
Q1 (a) Fig. Q1(a) shows a windowed speech frame s(n) and its prediction error e(n). The
prediction error is obtained by applying P -th order prediction analysis on the speech
frame.

(a)

Fig. Q1(a)

(i) Which of the panels (upper or lower) in Fig. Q1(a) shows the prediction error?
Briefly explain your answer.

(4 marks)

(ii) State whether the speech frame is voiced or unvoiced. Give reasons to support
your answer.

(3 marks)

(iii) Given the unit on the horizontal axis in Fig. Q1(a) is millisecond (ms), estimate
the pitch period (if any) of the speech frame.

(3 marks)

(iv) Express the prediction error e(n) in terms of s(n) and the linear prediction co-
efficients {a1, . . . , aP} of this frame. Hence, explain how you would obtain the
speech signal s(n) from e(n) and {a1, . . . , aP}.

(6 marks)

(b) Fig. Q1(b) shows a wide-band spectrogram and a narrow-band spectrogram of an
utterance.

(i) Determine the sampling frequency of the speech signal.
(2 marks)

(ii) Which of the panels (upper or lower) corresponds to the narrow-band spectro-
gram? Briefly justify your answer.

(4 marks)

(iii) Estimate the pitch period at the instance indicated by the vertical dashed line in
Fig Q1(b). Briefly explain your answer.

(3 marks)
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Speech Analysis 18

Narrowband Spectrogram (Hamming Window size = 256)

We can see the harmonic structure

Speech Analysis 17

Wideband Spectrogram (Hamming Window size = 64)

We can see the formant structure
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Fig. Q1(b)

Q2 (a) In the frequency domain, a speech spectrum S(ω) can be obtained by multiplying
an excitation spectrum E(ω) and the frequency response of a vocal tract filter whose
transfer function is H(z), i.e.,

S(ω) = E(ω)H(ω).

(i) Show that in the cepstral domain, the multiplication becomes an addition, i.e.,

cs(n) = ce(n) + ch(n),

where cs(n), ce(n), and ch(n) are the cepstra of s(n), e(n), and h(n), respectively.
(4 marks)

(ii) Assuming that H(z) is unknown, explain how you would obtain the spectral
envelope of S(ω) from cs(n).

(5 marks)

(iii) Suggest a method to estimate the pitch period from cs(n) if S(ω) is a voiced
spectrum.

(5 marks)

(b) Fig. Q2 shows the A-law and µ-law nonlinear functions used in the ITU G.711 PCM
coder. To perform encoding, speech signal s(n) is passed through either of these
nonlinear functions, followed by linear quantization.
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Speech Coding 14

• In the reconstruction of the signal from the quantized
values, the inverse logarithmic relation is used to
expand the signal amplitude.
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Fig. Q2

(i) Explain why these nonlinear functions can compress the amplitude of high-energy
speech signals and expand the amplitude of low-energy speech signals.

(5 marks)

(ii) Explain why it is beneficial to quantize the signals after the nonlinear function
instead of quantizing the signals before the nonlinear function.

(6 marks)

Q3 Fig. Q3 shows the structure of a 3-state hidden Markov model (HMM) that models the
spectro-temporal characteristics of a phoneme. Each state comprises a Gaussian mixture
model with M mixture components. Denote qt ∈ {1, 2, 3} as the state at frame t. The
likelihood of an acoustic vector ot condition on state qt is

p(ot|state = qt) ≡ bqt(ot) =
M∑
k=1

ωkN (ot|µqt,k,Σqt,k),

where {ωqt,k, µqt,k, Σqt,k}Mk=1 are the GMM parameters of state qt. Denote O = (o1, . . . , oT )
and q = (q1, . . . , qT ) as the acoustic-vector sequence and the HMM-state sequence corre-
sponding to a phone, where T is the number of frames in the phone. Then, the likelihood
of O given the state sequence q is

p(O|q) =
T∏
t=1

p(ot|state = qt) =
T∏
t=1

bqt(ot).
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Fig. Q3

(a) In Fig. Q3, if a11 = 0.4, what is the value of a12? What is the implication if a11 is
close to zero?

