
EIE6207 2018/19 Exam: Part B

Q4 (a) Denote a dataset as X ×L = {(xn, `n);n = 1, . . . , N}, where xn ∈ RD and `n is
the class label of xn. Assume that the dataset is divided into two classes such
that the sets C1 and C2 comprise the vector indexes for which the vectors belong
to Class 1 and Class 2, respectively. In Fisher discriminant analysis (FDA), xn

is projected onto a line to obtain a score yn = wTxn, where w is a weight vector
defining the orientation of the line. Given that the objective function of FDA is

J(w) =
(µy

1 − µ
y
2)

2

(σy
1)2 + (σy

2)2
,

where µy
k and (σy

k)2 are the mean and variance of the FDA-projected scores for
Class k, respectively. Also given is the mean of Class k:

µk =
1

Nk

∑
n∈Ck

xn,

where Nk is the number of samples in Class k.

(i) Show that the mean of the projected scores for Class k is

µy
k = wTµk.

(2 marks)

(ii) Show that the variance of the projected scores for Class k is

(σy
k)2 =

1

Nk

∑
n∈Ck

wT(xn − µk)(xn − µk)Tw.

(5 marks)

(iii) Show that the optimal projection vector w∗ is given by

w∗ = argmax
w

=
wTSBw

wTSWw
,

where
SB = (µ1 − µ2)(µ1 − µ2)

T

and

SW =
2∑

k=1

1

N k

∑
n∈Ck

(xn − µk)(xn − µk)T.

(6 marks)

(b) In factor analysis, an observed vector x can be expressed as

x = µ + Vz + ε,

where µ is the global mean of all possible x’s, V is a low-rank matrix, z is
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EIE6207 2018/19 Exam: Part B

the latent factor, and ε is a residue term. Assume that the prior of z follows a
standard Gaussian distribution N (0, I) and that ε ∼ N (0,Σ). Show that the
covariance matrix of x’s is VVT + Σ.

(6 marks)

(c) The kernel K-means algorithm aims to divide a set of training data X =
{x1, . . . ,xN} into K disjoint sets {X1, . . . ,XK} by minimizing the sum of squared
error:

Eφ =
K∑
k=1

∑
x∈Xk

∥∥∥∥∥φ(x)− 1

Nk

∑
z∈Xk

φ(z)

∥∥∥∥∥
2

, (Q4-a)

where φ(x) is a function of x. It can be shown that Eq. Q4-a can be implemented
by

E ′φ =
K∑
k=1

∑
x∈Xk

[
1

N2
k

∑
z∈Xk

∑
z′∈Xk

K(z, z′)− 2

Nk

∑
z∈Xk

K(z,x)

]
, (Q4-b)

where K(z, z′) = φ(z)Tφ(z′) is a non-linear kernel.

(i) What is the purpose of the function φ(x)?
(2 marks)

(ii) State an advantage of computing φ(z)Tφ(z′) using the non-linear kernel
K(z, z′).

(2 marks)

(iii) Give a function φ(x) so that K(x,y) = xTy.
(2 marks)
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Q5 Fig. Q5(a) shows a binary classification problem.

Fig. Q5(a)

(a) (i) Explain why a perceptron (a network with only one neuron) will fail to solve
this classification problem.

(3 marks)

(ii) Explain why the network in Fig. Q5(b) can solve this problem perfectly as
long as the activation function in the hidden layer is non-linear.

(4 marks)

Fig. Q5(b)

(b) The problem in Fig. Q5(a) can also be solved by the network shown in Fig. Q5(c).

Fig. Q5(c)

The network in Fig. Q5(c) is trained by minimizing the multi-class cross-entropy
loss function:

Emce = −
∑
x∈X

2∑
k=1

tk log yk, k = 1, 2

Page 7



EIE6207 2018/19 Exam: Part B

where tk ∈ {0, 1} are the target outputs for the training sample x = [x1 x2]
T in

the input space and X is a mini-batch. To use this cross-entropy function, the
output nodes should use the softmax function, i.e.,

yk =
exp(ak)∑2
j=1 exp(aj)

,

where ak is the activation of the k-th node in the output layer.

(i) Show that 0 ≤ yk ≤ 1.
(4 marks)

(ii) Show that Emce can be reduced to the binary cross-entropy:

Ebce =
∑
x∈X

[−tk log yk − (1− tk) log(1− yk)], k = 1 or 2

(4 marks)

(iii) Discuss the implication of the result in Q5(b)(ii).
(3 marks)

(c) Find the extrema (both maxima and minima) of the function f(x, y) = x + y
subject to the constraint x2 + y2 ≥ 2. State the values of x and y at which the
extrema occur. Give the steps for finding your answers.

(7 marks)
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Q6 (a) Given a biased estimator θ̂ with the bias being a function of the true parameter
θ, i.e.,

E{θ̂} = θ + b(θ),

show that the mean square error is

mse(θ̂) = var(θ̂) + b2(θ),

where var(θ̂) is the variance of θ̂.
(7 marks)

(b) Consider the observation x[n] in Gaussian noise w[n]:

x[n] = A+ w[n], n = 0, 1, . . . , N − 1,

where the noise variance is σ2, i.e., w[n] ∼ N (0, σ2).

(i) Show that the log-likelihood function of the unknown parameter A is

log p(x;A) = − log
[
(2πσ2)

N
2

]
− 1

2σ2

N−1∑
n=0

(x[n]− A)2,

where x[n] = [x[0] x[1] · · · x[N − 1]]T.
(4 marks)

(ii) Show that the Cramer-Rao lower bound (CRLB) of the best unbiased esti-
mator of A is

CRLB(Â) =
σ2

N
.

