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 Domain mismatch poses a great challenge to
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IS often adopted to overcome this problem.
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Domain adversarial neural network (DANN) Is é’d = argmax Ly,pann (éc,
a state-of-the-art domain adaptation method %
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 Methodology: Incorporate a variational auto- _
encoder (VAE) into the DANN to impose Experimental Setup
constraint on the distribution of the embedded

features. Enrollment x-vectors VDANN/DANN

Objective: produce features that are not only Test x-vectors Transformation O O
speaker discriminative and domain-invariant
but also Gaussian distributed.
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* Archi re. VDANN comprises a speaker . .
chitecture cormp P X-vectors were extracted using the pre-trained

greg:]cdtogcascg(d)galg claf]se?‘:elggrara;r;teersgogreer DNN available from the Kaldi repository. o o - No PLDA adaptation | PLDA adaptation
denoted as 6., 64, ¢, and 6, respectively. We trained the VDANN/DANN on SRE04-10, . jl : . :_ j -2 :. : -
Voxcelebl, Switchboard 2 Phases I-lll and ] 5 - Baseline 11.30 0.890 8.27 0.604

. | . SITW datasets. The DANN has the same DANN  11.62  0.822 843  0.599
* Keeping 6., ¢, and 6, fixed, minimize the structure as the VDANN, but without the VAE
VDANN 11.17 0.798 8.21 0.584

domain classification loss with respect to 9,; decoder and the sampling procedure.

Keeping 8, fixed, maximize the domain The baseline PLDA model was trained on the
classification loss while simultaneously SRE04-10 and their augmented x-vectors for SRE18-CMN2
minimizing the speaker classification loss SRE16; while for SRE18 the Mixer6 and its

and the VAE loss with respect to 6., ¢, and augmented x-vectors were also added to the — [ S —— - No PLDA adaptation | PLDA adaptation
Qg- training SetS- FOI’ VDANN/ DANN eVa|Uati0n, T;;?*eticg.lof)uarft'ii:ﬁ ngjeticg'lolauanzt.i?es T;e;::retica.l Quant-iles -

the PLDA model was trained on the Original x-vectors  DANN transformed VDANN transformed Baseline 11.21 0.676 9.60 0.575
References transformed x-vectors. x-vectors x-vectors
DANN 10.82 0.678 0.28 0.583

projection (to a 150 dimensional space). values from Shapiro—Wilk tests (The larger the p, VDANN 10.25 0.667 9.23 0.576
the more Gaussian the distribution.)
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