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Figures

12.2 Measuring the optical constants of metals
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Fig. 12.1. Theoretical reflectivity as a function of angle of incidence, 6, for two films with
different refractive indices and thicknesses measured in the Kretschmann configuration at a
fixed wavelength of 632.8 nm. Case 1 corresponds to a film of thickness 38.7 nm and
dielectric constant -17.45 + i 0.92. Case 2 corrseponds to a film of thickness 48.3 nm and
dielectric constant -16.72 + i 1.66. (Mathematica simulation.)
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Fig. 12.2. Theoretical reflectivity as a function of wavelength, A, for the same two films of
Fig. 12.1 measured in the Kretschmann configuration at a fixed angle of 43.5°. (Mathematica
simulation.)
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Fig. 12.3. Theoretical reflectivity as a function of angle of incidence, 6, for the same two films

in Fig. 12.1 measured in the Kretschmann configuration at a fixed wavelength of 632.8 nm.
(Mathematica simulation).
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Fig. 12.4. Apparatus for measuring the optical constants of metallic films using the
Kretschmann configuration. Light from the monochromator is divided into two beams which
are polarized in orthogonal directions and modulated by choppers at different frequencies. A
second beamsplitter sends some of the recombined beam to the sample, which is a gold film
on a prism mounted on a rotation stage, and then on to a detector. The other half of the

beam goes directly to a second detector. The two signals are demodulated by lock-in
amplifiers. Adapted from [3].
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Fig. 12.5. Fiber optic technique for measuring the optical constants of metallic films. The

cladding is removed over a distance of 15 mm along the fiber and the core is coated with the
metal film.
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Fig. 12.6. Transmitted power as a function of angle of incidence for a gold film deposited
onto the core of a fiber. The fiber is immersed in solutions with refractive indices of 1.34,
1.35,1.36 and 1.37. Used by permission. [4]
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12.3 Chemical and biological sensors

12.3.2 Kretschmann sensors

Light
shielding

(a) (b)

Fig. 12.7. (a) Spreeta SPR sensor developed by Texas Instruments, and (b) cut-away view
of the internal design. Reprinted from Sensors and Actuators B, 91, T.M. Chinowsky, J.G.
Quinn, D.U. Bartholomew, R. Kaiser, and J.L. Elkind, "Performance of the Spreeta 2000
integrated surface plasmon resonance affinity sensor," 266-274, © 2003, with permission
from Elsevier. [6]
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Fig. 12.8. Effective change in refractive index due to the binding interaction of biotinylated
anti-DNP antibodies in phosphate-buffered saline solution to a gold surface prepared with
neutravidin as a function of time. The vertical scale is in units of refractive index, Rl. Cour-
tesy Texas Instruments. [8]
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Fig. 12.9. Reflectivity of a silver surface as a function of angle of incidence, 6, in the
Kretschmann configuration for vacuum (n = 1.0, solid line) and a gas with a refractive index
of 1.001 (long dashes). The shift in the resonant angle is clearly visible. At the angle of
incidence of 43.5°, the change in the reflectivity (short dashes) is nearly 20%. (Mathematica
simulation.)

12.3.3 Nanoparticle sensors
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Fig. 12.10. Scattering spectra for Ag nanoparticles when immersed in gases/liquids of
various refractrive indices. From left to right these are nitrogen, methanol, 1-propanol,
chloroform and benzene. Reprinted with permission from [9]. © 2003 American Chemical
Society.
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12.3.4 Optical fiber sensors

Y cladding

core

Fig. 12.11. SP resonance sensor made from an optical fiber. A thin gold film is deposited on
a bare segment of the fiber core. A broad spectrum of light is transmitted through the fiber
and generates a SP on the outer surface of the gold film at the correct wavelength.

oy

e
w
1
:

Norm. Transmitted Light Intensity
(=]
= +}

A= 1.351
B =1.393
O.F'C = 1.404 b
2] B T
0.6
500 600 700 800 800
Wavelength (nm)

Fig. 12.12. Spectrum of transmitted light for an optical fibper SPR sensor as the refractive
index of the liquid surrounding the silver film is varied. Reprinted from Sensors and Actua-
tors B, 12, R. C. Jorgenson and S. S. Yee, "A fiber-optic chemical sensor based on surface-
plasmon resonance," (1993) 213. © 1993, with permission from Elsevier. [13]
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12.4 Near field microscopy

