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Model-based method

@ Machine learning provides a wide range of model-based approaches
for speaker recognition

@ Model-based approach aims to incorporate the physical phenomena,
measurements, uncertainties and noises in the form of mathematical
models

@ This approach is developed in a unified manner through different
algorithms, examples, applications, and case studies

@ Main-stream methods are based on the statistical models

@ Latent variable models in speaker recognition include

— joint factor analysis (JFA)

— probabilistic linear discriminant analysis (PLDA)
— Gaussian mixture model (GMM)

— mixture of PLDA
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Neural network

Deep structured/hierarchical learning
Rapidly developed and widely applied for many applications

Multiple layers of nonlinear processing units

High-level abstraction
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Model-based method vs. neural network

Model-based method Neural network
Structure Top-down Bottom-up
Representation Intuitive Distributed
Interpretation Easy Harder
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Model-based method vs. neural network

Model-based method Neural network
Semi/unsupervised Easier Harder
Incorp. domain knowl. Easy Hard
Incorp. constraint Easy Hard
Incorp. uncertainty Easy Hard
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Model-based method vs. neural network

Model-based method Neural network
Learning Many algorithms Back-propagation
Inference/decode Harder Easier
Evaluation on ELBO End performance
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Modern machine learning

Model-based method Neural network
Structure Top-down
Representation Intuitive
Interpretation Easy
Semi/unsupervised Easier
Incorp. domain knowl. Easy
Incorp. constraint Easy
Incorp. uncertainty Easy
Learning Many algorithms Back-propagation
Inference/decode Easier
Evaluation on End performance
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Parameter estimation

@ Assume we have a collection of acoustic frames X = {x;}]_; for
estimation of model parameters 6

e Maximum likelihood (ML) estimation
O = arg max p(X16)
e Maximum a posteriori (MAP) estimation
Onmap = arg max p(8]X) = argmax p(X|6)p(6)

where p(0) denotes the prior distribution of 8
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Expectation-maximization algorithm

Likelihood function for observations x in latent variable model with
latent variable z

p(x|0) = Zp x,z|0)

Expectation (E) step: calculate an auxiliary function

Q(6,6°) = E,[log p(x, 2|0)| x, 6°]

Maximization (M) step: find a new estimate "% via

0™ = arg max Q(6,6°9)

EM algorithm [Dempster et al., 1977] for ML can be extended for
MAP
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Lower bound & KL divergence

@ Introduce an approximate or variational distribution g(z) and adopt
the Jensen's inequality for convex function — log(+) to obtain

log p(x|6) = 'ng plx Zw = logEq {P(:’(SO)}
(x,z]@) N
> Eq [Iog a2 } = L(q,0)

> a(z)log p(x|0) — L(q,0) = Zq |og{ e }AKL(qu)

Evidence Decomposition

log p(x|0) = KL(ql|p) + L(q,0)
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Maximum Likelihood

KL(qlp) = —Eq[log p(z|x, 8)] — Hy[2]
L(q,0) = Eq[log p(x, 2|0)] + Hg[2]

e Maximizing p(x|@) is equivalent to first setting KL(g|/p) = 0 or
approximating (E-step)

q(z) = p(z|x,6°7)

then maximizing the resulting lower bound (M-step)

L(q,0) 2 Q(6,6°) + const
where Q(8,6°'%) 2

Eq[log p(x, z|0)|x,0°9] is a concave function
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EM algorithm

X X log p(x|6)
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EM algorithm: E-step

KL(qllp) — X log p(x|6°')

L(q, 0%
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EM algorithm: M-step

log p(x|0™")

-

A A
KL(qllp) | T
A

L(q,0"")
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EM algorithm: lower bound

log p(x|0)

L(q,0)

eold Qrev

46 /274



© Learning Algorithms

@ 2.3. Approximate inference

47 /274



Why approximate inference?

@ There are a number of latent variables in model-based speaker
recognition
— i-vectors
— common factors
— variability matrix
— mixture labels
— channel, speaker and noise information

@ Posterior distribution of latent variables should be analytical and
factorizable
@ Evolution of inference algorithms

— maximum likelihood
— maximum a posteriori
variational Bayesian
— Gibbs sampling
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Posterior distribution

Prior
Posterior
p(z|z) p(z)
p(z|z) = .
[ p(x|z)p(z)dz
Marginal Likelihood p(z)
(model evidence)
o Latent variables and parameters z = {z;, ..., z,} are coupled
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Approximate posterior

true
posterior

KL(q||p)

Divergence

p(z|)

e Find an approximate distribution g(z) that is factorizable and
maximally similar to the true posterior p(z|x)
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Variational Bayesian inference

Q(Zl:m’VI:m) = ﬁq(ZJ’VJ)

Variational = Optimization |
calculus problem

functional max, £(q)
Llg):q—L(g) | st [ qldz)=1)

p(z) = KL(qllp) + L(q)

where KL(g|[p) = —quln p(z|@)] — Hylz]

