Chapter 8: Reasoning with Knowledge

Ajay Kshemkalyani and Mukesh Singhal

Distributed Computing: Principles, Algorithms, and Systems

Cambridge University Press

1 / 29

- n children, all intelligent, can see others but not their own faces
- $k \leq n$ have mud on their forehead

- Father then repeatedly asks (i.e., broadcasts) in rounds (to model synchronous operation) to the assembled children:
 - Do you have mud on your forehead?
- How does each child respond in each round, $r=1,2,\ldots k-1,k,k+1,\ldots n,n+1,\ldots ?$ An answer is "broadcast" in that round.
- Let c = clean child, d = dirty child

- k=0: contradicts ψ
- k = 1: In r = 1, the d answers "Yes" For r = 2, the c answer "No".
- k = 2: In r = 1, no responses. In r = 2, both d answer "Yes" In r = 3, the c answer "No"
- k = 3: In r = 1, 2, no responses. In r = 3, the 3 d answer "Yes". In r = 4, the n - 3 c answer "No".
- $k \le n$: In r < k, no responses. In r = k, the k d answer "Yes". In r = k + 1, the n - k c answer "No

- n children, all intelligent, can see others but not their own faces
- $k \leq n$ have mud on their forehead

- Father then repeatedly asks (i.e., broadcasts) in rounds (to model synchronous operation) to the assembled children:
 - Do you have mud on your forehead?
- How does each child respond in each round,
 r = 1, 2, ... k 1, k, k + 1, ... n, n + 1, ...?
 An answer is "broadcast" in that round.
- Let c = clean child, d= dirty child

- k = 0: contradicts ψ
- k = 1: In r = 1, the d answers "Yes" For r = 2, the c answer "No".
- k = 2: In r = 1, no responses. In r = 2, both d answer "Yes" In r = 3, the c answer "No"
- k = 3: In r = 1, 2, no responses. In r = 3, the 3 d answer "Yes". In r = 4, the n - 3 c answer "No".
- $k \le n$: In r < k, no responses. In r = k, the k d answer "Yes". In r = k + 1, the n - k c answer "No"

- n children, all intelligent, can see others but not their own faces
- $k \leq n$ have mud on their forehead

- Father then repeatedly asks (i.e., broadcasts) in rounds (to model synchronous operation) to the assembled children:
 - Do you have mud on your forehead?
- How does each child respond in each round,
 r = 1, 2, ... k 1, k, k + 1, ... n, n + 1, ...?
 An answer is "broadcast" in that round.
- Let c = clean child, d= dirty child

- k = 0: contradicts ψ
- k = 1: In r = 1, the d answers "Yes" For r = 2, the c answer "No".
- k = 2: In r = 1, no responses.
 In r = 2, both d answer "Yes".
 In r = 3, the c answer "No"
- k = 3: In r = 1, 2, no responses.
 In r = 3, the 3 d answer "Yes".
 In r = 4, the n 3 c answer "No".
- $k \le n$: In r < k, no responses. In r = k, the k d answer "Yes". In r = k + 1, the n - k c answer "No"

- n children, all intelligent, can see others but not their own faces
- $k \leq n$ have mud on their forehead

- Father then repeatedly asks (i.e., broadcasts) in rounds (to model synchronous operation) to the assembled children:
 - Do you have mud on your forehead?
- How does each child respond in each round,
 r = 1, 2, ... k 1, k, k + 1, ... n, n + 1, ...?
 An answer is "broadcast" in that round.
- Let c = clean child, d = dirty child

- k = 0: contradicts ψ
- k = 1: In r = 1, the d answers "Yes". For r = 2, the c answer "No".
- k = 2: In r = 1, no responses.
 In r = 2, both d answer "Yes".
 In r = 3, the c answer "No"
- k = 3: In r = 1, 2, no responses. In r = 3, the 3 d answer "Yes". In r = 4, the n - 3 c answer "No"
- $k \le n$: In r < k, no responses. In r = k, the k d answer "Yes". In r = k + 1 the n - k c answer "No"

- n children, all intelligent, can see others but not their own faces
- $k \leq n$ have mud on their forehead

- Father then repeatedly asks (i.e., broadcasts) in rounds (to model synchronous operation) to the assembled children:
 - Do you have mud on your forehead?
- How does each child respond in each round,
 r = 1, 2, ... k 1, k, k + 1, ... n, n + 1, ...?
 An answer is "broadcast" in that round.
- Let c = clean child, d = dirty child

- k = 0: contradicts ψ
- k = 1: In r = 1, the d answers "Yes". For r = 2, the c answer "No".
- k = 2: In r = 1, no responses. In r = 2, both d answer "Yes". In r = 3, the c answer "No"
- k = 3: In r = 1, 2, no responses.
 In r = 3, the 3 d answer "Yes".
 In r = 4, the n 3 c answer "No".
- $k \le n$: In r < k, no responses. In r = k, the k d answer "Yes". In r = k + 1, the n - k c answer "No"

- n children, all intelligent, can see others but not their own faces
- $k \leq n$ have mud on their forehead

- Father then repeatedly asks (i.e., broadcasts) in rounds (to model synchronous operation) to the assembled children:
 - Do you have mud on your forehead?
- How does each child respond in each round,
 r = 1, 2, ... k 1, k, k + 1, ... n, n + 1, ...?
 An answer is "broadcast" in that round.
- Let c = clean child, d = dirty child

- k = 0: contradicts ψ
- k = 1: In r = 1, the d answers "Yes". For r = 2, the c answer "No".
- k = 2: In r = 1, no responses. In r = 2, both d answer "Yes". In r = 3, the c answer "No"
- k = 3: In r = 1,2, no responses.
 In r = 3, the 3 d answer "Yes".
 In r = 4, the n 3 c answer "No".
- $k \le n$: In r < k, no responses. In r = k, the k d answer "Yes". In r = k + 1, the n - k c answer "No"

- n children, all intelligent, can see others but not their own faces
- $k \leq n$ have mud on their forehead

- Father then repeatedly asks (i.e., broadcasts) in rounds (to model synchronous operation) to the assembled children:
 - Do you have mud on your forehead?
- How does each child respond in each round,
 r = 1, 2, ... k 1, k, k + 1, ... n, n + 1, ...?
 An answer is "broadcast" in that round.
- Let c = clean child, d = dirty child

- k = 0: contradicts ψ
- k = 1: In r = 1, the d answers "Yes". For r = 2, the c answer "No".
- k = 2: In r = 1, no responses. In r = 2, both d answer "Yes". In r = 3, the c answer "No"
- k = 3: In r = 1, 2, no responses. In r = 3, the 3 d answer "Yes". In r = 4, the n - 3 c answer "No".
- $k \le n$: In r < k, no responses. In r = k, the k d answer "Yes". In r = k + 1, the n - k c answer "No".