12.4.1 Scanning plasmon near field microscopy
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Fig. 12.13. Apparatus for scanning plasmon near field microscopy. Reprinted with permis-
sion from M.Specht, J. D. Pedarnig, W. M. Heckl and T. W. Hansch, Phys. Rev. Lett. 68 476

(1992). © 1992 by the American Physical Society. [15]

12.4.2 Photon scanning tunneling microscopy
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Fig. 12.14. Apparatus for photon scanning tunneling microscopy. After Opt. Commun. 117 ,
S. I. Bozhevolnyi, B. Vohnsen, I. I. Smolyaninov, A. V. Zayats, "Direct observation of surface
polariton localization caused by surface roughness,” (1995) 417. © 1995, with permission

from Elsevier.
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12.4.3 Fiber-based scanning near field microscopy with a nanoparticle
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Fig. 12.15. Probe for optical fiber-based scanning near field optical microscopy.

12.4.4 Fiber-based scanning near field microscopy with an aperture

Fig. 12.16. (Left) End of fiber probe for optical fiber-based scanning near field optical
microscopy. (Right) Magnified view of silver film on end of fiber showing dimple array with
center hole. Reprinted from Physica B 279, T. Thio, H.J. Lezec and T. W. Ebbesen,
"Strongly enhanced optical transmission through subwavelength holes in metal films" 90. ©

2000, with permission from Elsevier. [18]



12.4.5 The superlens
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Fig. 12.17. Structure used to demonstrate a superlens. A Cr film deposited onto a quartz
substrate was patterned with a grating and the letters "NANO." It was overcoated with a
PMMA spacer, a 35 nm silver film, and photoresist. 365 nm radiation from a mercury lamp
was used to expose the photoresist through the substrate. From N. Fang, H. Lee, C. Sun
and X. Zhang, Science 308 (2005) 534. Reprinted with permission from AAAS. [21]
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Fig. 12.18. (a) FIB image of the pattern in the Cr layer. (b) Exposed pattern in the photore-
sist above the superlens silver layer and (c) averaged AFM line scan of the leg of the letter
"A" with a FWHM width of 90 nm. (d) Control experiment in which the silver was replaced by
PMMA and (e) averaged AFM line scan of the leg of the letter "A" with a width of 360 nm.
The scale bar in (a), (b), and (d) is 100 nm. Used by permission of IOP Publishing Ltd. [22]
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12.5 Surface enhanced Raman spectr oscopy

Intensity (arbitrary units)

Fig. 12.19. Comparison of SERS spectrum of trans-1,2-bis(4-pyridyl)ethylene on a colloidal
gold substrate (top) to the Raman spectrum the same solution on a bare SiO, TEM grid
(bottom). From R. G. Freeman et al., Science 267 (1995) 1629. Reprinted with permission

from AAAS. [38]

Extinction

Fig. 12.20. (Left) Measured extinction coefficient of the silver nanoparticles. The top plot is
for 56 nm particles and the bottom plot is for 20 nm nanoparticles. (Right) Measured SERS
spectra for the same silver nanopatrticles. A strong spectrum is observed when the incident
laser wavelength at 632.8 nm lies at the SP resonance, while a very weak spectrum is
observed when the incident laser wavelength is not resonant.
from [41], © 2003 American Chemical Society.
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Reprinted with permission
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12.6 Nonlinear optics
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Fig. 12.21. Intensity of second harmonic light generated at a silver surface in the
Kretschmann configuration as a function of angle of incidence. Reprinted with permission
from H. J. Simon, D. E. Mitchell and J. G. Watson, Phys. Rev. Lett. 33 1531 (1974). © 1974
by the American Physical Society. [46]
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Fig. 12.22. Second harmonic generation at a silver surface in a hybrid prism configuration
using long range SPs and a nonlinear quartz crystal. The experimental arrangement is
shown in (a) and the results in (b). The dots are experimental measurements of the second
harmonic reflection coefficient and are normalized to the solid curve which is the theoretical
prediction. The dashed curve is the theoretical curve for a single-boundary SP. Reprinted
with permission from J. C. Quail, J. G. Rako, H. J. Simon and R. T. Deck, Phys. Rev. Lett.
50 1987-1989 (1983). © 1983 by the American Physical Society. [47]
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12.7 Heat assisted magnetic recording

Fig. 12.23. Two magnetic transitions representing two bits of information in a granular
magnetic recording medium. Due to the granularity of the medium, the transitions are not
precisely sharp. Transition jitter can lead to errors in the recovered data. By making the
grains smaller, the transitions become smoother and their location becomes more precise.

