 · · · φM ] ∈ RD×M .
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Principle Component Analysis

Setting ∂L
∂Φ = 0 and ∂L

∂hi
= 0, we obtain:

∑
i
xiĥ

T
i = Φ̂ΛM and Φ̂

T
xi = ĥi =⇒ ĥ

T
i = xT

i Φ̂

where we have used:

∂

∂X
tr{XBXT} = XBT + XB and

∂aTXTb

∂X
= baT.

Therefore,

∑
i
xix

T
i Φ̂ = Φ̂ΛM =⇒ SΦ̂ = Φ̂ΛM (6)

So, Φ̂ comprises the M eigenvectors of S.
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Interpretation of ΛM

Denote X as a D ×N centered data matrix whose n-th column is
given by (xn − 1

N

∑N
i=1 xi).

The projected data matrix is given by

Y = Φ̂
T
X

The covariance matrix of the projected data is

YYT =
(
Φ̂

T
X
)(

Φ̂
T
X
)T

= Φ̂
T
XXTΦ̂

= Φ̂
T
Φ̂ΛM (see the eigen-equation in Eq. 6)

= ΛM

Therefore, the eigenvalues represent the variances of individual
elements of the projected vectors.
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Interpretation of ΛM

The eigenvalues are typically arranged in descending order:
λ1 ≥ λ2 ≥ · · · ≥ λD.

This means that the first few principal components capture most of
the variances.

If we project x to M -dimensional space (i.e., keeping the first M
PCs), the loss in variances is J =

∑D
i=M+1 λi.

The variance “explained” by the first M PCs is
∑M

i=1 λi.
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PCA on High-Dimensional Data

When, the dimension D of xi is very high, computing S and its
eigenvectors directly are impractical.

However, the rank of S is limited by the number of training examples:
If there are N training examples, there will be at most N − 1
eigenvectors with non-zero eigenvalues. If N � D, the principal
components can be computed more easily.

Let X be a data matrix comprising the mean-subtracted xi’s in its
columns. Then, S = XXT and the eigen-decomposition of S is given
by

Sφi = XXTφi = λiφi

Instead of performing eigen-decomposition of XXT, we perform
eigen-decomposition of

XTXψi = λiψi (7)

Man-Wai MAK (EIE) PCA and LDA October 24, 2019 15 / 29



Principle Component Analysis

Pre-multipling both side of Eq. 7 by X, we obtain

XXT(Xψi) = λi(Xψi)

This means that if ψi is an eigenvector of XTX, then φi = Xψi is
an eigenvector of S = XXT.

So, all we need is to compute the N − 1 eigenvectors of XTX, which
has size N ×N .

Note that φi computed in this way is un-normalized. So, we need to
normalize them by

φi =
Xψi
‖Xψi‖

, i = 1, . . . , N − 1
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Example Application of PCA: Eigenface

Eigenface is one of the most well-known applications of PCA.

	 	
φ1 φ2 φ10µ

Reconstructed	faces	using	399	eigenfaces	

.	.	.	

+ 

.	.	.	h1 h2
h10

h399

Original	faces	
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Example Application of PCA: Eigenface

Faces reconstructed using different numbers of principal components
(eigenfaces):

	
Original	 20	PCs	 50	PCs	 100	PCs	 200	PCs	 399	PCs	1	PC	

See Lab2 of EIE4105 in
http://www.eie.polyu.edu.hk/∼mwmak/myteaching.htm for
implementation.
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Limitations of PCA

PCA will fail if the subspace is non-linear

15	

Limita&ons	of	PCA

•  PCA	will	fail	if	the	subspace	is	non-linear	

•  Solu9ons:	Using	non-linear	embedding	such	as	
ISOMAP	or	DNN	

	
	

	
	

Linear	subspace	(PCA	is	fine)	 Nonlinear	subspace	(PCA	fails)	

PCA	can	only	
find	this	

Solution: Use non-linear embedding such as ISOMAP or DNN
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Fisher Discriminant Analysis

FDA is a classification method to separate data into two classes.