Muddy Children Puzzle: Scenario A Proof

First k-1 times the father asks "Do you have mud on your forehead?", all say "No".

kth time: the k muddy children say "Yes"

Proof by induction

- k=1: The muddy child, seeing no other muddy child, and knowing ψ , can answer "Yes"
- k = 2: The first round, neither answers "Yes". d1 concludes that were he clean, d2 would have answered "Yes"
 - $\Rightarrow d1$ must be muddy.
 - \Rightarrow In round 2. d1 answers "Yes" (likewise reasoning for d2)
- k = x: Assume hypothesis is true.
- k = x + 1: Each muddy child reasons as follows. "If there were x muddy children, then they would all have answered 'Yes' when the question is asked for the x^{th} time. As that did not happen, there must be more than x muddy children. As I can see only x other muddy children, I myself

must also be muddy. So I will answer 'Yes' when the question

4 □ > 4 □ > 4 ≧ > 4 ≧ >

- n children, all intelligent, can see others but not their own faces
- $k \leq n$ have mud on their forehead

Scenario B: Father does not say ψ

- Father then repeatedly asks (i.e., broadcasts) in rounds (to model synchronous operation) to the assembled children:
 - Do you have mud on your forehead?
- How does each child respond in each round, $r=1,2,\ldots k-1,k,k+1,\ldots n,n+1,\ldots$?
 An answer is "broadcast" in that round.
- Let c = clean child, d = dirty child

- k = 0: $\forall r$, no child answers "Yes"
- k = 1: In r = 1, no child (c and d) answers "Yes".
 In r > 1, no child (c and d) answers "Yes"
- k = 2: In r = 1,2, no child (c and d) answers "Yes".
 In r > 2, no child (c and d) answers "Yes
- k = 3: In r = 1, 2, 3, no child (c and d) answers "Yes".
- in 7 > 0, no cinia (e ana a) answere

CUP 2008

- n children, all intelligent, can see others but not their own faces
- $k \leq n$ have mud on their forehead

- Father then repeatedly asks (i.e., broadcasts) in rounds (to model synchronous operation) to the assembled children:
 - Do you have mud on your forehead?
- How does each child respond in each round, r = 1, 2, ... k - 1, k, k + 1, ... n, n + 1, ...? An answer is "broadcast" in that round.
- Let c = clean child, d = dirty child

- k = 0: $\forall r$, no child answers "Yes"
- k = 1: In r = 1, no child (c and d) answers "Yes".
 In r > 1, no child (c and d) answers "Ye
- k = 2: In r = 1, 2, no child (c and d) answers "Yes".
- In r > 2, no child (c and d) answers "Yes
- answers "Yes".

 In x > 2, no child (c and d) answers "Yes".
- k < n: $\forall r$, no child answers "Yes"

- n children, all intelligent, can see others but not their own faces
- $k \leq n$ have mud on their forehead

- Father then repeatedly asks (i.e., broadcasts) in rounds (to model synchronous operation) to the assembled children:
 - Do you have mud on your forehead?
- How does each child respond in each round, r = 1, 2, ... k - 1, k, k + 1, ... n, n + 1, ...? An answer is "broadcast" in that round.
- Let c = clean child, d = dirty child

- k = 0: $\forall r$, no child answers "Yes"
- k = 1: In r = 1, no child (c and d) answers "Yes". In r > 1, no child (c and d) answers "Yes"
- k=2: In r=1,2, no child (c and d) answers "Yes". In r>2, no child (c and d) answers "Yes"
- k = 3: In r = 1,2,3, no child (c and d) answers "Yes".
- k < n: $\forall r$, no child answers "Yes"

- n children, all intelligent, can see others but not their own faces
- $k \leq n$ have mud on their forehead

- Father then repeatedly asks (i.e., broadcasts) in rounds (to model synchronous operation) to the assembled children:
 - Do you have mud on your forehead?
- How does each child respond in each round, r = 1, 2, ... k - 1, k, k + 1, ... n, n + 1, ...? An answer is "broadcast" in that round.
- Let c = clean child, d= dirty child

- k = 0: $\forall r$, no child answers "Yes"
- k = 1: In r = 1, no child (c and d) answers "Yes".
 In r > 1, no child (c and d) answers "Yes".
- k = 2: In r = 1,2, no child (c and d) answers "Yes".
 In r > 2, no child (c and d) answers "Yes"
- k = 3: In r = 1,2,3, no child (c and d) answers "Yes".
 In r > 3, no child (c and d) answers "Yes"
- $k \le n$: $\forall r$, no child answers "Yes"

- n children, all intelligent, can see others but not their own faces
- $k \leq n$ have mud on their forehead

- Father then repeatedly asks (i.e., broadcasts) in rounds (to model synchronous operation) to the assembled children:
 - Do you have mud on your forehead?
- How does each child respond in each round,
 r = 1, 2, ... k 1, k, k + 1, ... n, n + 1, ...?
 An answer is "broadcast" in that round.
- Let c = clean child, d = dirty child

- k = 0: $\forall r$, no child answers "Yes"
- k = 1: In r = 1, no child (c and d) answers "Yes".
 In r > 1, no child (c and d) answers "Yes".
- k = 2: In r = 1,2, no child (c and d) answers "Yes".
 In r > 2, no child (c and d) answers "Yes".
- k = 3: In r = 1,2,3, no child (c and d) answers "Yes".
 In r > 3, no child (c and d) answers "Yes"
- $k \leq n$: $\forall r$, no child answers "Yes"

- n children, all intelligent, can see others but not their own faces
- $k \leq n$ have mud on their forehead

- Father then repeatedly asks (i.e., broadcasts) in rounds (to model synchronous operation) to the assembled children:
 - Do you have mud on your forehead?
- How does each child respond in each round,
 r = 1, 2, ... k 1, k, k + 1, ... n, n + 1, ...?
 An answer is "broadcast" in that round.
- Let c = clean child, d = dirty child

- k = 0: $\forall r$, no child answers "Yes"
- k = 1: In r = 1, no child (c and d) answers "Yes".
 In r > 1, no child (c and d) answers "Yes".
- k = 2: In r = 1,2, no child (c and d) answers "Yes".
 In r > 2, no child (c and d) answers "Yes".
- k = 3: In r = 1,2,3, no child (c and d) answers "Yes".
 In r > 3, no child (c and d) answers "Yes".
- $k \le n$: $\forall r$, no child answers "Yes"

- n children, all intelligent, can see others but not their own faces
- $k \leq n$ have mud on their forehead

Scenario B: Father does $\underline{\mathsf{not}}$ say ψ .

- Father then repeatedly asks (i.e., broadcasts) in rounds (to model synchronous operation) to the assembled children:
 - Do you have mud on your forehead?
- How does each child respond in each round,
 r = 1, 2, ... k 1, k, k + 1, ... n, n + 1, ...?
 An answer is "broadcast" in that round.
- Let c = clean child, d = dirty child

- k = 0: $\forall r$, no child answers "Yes"
- k = 1: In r = 1, no child (c and d) answers "Yes".
 In r > 1, no child (c and d) answers "Yes".
- k = 2: In r = 1,2, no child (c and d) answers "Yes".
 In r > 2, no child (c and d) answers "Yes".
- k = 3: In r = 1,2,3, no child (c and d) answers "Yes".
 In r > 3, no child (c and d) answers "Yes".
- $k \le n$: $\forall r$, no child answers "Yes"

4 / 29

Muddy Children Puzzle: Scenario B Proof

Every time the father asks "Do you have mud on your forehead?", all say "No". Proof by induction on # times q the father asks the question.

- q = 1: each child answers "No" because he cannot distinguish the two cases: he has and does not have mud on his forehead.
- q = x: Assume hypothesis is true.
- q = x + 1: the situation is unchanged because each child has no further knowledge to distinguish the two cases.

Why is Scenario B different from A?

- A: Father announcing ϕ introduces "common knowledge" of ψ , i.e., everyone knows everyone knows ... (infinitely often) everyone knows ψ is true This allows children to reason and reach correct answer.
- B: Father does not announce ϕ . No common knowledge of ψ . Children have no basis to start their reasoning process.

