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Why Study Constrained Optimization?

Constrained optimization is used in almost every discipline:

Power Electronics: “Design of a boost power factor correction
converter using optimization techniques,” IEEE Transactions on Power
Electronics, vol. 19, no. 6, pp. 1388-1396, Nov. 2004.
Wireless Communication: “Energy-constrained modulation
optimization,” IEEE Transactions on Wireless Communications, vol. 4,
no. 5, pp. 2349-2360, Sept. 2005
Photonics: “Module Placement Based on Resistive Network
Optimization,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 3, no. 3, pp. 218-225, July 1984.
Multimedia: “Nonlinear total variation based noise removal
algorithms.” Physica D: Nonlinear Phenomena 60.1-4 (1992): 259-268.
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Why Study SVM?

SVM is a typical application of constraint optimization.

SVMs are used everywhere:

Power Electronics: “Support Vector Machines Used to Estimate the
Battery State of Charge,” IEEE Transactions on Power Electronics, vol.
28, no. 12, pp. 5919-5926, Dec. 2013.
Wireless Communication: “Localization In Wireless Sensor Networks
Based on Support Vector Machines,” IEEE Transactions on Parallel
and Distributed Systems, vol. 19, no. 7, pp. 981-994, July 2008.
Photonics: “Development of robust calibration models using support
vector machines for spectroscopic monitoring of blood glucose.”
Analytical chemistry 82.23 (2010): 9719-9726.
Multimedia: “Support vector machines using GMM supervectors for
speaker verification,” IEEE Signal Processing Letters, vol. 13, no. 5,
pp. 308-311, May 2006.
Bioinformatics: “Gene selection for cancer classification using support
vector machines.” Machine Learning, 46.1-3 (2002): 389-422.
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Constrained Optimization

Constrained optimization is the process of optimizing an objective
function with respect to some variables in the presence of constraints
on those variables.

The objective function is either

a cost function or energy function which is to be minimized, or
a reward function or utility function, which is to be maximized.

Constraints can be either

hard constraints which set conditions for the variables that are
required to be satisfied, or
soft constraints which have some variable values that are penalized in
the objective function if the conditions on the variables are not
satisfied.
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Constrained Optimization

A general constrained minimization problem:

min f(x)
subject to gi(x) = ci for i = 1, . . . , n (Equality constraints)

hj(x) ≥ dj for j = 1, . . . ,m (Inquality constraints)
(1)

where gi(x) = ci and hj(x) ≥ dj are called hard constraints.

If the constrained problem has only equality constraints, the method
of Lagrange multipliers can be used to convert it into an
unconstrained problem whose number of variables is the original
number of variables plus the original number of equality constraints.
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Constrained Optimization

Example: Maximization of a function of two variables with equality
constraints:

max f(x, y)
subject to g(x, y) = 0

(2)

At the optimal point (x∗, y∗), the gradient of f(x, y) and g(x, y) are
anti-parallel, i.e., ∇f(x∗, y∗) = −λ∇g(x∗, y∗), where λ is called the
Lagrange multiplier. (See Tutorial for explanation.)

Man-Wai MAK (EIE) Constrained Optimization and SVM October 10, 2019 7 / 38



Constrained Optimization

Example:
max f(x, y) = x2y

subject to x2 + y2 = 1

Note that the red curve (x2 + y2 = 1) is of 2-dimension.
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Constrained Optimization

f(x, y) = x2y and x2 + y2 = 1

Solution: x∗ =
√

2
3 ; y∗ =

√
1
3
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Constrained Optimization

Left: Gradients of the objective function f(x, y) = x2y

Right: Gradients of g(x, y) = x2 + y2.

