
Digital Logic Design: a rigorous approach c©
Chapter 5: Binary Representation

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

April 10, 2012

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

http://www.eng.tau.ac.il/~guy/Even-Medina


Division and Modulo

Suppose we divide a natural number a by a positive natural
number b. If a is divisible by b, then we obtain a quotient q that is
a natural number. Namely, a = q · b, with q ∈ N.
However, we also want to consider the case that a is not divisible
by b. In this case, division is defined as follows. Consider the two
consecutive integer multiples of b that satisfy

q · b ≤ a < (q + 1) · b.

The quotient is defined to be q. The remainder is defined to be

r
△
= a − q · b. Clearly, 0 ≤ r < b. Note that the quotient q simply

equals
⌊

a
b

⌋

.
Notation: Let (a mod b) denote the remainder obtained by
dividing a by b.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©



Examples

1 3 mod 5 = 3 and 5 mod 3 = 2.

2 999 mod 10 = 9 and 123 mod 10 = 3.

3 a mod 2 equals 1 if a is odd, and 0 if a is even. Indeed, if a is
even, then a = 2x , and then
a − 2 ·

⌊

a
2

⌋

= a − 2 ·
⌊

2x
2

⌋

= a − 2x = 0.
If a is odd, then a = 2x + 1, and then
a − 2 ·

⌊

a
2

⌋

= a − 2 ·
⌊

2x+1
2

⌋

= a − 2
⌊

x + 1
2

⌋

= a − 2x = 1.

4 a mod b ≥ 0. Indeed, b ·
⌊

a
b

⌋

≤ b · a
b

= a. Therefore,
a − b ·

⌊

a
b

⌋

≥ a − a = 0.

5 a mod b ≤ b − 1. Let q =
⌊

a
b

⌋

. This means that
b · q ≤ a < b · q + b. Hence,
a − b ·

⌊

a
b

⌋

= a − b · q < a − (a − b) = b, which implies that
a mod b < b. Since a mod b is an integer, we conclude that
a mod b ≤ b − 1.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©



Bits and Strings

In decimal numbers, the basic unit of information is a digit, i.e., a
number in the set {0, 1, . . . , 9}. In digital computers, the basic
unit of information is a bit.

Definition

A bit is an element in the set {0, 1}.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©



binary strings

Since bits are the basic unit of information, we need to represent
numbers using bits. How is this done? Numbers are represented in
many ways in computers: binary representation, BCD,
floating-point, two’s complement, sign-magnitude, etc. The most
basic representation is binary representation. To define binary
representation, we first need to define binary strings.

Definition

A binary string is a finite sequence of bits.

There are many ways to denote strings: as a sequence {Ai}
n−1
i=0 , as

a vector A[0 : n − 1], or simply by ~A if the indexes are known. We
often use A[i ] to denote Ai .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©



example

Let us consider the string {Ai}
3
i=0, where A0 = 1, A1 = 1,

A2 = 0, A3 = 0. We often wish to abbreviate and write
A[0 : 3] = 1100. This means that when we read the string
1100, we assign the indexes 0 to 3 to this string from left to
right.

Consider the string A[0 : 5] = 100101. The string ~A has 6
bits, hence n = 6. The notation A[0 : 5] is zero based, i.e.,
the first bit in ~A is A[0]. Therefore, the third bit of ~A is A[2]
(which equals 0).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©



concatenation

A basic operation that is applied to strings is called concatenation.
Given two strings A[0 : n − 1] and B [0 : m − 1], the concatenated
string is a string C [0 : n + m − 1] defined by

C [i ]
△
=

{

A[i ] if 0 ≤ i < n,

B [i − n] if n ≤ i ≤ n + m − 1.

We denote the operation of concatenating string by ◦, e.g.,
~C = ~A ◦ ~B.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©



example

Examples of concatenation of strings. Let A[0 : 2] = 111,
B [0 : 1] = 01, C [0 : 1] = 10, then:

~A ◦ ~B = 111 ◦ 01 = 11101 ,

~A ◦ ~C = 111 ◦ 10 = 11110 ,

~B ◦ ~C = 01 ◦ 10 = 0110 ,

~B ◦ ~B = 01 ◦ 01 = 0101 .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©



bidirectionality

Let i ≤ j . Both A[i : j] and A[j : i ] denote the same sequence
{Ak}

j
k=i

. However, when we write A[i : j] as a string, the leftmost
bit is A[i ] and the rightmost bit is A[j]. On the other hand, when
we write A[j : i ] as a string, the leftmost bit is A[j] and the
rightmost bit is A[i ].

