Notes on Ada 2022 Programs

These programs illustrate the use of Big_Integers which were introduced into Ada 2022 and are described in Section 23.6. The first program is a demonstration of the RSA algorithm for encoding. The second uses the Lucas–Lehmer test for checking whether a Mersenne number is prime or not. The third (of which there are three versions) finds the factors of a number using a technique discovered by Fermat.
Clever Coding - the RSA Algorithm

This algorithm was devised by Ronald Rivest, Adi Shamir, and Leonard Aldeman in 1977 and so is known as the RSA algorithm. A key point is that it is very easy to multiply two large prime numbers together but very hard in general to find the factors of a large number.

The essence of the algorithm is as follows. Choose two prime numbers p and q and multiply them together to give n = p × q. The next stage is to choose e such that e is less than and relatively prime to m = (p – 1) × (q – 1). The numbers n and e comprise the public key and encryption is performed by converting a value v using the formula


c = ve mod n
The code value c is then the coded message. Decryption is performed using the unique secret number d which is such that e × d ≡ 1 mod m according to the similar formula 


v = cd mod n
Simple text messages can be encoded by for example assigning values 1 to 26 to the upper case letters A to Z and 27 to 52 for the lower case letters with 0 representing a space and constructing the number in base 53. Thus CAT can be encoded as 3×532 + 1×531 + 20×530 = 3×2809 + 53 + 20 = 8500.
As an illustration suppose we have chosen the primes p and q as 613 and 719 so that n = 440747 and m = 439416. Now 439417  = 11 × 43 × 929 so we can take e = 929 and d = 473. Using these values 8500 encrypts to 320793. We could send this as the encrypted message but it is perhaps more interesting to convert it into a string which using base 53 gives BHJk. 
Note that Cat becomes ACMm and cat becomes AHcG. If we choose e = 473 and d = 929 then we find that CAT becomes AAKh, Cat becomes e_F (where _ denotes a space, remember that a space encodes as zero) and cat becomes eoZ.
The demonstration program asks for values for p and q. These can be provided as a simple integer (but not a Big Integer) such as 613 or as a Mersenne number written as M13 or m13 where the Mersenne number Mn is 2n – 1. So M13 = 8191. Using Mersenne numbers is a convenient way of entering a largish prime. The following Mersenne numbers are prime
M2 = 3
M3 = 7
M5 = 31
M7 = 127
M13 = 8_191
M17 = 131_071
M19 = 524_287
M31 = 2_147_483_647
M61 = 2_305_843_009_213_693_951
M89 = 618_970_019_642_690_137_449_562_111
M107 = 162_259_276_829_213_363_391_578_010_288_127
M127 = 170_141_183_460_469_231_731_687_303_715_884_105_727
An interesting Mersenne number is M67.which Mersenne himself thought was prime but was shown by Cole in 1903 to be the product of two numbers which are themselves both prime, thus

M67 = 147_573_952_589_676_412_927 = 193_707_721 × 761_838_257_287

Having given the demonstration program values for p and q, it echoes them in confirmation; if they were given as Mersenne numbers they are echoed as big integers. The program then calculates and displays the public key n = p × q and m = (p–1) × (q–1). 
The program then asks for a value for the encoding key e. It checks that it is relatively prime to m and if it is not, it asks for a new value for e until it is satisfied.
It then computes d such that e × d ≡ 1 mod m and displays the computed value of d. The calculation of d is a sort of inverse mod operation.
The program is now in a state ready to encrypt a message. The message can either be just a number or a sequence of letters. So it asks whether you want to use a numeric or alpha message. It expects a reply of N or A (upper or lower case). 
If a numeric message is to be given then the program outputs the message 


"Preparing for a numeric message not exceeding n"
where n is the public key p × q.

This is followed by 


"Message is "

and it then expects a numeric message which can be supplied using the same format as for the values of p and q, that is either an integer or a Mersenne number. If the value given is zero, then a farewell message is output and the program goes back to the beginning thus enabling other values of p and q to be tried.
If an alpha message is to be given then the program outputs the messages

"Preparing for a text message with max length M"


"Include spaces and letters only."

