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Q1 (a) The margin of separation is the projection of (x; — x3) onto the direction or-
thogonal (perpendicular for 2-D cases) to the decision boundary. Therefore, we
have

d:(Xl—Xg)'—

Iw
_(1=b)—(=1-b)
N [w
_ 2
lIwl

(5 marks, K)

(b) (i) Based on Ql(a), maximizing d is equivalent to minimizing ||w||*>. The two
given inequality constraints can be combined into one because
e when y; = 1, y;(x; - w+b) > 1= x;-w+0b > 1, which satisfies the first
inequality constraint, and
e wheny; = —1, y;(x; - w+b) > 1= —(x;, w+b) > 1= x,-w+b < —1,
which satisfies the second constraint.

(10 marks, KA)

(ii) The constraints are
® «; Z 07
e y(x;-w+b)—12>0, and
o o;lyi(x;-w—+b)—1]=0
where i =1,..., N. (10 marks, AE)

(iii) Setting
) 0
%L(W7b7 {Oéz}) = O and aWL(W7b7 {al}) - 07

subject to the constraint a; > 0, we have

N

Zi]\;l ay; =0 and w= Zi:l QX
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Substituting these results back into the Lagrangian function, we have
| N N N
L(w,b,{a;}) = Q(W W) — Zl yi(Xi - W) — Zl ;yib + Zl Q;
L N N N N N
=3 Z QG YiX - Z Q;YjX;j — Z G YiX - Z ;Y X + Z Q;
i=1 j=1 i=1 j=1 i=1
N NN
=205 D iy (xi e xg).
i=1

i=1 j=1

This results in the Wolfe dual formulation.
(15 marks, AE)
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Q2 (a) To find X}, we compute the derivative of E with respect to u, and set the result
to 0. Specifically,

(x — Nk:)T(X — )

ZZ

k=1 XEXk

—ZZ

k=1 XEXk

= Z —X + py)

xeX),

=0.

aMk

T = 2px + g )

Therefore, we have

ZX:>I%—

xEX)

Zx

XEXk

Nipy, =

(6 marks, K)

(b) The K-means algorithm can only use hyperplanes to partition the data in the
input space. For doughnut-shape clusters, any hyperplanes will cut through the
data such that there will be many samples very close to or even overlap with
the boundaries. This is undesirable because we want the clusters to be clearly
separable from each other.

(7 marks, A)
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Because the first term is independent of how the dataset is partitioned, the new
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objective function is

B=3 Y |5 0 Y 660 = 3 69

k=1 x€X}, k zex, z/ex; ZEX),

(10 marks, A)

(d) We may use a kernel function to replace the dot products as follows

" 1 2
E&FZZ F}gz Z K(z,z’)—mZK(z,x) )

k=1 x€X}, z€EX), 2/ €X), zEX

where K (x,y) is a nonlinear kernel such as polynomial or RBF kernels.

Optional: Note that unlike K-means, the kernel K-means cannot compute the
means in the feature space because N%c Y xex, P(x) is either un-implementable
or too expansive to evaluate.

(7 marks, E)
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Q3 (a) The diagonal elements are the eigenvalues of the covariance matrix, which rep-
resent the variances of the projected components.
(5 marks, K)

(b) Instead of finding the eigenvectors of XX, we solve the eigen-problem:
XTXap; = \ap;.
Then, we pre-multiply both sides this equation by X to obtain
XXT(X¢i) = )‘i(X":bi)'

This means that if 9, is an eigenvector of XX, then ¢, = X1p, is an eigenvector
of XXT. So, all we need is to compute the N — 1 eigenvectors of X'X, which
has size N x N.

(10 marks, AE)
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Q4 (a) The softmax function should be used. Denote aff) as the linear activation of
k-th output node, the output at node k is given by

(5 marks, KA)

(b) Denote y as the output vector, W) as the weight matrix (including the bias
terms) at layer [, and al’) as the linear weight sums at layer I. Also, denote
f(a) as the activation function that can be applied element-wise to the vector
a. Then, we may express y in terms of the input vector x as follows:

y={ (W@)a(m)
_ (W(m f(W(L—l)a(H)))
= f (WORWED (- fWx))))
If f is linear, then we have f(a) = a. The above equation becomes

y = Wa®)
— WEW L) 4(L-1)
— WEOWED . wlx
= Wx,

where W = W ... WO Ag a result, the output is linearly related to the
input. So, the network is linear and is not very useful.
(10 marks, AE)



