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Motivations

Clustering is a kind of unsupervised learning, which has been used in
many disciplines.

Power Electronics: “Genetic k-means algorithm based RBF network
for photovoltaic MPP prediction.” Energy, 35.2 (2010): 529-536.
Telecommunication: “An energy efficient hierarchical clustering
algorithm for wireless sensor networks.” INFOCOM 2003, Vol. 3. IEEE,
2003.
Photonics: “Contiguity-enhanced k-means clustering algorithm for
unsupervised multispectral image segmentation.” Optical Science,
Engineering and Instrumentation’97, International Society for Optics
and Photonics, 1997.
Multimedia: “Normalized cuts and image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no.
8, pp. 888-905, Aug 2000.
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K-means

Divide a data set X = {xt; t = 1, . . . , T} into K groups, each
represented by its centroid denoted by µk, k = 1, . . . ,K.

The task is
1 to determine the K centroids {µ1, . . . ,µK} and
2 to assign each pattern xt to one of the centroids.

Mathematically speaking, one denotes the centroid associated with xt
as ct, where ct ∈ {µ1, . . . ,µK}.
Then the objective of the K-means algorithm is to minimize the sum
of squared errors:

E(X ) =
T∑

t=1

‖xt − ct‖2

=

T∑

t=1

(xt − ct)
T(xt − ct).

(1)
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K-means

Let Xk denotes the set of data vectors associated with the k-th cluster
with the centroid µk and Nk denotes the number of vectors in it.

The learning rule of the K-means algorithm consists of:

1 Determine the membership of a data vector:

x ∈ Xk if ‖x− µk‖ < ‖x− µj‖ ∀j 6= k. (2)

2 Update the representation of the cluster: The centroid is updated
based on the new membership:

µk =
1

Nk

∑

x∈Xk

x, k = 1, . . . ,K. (3)
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K-means

K-means procedure:

! !

!
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K-means

K-means procedure:
1 Randomly picks K samples from the training data and consider them

as the centroids. In the example on previous page, K = 3.

2 For each training sample, assign it to the nearest centroid. In this
example, samples are assigned to either green, red or blue diamond.

3 For each cluster (green, red, or blue), re-compute the cluster means.
Then, repeat step 2 until no change in the centroids.
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Example Applications of K-means

Assume that we got some iris flowers

Setosa Versicolor Virginica

Four attributes (features): (1) sepal length, (2) sepal width, (3) petal
length, and (4) petal width

We only know there are 3 types of iris flowers but no labels are
available in the dataset.

We may apply K-means to divide the 4-dimensional vectors into 3
clusters.

But we still do not know which cluster belongs to which iris type.
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Example Applications of K-means

Results of K-mean clustering:
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Example Applications of K-means

K-mean Clustering of handwritten digits with K = 10
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Example Applications of K-means

K-mean Clustering of handwritten digits with K = 4
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Gaussian Mixture Models (GMM)
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Gaussian Mixture Models

A Gaussian mixture model (GMM) is a linear weighted sum of K
Gaussian densities:

p(x) =

K∑

k=1

wkN (x|µk,Σk),

where wk ≡ Pr(mix = k) is the k-th mixture coefficient and

N (x|µk,Σk) =
1

(2π)
D
2 |Σk|

1
2

exp

{
−1

2
(x− µk)

TΣ−1k (x− µk)

}

is the k-th Gaussian density with mean µk and covariance matrix Σk.

Note that
∑K

k=1wk = 1.
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Gaussian Mixture Models

GMM with 3 mixtures (K = 3):
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Gaussian Mixture Models

GMM clustering:

K =1 K = 2
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Training of GMM by Maximum Likelihood

Given a set of N -independent and identically distributed (iid) vectors
X = {xn;n = 1, . . . , N}, the log of the likelihood function is given by

ln p(X|θ) = log

{
N∏

n=1

K∑

k=1

wkN (xn|µk,Σk)

}

=

N∑

n=1

log

{
K∑

k=1

wkN (xn|µk,Σk)

}

To find the parameters θ = {wk,µk,Σk}Kk=1 that maximize

log p(X|θ), we may set ∂ log p(X )
∂θ = 0 and solve for θ.

But this method will not give a closed-form solution for θ.

The trouble is that the summation appears inside the logarithm.
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Training of GMM by Maximum Likelihood

An elegant method for finding maximum-likelihood solutions for
model with latent variable is the expectation-maximization (EM)
algorithm.