This is followed by


"Message is "

and it then expects an alpha message where M is such that the encoded value will not exceed the public key. If a longer message is supplied the additional characters are simply ignored. Alphabetic characters are accepted in both upper and lower case. Any unexpected character terminates the message and is crudely encoded as 99.
In both cases the program then says

"The encrypted message is"

which is followed by the appropriate encrypted form.
The program then says


"Now ready to decrypt your message"
and awaits for a couple of newlines to trigger the decryption.
It finally outputs


"The decrypted message is"

which with luck is followed by the original message. 
In the case of an alpha message, if the message supplied was too long then it is simply truncated.
In the case of a numeric message, if the number exceeds the public key n, the value is taken mod n.

If the values given for p and q are not prime then decryption of the encrypted message usually does not return the original message.
Most of the program is straightforward but the computation of d such that e × d ≡ 1 mod m by the function Inverse_Mod is interesting. It is essentially the traditional Euclidean algorithm but the iteration is also unwound. This is explained in Nice Numbers by the author in the section entitled Linear Congruences.
I am particularly grateful to Jeff Cousins for his assistance in converting the program so that it does actually work using an Ada 2022 compiler from AdaCore.
Readers might like to improve the program by for example introducing subprograms Put and Get for manipulating Big Integers. Note that Put_Num does essentially do the job using a string as an intermediary but it would be nice to have underscores every third digit from the origin.
Historical note. The program has its origins in an Ada 83 program written in about 1992 using a home-brewed multilength integer system.
Mersenne Magic - Perfection
This addresses two issues. How to check whether a Mersenne number is a prime number and also the relationship between Mersenne primes and perfect numbers.

Determining whether a large number is a prime is usually a tedious and generally unsolved problem. However, in the special case of Mersenne numbers there is a simple and perfect test. The theory was developed by Edouard Lucas (1842–1891) and a practical test was devised by Derrick Lehmer (1905–1991).
It goes as follows. Form the series of numbers


Li+1 = (Li)2 – 2, starting with L2 = 4
We get L2 = 4,  L3 = 14,  L4 = 194,  L5 = 37634,  and so on
The amazing fact is that Mp is prime if and only if Lp is exactly divisible by Mp . Thus since M3 is 7 and L3 is 14, we find that M3 is prime. 

The trouble with the test is that the numbers get huge very soon. In the case of M11 which is 2047 and not prime since 2047 = 23×89, we find that L11 has 293 digits. If we divide L11 by M11 we get a remainder of 1736 confirming that indeed M11 is not prime.
The difficulty can be overcome by doing modulo arithmetic. To check out M11 we do all the arithmetic mod M11 and then L11 is simply 1736 with just 4 digits.
Another interesting point regarding Mersenne primes is that if Mp is prime then p is also prime. But the opposite is not true since M11 is not prime as mentioned above.
The other relationship concerns perfect numbers. Remember that a perfect number is one whose factors add up to the number itself. The first perfect number is 6 and the next two are 28 and 496 thus

6 = 1+2+3
28 = 1+2+4+7+14 
496 = 1+2+4+8+16+31+62+124+248

Strangely enough there is a close relationship between perfect numbers and Mersenne primes. Every Mersenne prime has an associated perfect number and vice versa. 
It is fairly easy to show that all even perfect numbers are of the form


Pk = 2k–1 × (2k – 1)

where (2k – 1) is a Mersenne prime. So we have

k = 2

M2 = 3


P2 = 2 × M2 = 6

k = 3

M3 = 7


P3 = 4 × M3 = 28


k = 5

M5 = 31


P5 = 16 × M5 = 496

k = 7

M7 = 127

P7 = 64 × M7 = 8128


k = 13

M13 = 8191

P13 = 4096 × M13 = 33_550_336

k = 17

M17 = 131_071

P17 = 65_536 × M17 = 8_589_869_056
The demonstration program is quite simple. It includes a table of the first 30 odd prime numbers thus

(3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 



61, 67, 71, 73, 79, 83, 89, 97,101, 103, 107, 109, 113, 127)

and will analyse a range of these numbers. After a message of greeting it asks for values for Start loop and End loop. Thus given the values 3 and 4, it will process the prime numbers 7, and 11. It will grumble if the values supplied are unacceptable and ask again.
It then outputs the message

"Level of detail required, answer 1, 2, or 3"

If the answer given is not 1, 2, or 3 it just repeats the message.