5 / 29

Logic of Knowledge

- Identify set of possible worlds (possible universes) and relationships between them
- At a process (in any global state): possible worlds are the global states which the process thinks consistent with its local state
- ullet States expressible as logical formulae over facts ϕ
 - ▶ primitive proposition or formula including \land, \lor, \lnot , knowledge operator K, everybody knows operator E
 - $K_i(\phi)$: process P_i knows ϕ
 - $ightharpoonup E_i^1(\phi) = \bigwedge_{i \in N} K_i(\phi)$, every process knows ϕ
 - $ightharpoonup E^2(\phi) = E(E^1(\phi))$, i.e., every process knows $E^1(\phi)$.
 - $E^k(\phi) = E^{k-1} (E^1(\phi))$ for k > 1.
- hierarchy of levels of knowledge $E^j(\phi)$ $(j \in Z*)$, where Z* is $\{0,1,2,3,\ldots\}$.
- $E^{k+1}(\phi) \Longrightarrow E^k(\phi)$.
- Common knowledge $C(\phi)$: a state of knowledge X satisfying $X = E(\phi \wedge X)$. Captures notion of agreement.
- $C(\phi) \Longrightarrow \bigwedge_{i \in Z_*} E^j(\phi)$.

Muddy Children Puzzle: Using Knowledge

- Each child sees at least k-1 muddy children $\Longrightarrow E^{k-1}(\psi)$
- A muddy child does not see k muddy children $\Longrightarrow \neg E^k(\psi)$
- Above is Scenario B. $E^{k-1}(\psi)$ not adequate for muddy children to ever answer "Yes"
- To answer "Yes," $E^k(\Psi)$ is required so that the children can progressively reason and answer correctly in the k^{th} round.
- In Scenario A: Father announcing ψ provided $C(\psi)$ which implied $E^k(\Psi)$

7 / 29

Kripke Structures (informal)

Labeled graph with labeled nodes

- set of nodes is the set of states
- label of a node s: set of propositions that are true and false at s
- label of edge (s, t): ID of each process that cannot distinguish between s and
- Assume bidirectional edges and reflexive graph

Reachability of states

- **3** State t is reachable from state s in k steps if there exist states s_0, s_1, \ldots, s_k such that $s_0 = s$, $s_k = t$, and for all $j \in [0, k-1]$, there exists some P_i such that $(s_j, s_{j+1}) \in \mathcal{K}_i$.
- ② State t is reachable from state s if t is reachable from s in k steps, for some k > 1.

Muddy Children Puzzle: Using Kripke Structures

Assume n = 3, k = 2, actual state is (1, 1, 0)

- $(1,1,0) \models \neg E^2(\psi)$ because world (0,0,0) is 2-reachable and ψ is false here
 - ► Child 2 believes (1,0,0) possible; here child 1 believes (0,0,0) possible
- $E^{k-1}(\psi)$ is true: each world reachable in k-1 hops has at least one '1'
- $E^k(\psi)$ is false: world (0, ... 0) reachable in k hops

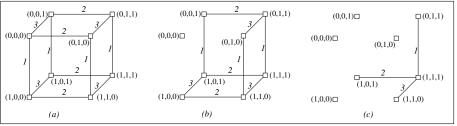


Fig 6.2: (a) Kripke structure. (b) After father announces ψ (Scenario A) (c) After round one (Scenario A)

Father announces ψ means common knowledge that 1 child has mud on his face

- $\bullet \implies$ delete all edges connecting (0,0,0) (change in group knowledge)
- After round 1 where all children say "No": all edges to all possible worlds with a single '1' get deleted
 - if there were a single muddy child, he would have answered "Yes" in round 1
 - now common knowledge that > 2 muddy children
- After round x where all children say "No": all edges to all possible worlds with $\langle x' \rangle$ '1's get deleted
 - now common knowledge that $\geq x+1$ muddy children
- if there were x muddy children, they would have answered "Yes" in round x because they see x-1 muddy children and rule out a world in which they are clean

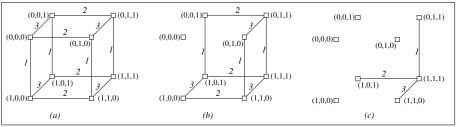


Fig 6.2: Actual state (1,0,0). (a) Kripke structure. (b) After father announces ψ_{i} (Scenario A) A. Kshemkalyani and M. Singhal (Distributed Comput

Muddy Children Puzzle: Scenarios A and B

Scenario A:

If in any iteration, it becomes common knowledge that world t is impossible, for each world s reachable from actual world r, edge (s,t) is deleted

Scenario B:

Children's state of knowledge never changes

- After the first question, each child is unsure of he is in '0' or '1' state
- This was same before the first question
- First round adds no new knowledge
- Inductively, same for subsequent rounds

No change in Kripke structure

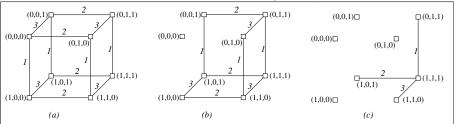


Fig 6.2: Actual state (1,0,0). (a) Kripke structure. (b) After father announces ψ (Scenario A)

(c) After round one (Scenario A)

Axioms of S5 Modal Logic

- Distribution Axiom: $K_i \psi \wedge K_i (\psi \Longrightarrow \phi) \Longrightarrow K_i \phi$
- Knowledge Axiom: $K_i\psi \Longrightarrow \psi$ If a process knows a fact, then the fact is true. If $K_i\psi$ is true in a particular state, then ψ is true in all states the process considers possible.
- Positive Introspection Axiom: $K_i \psi \Longrightarrow K_i K_i \psi$
- Negative Introspection Axiom: $\neg K_i \psi \Longrightarrow K_i \neg K_i \psi$
- Knowledge Generalization Rule: For a valid formula or fact ψ , $K_i\psi$ If ψ is true in all possible worlds, then ψ must be true in all the possible worlds with respect to any process and any given world. Assumption: a process knows all valid formulas, which are necessarily true.

Knowledge in Synchronous vs. Asynchronous Systems

Thus far, synchronous systems considered.

How to attain common knowledge in synchronous systems?

- ullet Initialize all with common knowledge of ϕ
- ullet Broadcast ϕ in a round of communication, and let all know that ϕ is being broadcast. Each process can begin supporting common knowledge from the next round.

Asynchronous system:

- possible worlds: the consistent cuts of the set of possible executions.
- Let (a, c) denote a <u>cut c</u> in <u>asynchronous execution a.</u>
- (a, c) also denotes the system state after (a, c).
- $(a, c)_i$: projection (i.e., state) of c on process i.
- Cuts c and c' are indistinguishable by process i, denoted $(a, c) \sim_i (a', c')$, if and only if $(a, c)_i = (a', c')_i$.
- The semantics of knowledge based on asynchronous executions, instead of timed executions.
- $K_i(\phi)$: ϕ is true in all possible consistent global states that include i's local state.
- Similarly for $E^k(\phi)$.

