152 Optical Coupling

Figure 4.3 Structures of planar grating waveguide couplers with (a) and (b) periodic index modulation, (c), (d), (e), and (f) periodic structural corrugation.

EXAMPLE 4.2

Find the *q*th-order coupling coefficient $\kappa_{\nu\mu}(q)$ for a sinusoidal grating that has a period of Λ , as shown in Fig. 4.3(c), such that $\kappa_{\nu\mu}(z) = a \cos Kz$, where $K = 2\pi/\Lambda$. Find it for a square-function grating that has a period of Λ and a duty factor of ζ , as shown in Fig. 4.3(d), such that $\kappa_{\nu\mu}(z) = a$ for $0 < z < \zeta \Lambda$ and $\kappa_{\nu\mu}(z) = -a$ for $\zeta \Lambda < z < \Lambda$ within each period. In each case, which orders are useful for mode coupling?

Solution:

For the sinusoidal grating, we find by using (4.37) that

$$\begin{aligned} \kappa_{\nu\mu}(q) &= \frac{1}{\Lambda} \int_{0}^{\Lambda} \kappa_{\nu\mu}(z) \exp\left(-\mathrm{i}qKz\right) \mathrm{d}z \\ &= \frac{1}{\Lambda} \int_{0}^{\Lambda} a \cos Kz \exp\left(-\mathrm{i}qKz\right) \mathrm{d}z \\ &= \frac{a}{\Lambda} \int_{0}^{\Lambda} \frac{\exp\left(\mathrm{i}Kz - \mathrm{i}qKz\right) + \exp\left(-\mathrm{i}Kz - \mathrm{i}qKz\right)}{2} \mathrm{d}z \\ &= \frac{a}{2} \left(\delta_{q,1} + \delta_{q,-1}\right), \end{aligned}$$

where $\delta_{q,1}$ and $\delta_{q,-1}$ are the Kronecker delta functions. Therefore, only the order q = 1 and the order q = -1 are useful for mode coupling because only these two orders have a nonzero coupling coefficient of $\kappa_{\nu\mu}(1) = \kappa_{\nu\mu}(-1) = a/2$.