Level 1 outputs a message saying whether the Mersenne number is prime or not and if it is prime it outputs the value of the corresponding perfect number. Thus we get

7 : 127 is prime

8128 is perfect


11 : 2047 is not prime

Level 2 also outputs the result of the Lucas Lehmer analysis using the version with modulo arithmetic. Thus in the case of the prime number 7, we also get


L is 12319

equals 127 times

97

and in the case of 11 we get


L is 79522

equals 2047 times

38

remainder = 1736
Level 3 give the full works. In the case of the prime number 7 we get


L is 2005956546822746114

equals 127 times

15794933439549182

and in the case of 11 we get


L is 68729 ... 203714


(293 digits)

equals 2047 times

33575 ... 341574


(290 digits)

remainder = 1736
For large primes such as 127 it is best not to use level 3. But it does work and gives the perfect number corresponding to M127 as

  14_474_011_154_664_524_427_946_373_126_085_988_481_573_677_491_

474_835_889_066_354_349_131_199_152_128
Enjoy!!

PS This is all described in Lecture 2 of Nice Numbers. And again many thanks to Jeff Cousins for checking that the program does work.
Fermat Factors - Prime Seeking
This technique which was outlined in Section 22.8 seeks to find the factors of a number n. It is attributed to Pierre de Fermat (1601–1665) who was a lawyer and magistrate and also a brilliant mathematician.
The technique is quite simple and goes as follows. We seek integers x and y such that


n = x2 – y2
It then immediately follows that

n = (x + y) × (x – y)
and so we have found two factors of n. 
We start by finding the smallest k such that k2 is greater than n. We then look at

k2 – n, (k+1)2 – n, (k+2)2 – n, (k+3)2 – n 
   and so on
until we eventually find one that is a perfect square. Suppose it is (k+m)2 – n = z2 so that we have n = (k+m)2 – z2.
It then follows that the factors of n are k+m+z and k+m–z.
As an example, suppose n is 1961. The square root is about 44.28 so we take k to be 45 (note that 442 = 1936 and 452 = 2025). So we try
452 – 1961 = 2025 – 1961 = 64 = 82
And we get a perfect square at once. 
Hence k = 45, m = 0, and z = 8, so that the factors of 1961 are 45–8 = 37 and 45+8 = 53. 
So that was easy.

Let’s try a more exciting example, say 5141. The square root is about 71.7 so we take k to be 72 (note that 712 =5041 and 722 = 5184). So we try

722 – 5141 = 5184 – 5141 = 43

not a square

732 – 5141 = 5329 – 5141 = 188

not a square

742 – 5141 = 5476 – 5141 = 335

not a square

752 – 5141 = 5635 – 5141 = 484 = 222
got a square!!

Hence k = 72, m = 3, and z = 22 leading to 5141 = 97 × 53.  Hooray.

Note that if n is actually prime then we end up with the factors being n and 1. So we must conclude with x+y being n and x–y being 1. So if n is odd such as 7 then we end up with x = 4 and y = 3. But if n is even then the algorithm fails unless n is a multiple of 4. 
There are three demonstration programs on the website: FermatBasic, FermatBetter, and FermatBest. A procedure which is central to them all has specification as follows
procedure Square_Root(XX: in Number; Try: in Number;



X: out Number; R: out Number);

where XX is the number whose square root we are seeking; Try is a starting value; X is the answer and R is the remainder which is not negative.