Note that λ < 0 in this example, which means that the gradients of
f(x, y) and g(x, y) are parallel at the optimal point.
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Constrained Optimization

Extension to function of D variables:

max f(x)
subject to g(x) = 0

(3)

where x ∈ <D. Optimal occurs when

∇f(x) + λ∇g(x) = 0. (4)

Note that the red curve is of dimension D − 1.
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Lagrangian Function

Define the Lagrangian function as

L(x, λ) ≡ f(x) + λg(x) (5)

where λ 6= 0 is the Lagrange multiplier.

The optimal condition (Eq. 4) will be satisfied when ∇xL = 0.

Note that ∂L/∂λ = 0 leads to the constrained equation g(x) = 0.

The constrained maximization can be written as:

max L(x, λ) = f(x) + λg(x)
subject to λ 6= 0, g(x) = 0

(6)
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Lagrangian Function: 2D Example

Find the stationary point of the function f(x1, x2):

max f(x1, x2) = 1− x21 − x22
subject to g(x1, x2) = x1 + x2 − 1 = 0

(7)

Lagrangian function:

L(x, λ) = 1− x21 − x22 + λ(x1 + x2 − 1)
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Lagrangian Function: 2D Example

Differenting L(x, λ) w.r.t. x1, x2, and λ and set the results to 0, we
obtain

−2x1 + λ = 0

−2x2 + λ = 0

x1 + x2 − 1 = 0

The solution is (x∗1, x
∗
2) = (12 ,

1
2), and the corresponding λ = 1.

As λ > 0, the gradients of f(x1, x2) and g(x1, x2) are anti-parallel at
(x∗1, x

∗
2).
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Inequality Constraint

Maximization with inequality constraint

max f(x)
subject to g(x) ≥ 0

(8)

Two possible solutions for the max of L(x, µ) = f(x) + µg(x):

Inactive Constraint : g(x) > 0, µ = 0, ∇f(x) = 0
Active Constraint : g(x) = 0, µ > 0, ∇f(x) = −µ∇g(x)

(9)

Therefore, the maximization can be rewritten as

max L(x, µ) = f(x) + µg(x)
subject to g(x) ≥ 0, µ ≥ 0, µg(x) = 0

(10)

which is known as the Karush-Kuhn-Tucker (KKT) condition.
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Inequality Constraint

For minimization,
min f(x)

subject to g(x) ≥ 0
(11)

We can also express the minimization as

min L(x, µ) = f(x)− µg(x)
subject to g(x) ≥ 0, µ ≥ 0, µg(x) = 0

(12)
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Multiple Constraints

Maximization with multiple equality and inequality constraints:

max f(x)
subject to gj(x) = 0 for j = 1, . . . , J

hk(x) ≥ 0 for k = 1, . . . ,K.
(13)

This maximization can be written as

max L(x, {λj}, {µk}) = f(x) +
J∑
j=1

λjgj(x) +
K∑
k=1

µkhk(x)

subject to λj 6= 0, gj(x) = 0 for j = 1, . . . , J and
µk ≥ 0, hk(x) ≥ 0, µkhk(x) = 0 for k = 1, . . . ,K.

(14)
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Software Tools for Constrained Optimization

Matlab Optimization Toolbox: fmincon can find the minimum of
a function subject to nonlinear multivariable constraints.

Python: scipy.optimize.minimize provides a common interface
to unconstrained and constrained minimization algorithms for
multivariate scalar functions
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Linear SVM: Separable Case

Consider a training set {xi, yi; i = 1, . . . , N} ∈ X × {+1,−1} shown
below, where X is the set of input data in <D and yi are the labels.

