
1. (a) The minimum number of independent samples is 2. This is because diagonal covariance
matrices are to be used in the Gaussian classifier. The inverse of a diagonal covariance
matrix will exists as long as all of its diagonal elements are non-zero. To meet this
requirement, all we need is to have two different samples (vectors) for each class. Also,
none of the feature components in the two vectors can be identical; otherwise, the
corresponding variance will be zero, causing infinite reciprocal.

(5 marks, AE)

(b) The outcomes of rolling a die are discrete events, i.e., they can only be 1, 2, . . . , 6. The
probability mass function (PMF) comprises impulses at 1, 2, . . . , 6 and zero everywhere.
In fact, probabilities are only defined at discrete values of the feature space. On the
other hand, a Gaussian density function or a Gaussian mixture density function is
for modeling continuous random variables in which the full feature space are defined
(although in many regions, the likelihood could be very close to zero). If a Gaussian
density or a GMM is used to model the distribution of discrete events, the probability
mass between the discrete intervals will be incorrect.

(5 marks, AE)

(c) (i) Ten GMMs are required, one for each digit. Given an unknown image x, we
compute the likelihood of x for each digit using p(x|Ck), where k = 0, . . . , 9.
Then, we assign the digit to x according to

d =
9

arg max
k=0

P (Ck|x).

(4 marks, AE)

(ii) P (Ck) is the prior probability of digit k, which is the probability of getting digit
k without observing the query image x. It plays the role of scaling up or down
the likelihoods according to how often a digit will occur in an application. For
example, in bank-cheque recognition, the digit ‘0’ will appear more often than
the others. Then, its prior probability will also be higher, which scales up the
likelihood p(x|C0). Therefore, even if p(x|C6) is slightly larger than p(x|C0), after
the scaling, we still recognise the query image as digit ‘0’ after scaling because
P (C0|x) > P (C6|x).

(6 marks, AE)

(iii) p(x) is the marginal likelihood of x. Its purpose is to scale the numerator so that

the ratio P (Ck|x) = P (Ck)p(x|Ck)
p(x) is bounded between 0 and 1 and that P (Ck|x) is

the posterior probability. Because it is independent of the digits, it is not necessary
to compute its value for classification.

(5 marks, AE)
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2. (a) When the feature dimension is larger than the number of training samples, linear
SVMs could perfectly separate the two classes. Therefore, using linear SVMs has less
chance of overfitting the data. Another situation is that when there is only one or
two training samples from one class, using linear SVMs will be more desirable as the
chance of overfitting the minority class is smaller.

(5 marks, AE)

(b) (i) These support vectors correspond to the persons whose voice can hardly tell their
gender, i.e., their voice is confusing in terms of feminineness and masculinity.
However, the SVM is still able to identify their gender correctly.

(4 marks, AE)

(ii) These support vectors correspond to the persons whose voice sounds more like
their opposite gender than their own gender. These vectors cause the gender
identification problem non-linearly separable. The linear SVM needs to use non-
zero slack variables (ξi > 1) to handle these vectors.

(4 marks, AE)

(c) The maximum number of eigenfaces is 999. Because the feature dimension (20,000) is
larger than the number of training vectors (1000), the maximum rank of the covariance
matrix is 1000 − 1 = 999. The assumption is that these 1000 images are all different
and independent.

(5 marks, AE)

(d) We first convert the images into 784-dimensional vectors by stacking the columns (or
rows) of the images. Then, we compute the within-class scatter matrix Sw and between-
class scatter matrix Sb. Then, we compute the LDA project matrix by finding the
eigenvectors of S−1w Sb. Then we project each vector by the LDA project matrix and
train 10 one-vs-rest SVMs (one for each digit) using the LDA-projected vectors. Pros:
The LDA-projected vectors are class discriminative because the projection matrix is
found by maximizing the between-class scatter and minimizing the within-class scatter.
Cons: The maximum dimension of the LDA-projected vectors is 9, which may be too
small for the SVMs.

(7 marks, AE)



3. (a) The pooling operation in CNNs serves two purposes: (1) it reduces the size of the
feature maps in the subsequent layers and (2) it reduces the resolution of the feature
maps so that the responses of the maps will become less dependent on the position of
the object to be recognized/classified. Omitting the pooling operation will lead to large
feature maps at the final convolutional layer, which in turn leads to a large number of
inputs to the fully-connected layers and a large number of weights.

