DEPARTMENT / INSTITUTE / SCHOOL / CENTRE OF EIE

SOLUTION & MARKING SCHEME (2016/ 2017)

COURSE: EIE4105 YEAR: 4
SUBJECT: Multimodal Human Computer Interaction Technology

INTERNAL
SUBJECT EXAMINER MODERATOR / ASSESSOR EXTERNAL EXAMINER

M.W. Mak

(a)

(b)

The minimum value of N is (260)(360)/100 + 1 = 93600/100 + 1 = 937.
(5 marks, A)

The minimum value of N is 937 + 1 = 938. This is because x; 2 depends on xy 1,
meaning that xj, 5 is redundant if we already have xj 1. As a result, we need one extra
sample for each person to make sure that rank(3) = 93600.

(5 marks, E)

We use &), to estimate the mean vector p,;, of person k, where k = 1,...,100. Specifi-
cally, we compute

1 &
Fr =7 Zxk,i-
i=1
100

Then, a Gaussian classifier can be constructed by using the parameters {p, 3},7,.
(5 marks, K)

The decision boundaries are linear because the covariance matrices of all classes (Gaus-
sian models) are the same.
(5 marks, AE)

[The following equations are optional] Assuming equal priors, for Persons r and s, the
discriminant function given by the Gaussian classifier is

N(x|p,, 2) = N(x|p,, X)
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Taking logarithm on both side, we have

(X - MT)TE_I(X o /*"r) = (X - us)TE_l(X - “s)
= 2Aps— ) ST x = pipg—pl

The discriminant function is linear in x.

We train a DNN with 93600 inputs and 100 outputs. The outputs should be a softmax
function of the outputs of the last hidden layer:

exp(ak(x))

P(Person = k|x) = yp(x) = m
j j

. exp(04(x))

>_; exp(0;(x))

where ay(x) and oy (x) are the activation and output of the k-th node in the last hidden,
respectively. Note that the last hidden layer should have 100 nodes.

P(Person = k|x) = yrp(x) =

(5 marks, KA)

1 1 _
o exp {—2<x )R - us)}
2
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2.

(a)

We compute the covariance matrix using all training data in X. Then, we compute
the eigenvectors and eigenvalues of the covariance matrix. Then, we select the top-5
eigenvectors whose eigenvalues are the largest. Then, we project the vectors using

vy =W ), ge{m,f},

7

where W comprises the top-5 eigenvectors in its columns and p is the global mean of
X.

(6 marks, K)

Fig. Q2(b) is the eigenface corresponding to the last PC. This is because the variation
in the image is very small when compared with that in Fig. Q2(a).
(4 marks, A)

(9)

Max. no. of eigenfaces with positive eigenvalues is 4096 because the dimension of x;
is 4096 and 2N = 10000 > 4096. This means that we have enough data to compute
all of the eigenvectors.

(5 marks, AE)

Max. no. of eigenfaces with positive eigenvalues is 1. This is because there are only 2
classes (genders) and the solution of LDA comprises the eigenvectors of S;Vl Sp, where
Sy and Sp are the within-class and between-class scatter matrices, respectively. For
2-class problems, the rank of Sp is 1 so that there is only one eigenvector with positive
eigenvalue.

(5 marks, AE)

Linear SVM is appropriate because there is only one sample for the male class and the
total number of training samples is much less than the feature dimension. Linear SVM
provides a strong regularization on the decision boundary to avoid overfitting in such
situation.

(5 marks, E)



DEPARTMENT / INSTITUTE / SCHOOL / CENTRE OF EIE

SOLUTION & MARKING SCHEME (2016/ 2017)

COURSE: EIE4105 YEAR: 4
SUBJECT: Multimodal Human Computer Interaction Technology

INTERNAL
SUBJECT EXAMINER MODERATOR / ASSESSOR EXTERNAL EXAMINER

M.W. Mak

(a) The block diagram of the Yes-No recognizer is shown below.

HMM for
X “Yag” log p(X | Ayes)
Speech
Extract Pick
— —
MFCC Maximum YesorNo

X HMM for logp(X1A,,)

ttNoll

(5 marks, K)

(b) 1. Collect many utterances of “Yes” and “No” from many speakers.
2. Extract the acoustic vectors (energy and MFCCs plus their first and second deriva-
tive) from the speech regions of these utterances.
3. Use the acoustic vectors from “Yes” to train an HMM to model the spectral and
temporal characteristics of “Yes”; similarly for the word “No”.

(6 marks, KA)

(¢) No. of states for each HMM is 5-10 (must not be less than 3) because each phone may
require 3 states to model and each word has 3 phonemes.
(4 marks, A)

(d) We use the Bayes’ theorem to compute the posterior probability and determine the
class label of X according to the HMM that gives the maximum posterior probability.
That is, the predicted label is

I(X)= argmax P(i|X)
ie{‘Yes’,‘No’}

e P(i)p(X]A)
ie{‘Yes’,‘No’} Ozp(X|AyeS) + OSP(X‘AHO)
_  argmax P(i)p(X[Ai)
ie{‘Yes’,'No’} p(¥X)
= argmax P(i)p(X|A;)
ie{‘Yes’,'No’}

where P(‘Yes’) = 0.8 and P(‘No’) = 0.2.
(6 marks, E)
(e) They are not necessary because this two-word recognition task does not use phone

models. Instead, word models are used.
(4 marks, A)
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4.

(a) (i)

(iii)

(i)

Fig. Q4(b) corresponds to the support vector because it does not look like the digit
0. A support vector is either close to the decision boundary or on the other side
of the decision boundary. This means that they are confusable. For Digit ‘0’, the
support vectors will not look like a Digit ‘0’.

(6 marks, AE)

The max. number of support vectors is 10,000. When ¢ — 0, all training vectors
will become support vectors.
(5 marks, E)

The min. number of SVs per SVM is 2, one from the positive class and one from
the negative class.
(3 marks, K)

When the enrollment is very long, a; — 1 so that the GMM means depend almost
on the enrollment utterance. This is reasonable because when there are many
acoustic vectors in X(®), we should believe our observations.

When the utterance is very short, a; — 0 so that the GMM means are almost the
same as the UBMs means. This is reasonable because when there are not many
acoustic vectors in X(®), we better believe the prior, i.e., the UBM means.

(6 marks, KA)
We cannot directly apply EM to compute ugs)’s because the EM algorithm has no
guarantee on the index arrangement in the mixture model. This means that if we
apply EM independently on individual speakers when computing their supervec-
tors, the one-to-one correspondence between the subvectors p,;-s)’s in ﬁ(s) will be

lost for different target speakers. This one-to-one correspondence, however, can be
guaranteed in MAP adaptation because uEfs)

VE

’s are computed one by one for each

(5 marks, E)