86 Support Vector Machines Chapter 4

yi = −1

yi = 1

x1

x2

c1

c2

(a)
x1

x2

c1

c2

c

x

(b)

Decision
Plan

yi = 1

yi = −1

x1

x2

x

c1

c2c

−w/‖w‖

(c)

x2
: x1

: x2

Margin: d

w · x + b = +1

w · x + b = 0

−w/‖w‖

x1

w · x + b = −1

(d)

Figure 4.1. Illustration of a two-class classification process, from finding
centroids of classes for a basic classifier to the determination of decision and
marginal hyperplanes of the SVM classifier. (a) N sets of labeled data {xi, yi;i =
1, . . . , N} ∈ X × {+1,−1}; x1 and x2 denote the first two components of x.
(b) Classification based on the angle between the unknown vector x − c and
the vectors formed by the difference between the two class means (c1 − c2). (c)
The decision hyperplane, or decision boundary, formed by a classifier in which all
training data points are considered to be equally important. (d) The decision hy-
perplane formed by an SVM is shown as the solid line; marginal hyperplanes are
shown as the two dashed lines, which are characterized by (the support vectors
given in) Eqs. 4.3.5 and 4.3.6. The distance d (as given in Eq. 4.3.8) between
the marginal hyperplane (dashed lines) and the decision hyperplane (solid line)
represents the safety margin guaranteed by the classifier.

opment of perceptron has led to a vast literature on neural classifiers, especially the
class of decision-based neural networks; thus, its discussion is deferred to Chapter
7. This section describes the basic Fisher classifier and highlights its fundamental
difference from the support vector machine.

Figure: Linear SVM on 2-D space

�: yi = +1; ◦: yi = −1.
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Linear SVM: Separable Case

A linear support vector machine (SVM) aims to find a decision plane
(a line for the case of 2D)

x ·w + b = 0

that maximizes the margin of separation (see Fig. 1).

Assume that all data points satisfy the constraints:

xi ·w + b ≥ +1 for i ∈ {1, . . . , N} where yi = +1. (15)

xi ·w + b ≤ −1 for i ∈ {1, . . . , N} where yi = −1. (16)

Data points x1 and x2 in previous page satisfy the equality constraint:

x1 ·w + b = +1

x2 ·w + b = −1 (17)
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Linear SVM: Separable Case

Using Eq. 17 and Fig. 1, the distance between the two separating
hyperplane (also called the margin of separation) can be computed:

d(w) = (x2 − x1) ·
w

‖w‖ =
2

‖w‖

Maximizing d(w) is equivalent to minimizing ‖w‖2. So, the
constrained optimization problem in SVM is

min 1
2‖w‖2

subject to yi(xi ·w + b) ≥ 1 ∀i = 1, . . . , N
(18)

Equivalently, minimizing a Lagrangian function:

min L(w, b, {αi}) = 1
2‖w‖2 −

∑N
i=1 αi[yi(xi ·w + b)− 1]

subject to αi ≥ 0, yi(xi ·w + b)− 1 ≥ 0,
αi[yi(xi ·w + b)− 1] = 0, ∀i = 1, . . . , N

(19)

Man-Wai MAK (EIE) Constrained Optimization and SVM October 10, 2019 21 / 38



Linear SVM: Separable Case

Setting

∂

∂b
L(w, b, {αi}) = 0 and

∂

∂w
L(w, b, {αi}) = 0, (20)

subject to the constraint αi ≥ 0, results in
∑N

i=1
αiyi = 0 and w =

∑N

i=1
αiyixi. (21)

Substituting these results back into the Lagrangian function:

L(w, b, {αi}) =
1

2
(w ·w)−

N∑

i=1

αiyi(xi ·w)−
N∑

i=1

αiyib+
N∑

i=1

αi

=
1

2

N∑

i=1

αiyixi ·
N∑

j=1

αjyjxj −
N∑

i=1

αiyixi ·
N∑

j=1

αjyjxj +

N∑

i=1

αi

=

N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

αiαjyiyj(xi · xj).
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Linear SVM: Separable Case

This results in the following Wolfe dual formulation:

max
α

N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

αiαjyiyj(xi · xj)

subject to

N∑

i=1

αiyi = 0 and αi ≥ 0, i = 1, . . . , N.

