
CN Chapter 2

CT Supplement: Energy and Power

C Energy

In “CBGL” and in the preceding section of the supplement, we have seen how to find the
electric field of the generated wave; however, in practice, we are often more interested
in knowing the power or energy produced by the nonlinear interaction. In this section,
we will see how to calculate these quantities. In some cases, it is more convenient to
perform this calculation in the time-domain, while in others, the frequency-domain is
more natural; hence, we will examine both.

Calculation of the power of an electromagnetic wave is based upon the concept of the
Poynting vector S=E×H which describes the power per unit area being carried by the
electromagnetic wave. The Poynting vector can then be integrated over a particular
surface of interest to determine the total power P passing through that surface: P
=

∮
Σ
S·n̂ dσ, where n̂ is a unit vector perpendicular to the surface of interest Σ and dσ

is a differential element of area on that surface.
When we evaluate the Poynting vector for a plane wave, we find that the power

per unit area (or intensity) is given in the time-domain by the expression I (x, t) =
[E(x, t)]2

η
, where η=

√
µ

ε
is the wave impedance. We can obtain the energy per unit

area by integrating with respect to time; thus:

U (x) =

∫
I (x, t) dt =

1

η

∫
[E(x, t)]2 dt (2.1)

Usually, we measure the energy at some fixed location, such as x = 0 for the input
waves or x = l for the output wave.

Equation 2.1 tells us how to calculate the energy in the wave from its time-domain
representation. We can also calculate the energy from the frequency-domain rep-
resentation, using a theorem of Fourier analysis that is sometimes called Parseval’s
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Figure 2.1: Figure S-2-1: Sinusoidal wave of limited time duration

theorem:

U (x) =
1

η

∞∫
−∞

[E(x, t)]2 dt =
1

2π

∞∫
−∞

|E(x, ω)|2

η
dω (2.2)

Since the integral over frequency gives the total energy, we can call |E(x, ω)|2 /η the
energy spectral density corresponding to E(x, t).

Suppose we have a monochromatic plane wave, E(x, t) = Ao cos(ωot−kox), for which
we desire to determine the power at x = 0. If we insert E(0, t) = Ao cos(ωot) into Eq.
2.1 or 2.2, and evaluate the integral from −∞ to +∞ as indicated, we find that this
wave contains infinite energy. However, such a never-ending wave is a mathematical
fiction; real light waves do not persist for an infinite time but instead have a finite dura-
tion. Thus, we will consider a time-limited sinusoidal wave, E(0, t) = Aou(t) cos(ωot)
(Fig.S-1).

Here, the wave is turned on at time t = 0 and off at t = T , and this modulation is
accounted for through the function u(t). If we calculate power in the time-domain,
we obtain:

U (0) =
1

η

∞∫
−∞

[E(0, t)]2 dt =
A2

o

η

T∫
0

[cos(ωot)]
2 dt =

A2
o

η

T∫
0

[
1

2
+

1

2
cos(2ωot)

]
dt

=
A2

oT

2η

[
1 +

sin(2ωoT )

2ωoT

]
=

A2
oT

2η
[1 + sinc(2ωoT )] (2.3)
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Figure 2.2: Figure S-2-2:The sinc function

If, as is usually the case, there are a large number of cycles in the wave, such that
ωoT � 1, the sinc term above approaches zero (see Fig. S-2-2), and we have U (0) =
A2

oT

2η
.

Alternatively, we can find the energy from the frequency domain. To find the Fourier
transform corresponding to E(0, t) we use the following relationship:

E (0, ω) = F {Aou(t) cos(ωot)} =
Ao

2π
F {u(t)} ∗ F {cos(ωot)}

=
Ao

2
U(ω) ∗ [δ (ω − ωo) + δ (ω + ωo)] = πAo

{
1

2π
[U(ω − ωo) + U(ω + ωo)]

}
(2.4)

where U(ω) is the Fourier transform of u(t) :

U(ω) =

∞∫
−∞

u(t)e−jωtdt = T sinc

(
ωT

2

)
e
−jωT

2 (2.5)