Knowledge in Asynchronous Systems: Logic, Definitions (1)

- $(a,c) \models \phi$ if and only if ϕ is true in cut c of asynchronous execution a.
- $(a,c) \models K_i(\phi)$ if and only if $\forall (a',c'), ((a',c') \sim_i (a,c) \Longrightarrow (a',c') \models \phi)$
- $(a,c) \models E^0(\phi)$ if and only if $(a,c) \models \phi$
- $(a,c) \models E^1(\phi)$ if and only if $(a,c) \models \bigwedge_{i \in N} K_i(\phi)$
- $(a,c) \models E^{k+1}(\phi)$ for $k \ge 1$ if and only if $(a,c) \models \bigwedge_{i \in N} K_i(E^k(\phi))$, for $k \ge 1$
- $(a,c) \models C(\phi)$ if and only if $(a,c) \models$ the greatest fixed point knowledge X satisfying $X = E(X \wedge \phi)$. $C(\phi)$ implies $\wedge_{k \in \mathbb{Z}_*} E^k(\phi)$.

Knowledge in Asynchronous Systems: Logic, Definitions (2)

- "i knows ϕ in state s_i^x ", denoted $s_i^x \models \phi$, is shorthand for $(\forall (a, c))$ $((a, c)_i = s_i^x \Longrightarrow (a, c) \models \phi)$.
- $s_i^x \models K_i(\phi)$ is shorthand for $(\forall (a,c)) \ ((a,c)_i = s_i^x \Longrightarrow (a,c) \models K_i(\phi))$.
- Learning: Process i learns ϕ in state s_i^x of execution a if i knows ϕ in s_i^x and, for all states s_i^y in execution a such that y < x, i does not know ϕ .
- i attains ϕ : process learns ϕ in the present or an earlier state.
- ϕ is attained in an execution $a: \exists c, (a, c) \models \phi$
- Local fact: ϕ is *local* to process i in system A if $A \models (\phi \Longrightarrow K_i \phi)$ e.g., local state, clock value of a process, local component of vector clock
- Global fact: A fact that is not local, e.g., global state, timestamp of a cut

Reaching consensus over ϕ requires common knowledge of ϕ

Impossibility Result

There does not exist any protocol for two processes to reach common knowledge about a binary value in an asynchronous message-passing system with unreliable communication.

- Justify: P_i and P_j need to send each other ACKs ... nonterminating argument
- or Let there be a *minimal* protocol that has k msgs. Then the kth msg is redundant \Rightarrow contradiction

Is common knowledge attainable in the async system with reliable communication without an upper bound on message transmission times?

No. construct a similar argument

Is common knowledge attainable in the async system with reliable communication with an upper bound on message transmission times?

● No, for when does a process begin supporting that knowledge?

Reaching consensus over ϕ requires common knowledge of ϕ

Impossibility Result

There does not exist any protocol for two processes to reach common knowledge about a binary value in an asynchronous message-passing system with unreliable communication.

- Justify: P_i and P_j need to send each other ACKs ... nonterminating argument
- or Let there be a *minimal* protocol that has k msgs. Then the kth msg is redundant \Rightarrow contradiction

Is common knowledge attainable in the async system with reliable communication without an upper bound on message transmission times?

No. construct a similar argument

Is common knowledge attainable in the async system with reliable communication with an upper bound on message transmission times?

• No, for when does a process begin supporting that knowledge?

Reaching consensus over ϕ requires common knowledge of ϕ

Impossibility Result

There does not exist any protocol for two processes to reach common knowledge about a binary value in an asynchronous message-passing system with unreliable communication.

- Justify: P_i and P_j need to send each other ACKs ... nonterminating argument
- or Let there be a *minimal* protocol that has k msgs. Then the kth msg is redundant \Rightarrow contradiction

Is common knowledge attainable in the async system with reliable communication without an upper bound on message transmission times?

No. construct a similar argument

Is common knowledge attainable in the async system with reliable communication with an upper bound on message transmission times?

• No, for when does a process begin supporting that knowledge?

Reaching consensus over ϕ requires common knowledge of ϕ

Impossibility Result

There does not exist any protocol for two processes to reach common knowledge about a binary value in an asynchronous message-passing system with unreliable communication.

- Justify: P_i and P_j need to send each other ACKs ... nonterminating argument
- or Let there be a *minimal* protocol that has k msgs. Then the kth msg is redundant \Rightarrow contradiction

Is common knowledge attainable in the async system with reliable communication without an upper bound on message transmission times?

• No. construct a similar argument

Is common knowledge attainable in the async system with reliable communication with an upper bound on message transmission times?

No, for when does a process begin supporting that knowledge?

Reaching consensus over ϕ requires common knowledge of ϕ

Impossibility Result

There does not exist any protocol for two processes to reach common knowledge about a binary value in an asynchronous message-passing system with unreliable communication.

- Justify: P_i and P_j need to send each other ACKs ... nonterminating argument
- or Let there be a *minimal* protocol that has k msgs. Then the kth msg is redundant \Rightarrow contradiction

Is common knowledge attainable in the async system with reliable communication without an upper bound on message transmission times?

No. construct a similar argument

Is common knowledge attainable in the async system with reliable communication with an upper bound on message transmission times?

No, for when does a process begin supporting that knowledge?

Reaching consensus over ϕ requires common knowledge of ϕ

Impossibility Result

There does not exist any protocol for two processes to reach common knowledge about a binary value in an asynchronous message-passing system with unreliable communication.

- Justify: P_i and P_j need to send each other ACKs ... nonterminating argument
- or Let there be a *minimal* protocol that has k msgs. Then the kth msg is redundant \Rightarrow contradiction

Is common knowledge attainable in the async system with reliable communication without an upper bound on message transmission times?

No. construct a similar argument

Is common knowledge attainable in the async system with reliable communication with an upper bound on message transmission times?

• No, for when does a process begin supporting that knowledge?

Variants of Common Knowledge for Asynchronous Systems

Common knowledge requires "simultaneity of actions" across processes. Perfectly synchronized clocks not practical. But we can weaken common knowledge!

- Epsilon-common knowledge: $C^{\epsilon}(\phi)$ is the greatest fixed point of $X = E^{\epsilon}(\phi \wedge X)$
 - \triangleright E^{ϵ} denotes "everyone knows within ϵ time units"
 - Assumes timed runs
- Eventual common knowledge: $C^{\diamond}(\phi)$ is the greatest fixed point of $X = E^{\diamond}(\phi \wedge X)$
 - E[◊] denotes "everyone will eventually know (at some point in their execution)"
 - reach agreement at some (not necessarily consistent) global state
- Timestamped common knowledge: $C'(\phi)$ is the greatest fixed point of $X = E'(\phi \wedge X)$
 - processes reach agreement at local states having the same local clock value
 - It is applicable to asynchronous systems
 - ▶ $E^T(\phi) = \wedge_i K_i^T(\phi)$, where $K_i^T(\phi)$: process i knows ϕ at local clock value T
- Concurrent common knowledge C^{*}(φ): processes reach agreement at local states that belong to a consistent cut. When P_I attains C^C(φ), it also knows that each other process P_J has also attained the same concurrent common knowledge in its local state which is consistent with P_I's local state.
 - Most widely used weakening of common knowledge; studied next

Variants of Common Knowledge for Asynchronous Systems

Common knowledge requires "simultaneity of actions" across processes. Perfectly synchronized clocks not practical. But we can weaken common knowledge!

