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Q1 (a) The margin of separation is the projection of (x1 − x2) onto the direction or-

thogonal (perpendicular for 2-D cases) to the decision boundary. Therefore, we
have

d = (x1 − x2) ·
w

‖w‖

=
w · x1 −w · x2

‖w‖

=
(1− b)− (−1− b)

‖w‖

=
2

‖w‖
.

(5 marks, K)

(b) (i) Based on Q1(a), maximizing d is equivalent to minimizing ‖w‖2. The two
given inequality constraints can be combined into one because
• when yi = 1, yi(xi ·w + b) ≥ 1⇒ xi ·w + b ≥ 1, which satisfies the first

inequality constraint, and

• when yi = −1, yi(xi ·w+ b) ≥ 1⇒ −(xi ·w+ b) ≥ 1⇒ xi ·w+ b ≤ −1,
which satisfies the second constraint.

(10 marks, KA)

(ii) The constraints are
• αi ≥ 0,

• yi(xi ·w + b)− 1 ≥ 0, and

• αi[yi(xi ·w + b)− 1] = 0
where i = 1, . . . , N. (10 marks, AE)

(iii) Setting
∂

∂b
L(w, b, {αi}) = 0 and

∂

∂w
L(w, b, {αi}) = 0,

subject to the constraint αi ≥ 0, we have∑N

i=1
αiyi = 0 and w =

∑N

i=1
αiyixi.
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Substituting these results back into the Lagrangian function, we have

L(w, b, {αi}) =
1

2
(w ·w)−

N∑
i=1

αiyi(xi ·w)−
N∑
i=1

αiyib+
N∑
i=1

αi

=
1

2

N∑
i=1

αiyixi ·
N∑
j=1

αjyjxj −
N∑
i=1

αiyixi ·
N∑
j=1

αjyjxj +
N∑
i=1

αi

=
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj(xi · xj).

This results in the Wolfe dual formulation.
(15 marks, AE)
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Q2 (a) To find Xk, we compute the derivative of E with respect to µk and set the result

to 0. Specifically,

∂E

∂µk

=
K∑
k=1

∑
x∈Xk

∂

∂µk

(x− µk)T(x− µk)

=
K∑
k=1

∑
x∈Xk

∂

∂µk

(xTx− 2µT
kx + µT

kµk)

=
∑
x∈Xk

(−x + µk)

= 0.

Therefore, we have

Nkµk =
∑
x∈Xk

x⇒ µk =
1

Nk

∑
x∈Xk

x.

(6 marks, K)

(b) The K-means algorithm can only use hyperplanes to partition the data in the
input space. For doughnut-shape clusters, any hyperplanes will cut through the
data such that there will be many samples very close to or even overlap with
the boundaries. This is undesirable because we want the clusters to be clearly
separable from each other.

(7 marks, A)

(c)

Eφ =
K∑
k=1

∑
x∈Xk

∥∥∥∥∥φ(x)− 1

Nk

∑
z∈Xk

φ(z)

∥∥∥∥∥
2

=
K∑
k=1

∑
x∈Xk

(
φ(x)− 1

Nk

∑
z∈Xk

φ(z)

)T(
φ(x)− 1

Nk

∑
z∈Xk

φ(z)

)

=
K∑
k=1

∑
x∈Xk

[
φ(x)Tφ(x) +

1

N2
k

∑
z∈Xk

∑
z′∈Xk

φ(z)Tφ(z′)− 2

Nk

∑
z∈Xk

φ(z)Tφ(x)

]

Because the first term is independent of how the dataset is partitioned, the new



DEPARTMENT / INSTITUTE / SCHOOL / CENTRE OF  EIE   
 

SOLUTION & MARKING SCHEME (2017/ 2018) 
 
             
 
COURSE: EIE6207    YEAR: 6  
SUBJECT: Theoretical Fundamental and Engineering Approaches for Intelligent Signal and Information Processing 
 

  
SUBJECT EXAMINER INTERNAL 

MODERATOR / ASSESSOR 
 

EXTERNAL EXAMINER  

  
M.W. Mak 

 

   

 
 

 1 

 
objective function is

E ′φ =
K∑
k=1

∑
x∈Xk

[
1

N2
k

∑
z∈Xk

∑
z′∈Xk

φ(z)Tφ(z′)− 2

Nk

∑
z∈Xk

φ(z)Tφ(x)

]
.

(10 marks, A)

(d) We may use a kernel function to replace the dot products as follows

E ′φ =
K∑
k=1

∑
x∈Xk

[
1

N2
k

∑
z∈Xk

∑
z′∈Xk

K(z, z′)− 2

Nk

∑
z∈Xk

K(z,x)

]
,

where K(x,y) is a nonlinear kernel such as polynomial or RBF kernels.

Optional: Note that unlike K-means, the kernel K-means cannot compute the
means in the feature space because 1

Nk

∑
x∈Xk

φ(x) is either un-implementable
or too expansive to evaluate.

(7 marks, E)



DEPARTMENT / INSTITUTE / SCHOOL / CENTRE OF  EIE   
 

SOLUTION & MARKING SCHEME (2017/ 2018) 
 
             
 
COURSE: EIE6207    YEAR: 6  
SUBJECT: Theoretical Fundamental and Engineering Approaches for Intelligent Signal and Information Processing 
 

  
SUBJECT EXAMINER INTERNAL 

MODERATOR / ASSESSOR 
 

EXTERNAL EXAMINER  

  
M.W. Mak 

 

   

 
 

 1 

 
Q3 (a) The diagonal elements are the eigenvalues of the covariance matrix, which rep-

resent the variances of the projected components.
(5 marks, K)

(b) Instead of finding the eigenvectors of XXT, we solve the eigen-problem:

XTXψi = λiψi.

Then, we pre-multiply both sides this equation by X to obtain

XXT(Xψi) = λi(Xψi).

This means that if ψi is an eigenvector of XTX, then φi = Xψi is an eigenvector
of XXT. So, all we need is to compute the N − 1 eigenvectors of XTX, which
has size N ×N .

(10 marks, AE)
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Q4 (a) The softmax function should be used. Denote a

(L)
k as the linear activation of

k-th output node, the output at node k is given by

yk =
exp(a

(L)
k )∑K

j=1 exp(a
(L)
j )

(5 marks, KA)

(b) Denote y as the output vector, W(l) as the weight matrix (including the bias
terms) at layer l, and a(l) as the linear weight sums at layer l. Also, denote
f(a) as the activation function that can be applied element-wise to the vector
a. Then, we may express y in terms of the input vector x as follows:

y = f
(
W(L)a(L)

)
= f

(
W(L)f(W(L−1)a(L−1))

)
= f

(
W(L)f(W(L−1)f(· · · f(W(1)x)))

)
.

If f is linear, then we have f(a) = a. The above equation becomes

y = W(L)a(L)

= W(L)W(L−1)a(L−1)

= W(L)W(L−1) · · ·W(1)x

= Wx,

where W = W(L) · · ·W(1). As a result, the output is linearly related to the
input. So, the network is linear and is not very useful.

(10 marks, AE)


