Digital Logic Design: a rigorous approach (¢

Chapter 5: Binary Representation

Guy Even Moti Medina
School of Electrical Engineering Tel-Aviv Univ.

April 10, 2012

Book Homepage:
http://www.eng.tau.ac.il/“guy/Even-Medina

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

http://www.eng.tau.ac.il/~guy/Even-Medina

Division and Modulo

Suppose we divide a natural number a by a positive natural
number b. If ais divisible by b, then we obtain a quotient g that is
a natural number. Namely, a =g - b, with g € N.

However, we also want to consider the case that a is not divisible
by b. In this case, division is defined as follows. Consider the two
consecutive integer multiples of b that satisfy

g-b<a<(g+1)-b.

The quotient is defined to be gq. The remainder is defined to be
rea— q - b. Clearly, 0 < r < b. Note that the quotient g simply

equals | 2].
Notation: Let (a mod b) denote the remainder obtained by

dividing a by b.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

© 3 mod5=3and 5mod 3 =2.
@ 999 mod 10 =9 and 123 mod 10 = 3.

© amod 2 equals 1 if ais odd, and 0 if a is even. Indeed, if a is
even, then a = 2x, and then
a—2-13| :a—2~L27XJ =a—2x=0.

If ais odd, then a = 2x + 1, and then

a—2-|2]=a-2 [Bf|=a-2[x+3|=a-2x=1
© amod b > 0. Indeed, b- L%J <bh- % = a. Therefore,

a—b-h%J >a—a=0.

Q@ amod b<b—-1. Letg= L%J This means that
b-g<a<b-q+ b. Hence,
a—b-|2|=a—b-qg<a—(a—b)=b, which implies that
amod b < b. Since a mod b is an integer, we conclude that
amod b< b-—1.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Bits and Strings

In decimal numbers, the basic unit of information is a digit, i.e., a
number in the set {0,1,...,9}. In digital computers, the basic
unit of information is a bit.

Definition

A bit is an element in the set {0,1}.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

binary strings

Since bits are the basic unit of information, we need to represent
numbers using bits. How is this done? Numbers are represented in
many ways in computers: binary representation, BCD,
floating-point, two's complement, sign-magnitude, etc. The most
basic representation is binary representation. To define binary
representation, we first need to define binary strings.

Definition

A binary string is a finite sequence of bits

There are many ways to denote strmgs as a sequence {A; }, 0 as

a vector A[0: n— 1], or simply by A if the indexes are known. We
often use A[i] to denote A;.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

example

@ Let us consider the string {A,-}?:O, where Ag =1, A; =1,
A =0, A3 = 0. We often wish to abbreviate and write
A[0 : 3] = 1100. This means that when we read the string
1100, we assign the indexes 0 to 3 to this string from left to
right.

o Consider the string A[0 : 5] = 100101. The string A has 6
bits, hence n = 6. The notation A[0 : 5] is zero based, i.e.,
the first bit in A is A[0]. Therefore, the third bit of A is A[2]
(which equals 0).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

concatenation

A basic operation that is applied to strings is called concatenation.
Given two strings A[0 : n — 1] and B[0 : m — 1], the concatenated
string is a string C[0 : n+ m — 1] defined by

] Ali] if0<i<n,
1| =
Bli—n ifn<i<n4+m-1.

We denote the operation of concatenating string by o, e.g.,
C=AoB.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

example

Examples of concatenation of strings. Let A[0: 2] = 111,
B[0:1] =01, C[0: 1] = 10, then:

Ao B =111001 = 11101,
AoC =111010 = 11110,
BoC=01010=0110,

BoB=01001=0101.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

bidirectionality

Let i <j. Both A[i : j] and A[j : i] denote the same sequence
{Ax},_;. However, when we write A[/ : j] as a string, the leftmost
bit is A[i] and the rightmost bit is A[j]. On the other hand, when
we write A[j : i] as a string, the leftmost bit is A[j] and the
rightmost bit is A[/].

The string A[3 : 0] and the string A[O : 3] denote the same 4-bit
string. However, when we write A[3 : 0] = 1100 it means that
A[3] = A[2] =1 and A[1] = A[0] = 0. When we write

A[0 : 3] = 1100 it means that A[3] = A[2] =0 and

Al1] = A0] = 1.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

least/most significant bits

Definition

The least significant bit of the string A[i : j] is the bit A[k], where
k= min{/,j}. The most significant bit of the string A[i : j] is the
bit A[¢], where ¢ = max{i,j}.

The abbreviations LSB and MSB are used to abbreviate the least
significant bit and the most significant bit, respectively.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

LSB/MSB - examples

© The least significant bit (LSB) of A[0: 3] = 1100 is A[0] = 1.
The most significant bit (MSB) of A is A[3] = 0.

© The LSB of A[3: 0] = 1100 is A[0] = 0. The MSB of A is
A3l = 1.