(22)

The solution contains two kinds of Lagrange multiplier:
1 αi = 0: The corresponding xi are irrelevant
2 αi > 0: The corresponding xi are critical

xk for which αk > 0 are called support vectors.
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Linear SVM: Separable Case

The SVM output is given by

f(x) = w · x+ b

=
∑

k∈S
αkykxk · x+ b

where S is the set of indexes for which αk > 0.

b can be computed by using the KTT condition, i.e., for any k such
that yk = 1 and αk > 0, we have

αk[yk(xk ·w + b)− 1] = 0

=⇒ b = 1− xk ·w.
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Linear SVM: Fuzzy Separation (Optional)

If the data patterns are not separable by a linear hyperplane, a set of
slack variables {ξ = ξ1, . . . , ξN} is introduced with ξi ≥ 0 such that
the inequality constraints in SVM become

yi(xi ·w + b) ≥ 1− ξi ∀i = 1, . . . , N. (23)

The slack variables {ξi}Ni=1 allow some data to violate the constraints
in Eq. 18.

The value of ξi indicates the degree of violation of the constraint.

The minimization problem becomes

min
1

2
‖w‖2 + C

∑

i

ξi, subject to yi(xi ·w + b) ≥ 1− ξi, (24)

where C is a user-defined penalty parameter to penalize any violation
of the safety margin for all training data.
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Linear SVM: Fuzzy Separation (Optional)

The new Lagrangian is

L(w, b, α) =
1

2
‖w‖2+C

∑

i

ξi−
N∑

i=1

αi(yi(xi ·w+b)−1+ξi)−
N∑

i=1

βiξi,

(25)
where αi ≥ 0 and βi ≥ 0 are, respectively, the Lagrange multipliers to
ensure that yi(xi ·w + b) ≥ 1− ξi and that ξi ≥ 0.

Differentiating L(w, b, α) w.r.t. w, b, and ξi, we obtain the Wolfe
dual:

max
α

N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

αiαjyiyj(xi · xj) (26)

subject to 0 ≤ αi ≤ C, i = 1, . . . , N ,
∑N

i=1 αiyi = 0.
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Linear SVM: Fuzzy Separation (Optional)

Three types of support vectors:
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Nonlinear SVM

Assume that we have a nonlinear function φ(x) that map x from the
input space to a much higher (possibly infinite) dimensional space
called the feature space.

While data are not linearly separable in the input space, they will
become linearly separable in the feature space.Section 4.5. Nonlinear SVMs 109

Decision boundary

Decision boundary

x2

x1

K(x,xi)

yi = −1

yi = 1

yi = −1

yi = 1

Input Space Feature Space

Figure 4.8. Use of a kernel function to map nonlinearly separable data in the
input space to a high-dimensional feature space, where the data become linearly
separable.

networks are discussed in Chapter 5. This section looks into one particular category
of learning algorithms, including SVM, which exploits the vital fact that such a
decision function retains a linear expression in terms of the parameters w and b. As
a result, the optimization can be effectively carried out by simple linear techniques
such as least-squares error, Fisher’s discriminant, or SVMs.

4.5.1 Two-Layer SVM Network Architectures

Recall that a linear decision function for the SVM derived previously has the fol-
lowing form:

f(x) =

N∑

i=1

yiαi(x · xi) + b.

To obtain a nonlinear decision boundary, thus enhancing the discrimination power,
replace the inner-product (x · xi) with a nonlinear kernel K(x,xi) and obtain

f(x) =

N∑

i=1

yiαiK(x,xi) + b. (4.5.1)

Nonlinear Kernels

The decision function in Eq. 4.5.1 can be implemented by a two-layer architecture
depicted in Figure 4.9, where it is shown that the original input space is mapped
to a new feature space, manifested by the middle hidden-layer in the network.
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Nonlinear SVM

A 1-D problem requiring two decision boundaries (thresholds).

1-D linear SVMs could not solve this problem because they can only
provide one decision threshold.

