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 Q4 (a) Denote the Lagrangian as

L(x, y, λ) = x2y + λ(x2 + 2y2 − 1),

where λ is a Lagrange multiplier. Then, we take the derivative of L with respect
to x, y and λ, respectively, and set the resulting derivatives to 0.

∂L

∂x
= 2xy + 2xλ = 0 =⇒ λ = −y

∂L

∂y
= x2 + 4yλ = 0 =⇒ x = 2y

∂L

∂λ
= x2 + 2y2 − 1 = 0

=⇒ 4y2 + 2y2 − 1 = 0

=⇒ 6y2 = 1 =⇒ y∗ =

√
1

6

=⇒ x∗ = 2

√
1

6
=

√
2

3

(10 marks, KA)

(b) Contour plot

(8 marks, KA)

(c) Small σ leads to sharp Gaussian functions, which means that the kernel function
will only have non-zero value when xi is very close to xj. This causes a large
number of islands (or spots) in the input space, where each island corresponds to
one support vectors. The decision boundaries have lots of sharp bends. On the
other hand, large σ leads to flat Gaussian functions, which means that K(xi,yj)
is close to 1.0 even though xi and xj could be far apart. This results in very
smooth decision boundaries.

(7 marks, AE)
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 Q5 (a) Assume that the data in X are i.i.d. Then, the conditional likelihood of Y is
given by

L(Y|X ,β) =
N∏
i=1

N (yi|xT
i β, σ

2
y).

The conditional likelihood of yi is a Gaussian distribution with mean xT
i β and

variance σ2
y because

µyi = E{yi} = βTE{xi}+ E{εi} = βTxi = xT
i β

and

σ2
yi

= E{y2i } − (E{yi})2

= E{(βTxi)
2 + 2εiβ

Txi + ε2i } − (xT
i β)2

= σ2.

The log-likelihood of Y is

logL(Y|X ,β) =
N∑
i=1

[
log

(
1√

2πσ2

)
− (yi − βTxi)

2

2σ2

]
.

Then, the maximum-likelihood estimate is

βML = argmax
β

N∑
i=1

−(yi − βTxi)
2

2σ2
(1)

= argmin
β

N∑
i=1

(yi − βTxi)
2 (2)

= argmin
β
‖y −Xβ‖2, (3)

which is the same as βLS.
(13 marks, AE)



DEPARTMENT / INSTITUTE / SCHOOL / CENTRE OF  EIE   
 

SOLUTION & MARKING SCHEME (2018/ 2019) 
 
             
 
COURSE: EIE6207    YEAR: 6  
SUBJECT: Theoretical Fundamental and Engineering Approaches for Intelligent Signal and Information Processing 
 

  
SUBJECT EXAMINER INTERNAL 

MODERATOR / ASSESSOR 
 

EXTERNAL EXAMINER  

  
M.W. Mak 

 

   

 
 

 1 

 (b) (i)

x̂t|t =
1

t

[
t−1∑
i=1

zi + zt

]

=
1

t

t−1∑
i=1

zi +
1

t
zt

=
t− 1

t
· 1

t− 1

t−1∑
i=1

zi +
1

t
zt

=
t− 1

t
x̂t|t−1 +

1

t
zt

= x̂t|t−1 +
1

t

(
zt − x̂t|t−1

)
(7 marks, AE)

(ii) The recursive formula in (b)(i) is the state update equation of the Kalman
filter

x̂t|t = x̂t|t−1 + Kt(zt −Htx̂t|t−1)

in which Ht = 1 and Kt = 1
t
. Note that the covariance update formula of

the Kalman filter is

Pt|t = Pt|t−1 −KtHtPt|t−1.

In the context of this problem, we have Pt|t being the variance of the estimate
x̂t|t. As Kt = 1

t
, the variance of x̂t|t decreases when t increases.

(5 marks, AE)
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 Q6 (a) Essay type questions. Marks will be given according to (1) validity of arguments,
(2) evidences supporting the arguments and (3) clarity of writing.

(15 marks, AE)

(b) Situations include (1) feature dimension very high or the number of training vec-
tors is smaller than the feature dimension, (2) the data do not follow a Gaussian
mixture distribution, e.g., rolling a die, and (3) the data is categorical, e.g., gen-
der, month, voting preference, etc. The reasons are that under these situations,
the inverse of the covariance matrix does not exists or the covariance matrix is
almost singular. Also, it does not make sense to use a Gaussian density function
to fit categorical data.

(5 marks, AE)

(c) The maximum rank of the within-class covariance matrix is 1000 (or 999 if the
data is not zero mean), which is the same as the dimension of the within-class
covariance matrix. Numerical error is likely to occur during the computation
of its inverse. As the rank of the between-class covariance matrix is 9 (no. of
classes - 1), the maximum dimension of the LDA projected vectors is 9. A
better approach is to use PCA followed by LDA. If PCA is used, we may project
the data to M -dimensional space first, where 9 < M << 1000. The 1,000
M -dimensional vectors will allow us to compute the inverse of the within-class
covariance matrix without numerical difficulty.

(5 marks, AE)