(5 marks)

(c) A Kalman filter is used to estimate the position of a train relative to a pole shown
in Fig. Q6(a). An RF signal emitting from the pole at regular time intervals is
used to estimate the time-of-flight of light zt (in seconds) from the pole to the
train. Denote x̂t|t−1 and x̂t|t as the estimates of the train position (in meters)
before and after taking the RF signal at time t into account, respectively. Also
denote σ2

t|t−1 and σ2
t|t as the variance of these estimates. The update formulae

of the Kalman filter are as follows:

x̂t|t = x̂t|t−1 +Kt

(
zt −

x̂t|t−1
c

)
σ2
t|t = σ2

t|t−1 −
Ktσ

2
t|t−1

c

Kt =
cσ2

t|t−1

σ2
t|t−1 + c2τ 2

,

where τ 2 is the variance of zt and c is the speed of light (in meter/second).

(i) Show that if the time-of-flight measures {zt} are perfect, the estimate x̂t|t
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will also be perfect, i.e., having zero variance.
(3 marks)

(ii) Explain why the estimated position of the train becomes more reliable after
taking the time-of-flight measurement zt into account.

(3 marks)

(iii) Show that the Kalman filter will automatically ignore the time-of-flight mea-
sure if the measurement becomes very unreliable, i.e., having a large vari-
ance.

(3 marks)
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 control input parameter in the 
 vector ut on the state vector (e.g., 
applies the effect of the throttle set-
ting on the system velocity and 
position)

 ■ wt is the vector containing the 
process noise terms for each parame-
ter in the state vector. The process 
noise is assumed to be drawn from a 
zero mean multivariate normal 
 distribution with covariance given by 
the covariance matrix Qt.

Measurements of the system can also 
be performed, according to the model

  H x vzt t t t= + , (2)

where 
 ■ zt is the vector of measurements
 ■ Ht is the transformation matrix 

that maps the state vector parame-
ters into the measurement domain

 ■ vt is the vector containing the 
measurement noise terms for each 
observation in the measurement vec-
tor. Like the process noise, the mea-
surement noise is assumed to be zero 
mean Gaussian white noise with 
covariance Rt.

In the derivation that follows, we will 
consider a simple one-dimensional track-
ing problem, particularly that of a train 
moving along a railway line (see 
Figure  1). We can therefore consider 
some example vectors and matrices in 
this problem. The state vector xt contains 
the position and velocity of the train

  x
x
xt

t

t
=

o
; E.

The train driver may apply a braking or 
accelerating input to the system, which 

we will consider here as a function of an 
applied force ft and the mass of the train 
m. Such control information is stored 
within the control vector ut

 u
m
f

t
t= .

The relationship between the force 
applied via the brake or throttle during 
the time period ∆t (the time elapsed 
between time epochs t-1 and t) and the 
position and velocity of the train is given 
by the following equations:

 ( )
( )x x x t

m
f t

2t t t
t

1 1

2

# T
T

= + +- -o

 x x
m

f t
t t

t
1

T
= +-o o  .

These linear equations can be written in 
matrix form as

 ( )x
x

t x
x

t

t
m
f1

0 1 2
t

t

t

t

t1

1

2T

T

T
= +

-

-o o
; ; ;

>
E E E

H
.

And so by comparison with (1), we can 
see for this example that

 

tT

F B ( )t t1
0 1

andt t

2T T
= =

2
;

>
E

H
 .

The true state of the system xt cannot be 
directly observed, and the Kalman filter 
provides an algorithm to determine an 
estimate xtt  by combining models of the 
system and noisy measurements of cer-
tain parameters or linear functions of 
parameters. The estimates of the param-
eters of interest in the state vector are 
therefore now provided by probability 
density functions (pdfs), rather than dis-
crete values. The Kalman filter is based 
on Gaussian pdfs, as will become clear 

following the derivation outlined below 
in the “Solutions” section. To fully 
describe the Gaussian functions, we 
need to know their variances and covari-
ances, and these are stored in the covari-
ance matrix Pt. The terms along the 
main diagonal of Pt are the variances 
associated with the corresponding terms 
in the state vector. The off-diagonal 
terms of Pt provide the covariances 
between terms in the state vector. In the 
case of a well-modeled, one-dimensional 
linear system with measurement errors 
drawn from a zero-mean Gaussian distri-
bution, the Kalman filter has been 
shown to be the optimal estimator [1]. 
In the remainder of this article, we will 
derive the Kalman filter equations that 
allow us to recursively calculate xtt  by 
combining prior knowledge, predictions 
from systems models, and noisy mea-
surements.

The Kalman filter algorithm involves 
two stages: prediction and measure-
ment update. The standard Kalman fil-
ter equations for the prediction stage are

 x F x B ut t t t t t t1 1 1= +; ;- - -t t  (3)

 P F P F Qt t t t t t t1 1 1
T= +; ;- - - , (4)

where Qt is the process noise covariance 
matrix associated with noisy control 
inputs. Equation (3) was derived explic-
itly in the discussion above. We can 
derive (4) as follows. The variance asso-
ciated with the prediction xt t 1; -t  of an 
unknown true value xt  is given by

 [( ) ( ) ]P x x x xE ,t t t t t t t t
T

1 1 1= - -; ; ;- - -t t

and taking the difference between (3) 
and (1) gives

Prediction (Estimate)

Measurement (Noisy)

0 r

[FIG1] This figure shows the one-dim ensional system under consideration.

Fig. Q6(a)
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