(E E,[lnp(z, 2)] + H, z]]
(Evidence Lower BOund, ELBO)
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lnp ﬁ lnp ﬁ
i KL(glp)
|
KL(glp)! . K

SRR |

|
L(q) {

|
— g~

L(q)

Estimation for variational distribution

m(a;< Eq4[log p(x, )] + Hq[2]
q(z

s.t. /zq(dz) =

exp(E;-;[log p(x, z|v)])
/eXP(Ei;ﬁj[log p(x, z|v)])dz;

4(zlv;) =
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e Variational Bayesian (VB) inference is implemented via a
doubly-looped algorithm

VB-EM algorithm

o VB-E step: calculate the variational distribution g(z) in inner loop
4(z) = arg T £L(q.0)
q(z

o VB-M step: calculate the model parameter 6 in outer loop

N

0 = arg max £(g,0)

o Convex optimization is performed

@ VB-EM steps converge by a number of iterations
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Gibbs sampling algorithm

Initialize z(1), where z = Zi:m
forr< 1to T —1do

for j < 1 to mdo

(t+1)

Sample z; Np(zj|z§T+1) 27 )

(j=-1) “j+1:m
end for

end for
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Gibbs sampling

O
Op © O
O
o O O ooo 5
O
o5 ©

Two dimensional Gaussian mixture model with two mixture components
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Gibbs sampling
zj~p( - |z, )

Randomly assign mixture component for each sample j
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Gibbs sampling

\/

Zj Np( ) | z—j’w)

Extract one sample and compute the conditional distribution
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Gibbs sampling

o R =

zi~p(-| z_j,x)

Sample a mixture component from the conditional distribution

58 /274



Gibbs sampling

zj~p( -]z

Extract one sample and compute the conditional distribution
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Gibbs sampling

zj~p( -]z,

Sample a mixture component from the conditional distribution
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Gibbs sampling

zj~p( -]z

Extract one sample and compute the conditional distribution
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Gibbs sampling

zj~p( -]z,

Sample a mixture component from the conditional distribution
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Gibbs sampling

"

zj~p( -]z

Extract one sample and compute the conditional distribution
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Gibbs sampling

p
=

zj~p( -]z,

Sample a mixture component from the conditional distribution
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Gibbs sampling

zj~p( -]z

Extract one sample and compute the conditional distribution
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Gibbs sampling

zj~p( -]z,

Sample a mixture component from the conditional distribution
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Gibbs sampling

zj~p( -]z

Extract one sample and compute the conditional distribution
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Gibbs sampling

zj~p( -]z,

Sample a mixture component from the conditional distribution
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Gibbs sampling

zj~p( -]z

Extract one sample and compute the conditional distribution
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Gibbs sampling

zj~p( -]z,

Sample a mixture component from the conditional distribution
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Gibbs sampling

zj~p( -]z

Extract one sample and compute the conditional distribution
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Gibbs sampling

zj~p( -]z,

Sample a mixture component from the conditional distribution
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Gibbs sampling

Finally obtain an appropriate clustering result
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Variational Bayes

deterministic approximation

find an analytical proxy g(z)
that is maximally similar to

p(z|x)

inspect distribution statistics
never generate exact results
fast

often hard work to derive
convergence guarantees

need a specific parametric
form

Gibbs sampling

stochastic approximation

design an algorithm that
draws samples z oz
from p(z|x)

inspect sample statistics
asymptotically exact
computationally expensive
tricky engineering concerns
no convergence guarantees

no need parametric form
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@ 2.4, Bayesian learning

75 /274



Challenges in model-based approach

Thomas Bayes (1701-1761)

@ We are facing the challenges of big data

@ An enormous amount of multimedia data is available in internet which
contains speech, text, image, music, video, social networks and any
specialized technical data

@ The collected data are usually noisy, non-labeled, non-aligned, mismatched,
and ill-posed

@ Probabilistic models may be improperly-assumed, over-estimated, or

under-estimated
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Uncertainty modeling

@ We need tools for modeling, analyzing, searching, recognizing and
understanding real-world data
@ Our modeling tools should
— faithfully represent uncertainty in model structure and its parameters
— reflect noise condition in observed data
— be automated and adaptive

— assure robustness
— scalable for large data sets

@ Uncertainty can be properly expressed by prior distribution or process
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Model regularization

@ Regularization refers to a process of introducing additional information
in order to solve the ill-posed problem or to prevent overfitting

@ Occam'’s razor is imposed to deal with the issue of model selection

@ Scalable modeling
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Bayesian speaker recognition

@ Real-world speaker recognition
— unsupervised learning
— number of factors is unknown
— very short enrollment utterance
— high inter/intra speaker variabilities
— variabilities from channel and noise

e Why Bayesian? [Watanabe and Chien, 2015]

— exploration for latent variables
— model regularization

— uncertainty modeling

— approximate Bayesian inference
— better prediction
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