In the case of FermatBasic and FermatBetter, the type Number is simply Integer whereas in the case of FermatBest it is Big_Integer. We now consider the three programs in turn.
The program Do_Fermat_Basic starts with a welcoming message and then asks for a value for N. It complains if it is not a number or is too big and asks again. If the number is an odd multiple of 2 it notes that the algorithm fails on odd multiples of 2, (so it simply halves it and presses on). It then calls the procedure Fermat_Basic whose specification is simply
procedure Fermat_Basic(N: in Integer; P, Q: out Integer);

Note that the procedure Square_Root in the case of Basic is very crude, it simply tries every integer starting with Try until it finds a value whose square is equal to or exceeds XX. If it equals XX then of course the remainder is zero.

The procedure Fermat_Basic starts by calling Square_Root to see if N is a perfect square; if it is then the job is done and Fermat returns with both P and Q set to the square root. If N is not a perfect square then the algorithm as described above is applied and returns the two values of P and Q.
The program FermatBetter is much more sophisticated. Note that although it is just working on integers they are referred to as the subtype Number in order to simplify the comparison with Fermat_Best which uses Big_Numbers,

It starts by building a table of the first few (100) primes in the array Prime in the package Primes. Note the aspect Elaborate_Body to trigger the initialization of the table.

Another important issue concerns checking to see whether a number is a square or not. An interesting observation is that the final digit of a perfect square can only be 0, 1, 4, 5, 6 or 9; it can never be 2, 3, 7 or 8. That test alone eliminates 40% of the candidates. If we check the last two digits then we find that they can only be one of the 22 following pairs of digits: 00, 01, 04, 09, 16, 21, 24, 25, 29, 36, 41, 44, 49, 56, 61, 64, 69, 76, 81, 84, 89 or 96. So that eliminates nearly 80% of the candidates. And indeed it eliminated all the intermediate possibilities when we looked at the factors of 5141.
The program FermatBetter builds a table of the possible four last digits in the package Squares. That permits 1044 possibilities for the last 4 digits out of a possible 10,000 and so eliminating nearly 90% of the candidates. The corresponding figure for 3 digits is 159 out of 1000. Note again that the initialization of the table is triggered by the aspect Elaborate_Body.
The program Do_Fermat_Better also starts with a welcoming message. It notes the value of Integer'Last so that the user is aware of the limit on the values that can be analyzed. Because the process requires the manipulation of square values it is typically the case that the program is unable to analyse numbers larger than the square root of Integer'Last.
It then asks for a number N. This is held internally as NN. It then removes all factors of NN in the prime table. This removes all the powers of two so there is no need for the check on odd multiples of two. 
If that removes all the factors so that NN is now just 1, it loops around and asks for another number. Note it says Goodbye if given zero.
Having removed all the small primes it calls the main procedure Fermat_Better. Note the calls of Clock in Ada.Calendar around the call of Fermat_Better so that there is a record of the time taken.
The specification of Fermat_Better is
procedure Fermat_Better(N: in Number; Min_Prime: in Number;



P, Q: out Number);
The parameter Min_Prime is the least prime that needs to be tried, well actually it is the largest prime that has already been removed.
The details of Fermat_Better are a bit complex. The essence is that we get an approximation to a square root by using Newton’s method to solve the equation x2 = n. We are of course looking for a remainder of zero on calling Square_Root. But we don’t need to call Square_Root if the last digits are not allowed. Hence the test
If Poss_Last_Digits(Last_Digits) then

Square_Root(K, Try, Y, R)

if R = 0 then


– –   X*X–N was a perfect square


P := X+Y;  Q := X–Y;


return;

end if;

Try := Y;
end if;

We now turn to FermatBest. It is much as FermatBetter except that Number is now Big_Number rather than Integer. Moreover, the table of primes is much larger and covers the first 20,000 primes. The largest prime in the table is in fact 224,737.
Another embellishment is that for convenience, abbreviations are provided for some big numbers. Thus, as in the RSA program, we can write Mn as an abbreviation for the Mersenne number Mn = 2n – 1.