In GMM, for each data point xn, we do not know which Gaussian
generates it. So, the latent information is the Gaussian ID for each
xn.

Define Z = {znk;n = 1, . . . , N ; k = 1, . . . ,K} as the set of latent
variables, where znk = 1 if xn is generated by the k-th Gaussian;
otherwise znk = 0.

{X ,Z} is called the complete data set, and X is the incomplete data
set.

In most cases, including GMM, maximizing log p(X ,Z|θ) with
respect to θ is straightforward.

Fig. 9.5(a) [next page] shows the distribution p(x, z) of the complete
data, whereas Fig. 9.5(b) shows the distribution p(x) of the
incomplete data.
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GMM Joint vs Marginal Distributions

Source: C.M. Bishop (2006)
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EM Algorithm for GMM

However, we actually do not know Z. So, we could not compute
ln p(Z,X|θ).
Fortunately, we know its posterior distribution, i.e., P (Z|X , θ),
through the Bayes theorem:1

P (z|x) = P (z)p(x|z)
p(x)

In the context of GMM, we compute the posterior probability for each
xn:

γ(znk) ≡ P (znk = 1|xn, θ) =
wkN (xn|µk,Σk)∑K
j=1wjN (xn|µj ,Σj)

(4)

Eq. 4 constitutes the E-step of the EM algorithm.

1We denote probabilities and probability mass functions of discrete random variable
using capital letter P .
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EM Algorithm for GMM

Computing the posteriors of the latent variables can be considered as
alignment.

The posterior probabilities indicate the closeness of xn to individual
Gaussians in the Mahalanobis sense.

µ1 µ2

µ3

ot�(zt1)

�(zt2)

�(zt3)

Mahalanobis distance between x and y is

Dmah(x,y) =

√
(x− y)TΣ−1(x− y)
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EM Algorithm for GMM

So, given the current estimate of the model parameters θold, we can
find its new estimate θ by computing the expected value of
ln p(Z,X|θ) under the posterior distribution of Z:

Q(θ|θold) = EZ{log p(Z,X|θ)|X , θold}
= Ez∼P (z|x){log p(Z,X|θ)|X , θold}

=

N∑

n=1

K∑

k=1

P (znk = 1|xn, θ
old) log p(xn, znk = 1|θ)

=

N∑

n=1

K∑

k=1

γ(znk) log p(xn, znk = 1|θ)

=

N∑

n=1

K∑

k=1

γ(znk) log p(xn|znk = 1, θ)P (znk = 1|θ)

=

N∑

n=1

K∑

k=1

γ(znk) logN (xn|µk,Σk)wk

(5)
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EM Algorithm for GMM

Then, we maximize Q(θ|θold) with respect to θ by setting
∂Q(θ|θold)

∂θ = 0 to obtain (see Tutorial):

µk =

∑N
n=1 γ(znk)xn∑N
n=1 γ(znk)

Σk =

∑N
n=1 γ(znk)(xn − µk)(xn − µk)

T

∑N
n=1 γ(znk)

wk =
1

N

N∑

n=1

γ(znk)

This constitutes the M-step.
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EM Algorithm for GMM

In practice, we compute the following sufficient statistics:

0th-order: Nk =

N∑

n=1

γ(znk) (6)

1st-order: fk =

N∑

n=1

γ(znk)xn (7)

2nd-order: Sk =

N∑

n=1

γ(znk)xtx
T
t , (8)

where k = 1, . . . ,K.
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EM Algorithm for GMM

The model parameters are then updated as follows:

µk =
1

Nk
fk (9)

Σk =
1

Nk
Sk − µkµ

T
k (10)

wk =
1

N
Nk. (11)

where k = 1, . . . ,K.
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EM Algorithm for GMM

In summary, the EM algorithm iteratively performs the following:

Initialization: Randomly select K samples from X and assign them to
{µk}Kk=1. Set wk = 1

K and Σk = I, where k = 1, . . . ,K.

E-Step: Find the posterior distribution of the latent (unobserved)
variables, given the observed data and the current estimate of the
parameters;

M-Step: Re-estimates the parameters to maximize the likelihood of
the observed data, under the assumption that the distribution found in
the E-step is correct.

The iterative process guarantees to increases the true likelihood or
leaves it unchanged (if a local maximum has already been reached).
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The EM Algorithm

The EM algorithm is an ideal candidate for determining the
parameters of a GMM.