1 

x = 0
x

Decision Boundaries 

xx = 0

c

x2φ(x)

x

x
x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(a) 

(b) 

Decision Boundary on 
the feature space 
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Nonlinear SVM

We may use a nonlinear function φ to perform the mapping:

φ : x→ [x x2]T.

The decision boundary in the previous slide is a straight line that can
perfectly separate the two classes.

We may write the decision function as

x2 − c = [0 1]

[
x
x2

]
− c = 0

Or equivalently,
wTφ(x) + b = 0, (27)

where w = [0 1]T, φ(x) = [x x2]T, and b = −c.
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Nonlinear SVM

Left: A 2-D example in which linear SVMs will not be able to
perfectly separate the two classes.

Right: By transforming x = [x1 x2]
T to:

φ : x→ [x21
√
2x1x2 x22]

T, (28)

we will be able to use a linear SVM to separate the 2 classes in three
dimensional space

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x1

x 2

 

 
Class 1
Class 2

0
2

4
6

8
10

−10

−5

0

5

10
0

1

2

3

4

5

6

7

8

9

z1
z2

z 3

Man-Wai MAK (EIE) Constrained Optimization and SVM October 10, 2019 31 / 38



Nonlinear SVM

The SVM’s decision function has the form

f(x) =
∑

i∈S
αiyiφ(xi)

Tφ(x) + b

= wTφ(x) + b,

where S is the set of support vector indexes and
w =

∑
i∈S αiyiφ(xi).

In this simple problem, the dot products φ(xi)
Tφ(xj) for any xi and

xj in the input space can be easily evaluated

φ(xi)
Tφ(xj) = x2i1x

2
j1 + 2xi1xi2xj1xj2 + x2i2x

2
j2 = (xT

i xj)
2. (29)
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Nonlinear SVM

The SVM output becomes

f(x) =

N∑

i=1

αiyiφ(xi) · φ(x) + b

However, the dimension of φ(x) is very high and could be infinite in
some cases, meaning that this function may not be implementable.

Fortunately, the dot product φ(xi) · φ(x) can be replaced by a kernel
function:

φ(xi) · φ(x) = φ(x)Tφ(x) = K(xi,x)

which can be efficiently implemented.
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Nonlinear SVM

Common kernel functions include

Polynomial Kernel : K(x,xi) =
(
1 +

x · xi
σ2

)p
, p > 0 (30)

RBF Kernel : K(x,xi) = exp

{
−‖x− xi‖2

2σ2

}
(31)

Sigmoidal Kernel : K(x,xi) =
1

1 + e−
x·xi+b
σ2

(32)
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Nonlinear SVM

Comparing kernels: Comparing Kernels 
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Nonlinear SVM
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Figure: Decision boundaries produced by a 2nd-order polynomial kernel (top), a
3rd-order polynomial kernel (left), and an RBF kernel (right).
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SVM for Pattern Classification

SVM is good for binary classification:
f(x) > 0⇒ x ∈ Class 1; f(x) ≤ 0⇒ x ∈ Class 2

To classify multiple classes, we use the one-vs-rest approach to
converting K binary classifications to a K-class classification:

Support	Vector	Machines


39 

●  SVM is good for binary classification.   
●  To classify multiple classes, we can use the one-vs-rest 

approach to convert K binary classifications to a K-class 
classification 

SVM0 SVM1 SVM9 
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k

f (k ) (x)
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Software Tools for SVM

Matlab: fitcsvm trains an SVM for two-class classification.

Python: svm from the sklearn package provides a set of supervised
learning methods used for classification, regression and outliers
detection.

C/C++: LibSVM is a library for SVM. It also has Java, Perl, Python,
Cuda, and Matlab interface.

Java: SVM-JAVA implements sequential minimal optimization for
training SVM in Java.

Javascript: http://cs.stanford.edu/people/karpathy/svmjs/demo/
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