Related interesting numbers are the Fermat numbers Fn = 2p +1 where p is 2n. The first few Fermat numbers are

F0 = 21 + 1 = 3;    F1 = 22 + 1 = 5;   F2 = 24 + 1 =17;   F3 = 28 + 1 = 257;   F4 = 216+ 1 = 65,537
Those are all prime, however, it is thought that all higher Fermat numbers are not prime. Thus

F5 = 232 + 1 = 4,294,967,297 = 641 × 6,700,417

The Mersenne numbers are quite fascinating. Some of the odd ones are prime numbers (there is a list above in the discussion on RSA). The even Mersenne numbers (apart from M2 = 3) are never prime. Indeed M2n has Mn as a factor since
M2n = 22n – 1 = (2n – 1) × (2n  + 1)
For example, M26 = 8191 × 8193 where 8191 is M13 and 8193 = 3 × 2731.
There is a strong interaction with the Fermat numbers. For example, M32 = M16 × F4 and M16 = M8 × F3 and so on. Note especially that M64 = 18_446_744_073_709_551_615 = F0 × F1 × F2 × F3 × F4 × F5. 
Note that having removed small primes, if the two factors found are N and 1, then N must be prime. However, if they are N and M (where M is not 1) then they might not be prime so it is wise to try again with N and M separately.

Here are some typical results.
Welcome to Fermat's best method

Insert number N = m17

  = 131_071

N divides by 131071 so removing factor

all factors removed

Insert number N = m19

  = 524_287

Two factors are    524_287    1

Time =  0.4

Insert number N = m27

  = 134_217_727

N divides by 7 so removing factor

N divides by 73 so removing factor

Two factors are    262_657    1

Time = 0.3

Insert number N = m29

  = 536_870_911

N divides by 233 so removing factor

N divides by 1103 so removing factor

N divides by 2089 so removing factor

all factors removed

Insert number N = m31

  = 2_147_483_647

Two factors are    2_147_483_647    1

Time = 0.2

Insert number N = m32

  = 4_294_967_295

N divides by 3 so removing factor

N divides by 5 so removing factor

N divides by 17 so removing factor

N divides by 257 so removing factor

N divides by 65537 so removing factor

all factors removed

Insert number N = m57

  = 144_115_188_075_855_871

N divides by 7 so removing factor

N divides by 32377 so removing factor

Two factors are    1_212_847    524_287

Time =  0.2

Insert number N = 1_212_847

Two factors are    1_212_847    1

Time =  0.4

Insert number N = 524_287

Two factors are    524_287    1

Time =  0.3

Insert number N = m58

  = 288_230_376_151_711_743

N divides by 3 so removing factor

N divides by 59 so removing factor

N divides by 233 so removing factor

N divides by 1103 so removing factor

N divides by 2089 so removing factor

Two factors are    3_033_169    1

Time =  0.3

Insert number N = m59

  = 576_460_752_303_423_487

N divides by 179951 so removing factor

Two factors are    3_203_431_780_337    1

Time = 14.9

Insert number N = m63

  = 9_223_372_036_854_775_807

N divides by 7 so removing factor

N divides by 7 so removing factor

N divides by 73 so removing factor

N divides by 127 so removing factor

N divides by 337 so removing factor

N divides by 92737 so removing factor

Two factors are    649_657    1

Time = 0.3

Insert number N = m64

  = 18_446_744_073_709_551_615

N divides by 3 so removing factor

N divides by 5 so removing factor

N divides by 17 so removing factor

N divides by 257 so removing factor

N divides by 641 so removing factor

N divides by 65537 so removing factor

Two factors are    6_700_417    1

Time =  0.3

Insert number N = 0

Goodbye

Interesting features of the above results are:
M17, M19, and M31 are prime. Many odd Mersenne numbers are divisible by smaller ones. Thus both M27 and M63 are divisible by M9 (= 7×73 = 511). M57 has two largish factors; so we analyse them separately and they both turn out to be prime. And of course M58 is divisible by M29 and M64 is divisible by M32 which is divisible by M16 etc as mentioned earlier.
As in the case of the RSA program, readers might like to improve the procedure Put_Num by inserting underscores every third digit from the origin.
And finally many thanks again to Jeff Cousins for his help in converting an ancient Ada 83 program into the fascinating FermatBest.
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