Recording layer
Epitaxial layer

Heat sink

Fig. 12.24. lllustration of the "lollipop" SP NFT adjacent to the recording medium for HAMR.
The disk of the NFT is about 200 nm in diameter, the peg is 50 nm wide and 15 nm long, and
the NFT is about 25 nm thick. The recording medium consists of a thin film of a high coerciv-
ity FePt alloy grown epitaxially on a substrate that also acts as a heat sink. The gap between
the bottom of the NFT and the the recording layer is <15 nm. [53]
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Fig. 12.25. Fraction of the optical power that is focused onto the NFT that is coupled into a
70 by 70 nm? region in the recording layer below the NFT as a function of wavelength.

Courtesy A. Itagi and Seagate Technology. [53]
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Fig. 12.26. |E|? field intensity around the lollipop transducer at resonance as computed by

FDTD. Courtesy A. Itagi and Seagate Technology. [53]
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Fig. 12.27. Magnetic force microscope image of a track recorded on an FePt medium by
HAMR. The full width at half maximum of the track was ~75 nm. The scale bar is 300 nm.

Courtesy Seagate Technology. [53]

12.8 Nanophotonics

12.8.2 SP focusing

Fig. 12.28. SPs propagating on a gold film have been launched by edge coupling around the
circumference. The incident beam is linearly polarized. The SP focusing is observable from
the top edge down to the center of the sample by coating the gold with a thin layer of PMMA
and illuminating the sample at a wavelength of 9.55 um with sufficient power to heat the
plastic and deform it. Used by permission of Blackwell Publishing Ltd. [60]
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Fig. 12.29. Diagram of a structured thin film device for focusing SPs. The substrate is a
transparent dielectric like glass. It is coated with a thin film of a plasmonic metal like gold.
Light is incident from below along the red arrows through a prism in the Kretschmann configu-
ration and excites a propagating SP indicated by the wavy line on the top surface of the
metal film. When the propagating SP reaches the curved high index dielectric, its effective
index increases. Therefore, the SP is refracted towards a focus.
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Fig. 12.30. SP wavevector on a gold surface at a wavelength of 800 nm as a function of the
refractive index, n, of the dielectric on top of the gold. (Mathematica simulation.)
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Fig. 12.31. SPs propagating down a sharp silver needle with a cone angle of 0.04 rad can
generate electric field amplitudes that are three orders of magnitude greater than the incident
field. x and z scales are in units of reduced wavelength so that the cone in reality tapers
from 50 nm to 2 nm. The free space wavelength is 630 nm. (a) Geometry of the needle and
(b) the electric field intensity |E|? in cross section. Reprinted with permission from M. Stock-
man, Phys. Rev. Lett. 93 137404 (2004). © 2004 by the American Physical Society. [63]

12.8.3 SP channeling
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Fig. 12.32. SPs propagating down gold channel waveguide with a width of 2.5 um. The
incident laser wavelength is 800 nm. Reprinted by permission from Macmillan Publishers
Ltd: Nature [59] © 2003.



Chapter 12.nb | 17

12.8.4 Single holes and beaming
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Fig. 12.33. (a) A 200 nm diameter hole in a 270 nm thick suspended silver film. Transmissiv-
ity spectrum for white light exhibitting a resonant enhancment at ~700 nm not predicted from
Bethe's theory. Reprinted by permission from Macmillan Publishers Ltd: Nature [64], ©
2007.
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Fig. 12.34. Numerical calculation of transmission efficiency through a 100 nm hole in a 100
nm thick film of silver. Reprinted from Opt. Commun., 195, R. Wannemacher, "Plasmon-
supported transmisson of light through nanometric holes in metallic thin films,” 107. © 2001,
with permission from Elsevier. [69]



18 | Chapter 12.nb

Intensity (a.u.)