Note that lim
T→∞

U (ω)

2π
= δ (ω) , so that as T → ∞, E (0, ω) → πAo [δ (ω − ωo) + δ (ω + ωo)] ,
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Figure 2.3: Figure S-2-3: Fourier transform of the signal in Figure S-2-1.

as might be expected. The frequency spectrum of this signal is shown in Fig.S-2-3.
If we again assume that ωoT � 1, so that the peaks are well-separated, the integral

of Eq. 2.2 becomes:

U =
1

2πη

∞∫
−∞

|E(0, ω)|2 dω (2.6)

=
A2

oT
2

8πη

∞∫
−∞


sin

(
(ω − ωo)T

2

)
(ω − ωo)T

2


2

+

sin

(
(ω − ωo)T

2

)
(ω − ωo)T

2


2
 dω (2.7)

=
A2

oT
2

8πη

{
2π

T
+

2π

T

}
=

A2
oT

2η
(2.8)

as before.

C Power

When dealing with pulsed waveforms, it is often the total energy of the pulse that is
of interest. However, with continuous-wave (cw) signals, we are usually interested in
measuring the average power, rather than the energy. For our truncated sinusoid, the
average intensity is:
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Iav (0) =
1

T

1

η

τ+T∫
τ

[E(0, t)]2 dt

 =
A2

o

2η
(2.9)

How can we determine the average power using the frequency domain representation?
From Eqs. 2.10 and 2.2, we can write

Iav (0) =
1

T

∞∫
−∞

|E(0, t)|2

η
dt =

1

2πT

∞∫
−∞

|E(0, ω)|2

η
dω (2.10)

=

∞∫
−∞

[
|E(0, ω)|2

Tη

]
dω (2.11)

We can define the power spectral density corresponding to E(z, t) as:

G(0, ω) =

[
|E(0, ω)|2

Tη

]
(2.12)

so that

Iav (0) =
1

2π

∞∫
−∞

G(0, ω) dω (2.13)

Performing this integration for our truncated cosine wave, we find again that Iav (0) =
A2

o

2η
.

Although real signals have a definite start and stop, for mathematical convenience
it is often expedient to adopt the fiction of an unending cosinusoidal wave. If we

let T → ∞ in U (0) =
A2

oT

2η
and in Iav (0) =

A2
o

2η
, we find that such a sinusoid has an

infinite energy (as mentioned before), but a finite power. To be rigorously correct for
such waves, we must define the spectral densities in terms of limits:
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Iav (0) = lim
T→∞

1

T

∞∫
−∞

|E(0, t)|2

η
dt = lim

T→∞

1

2πT

∞∫
−∞

|E(0, ω)|2

η
dω (2.14)

=
1

2π

∞∫
−∞

lim
T→∞

[
|E(0, ω)|2

Tη

]
dω =

1

2π

∞∫
−∞

G (0, ω) dω (2.15)

where the power spectral density is now defined as:

G(0, ω) = lim
T→∞

[
|E(0, ω)|2

Tη

]
(2.16)

If we use the expression for E(0, ω) given for the truncated sinusoid in Eqs. 2.4 and
2.6, and take the limit as T → ∞, we obtain

G(0, ω) =
πA2

o

2η
[δ (ω − ωo) + δ (ω + ωo)] (2.17)

When this expression is integrated over frequency according to Eq. 2.15, we obtain the
now-familiar result that Iav (0) = A2

o/2η.
To summarize, an electric field which has the time domain representation E(0, t) =

Ao cos(ωot) has the spectrum E (0, ω) = πAo [δ (ω − ωo) + δ (ω + ωo)] and power spec-

tral density G(0, ω) =
πA2

o

2η
[δ (ω − ωo) + δ (ω + ωo)] . In general, if we have a spectrum

consisting of delta functions with the form E (0, ω) = Ẽδ (ω − ωo) + Ẽ∗δ (ω + ωo) ,

the power spectral density will be G(0, ω) =

∣∣∣Ẽ∣∣∣2
2πη

[δ (ω − ωo) + δ (ω + ωo)]
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