(4 marks)

(b) Briefly explain the purpose of the three states in the HMM.
(3 marks)

(c) Given that the probability of the state sequence q is

P (q) = aq1q2aq2q3 · · · aqT−1qT ,

where aij is the probability of transiting from state i to state j. Express the joint
likelihood of O and q (i.e., p(O,q)), in terms of aij and bj(ot) for i, j ∈ {1, 2, 3} and
t = 1, . . . , T . Hint: Use the product rule P (A,B) = P (A|B)P (B).

(5 marks)

(d) Express the likelihood of O (i.e., p(O)) in terms of aij and bj(ot) for i, j ∈ {1, 2, 3}
and t = 1, . . . , T . Hint: Use the sum rule P (A) =

∑
B P (A,B).

(5 marks)

(e) If O is extracted from the phone for which this HMM is trained to model and O′ is
extracted from another phone, compare the values of p(O) and p(O′).

(3 marks)

(f) Fig Q3 is a classical GMM–HMM in which each state is represented by a GMM.
Discuss how you would change it to a DNN–HMM in which the likelihood bj(o),
j = 1, 2, 3, can be obtained from a DNN.

(5 marks)
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Q4 (a) The scoring functions of GMM–UBM and GMM–SVM speaker verification systems
are closely related. Denote the acoustic vectors extracted from a test utterance as
O(t) = {o1, . . . ,oT}, where T is the number of frames in the utterance. Also denote
Λ(s) and Λubm as the GMM of client-speaker s and the UBM, respectively. The GMM–
UBM score and the GMM–SVM score are respectively given by

SGMM–UBM(O(t)|Λ(s),Λubm) = log p(O(t)|Λ(s))− log p(O(t)|Λubm)

and

SGMM–SVM(O(t)|SVMs) = α
(s)
0 K

(
~µ(s), ~µ(t)

)
−
∑

i∈Sbkg

α
(s)
i K

(
~µ(i), ~µ(t)

)
+ b(s),

where SVMs is the SVM of speaker s, Sbkg comprises the support vector indexes of

the background speakers, ~µ(s) and ~µ(t) are the GMM-supervector of speaker s and
the test utterance, respectively, α

(s)
j ’s are the Lagrange multipliers, and b(s) is the bias

term of the SVM.

(i) Based on the GMM–SVM scoring function, determine the lower-bound on the
number of enrollment utterances from speaker s. Briefly justify your answer. You
may assume that each enrollment utterance gives one GMM-supervector.

(3 marks)

(ii) In practical GMM–SVM systems, the kernel function K(·, ·) is always linear.
Explain why it is the case. Also explain why it is inappropriate to use non-linear
kernels such as the RBF kernel.

(5 marks)

(iii) Discuss the advantages of GMM–SVM systems over the GMM–UBM systems.
(8 marks)

(b) In i-vector/PLDA speaker verification, the i-vectors are modeled by a factor analysis
model:

x = m + Vz + ε (Eq. Q4–1)

where x is an i-vector, m is the global mean of all i-vectors, V represents the speaker
subspace, z is a latent factor, and ε is a residual term that follows a Gaussian distri-
bution N (ε|0,Σ).

(i) Explain why it is necessary to model i-vectors by Eq. Q4–1.
(4 marks)

(ii) Assume that the prior of z follows a standard Gaussian, i.e., z ∼ N (z|0, I), where
I is an identity matrix. Use Eq. Q4–1 to explain why i-vectors follow a Gaussian
distribution with mean m and covariance matrix VVT + Σ, i.e.,

x ∼ N (x|m,VVT + Σ)

Hints: Take the expectation of x and (x − µ)(x − µ)T in Eq. Q4–1, i.e., E{x}
and E{(x− µ)(x− µ)T}.

(5 marks)
– END –
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