
Background 

Conventional PLDA: 

Pool i-vectors from various background noise levels to 

train a PLDA model. 

SNR-Invariant PLDA with Multiple Speaker Subspaces  

 

References: 
 

• N. Li and M. W. Mak, “SNR-invariant PLDA modeling in nonparametric 

subspace for robust speaker verification,” IEEE/ACM Trans. on Audio, 

Speech and Language Processing, vol. 23, no. 10, pp. 1648–1659, 2015. 

• P. Kenny, “Bayesian speaker verification with heavy-tailed priors,” in Proc. of 

Odyssey: Speaker and Language Recognition Workshop, Brno, Czech 

Republic, June 2010. 

 

 

 

 

SNR-invariant PLDA: 

I-vectors within the same SNR group share the same 

SNR factor wk; the model is trained using the pooled 

data. 

Introduction 

• Noise level variability can shift the i-vectors to different 

regions of the i-vector space, and i-vectors with similar 

SNRs tend to cluster together.  

• This phenomenon limits the capability of SNR-

invariant PLDA with a single speaker subspace.  

• This paper proposes a new SNR-invariant PLDA 

model by introducing multiple speaker subspaces to 

the SNR-invariant PLDA model.  

• Experiments on NIST 2012 SRE demonstrate the 

effectiveness of the proposed method compared with 

PLDA and SNR-invariant PLDA. 

 

 

 

 

 

 

 

 

 

 

 

 
 

The proposed SNR-invariant PLDA: 

 

 

 

 

 

 

 

 

 

 

Results 
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Proposed Method 

 

 

 

 

 

 

 

 

 

• Table2: Performance of PLDA, S-PLDA and 

Proposed multi-speaker subspace PLDA on 

CC5 

Method K Male Female 

EER(%) minDCF EER(%) minDCF 

PLDA - 2.80 0.303 2.34 0.331 

S-PLDA 3 2.80 0.302 2.37 0.319 

 

Proposed 

2 2.74 0.276 2.36 0.350 

3 2.80 0.278 2.31 0.325 

4 2.79 0.284 2.26 0.321 

• Table3: Performance comparison of different 

SNR-invariant PLDA models on CC4 

Model Model Parameters EER(%) minDCF 

1 3.20 0.300 

2 3.06 0.309 

3 3.30 0.305 

4 3.15 0.308 

5 3.57 0.319 

6 2.81 0.332 
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Proposed Method 

Assuming that speaker variability within a narrow range of 

SNR occurs in a unique speaker-subspace, multiple 

speaker subspaces are introduced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The training set is divided into multiple SNR subgroups 

according to the highest posterior probability with respect 

to a GMM trained using the SNRs of the training 

utterances.  

Fig.4: The mean-shift effect of i-vectors caused by different levels of 

background noise in the corresponding utterances. This figure 

displays the three groups of i-vectors on the first 3 principal 

components.  
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Fig.1: Training process of conventional PLDA. 

Fig.2: Training process of SNR-invariant PLDA. 

Fig.3: Multiple speaker subspaces in the proposed model. 
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Auxiliary Function: 

EM-Step: 

Likelihood Ratio Scores: 
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Fig.5: Determination of the SNR subgroup of a test utterance.  

Method K Male Female 

EER(%) minDCF EER(%) minDCF 

PLDA - 3.39 0.325 3.10 0.354 

S-PLDA 3 3.20 0.300 2.95 0.327 

 

Proposed 

2 3.31 0.302 3.09 0.333 

3 3.06 0.309 2.88 0.332 

4 3.12 0.316 2.84 0.339 

• Table1: Performance of PLDA, S-PLDA and 

Proposed multi-speaker subspace PLDA on 

CC4  

SNR Subgroups: 

s 

… Density p(s|k) of GMM trained 
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*k