- Epsilon-common knowledge: $C^{\epsilon}(\phi)$ is the greatest fixed point of $X = E^{\epsilon}(\phi \wedge X)$
 - E^{ϵ} denotes "everyone knows within ϵ time units"
 - Assumes timed runs
- Eventual common knowledge: $C^{\diamond}(\phi)$ is the greatest fixed point of $X = E^{\diamond}(\phi \wedge X)$
 - E° denotes "everyone will eventually know (at some point in their execution)"
 - reach agreement at some (not necessarily consistent) global state
- Timestamped common knowledge: $C'(\phi)$ is the greatest fixed point of $X = E'(\phi \wedge X)$
 - processes reach agreement at local states having the same local clock value
 - It is applicable to asynchronous systems
 - $E'(\phi) = \wedge_i K_i'(\phi)$, where $K_i'(\phi)$: process i knows ϕ at local clock value T
- Concurrent common knowledge $C^{C}(\phi)$: processes reach agreement at local states that belong to a consistent cut. When P_i attains $C^{C}(\phi)$, it also knows that each other process P_j has also attained the same concurrent common knowledge in its local state which is consistent with P_i 's local state.
 - Most widely used weakening of common knowledge; studied next

Variants of Common Knowledge for Asynchronous Systems

Common knowledge requires "simultaneity of actions" across processes. Perfectly synchronized clocks not practical. But we can weaken common knowledge!

- ullet Epsilon-common knowledge: $C^\epsilon(\phi)$ is the greatest fixed point of $X=E^\epsilon(\phi\wedge X)$
 - E^{ϵ} denotes "everyone knows within ϵ time units"
 - Assumes timed runs
- ullet Eventual common knowledge: $C^{\diamond}(\phi)$ is the greatest fixed point of $X=E^{\diamond}(\phi\wedge X)$
 - ► E[◊] denotes "everyone will eventually know (at some point in their execution)"
 - reach agreement at some (not necessarily consistent) global state
- Timestamped common knowledge: $C^T(\phi)$ is the greatest fixed point of $X = E^T(\phi \wedge X)$
 - processes reach agreement at local states having the same local clock value
 - It is applicable to asynchronous systems
 - $\blacktriangleright E^T(\phi) = \wedge_i K_i^T(\phi)$, where $K_i^T(\phi)$: process i knows ϕ at local clock value T
- Concurrent common knowledge C^C(φ): processes reach agreement at local states that belong to a consistent cut. When P_i attains C^C(φ), it also knows that each other process P_j has also attained the same concurrent common knowledge in its local state which is consistent with P_i's local state.
 - Most widely used weakening of common knowledge; studied next

Variants of Common Knowledge for Asynchronous Systems

Common knowledge requires "simultaneity of actions" across processes. Perfectly synchronized clocks not practical. But we can weaken common knowledge!

- ullet Epsilon-common knowledge: $C^\epsilon(\phi)$ is the greatest fixed point of $X=E^\epsilon(\phi\wedge X)$
 - E^{ϵ} denotes "everyone knows within ϵ time units"
 - Assumes timed runs
- ullet Eventual common knowledge: $C^{\diamond}(\phi)$ is the greatest fixed point of $X=E^{\diamond}(\phi\wedge X)$
 - \triangleright E^{\diamond} denotes "everyone will eventually know (at some point in their execution)"
 - ► reach agreement at some (not necessarily consistent) global state
- Timestamped common knowledge: $C^T(\phi)$ is the greatest fixed point of $X = E^T(\phi \wedge X)$
 - processes reach agreement at local states having the same local clock value.
 - ▶ It is applicable to asynchronous systems
 - ▶ $E^T(\phi) = \wedge_i K_i^T(\phi)$, where $K_i^T(\phi)$: process i knows ϕ at local clock value T
- Concurrent common knowledge $C^{c}(\phi)$: processes reach agreement at local states that belong to a consistent cut. When P_{i} attains $C^{c}(\phi)$, it also knows that each other process P_{j} has also attained th same concurrent common knowledge in its local state which is consistent with P_{i} 's local state.
 - Most widely used weakening of common knowledge; studied next

Variants of Common Knowledge for Asynchronous Systems

Common knowledge requires "simultaneity of actions" across processes. Perfectly synchronized clocks not practical. But we can weaken common knowledge!

- Epsilon-common knowledge: $C^{\epsilon}(\phi)$ is the greatest fixed point of $X = E^{\epsilon}(\phi \wedge X)$
 - E^{ϵ} denotes "everyone knows within ϵ time units"
 - Assumes timed runs
- ullet Eventual common knowledge: $C^{\diamond}(\phi)$ is the greatest fixed point of $X=E^{\diamond}(\phi\wedge X)$
 - \triangleright E^{\diamond} denotes "everyone will eventually know (at some point in their execution)"
 - reach agreement at some (not necessarily consistent) global state
- Timestamped common knowledge: $C^T(\phi)$ is the greatest fixed point of $X = E^T(\phi \wedge X)$
 - processes reach agreement at local states having the same local clock value.
 - ▶ It is applicable to asynchronous systems
 - ▶ $E^{T}(\phi) = \wedge_{i} K_{i}^{T}(\phi)$, where $K_{i}^{T}(\phi)$: process i knows ϕ at local clock value T
- Concurrent common knowledge $C^{C}(\phi)$: processes reach agreement at local states that belong to a consistent cut. When P_i attains $C^{C}(\phi)$, it also knows that each other process P_j has also attained the same concurrent common knowledge in its local state which is consistent with P_i 's local state.
 - Most widely used weakening of common knowledge; studied next

Concurrent Common Knowledge: Definition

- $(a, c) \models \phi$ if and only if ϕ is true in cut c of execution a.
- $(a,c) \models K_i(\phi)$ if and only if $\forall (a',c'), ((a',c') \sim_i (a,c) \Longrightarrow (a',c') \models \phi)$
- $(a,c) \models P_i(\phi)$ if and only if $\exists (a,c')$, $((a,c') \sim_i (a,c) \land (a,c') \models \phi)$
- $(a,c) \models E^{C^0}(\phi)$ if and only if $(a,c) \models \phi$
- $(a,c) \models E^{C^1}(\phi)$ if and only if $(a,c) \models \bigwedge_{i \in N} K_i P_i(\phi)$
- $(a,c) \models E^{C^{k+1}}(\phi)$ for $k \ge 1$ if and only if $(a,c) \models \bigwedge_{i \in N} K_i P_i(E^{C^k}(\phi))$, for $k \ge 1$
- $(a,c) \models C^{C}(\phi)$ if and only if $(a,c) \models$ the greatest fixed point knowledge X satisfying $X = E^{C}(X \land \phi)$. $C^{C}(\phi)$ implies $\land_{k \in Z^{*}}(E^{C})^{k}(\phi)$.

Concurrent Knowledge

- Possibly operator $P_i(\phi)$ means " ϕ is true in *some* consistent state in the same asynchronous run, that includes process i's local state".
- $E^{C}(\phi)$ is defined as $\bigwedge_{i \in N} K_i(P_i(\phi))$.
- $E^{\mathcal{C}}(\phi)$: every process at the (given) cut knows only that ϕ is true in *some* cut that is consistent with its own local state.
- Concurrent knowledge is weaker than regular knowledge
 - But, for a local, stable fact, and assuming other processes learn the fact via message chains, the two are equivalent
- $C^{c}(\phi)$ is attained at a consistent cut: (informally speaking), each process at its local cut state knows that "in some state consistent with its own local cut state, ϕ is true and that all other process know all this same knowledge (described within quotes)".
- \bullet $\textit{C}^{\textit{C}}(\phi)$ underlies all protocols that reach agreement about properties of the global state

Concurrent Common Knowledge: Snapshot-based Algorithm

Protocol 1 (Snapshot-based algorithm).