© The least significant and most significant bits are determined
by the indexes. In our convention, it is not the case that the
LSB is always the leftmost bit. Namely, if i < j, then LSB in

Ali : j] is the leftmost bit, whereas in A[j : i], the leftmost bit
is the MSB.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Binary Representation

We are now ready to define the binary number represented by a
string A[n —1: 0.

Definition

The natural number, a, represented in binary representation by the
binary string A[n — 1 : 0] is defined by

n—1
a=) Ali]-2.
i=0

In binary representation, each bit has a weight associated with it.
The weight of the bit A[i] is 2.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Consider a binary string A[n — 1 : 0]. We introduce the following
notation:

n—1
(Aln—1:0)) =) A[i]-2'.
i=0

To simplify notation, we often denote strings by capital letters
(e.g., A, B, S) and we denote the number represented by a string
by a lowercase letter (e.g., a, b, and s).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Consider the strings: A[2 : 0] £ 000, B[3 : 0] = 0001, and
C[3:0] £ 1000. The natural numbers represented by the binary
strings A, B and C are as follows.

(A[2:0]) = A[0] - 2° + A[1] - 2! + A[2] - 22
=0-2°+0-2'+0-22=0,

(B[3:0]) = B[0] - 2° 4 B[1] - 2! + B[2] - 2° + B[3] - 23
=1-2°40-2'40-224+0-2°=1,

(C[3:0]) = C[0] - 2° + C[1] - 2* + C[2] - 2° + C[3] - 2°
=0-2040-2'40-22+1.2%=38.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Leading Zeros

Consider a binary string A[n — 1 : 0]. Extending A by leading zeros
means concatenating zeros in indexes higher than n — 1. Namely,
© extending the length of A[n—1:0] to A[m—1:0], for
m > n, and
Q defining A[i] =0, for every i € [m—1: n].

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Leading Zeros

The following lemma states that extending a binary string by
leading zeros does not change the number it represents in binary
representation.

Let m > n. If Alm — 1 : n] is all zeros, then
(A[m—1:0]) = (A[n—1:0]).

Consider C[6 : 0] = 0001100 and D[3: 0] = 1100. Note that
(C) = (D) = 12. Since the leading zeros do not affect the value
represented by a string, a natural number has infinitely many
binary representations.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Representable Ranges

The following lemma bounds the value of a number represented by
a k-bit binary string.

Let A[k —1: 0] denote a k-bit binary string. Then,
0<(Alk —1:0]) <2k 1.

What is the largest number representable by the following number
of bits: (i) 8 bits, (ii) 10 bits, (iii) 16 bits, (iv) 32 bits, and (v) 64
bits?

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

Computing a Binary Representation

Fix k the number of bits (i.e., length of binary string).
Goals:

@ show how to compute a binary representation of a natural
number using k bits.

© prove that every natural number has a unique binary
representation that uses k bits.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

binary representation algorithm: specification

Algorithm BR(x, k) for computing a binary representation is
specified as follows:

Inputs: x € N and k € NT, where x is a natural number for
which a binary representation is sought, and k is the
length of the binary string that the algorithm should

output.
Output: The algorithm outputs “fail” or a k-bit binary string
Alk—1:0].
Functionality: The relation between the inputs and the output is
as follows:

Q If 0 < x < 2k, then the algorithm outputs a
k-bit string Alk — 1 : 0] that satisfies
x=(Alk —1:0]).

@ If x > 2k, then the algorithm outputs “fail”.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

binary representation algorithm

Algorithm 1 BR(x, k) - An algorithm for computing a binary rep-
resentation of a natural number a using k bits.
© Base Cases:
O If x > 2% then return (fail).
@ If k =1 then return (x).
@ Reduction Rule:
@ If x > 2571 then return (10 BR(x — 271 k —1)).
@ If x <2571 —1 then return (00 BR(x, k — 1)).

example: execution of BR(2,1) and BR(7,3)

If x €N, k € Nt, and x < 2, then algorithm BR(x, k) returns a
k-bit binary string Alk — 1 : 0] such that (Alk —1:0]) = x.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

unique binary representation

Every positive integer x has a binary representation by a k-bit
binary string if k > |log,(x)]| + 1.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

unique binary representation

Every positive integer x has a binary representation by a k-bit
binary string if k > |log,(x)| + 1.

\

Theorem (unique binary representation)

The binary representation function () : {0,1}¥ — N defined by
k—1 .
(Alk —1:0]) =Y A[i] - 2
i=0

is a bijection (i.e., one-to-one and onto) from {0,1}* to
{0,...,2k —1}.

\

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©

We claim that when a natural number is multiplied by two, its
binary representation is “shifted left” while a single zero bit is

padded from the right. That property is summarized in the
following lemma.

Let a€ N. Let Ak —1:0] be a k-bit string such that
a=(Alk—1:0]). Let Blk:0] = Alk —1:0] 00, then

2.a=(Bk:0]).

(1000) = 2 - (100) = 22 - (10) =23 (1) = 8.

Guy Even, Moti Medina

Digital Logic Design: a rigorous approach ©