EM is applicable to the problems where the observable data provide
only partial information or where some data are “missing”.

Each EM iteration is composed of two steps—Estimation (E) and
Maximization (M). The M-step maximizes a likelihood function that
is further refined in each iteration by the E-step.

Animations:

http://davpinto.com/ml-simulations/#expectation-maximization-
algorithm
https://www.youtube.com/watch?v=v-pq8VCQk4M
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GMM: A Numerical Example

This example uses the following data as the observed data.

Section 3.2. Traditional Derivation of EM 55

Example 1: Hidden-State Problem

x1 = 1 x7 = 8x4 = 4x3 = 3x2 = 2 x5 = 6 x6 = 7

x

(a)

Example 2: Partial-Data Problem

1 2 3 4 65

x1 = 1 x2 = 2 x3 = 3 x4 = 4

x

y = 5.0 or 6.0
(b)

Example 3: Doubly-Stochastic
(Partial-Data and Hidden-State)

122 43 5 6 11 13 14 15 161
x

x1 = {1 or 2} x6 = {15 or 16}x4 = {11 or 12}x3 = {4 or 5}
x2 = {3 or 4} x5 = {13 or 14}

(c)

Figure 3.3. One-dimensional example illustrating the concept of (a) hidden-
state, (b) partial-data, and (c) combined partial-data and hidden-state. In (a) the
information regarding the cluster membership of xt is hidden; in (b) y is partial
in that its exact value is unknown; and in (c) data xt provide partial information
only because none of their exact values are known. The cluster membership
information is also hidden.

Assume that when EM begins,

θold = {w1, {µ1, σ1}, w2, {µ2, σ2}}
= {0.5, {0, 1}, 0.5, {9, 1}} .

Therefore, one has

γ(zn1) =
w1
σ1
e−

1
2
(xn−µ1)2/σ2

1

∑2
k=1

wk
σk
e−

1
2
(xn−µk)2/σ2

k

=
e−

1
2
xn2

e−
1
2
xn2

+ e−
1
2
(xn−9)2

(12)
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GMM: A Numerical Example

Pattern Index (t) Pattern (xn) γ(zn1) γ(zn2)
1 1 1 0
2 2 1 0
3 3 1 0
4 4 1 0
5 6 0 1
6 7 0 1
7 8 0 1

Iteration Q(θ|θold) µ1 σ2
1 µ2 σ2

2

0 -∞ 0 1 9 1
1 -43.71 2.50 1.25 6.99 0.70
2 -25.11 2.51 1.29 7.00 0.68
3 -25.11 2.51 1.30 7.00 0.67
4 -25.10 2.52 1.30 7.00 0.67
5 -25.10 2.52 1.30 7.00 0.67
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The E- and M-Steps
Section 3.2. Traditional Derivation of EM 59
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E-step:

Compute Q(θ|θn)

M-step:

θn+1 = θ∗n = n+ 1

θML = θn+1

Y

N

Compute θ∗ = argmax
θ

Q(θ|θn)

Set n = 0
Initialize θ0

Set Q(θ0|θ−1) = −∞

Q(θn+1|θn)−
Q(θn|θn−1) ≤ ξ

ξ: termination threshold

θML: maximum-likelihood estimate

Figure 3.4. The flow of the EM algorithm.

Now, a set of indicator variables is introduced to indicate the status of the hidden-
states:2

∆ = {δ(j)t ; j = 1, . . . , J and t = 1, . . . , T}
where

δ
(j)
t ≡ δ(zt, C(j)) =

{
1 if xt is generated by mixture C(j),
0 otherwise.

Since for each t only one of the terms in {δ(j)t ; j = 1, . . . , J} is equal to one and all
of the others are equal to 0, one can express p(Z,X|θ) as follows:

p(Z,X|θ) =

T∏

t=1

J∑

j=1

δ
(j)
t p(xt, zt|θ)

2For illustration simplicity, assume that the missing data is in discrete form or the hidden data
is the cluster membership.

Figure: The flow of the EM algorithm.
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Example Applications of GMM

GMM Clustering of handwritten digits with K = 10
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Example Applications of GMM

GMM Clustering of handwritten digits with K = 4
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Example Applications of Clustering

DNN for Face Clustering

https://github.com/durgeshtrivedi/imagecluster
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