- **1** At some time when the initiator I knows ϕ :
 - ▶ it sends a marker $MARKER(I, \phi, CCK)$ to each neighbour P_j , and atomically reaches its *cut state*.
- ② When a process P_i receives for the first time, a message $MARKER(I, \phi, CCK)$ from a process P_i :
 - process P_i forwards the message to all of its neighbours except P_j, and atomically reaches its cut state.
- attains $C^{C}(\phi)$ when it reaches its *cut state*.
- Complexity: 2l messages; time complexity: O(d)

Concurrent Common Knowledge: Three-phase Send Inhibitory Algorithm

Protocol 2 (Three-phase send-inhibitory algorithm).

- **1** At some time when the initiator I knows ϕ :
 - ▶ it sends a marker $PREPARE(I, \phi, CCK)$ to each process P_j .
- ② When a (non-initiator) process receives a marker $PREPARE(I, \phi, CCK)$:
 - it begins send-inhibition for non-protocol events.
 - sends a marker $CUT(I, \phi, CCK)$ to the initiator I.
 - it reaches its *cut state* at which it attains $C^{C}(\phi)$.
- **3** When the initiator I receives a marker $CUT(I, \phi, CCK)$ from each other process:
 - the initiator reaches its cut state
 - sends a marker $RESUME(I, \phi, CCK)$ to all other processes.
- **1** When a (non-initiator) process receives a marker $RESUME(I, \phi, CCK)$:
 - it resumes sending its non-protocol messages which had been inhibited in step 2.
- attains $C^{C}(\phi)$ when it reaches its *cut state*. Needs FIFO.
- Complexity: 3(n-1) messages; time complexity: 3 hops; send-inhibitory

21 / 29

Concurrent Common Knowledge: Three-phase Send Inhibitory Tree Algorithm

Protocol 3 (Three-phase send-inhibitory tree algorithm).

- Phase I (broadcast): The root initiates *PREPARE* control messages down the ST; when a process receives such a message, it inhibits computation message sends and propagates the received control message down the ST.
- Phase II (convergecast): A leaf node initiates this phase after it receives the *PREPARE* control message broadcast in phase I. The leaf reaches and records its *cut state*, and sends a *CUT* control message up the ST. An intermediate (and the root) node reaches and records its *cut state* when it receives such a *CUT* control message from each of its children, and then propagates the control message up the ST.
- Phase III (broadcast): The root initiates a broadcast of a *RESUME* control message down the ST after Phase II terminates. On receiving such a *RESUME* message, a process resumes inhibited computation message send activity and propagates the control message down the ST.
 - attains $C^{C}(\phi)$ when it reaches its *cut state*. non-FIFO.
 - Complexity: 3(n-1) messages; time complexity: O(depth) hops; send-inhibitory

Concurrent Common Knowledge: Inhibitory Ring Algorithm

Protocol 4 (Send-inhibitory ring algorithm).

- ① Once a fact ϕ about the system state is known to some process, the process atomically reaches its *cut state* and begins supporting $C(\phi)$, begins send inhibition, and sends a control message $CUT(\phi)$ along the ring.
- ② This $CUT(\phi)$ message announces ϕ . When a process receives the $CUT(\phi)$ message, it reaches its cut state and begins supporting $C(\phi)$, begins send inhibition, and forwards the message along the ring.
- (a) When the initiator gets back $CUT(\phi)$, it stops send inhibition, and forwards a RESUME message along the ring.
- When a process receives the RESUME message, it stops send-inhibition, and forwards the RESUME message along the ring. The protocol terminates when the initiator gets back the RESUME it initiated.
- ullet attains $C^{\mathcal{C}}(\phi)$ when it reaches its *cut state*. FIFO.
- Complexity: 2n messages; time complexity: O(2n) hops; send-inhibitory

Message chain and Process chain

A message chain in an execution is a sequence of messages $\langle m_{i_k}, m_{i_{k-1}}, m_{i_{k-2}}, \ldots, m_{i_1} \rangle$ such that for all $0 < j \le k$, m_{i_j} is sent by process i_j to process i_{j-1} and $receive(m_{i_j}) \prec send(m_{i_{j-1}})$. The message chain identifies process chain $\langle i_0, i_1, \ldots, i_{k-2}, i_{k-1}, i_k \rangle$.

- If ϕ is false and later P_1 knows that P_2 knows that ... P_k knows ϕ , then there must exist a process chain $\langle i_1, i_2, \dots i_k \rangle$.
- Indistinguishability of cuts $(a,c)\sim_i(a',c')$ is expressible in the interleaving model using isomorphism of executions. Let:
 - \triangleright x, y, z denote executions or execution prefixes in interleaving model
 - \triangleright x_p : projection of execution x on process p

Isomorphism of executions

- ① For x and y, relation x[p]y is true iff $x_p = y_p$
- ② For x and y and a process group G, relation x[G]y is true iff, for all $p \in G$, $x_p = y_p$.
- ③ Let G_i be process group i and let k > 1. Then, $x[G_0, G_1, \ldots, G_k]z$ if and only if $x[G_0, G_1, \ldots, G_{k-1}]y$ and $y[G_k]z$.

Exercise: Examine isomorphism (items 1,2,3 each) using Kripke 给ructles (4 章) 4 章) 章 50

Message chain and Process chain

A message chain in an execution is a sequence of messages $\langle m_{i_k}, m_{i_{k-1}}, m_{i_{k-2}}, \ldots, m_{i_1} \rangle$ such that for all $0 < j \le k$, m_{i_j} is sent by process i_j to process i_{j-1} and $receive(m_{i_j}) \prec send(m_{i_{j-1}})$. The message chain identifies process chain $\langle i_0, i_1, \ldots, i_{k-2}, i_{k-1}, i_k \rangle$.

- If ϕ is false and later P_1 knows that P_2 knows that ... P_k knows ϕ , then there must exist a process chain $\langle i_1, i_2, \dots i_k \rangle$.
- Indistinguishability of cuts $(a,c) \sim_i (a',c')$ is expressible in the interleaving model using isomorphism of executions. Let:
 - \triangleright x, y, z denote executions or execution prefixes in interleaving model.
 - \triangleright x_p : projection of execution x on process p.

Isomorphism of executions

- ① For x and y, relation x[p]y is true iff $x_p = y_p$.
- ② For x and y and a process group G, relation x[G]y is true iff, for all $p \in G$, $x_p = y_p$.
- ② Let G_i be process group i and let k > 1. Then, $x[G_0, G_1, \ldots, G_k]z$ if and only if $x[G_0, G_1, \ldots, G_{k-1}]y$ and $y[G_k]z$.

Message chain and Process chain

A message chain in an execution is a sequence of messages $\langle m_{i_k}, m_{i_{k-1}}, m_{i_{k-2}}, \ldots, m_{i_1} \rangle$ such that for all $0 < j \le k$, m_{i_i} is sent by process i_j to process i_{j-1} and $receive(m_{i_i}) \prec send(m_{i_{i-1}})$. The message chain identifies process chain $(i_0, i_1, \dots, i_{k-2}, i_{k-1}, i_k)$.

- If ϕ is false and later P_1 knows that P_2 knows that ... P_k knows ϕ , then there must exist a process chain $\langle i_1, i_2, \dots i_k \rangle$.
- Indistinguishability of cuts $(a,c) \sim_i (a',c')$ is expressible in the interleaving model using isomorphism of executions. Let:
 - \triangleright x, y, z denote executions or execution prefixes in interleaving model.
 - \triangleright x_p : projection of execution x on process p.