0 5 10 15 20 25 30
Angle (deg)

(a) (b)

Fig. 12.35. (a) A single hole is surrounded by concentric grooves in a silver film. The hole
diameter is 250 nm. The groove depth is 60 nm in a 300 nm thick film and the groove period
is 500 nm. (b) Intensity of transmitted light as a function of angle at the peak transmission
wavelength of 660 nm. From H. J. Lezec et al., Science 297 (2002) 820. Reprinted with
permission from AAAS. [70]

12.8.5 Holearrays
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Fig. 12.36. Arrays of 170 nm holes in a triangular lattice with a 520 nm period in a 225 nm
thick gold film. The substrate is glass and index matching fluid is placed on the other side of
the film. The transmissivity spectrum at normal incidence indicates that at A~800 nm nearly
three times as much light is transmitted as is incident upon the open area of the holes. The
scale on the right side of the graph is absolute transmission. Reprinted by permission from
Macmillan Publishers Ltd: Nature [64], © 2007.
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Fig. 12.37. Arrays of dimples in a silver film. On the left, the dimples have a period of 550
nm. On the right the period is 450 nm. Some of the dimples are milled through to make
holes. When illuminated with white light, the period of the dimples makes the transmitted
light red for "h" and green for "v" as shown in the upper right inset (color in CD version).
Reprinted by permission from Macmillan Publishers Ltd: Nature [64], © 2007.

12.8.6 SP interference

Fig. 12.38. Interference between SPs launched by light incident upon two 200 nm diameter
silver nanoparticles, 60 nm high, at the center of the image. Light at a wavelength of 750 nm
was focused onto the nanoparicles through a 50x microscope objective and polarized as
shown in the figure. The particles lie on top of a silver surface which has been coated with a
thin fluorescent layer to make the propagation of the SPs visible. Used by permission of
Blackwell Publishing Ltd. [72]
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Fig. 12.39. (a) Light is focused onto a nanowire at the position of the circle. Light propa-
gates both to the left and right. On the right, five rows of silver nanobumps form a Bragg
reflector as shown in the inset. (b) The SPs propagating to left and right and SP reflection on
the right by the mirror are clearly visible. Reprinted with permission from H. Ditlbacher, J. R.
Krenn, G. Schider, A. Leitner and F. R. Aussenegg. Appl. Phys. Lett. 81 #10, 1762 (2002). ©
2002, American Institute of Physics. [73]

Fig. 12.40. (a) As in Fig. 12.39, light is focused onto a nanowire at the position of the circle.
The light which propagates to the right is reflected by the Bragg reflector and is incident upon
a single row of vertical silver nanobumps as shown in the inset where it is split into two
beams. (b) The SP propagation is made visible by the fluorescent overcoat. Both the
reflected and transmitted beam are visible at the beamsplitter. Reprinted with permission
from H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner and F. R. Aussenegg. Appl. Phys.
Lett. 81 #10, 1762 (2002). © 2002, American Institute of Physics. [73]



Chapter 12.nb | 21
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Fig. 12.41. Both SP beams are reflected to the beamsplitter. In (a) the path lengths are
adjusted so that the SP beams constructively interfere at the beamsplitter for the beam
propagating to the left while in (b) the beams constructively intefere to the right side of the
beamsplitter. Reprinted with permission from H. Ditlbacher, J. R. Krenn, G. Schider, A.
Leitner and F. R. Aussenegg. Appl. Phys. Lett. 81 #10, 1762 (2002). © 2002, American
Institute of Physics. [73]