(5 marks, AE)

(b) The convolutional filters in the first hidden layer aim to detect primitive features in
the input, where the input could be an image or a waveform. The primitive features
could be edges in various orientations. For 1-D convolutional filters on waveform, the
primitive features could be the strength of the waveform at different frequency bands.
Because the kernel size is typically very small, e.g., 3×3, each filter could only focus on
one primitive features. To detect more features in complex signals, we need a number
of filters.

(5 marks, AE)

(c) The fully connected layers act as a classifier. The vectors at the final convolutional/pooling
layer are reshaped to form the input to this classifier. Typically, the softmax activation
function is used for the output layer because it makes the outputs sum to a 1.0. As a
result, we may consider the outputs as the posterior probabilities of individual classes.

(5 marks, AE)

(d) For the mean squared error function to have no local minimum, we need it to be a
quadratic function with respect to the weights. The only case this happens is that
all processing nodes are linear. However, deep neural networks typically have multiple
layers of non-linear processing nodes. The combination of these non-linear nodes makes
the mean squared error highly non-linear with respect to the weights, which cause a
lots of local minimum in the error function.

(5 marks, AE)

(e) Because the number of syllables varies from word-to-word and each state in an HMM
can only model a sub-part of a syllable, the required number of states for modeling a
completed word varies from word-to-word. The rule of thumb is that the longer the
word (number of letters), the larger the number of syllables. As a result, we need more
states for modeling longer words. Each syllable requires at least 3 states to model. For
examples, for words comprising three syllables, we need 9 states plus some short pause
states.

(5 marks, AE)



4. (a) The i-vector of an utterance is the posterior mean of the latent factor of a factor
analysis model:

µ = µ(b) + Tw,

where T is the total variability matrix and wi is the latent factor. Given an utterance
with T acoustic vectors O = {o1, . . . ,oT }, the corresponding i-vector is given by

x ≡ 〈w|Oi〉 = L−1
C∑
c=1

TT
c

(
Σ(b)

c

)−1
f̃ c

where

L = I +
C∑
c=1

NcT
T
c (Σ(b)

c )−1Tc,

Nc ≡
T∑
t=1

γ(`t,c) and f̃ c ≡
T∑
t=1

γ(`t,c)(ot − µ(b)
c ),

where γ(`t,c) is the posterior probability of the c-th mixture of the UBM. In this set of
equations, the number of acoustic vectors, T , depends on the utterance length. How-
ever, because f̃ c is obtained by summing over all frames (from t = 1 to t = T ), the
dimension of f̃ c is fixed, so as the dimension of L. Therefore, the dimension of x is
independent of T .

(10 marks, E)

(b) When the decision threshold is small, both true-speakers and impostors will be ac-
cepted by the system, which causes high false acceptance rate but low false rejection
rate. On the other hand, when the decision threshold is large, both true-speakers and
impostors will be rejected by the system, which causes high false rejection rate but
low false acceptance rate. That’s why there is a tradeoff between FAR and FRR. If
security is a major concern, we should set the decision threshold very high.

(5 marks, AE)

(c) (i) The phone-specific acoustic models in LVCSR are to compute the likelihood of
acoustic vector sequences given various phonetic units (can be phones or tri-
phones). Given a hypothesized word sequence, we use a dictionary to find the
corresponding phone sequence. Then, an acoustic model is formed by joining the
phone-specific acoustic models corresponding to the phones in the sequence. Then,
the acoustic vectors are aligned to the internal states of the acoustic model, from
which the likelihood of the whole acoustic vector sequence can be computed from
the joined acoustic model.

(6 marks, AE)

(ii) GMM-HMM: The states (which are GMMs) can be easily shared across different
phone-specific HMMs. It requires less data to train when compared with DNN-



HMM.

DNN-HMM: It uses discriminative training to determine the weights of the DNN,
which produces more accurate posterior probabilities of phones. It performs better
than GMM-HMM provided that sufficient data are available for training the DNN.
The input to the DNN contains multiple contextual frames instead of a single frame
as in GMM, which allows the DNN to capture the dynamic of acoustic vectors.

(4 marks, E)