Isomorphism of executions

- 1 For x and y, relation x[p]y is true iff $x_p = y_p$.
- 2 For x and y and a process group G, relation x[G]y is true iff, for all $p \in G$, $x_p = y_p$.
- \bullet Let G_i be process group i and let k > 1. Then, $x[G_0, G_1, \ldots, G_k]z$ if and only if $x[G_0, G_1, \ldots, G_{k-1}]y$ and $y[G_k]z$.

Exercise: Examine isomorphism (items 1,2,3 each) using Kripke structures!

Knowledge operator in the interleaving model

p knows ϕ at execution x if and only if, for all executions y such that x[p]y, ϕ is true at y.

When a message is received, set of isomorphic executions can only decrease

Knowledge transfer theorem

```
For process groups G_1, \ldots, G_k, and executions x and y, (K_{G_1}K_{G_2}\ldots K_{G_k}(\phi)) at x and x[G_1,\ldots G_k]y) \Longrightarrow K_{G_k}(\phi) at y
```

Proof by induction.

- Trivial for k=1
- k, k > 1: We infer ∃ some z | x[G₁,...G_{k-1}]z and z[G_k]y.
 From K_{G1}K_{G2}...K_{Gk-1}[K_{Gk}(φ)] at x, and from the induction hypothesis: infer that K_{Gk-1}[K_{Gk}(φ)] at z.
 Hence, K_{Gk}(φ) at z. As z[G_k]y, K_{Gk}(φ) at y.

I.t.o. Kripke structures, there is a path from state node $x = s_0$ to state node $y = s_k$, via state nodes $s_1, s_2, \ldots, s_{k-1}$, such that the k edges $(s_i, s_{i+1}), 0 \le i \le k-1$ are labeled by G_{i+1} .

Knowledge operator in the interleaving model

p knows ϕ at execution x if and only if, for all executions y such that x[p]y, ϕ is true at y.

When a message is received, set of isomorphic executions can only decrease.

Knowledge transfer theorem

```
For process groups G_1, \ldots, G_k, and executions x and y, (K_{G_1}K_{G_2}\ldots K_{G_k}(\phi)) at x and x[G_1,\ldots G_k]y) \Longrightarrow K_{G_k}(\phi) at y
```

Proof by induction.

- Trivial for k=1.
- k, k > 1: We infer \exists some $z \mid x[G_1, \ldots G_{k-1}]z$ and $z[G_k]y$. From $K_{G_1}K_{G_2}\ldots K_{G_{k-1}}[K_{G_k}(\phi)]$ at x, and from the induction hypothesis: infer that $K_{G_{k-1}}[K_{G_k}(\phi)]$ at z. Hence, $K_{G_k}(\phi)$ at z. As $z[G_k]y$, $K_{G_k}(\phi)$ at y.

I.t.o. Kripke structures, there is a path from state node $x = s_0$ to state node $y = s_k$, via state nodes $s_1, s_2, \ldots, s_{k-1}$, such that the k edges $(s_i, s_{i+1}), 0 \le i \le k-1$ are labeled by G_{i+1} .

Knowledge operator in the interleaving model

p knows ϕ at execution x if and only if, for all executions y such that x[p]y, ϕ is true at y.

When a message is received, set of isomorphic executions can only decrease.

Knowledge transfer theorem

For process groups G_1, \ldots, G_k , and executions x and y, $(K_{G_1}K_{G_2}\ldots K_{G_k}(\phi))$ at x and $x[G_1,\ldots G_k]y) \Longrightarrow K_{G_k}(\phi)$ at y.

Proof by induction.

- Trivial for k=1
- k, k > 1: We infer \exists some $z \mid x[G_1, \ldots G_{k-1}]z$ and $z[G_k]y$. From $K_{G_1}K_{G_2}\ldots K_{G_{k-1}}[K_{G_k}(\phi)]$ at x, and from the induction hypothesis: infer that $K_{G_{k-1}}[K_{G_k}(\phi)]$ at z. Hence, $K_{G_k}(\phi)$ at z. As $z[G_k]y$, $K_{G_k}(\phi)$ at y.

I.t.o. Kripke structures, there is a path from state node $x=s_0$ to state node $y=s_k$, via state nodes $s_1, s_2, \ldots, s_{k-1}$, such that the k edges (s_i, s_{i+1}) , $0 \le i \le k-1$ are labeled by G_{i+1} .

Knowledge operator in the interleaving model

p knows ϕ at execution x if and only if, for all executions y such that x[p]y, ϕ is true at y.

When a message is received, set of isomorphic executions can only decrease.

Knowledge transfer theorem

For process groups G_1, \ldots, G_k , and executions x and y, $(K_{G_1}K_{G_2}\ldots K_{G_k}(\phi))$ at x and $x[G_1,\ldots G_k]y) \Longrightarrow K_{G_k}(\phi)$ at y.

Proof by induction.

- Trivial for k = 1.
- k, k > 1: We infer \exists some $z \mid x[G_1, \ldots G_{k-1}]z$ and $z[G_k]y$. From $K_{G_1}K_{G_2}\ldots K_{G_{k-1}}[K_{G_k}(\phi)]$ at x, and from the induction hypothesis: infer that $K_{G_{k-1}}[K_{G_k}(\phi)]$ at z. Hence, $K_{G_k}(\phi)$ at z. As $z[G_k]y$, $K_{G_k}(\phi)$ at y.

I.t.o. Kripke structures, there is a path from state node $x = s_0$ to state node $y = s_k$, via state nodes $s_1, s_2, \ldots, s_{k-1}$, such that the k edges $(s_i, s_{i+1}), 0 \le i \le k-1$ are labeled by G_{i+1} .

Knowledge operator in the interleaving model

p knows ϕ at execution x if and only if, for all executions y such that x[p]y, ϕ is true at y.

When a message is received, set of isomorphic executions can only decrease.

Knowledge transfer theorem

For process groups G_1, \ldots, G_k , and executions x and y, $(K_{G_1}K_{G_2}\ldots K_{G_k}(\phi))$ at x and $x[G_1,\ldots G_k]y) \Longrightarrow K_{G_k}(\phi)$ at y.

Proof by induction.

- Trivial for k=1.
- k, k > 1: We infer \exists some $z \mid x[G_1, \dots G_{k-1}]z$ and $z[G_k]y$. From $K_{G_1}K_{G_2}\dots K_{G_{k-1}}[K_{G_k}(\phi)]$ at x, and from the induction hypothesis: infer that $K_{G_{k-1}}[K_{G_k}(\phi)]$ at z. Hence, $K_{G_k}(\phi)$ at z. As $z[G_k]y$, $K_{G_k}(\phi)$ at y.

I.t.o. Kripke structures, there is a path from state node $x=s_0$ to state node $y=s_k$, via state nodes $s_1, s_2, \ldots, s_{k-1}$, such that the k edges (s_i, s_{i+1}) , $0 \le i \le k-1$ are labeled by G_{i+1} .

Knowledge gain theorem

For processes P_1, \ldots, P_k , and executions x and y, where x is a prefix of y, let

• $\neg K_k(\phi)$ at x and $K_1K_2...K_k(\phi)$ at y.