FDA could also be considered as a supervised dimension reduction
method that reduces the dimension to 1.

15	

Fisher	Discriminant	Analysis	(FDA)

•  FDA	is	a	classifica-on	method	to	separate	data	into	

two	classes.	
•  But	FDA	could	also	be	considered	as	a	supervised	

dimension	reduc-on	method	that	reduces	the	
dimension	to	1.	

	
	

Project data onto line joining the 2 means Project data onto FDA subspace 
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Fisher Discriminant Analysis

The idea of FDA is to find a 1-D line so that the projected data give
a large separation between the means of two classes while also
giving a small variance within each class, thereby minimizing the
class overlap.
Assume that training data are projected onto a 1-D space using

yn = wTxn, n = 1, . . . , N.

Fisher criterion:

J(w) =
Between-class scatter

Within-class scatter
=

wTSBw

wTSWw

where

SB = (µ2−µ1)(µ2−µ1)
T and SW =

2∑

k=1

1

Nk

∑

n∈Ck
(xn−µk)(xn−µk)T

are the between-class and within-class scatter matrices, respectively,
and µ1 and µ2 are the class means.
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Fisher Discriminant Analysis

Note that only the direction of w matters. Therefore, we can always
find a w that leads to wTSWw = 1.

The maximization of J(w) can be rewritten as:

maxw wTSBw
subject to wTSWw = 1

The Lagrangian function is

L(w, λ) =
1

2
wTSBw − λ(wTSWw − 1)

Setting ∂L
∂w = 0, we obtain

SBw − λSWw = 0

=⇒ SBw = λSWw

=⇒ (S−1W SB)w = λw

(8)

So, w is the first eigenvector of S−1W SB.
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LDA on Multi-class Problems

For multiple classes (K > 2 and D > K), we can use LDA to project
D-dimensional vectors to M -dimensional vectors, where 1 < M < K.

w is extended to a matrix W = [w1 · · · wM ] and the projected
scalar yi is extended to a vector yi:

yn = WT(xn − µ), where ynj = wT
j (xn − µ), j = 1, . . . ,M

where µ is the global mean of training vectors.

The between-class and within-class scatter matrices become

SB =

K∑

k=1

Nk(µk − µ)(µk − µ)T

SW =

K∑

k=1

∑

n∈Ck
(xn − µk)(xn − µk)T

where Nk is the number of samples in the class k, i.e., Nk = |Ck|.
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LDA on Multi-class Problems

The LDA criterion function:

J(W) =
Between-class scatter

Within-class scatter
= Tr

{(
WTSBW

)(
WTSWW

)−1}

Constrained optimization:

maxW Tr{WTSBW}
subject to WTSWW = I

where I is an M ×M identity matrix.

Note that unlike PCA in Eq. 5, because of the matrix SW in the
constraint, we need to find one wj at a time.

Note also that the constraint WTSWW = I suggests that wj ’s may
not be orthogonal to each other [2].
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LDA on Multi-class Problems

To find wj , we write the Lagrangian function as:

L(wj , λj) = wT
j SBwj − λj(wT

j SWwj − 1)

Using Eq. 8, the optimal solution of wj satisfies

(S−1W SB)wj = λjwj

Therefore, W comprises the first M eigenvectors of S−1W SB. A more
formal proof can be find in [1].

As the maximum rank of SB is K − 1, S−1W SB has at most K − 1
non-zero eigenvalues. As a result, M can be at most K − 1.

After the projection, the vectors yn’s can be used to train a classifier
(e.g., SVM) for classification.
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PCA vs. LDA

Project 784-dim vectors derived from 28× 28 handwritten digits to
3-D space:

LDA	Projec+on:	HCI	Example

•  Project	784-dim	images	to	3-dim	LDA	subspace	

formed	by	the	3	eigenvectors	with	the	largest	
eigenvalues,	i.e.,	W	is	a	784	x	3	matrix	or	

	
	

W ∈ℜ784×3       

LDA PCA 
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PCA vs. LDA
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