12.8.7 SP lasers

Fig. 12.42. Film structure that exhibited spectral line narrowing. The bottom blue layer is
aluminum. The yellow layer is anodized aluminum oxide. Flourescein is placed within the
holes, and the structure is overcoated with graphene. Used by permission. [74]
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Fig. 12.43. Film structure that exhibited spectral line narrowing. The glass prism had an
index of 1.7835. The silver film was 39 - 81 nm thick. This was coated with 1 to 3 um of
polymethyl methacrylate doped with rhodamine 6G at 2.2 x 1072 M. Reprinted with permis-
sion from M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova and V. A. Podolskiy,
Phys. Rev. Lett. 101 226806 (2008). © 2008 by the American Physical Society. [75]
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Fig. 12.44. Spectral narrowing in the light emission from SPs as seen from a low pump
fluence (10.9 mJ/cmZ) and a high pump fluence (81.9 mJ/cmz). Reprinted with permission

from M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova and V. A. Podolskiy, Phys.
Rev. Lett. 101 226806 (2008). © 2008 by the American Physical Society. [75]
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12.9 Cancer detection and treatment

silica

tissue

Fig. 12.45. Schematic of gold nanoshell embedded in tissue. In the study [78], the core
diameter was 110 + 11 nm and the shell thickness was 10 nm. The peak absorbance was at
820 nm.

Laser only Nanoshells + Laser

. B

Calcein AM

Fig. 12.46. (a) Cells without nanoshells irradiated with laser light. The image is from calcein
fluorescence and is a sign that the cells are still viable. (b) Cells with nanoshells irradiated
with laser light. A clear region is visible where the cells have died. Used by permission from
L. R. Hirsch et al. Proc. Nat. Acad. Sci. 100 (2003) 13549. © 2003 National Academy of
Sciences, U.S.A. [78]
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12.10 Other applications
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Fig. 12.47. (a) Optical design for a variable wavelength filter. (b) Measured transmissivity
vs. gap distance between the prisms. Reprinted with permission from Y. Wang. Appl. Phys.
Lett. 82 #24, 4385 (2003) © 2003, American Institute of Physics. [79]
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Fig. 12.48. Optical principle of the SP effect in holography. Used by permission. [80]
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Fig. 12.49. "October, the Labours of the Months” stained glass window from Norwich,

England, ca. 1480. © Victoria and Albert Museu
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Fig. 12.50. Design for a liquid crystal and SP
(81]
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spatial light modulator. Used by permission.
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Fig. 12.51. Design for an electro-optic SP light modulator. Used by permission. [82]

Exercises

1. For a biosensor in the Kretschmann configuration with a gold sensing surface
immersed in water (n = 1.33) at a wavelength of 830 nm, how much will the SP reso-
nance angle shift when the local refractive index changesby 1 x 10777

08:\ -]
| : \ // 1
0.6/ |
=\ / |
04! // ,
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6(°)

The minimum reflectivity angle of the resonance shifts from {67.32, 0.0209984} to
{68.43, 0.018929} or 0.11° for An=0.01. An index change of 10~' should therefore
give aresonance angle shift of ~107® degrees.

2. Using Mie theory, verify the statement in the text that the resonance wavelength
shifts by about 200 nm per unit change in refractive index for silver nanoparticles in
water (n = 1.33).
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The resonance wavelength shifts from {0.41, 10.7236} to {0.427, 11.9139}, so AA=17
nm for An=0.1.

3. Compare the measured transmissivity spectrum in Fig. 12.12 for an optical fiber
sensor with the theoretical reflectivity spectrum in the Kretschmann configuration.
Assume that the silver film on the glass prism is 50 nm thick and that the angle of
incidence is fixed at 75°. Compare both the linewidth of the resonance and the wave-
length shift. Which type of SPR sensor islikely to be more sensitive and why?
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The Kretschmann configuration has both a narrower linewidth and a larger wavelength
shift, so it will be more sensitive than the SPR optical fiber sensor. This is because the
incident beam in the Kretschmann configuration is assumed to be at a single angle,

while in the optical fiber the light incident upon the gold film from inside the core has a
broader range of angles or wavevectors.
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4. If the dielectric below a 50 nm metal film in the Kretschmann configuration is water
with a refractive index of 1.33 instead of air, at what angle of incidence does the SP
resonance occur for silver and gold at a wavelength of 800 nm? Is the field amplitude
at the surface of the silver film larger with water in place of air, or smaller? Does the
field penetrate further into an air dielectric or awater dielectric?
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Exercise 4a. Reflectivity vs. polar angle for 50 nm silver and gold films in the Kretschmann
configuration at A = 800 nm.
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Exercise 4b: Field amplitudes vs. distance from the surface of a silver film in air and water.
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