Then there is a process chain $\langle i_1, \dots i_{k-1}, i_k \rangle$ in (x, y).

This formalizes that there must exist a message chain $\langle m_{i_k}, m_{i_{k-1}}, m_{i_{k-2}}, \ldots, m_{i_1} \rangle$ in order that a fact ϕ that becomes known to P_k after execution prefix x of y, leads to the state of knowledge $K_1K_2 \ldots K_k(\phi)$ after execution y.

Knowledge and Clocks

- Assumption: Facts are timestamped by the time of their becoming true and by PID at which they became true.
- Full-information protocol (FIP): protocol in which a process piggybacks all its knowledge on outgoing messages, & a process adds to its knowledge all the knowledge that is piggybacked on any message it receives.
- Knowledge always increases when a message is received.
- ullet The amount of knowledge keeps increasing \Rightarrow impractical
- Facts can always be appropriately encoded as integers.
- Monotonic facts: Facts about a property that keep increasing monotonically (e.g., the latest time of taking a checkpoint at a process).
- By using a mapping between logical clocks and monotonic facts, information about the monotonic facts can be communicated between processes using piggybacked timestamps.
- Being monotonic, all earlier facts can be inferred from the fixed amount of information that is maintained and piggybacked.
- E.g., Clk_i[j] indicates the local time at each P_j, and implicitly that all lower clock values at P_i have occurred.
- With appropriate encoding, facts about a monotonic property can be represented using vector clocks.

Knowledge and Clocks

- Assumption: Facts are timestamped by the time of their becoming true and by PID at which they became true.
- Full-information protocol (FIP): protocol in which a process piggybacks all its knowledge on outgoing messages, & a process adds to its knowledge all the knowledge that is piggybacked on any message it receives.
- Knowledge always increases when a message is received.
- ullet The amount of knowledge keeps increasing \Rightarrow impractical
- Facts can always be appropriately encoded as integers.
- Monotonic facts: Facts about a property that keep increasing monotonically (e.g., the latest time of taking a checkpoint at a process).
- By using a mapping between logical clocks and monotonic facts, information about the monotonic facts can be communicated between processes using piggybacked timestamps.
- Being monotonic, all earlier facts can be inferred from the fixed amount of information that is maintained and piggybacked.
- E.g., Clk_i[j] indicates the local time at each P_j, and implicitly that all lower clock values at P_j have occurred.
- With appropriate encoding, facts about a monotonic property can be represented using vector clocks.

Knowledge, Scalar Clocks, and Matrix Clocks (2)

- Vector clock: $Clk_i[j]$ represents $K_iK_j(\phi_j)$, where ϕ_j is the local component of P_j 's clock.
- Matrix clock: $Clk_i[j,k]$ represents $K_iK_jK_k(\phi_k)$, where ϕ_k is the local component $Clk_k[k,k]$ of P_k 's clock.
- The j^{th} row of MC $Clk_i[j,\cdot]$: the latest VC value of P_j 's clock, as known to P_i .
- The jth column of MC Clk_i[·,j]: the latest scalar clock values of P_j, i.e., Clk[j,j], as known to each process in the system.
- Vector and matrix clocks: knowledge is imparted via the inhibition-free ambient
 message-passing that (i) eliminates protocol messages by using piggybacking, and (ii)
 diffuses the latest knowledge using only messages, whenever sent, by the underlying
 execution.
- VC provides knowledge $E^0(\phi)$, where ϕ is a property of the global state, namely, the local scalar clock value of each process.
- MC at P_j provides knowledge $K_j(E^1(\phi)) = K_j(\wedge_{i \in N} K_i(\phi))$, where ϕ is the same property of the global state.
- Matrix clocks: used to design distributed database protocols, fault-tolerant protocols, and protocols to discard obsolete information in distributed databases. Also to solve the distributed dictionary and distributed log problems.

Knowledge, Scalar Clocks, and Matrix Clocks (2)

- Vector clock: $Clk_i[j]$ represents $K_iK_j(\phi_j)$, where ϕ_j is the local component of P_j 's clock.
- Matrix clock: $Clk_i[j,k]$ represents $K_iK_jK_k(\phi_k)$, where ϕ_k is the local component $Clk_k[k,k]$ of P_k 's clock.
- The j^{th} row of MC $Clk_i[j,\cdot]$: the latest VC value of P_j 's clock, as known to P_i .
- The j^{th} column of MC $Clk_i[\cdot,j]$: the latest scalar clock values of P_j , i.e., Clk[j,j], as known to each process in the system.
- Vector and matrix clocks: knowledge is imparted via the inhibition-free ambient
 message-passing that (i) eliminates protocol messages by using piggybacking, and (ii)
 diffuses the latest knowledge using only messages, whenever sent, by the underlying
 execution.
- VC provides knowledge $E^0(\phi)$, where ϕ is a property of the global state, namely, the local scalar clock value of each process.
- MC at P_j provides knowledge $K_j(E^1(\phi)) = K_j(\wedge_{i \in N} K_i(\phi))$, where ϕ is the same property of the global state.
- Matrix clocks: used to design distributed database protocols, fault-tolerant protocols, and protocols to discard obsolete information in distributed databases. Also to solve the distributed dictionary and distributed log problems.

Knowledge, Scalar Clocks, and Matrix Clocks (2)

- Vector clock: $Clk_i[j]$ represents $K_iK_j(\phi_j)$, where ϕ_j is the local component of P_j 's clock.
- Matrix clock: $Clk_i[j,k]$ represents $K_iK_jK_k(\phi_k)$, where ϕ_k is the local component $Clk_k[k,k]$ of P_k 's clock.
- The j^{th} row of MC $Clk_i[j,\cdot]$: the latest VC value of P_j 's clock, as known to P_i .
- The jth column of MC Clk_i[·,j]: the latest scalar clock values of P_j, i.e., Clk[j,j], as known to each process in the system.
- Vector and matrix clocks: knowledge is imparted via the inhibition-free ambient
 message-passing that (i) eliminates protocol messages by using piggybacking, and (ii)
 diffuses the latest knowledge using only messages, whenever sent, by the underlying
 execution.
- VC provides knowledge $E^0(\phi)$, where ϕ is a property of the global state, namely, the local scalar clock value of each process.
- MC at P_j provides knowledge $K_j(E^1(\phi)) = K_j(\wedge_{i \in N} K_i(\phi))$, where ϕ is the same property of the global state.
- Matrix clocks: used to design distributed database protocols, fault-tolerant protocols, and protocols to discard obsolete information in distributed databases. Also to solve the distributed dictionary and distributed log problems.

Matrix Clocks

(local variables) array of int $Clk_i[1...n, 1...n]$

- MC0. $Clk_i[j, k]$ is initialized to 0 for all j and k
- MC1. Before process i executes an internal event, it does the following. $Clk_i[i,i] = Clk_i[i,i] + 1$
- MC2. Before process i executes a send event, it does the following: $Clk_i[i,i] = Clk_i[i,i] + 1$ Send message timestamped by Clk_i .
- MC3. When process i receives a message with timestamp T from process j, it does the following. $(k \in N)$ $Clk_i[i, k] = \max(Clk_i[i, k], T[j, k]);$ $(I \in N \setminus \{i\})$ $(k \in N)$, $Clk_i[I, k] = \max(Clk_i[I, k], T[I, k]);$ $Clk_i[i, i] = Clk_i[i, i] + 1;$ deliver the message.
- Message overhead: $O(n^2)$ space and processing time