Example

The string A[3 : 0] and the string A[0 : 3] denote the same 4-bit
string. However, when we write A[3 : 0] = 1100 it means that
A[3] = A[2] = 1 and A[1] = A[0] = 0. When we write
A[0 : 3] = 1100 it means that A[3] = A[2] = 0 and
A[1] = A[0] = 1.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©



least/most significant bits

Definition

The least significant bit of the string A[i : j] is the bit A[k], where

k
△
= min{i , j}. The most significant bit of the string A[i : j] is the

bit A[ℓ], where ℓ
△
= max{i , j}.

The abbreviations LSB and MSB are used to abbreviate the least
significant bit and the most significant bit, respectively.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©



LSB/MSB - examples

1 The least significant bit (LSB) of A[0 : 3] = 1100 is A[0] = 1.
The most significant bit (MSB) of ~A is A[3] = 0.

2 The LSB of A[3 : 0] = 1100 is A[0] = 0. The MSB of ~A is
A[3] = 1.

3 The least significant and most significant bits are determined
by the indexes. In our convention, it is not the case that the
LSB is always the leftmost bit. Namely, if i ≤ j , then LSB in
A[i : j] is the leftmost bit, whereas in A[j : i ], the leftmost bit
is the MSB.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©



Binary Representation

We are now ready to define the binary number represented by a
string A[n − 1 : 0].

Definition

The natural number, a, represented in binary representation by the
binary string A[n − 1 : 0] is defined by

a
△
=

n−1
∑

i=0

A[i ] · 2i .

In binary representation, each bit has a weight associated with it.
The weight of the bit A[i ] is 2i .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©



Notation

Consider a binary string A[n − 1 : 0]. We introduce the following
notation:

〈A[n − 1 : 0]〉
△
=

n−1
∑

i=0

A[i ] · 2i .

To simplify notation, we often denote strings by capital letters
(e.g., A, B , S) and we denote the number represented by a string
by a lowercase letter (e.g., a, b, and s).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©



Examples

Consider the strings: A[2 : 0]
△
= 000,B [3 : 0]

△
= 0001, and

C [3 : 0]
△
= 1000. The natural numbers represented by the binary

strings A,B and C are as follows.

〈A[2 : 0]〉 = A[0] · 20 + A[1] · 21 + A[2] · 22

= 0 · 20 + 0 · 21 + 0 · 22 = 0 ,

〈B [3 : 0]〉 = B [0] · 20 + B [1] · 21 + B [2] · 22 + B [3] · 23

= 1 · 20 + 0 · 21 + 0 · 22 + 0 · 23 = 1 ,

〈C [3 : 0]〉 = C [0] · 20 + C [1] · 21 + C [2] · 22 + C [3] · 23

= 0 · 20 + 0 · 21 + 0 · 22 + 1 · 23 = 8 .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©



Leading Zeros

Consider a binary string A[n − 1 : 0]. Extending ~A by leading zeros
means concatenating zeros in indexes higher than n − 1. Namely,

1 extending the length of A[n − 1 : 0] to A[m − 1 : 0], for
m > n, and

2 defining A[i ] = 0, for every i ∈ [m − 1 : n].

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©



Leading Zeros

The following lemma states that extending a binary string by
leading zeros does not change the number it represents in binary
representation.

Lemma

Let m > n. If A[m − 1 : n] is all zeros, then
〈A[m − 1 : 0]〉 = 〈A[n − 1 : 0]〉.

Example

Consider C [6 : 0] = 0001100 and D[3 : 0] = 1100. Note that
〈C 〉 = 〈D〉 = 12. Since the leading zeros do not affect the value
represented by a string, a natural number has infinitely many
binary representations.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©



Representable Ranges

The following lemma bounds the value of a number represented by
a k-bit binary string.

Lemma

Let A[k − 1 : 0] denote a k-bit binary string. Then,
0 ≤ 〈A[k − 1 : 0]〉 ≤ 2k − 1.

What is the largest number representable by the following number
of bits: (i) 8 bits, (ii) 10 bits, (iii) 16 bits, (iv) 32 bits, and (v) 64
bits?

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©



Computing a Binary Representation

Fix k the number of bits (i.e., length of binary string).
Goals:

1 show how to compute a binary representation of a natural
number using k bits.

2 prove that every natural number has a unique binary
representation that uses k bits.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©



binary representation algorithm: specification

Algorithm BR(x , k) for computing a binary representation is
specified as follows:

Inputs: x ∈ N and k ∈ N
+, where x is a natural number for

which a binary representation is sought, and k is the
length of the binary string that the algorithm should
output.

Output: The algorithm outputs “fail” or a k-bit binary string
A[k − 1 : 0].

Functionality: The relation between the inputs and the output is
as follows:

1 If 0 ≤ x < 2k , then the algorithm outputs a
k-bit string A[k − 1 : 0] that satisfies
x = 〈A[k − 1 : 0]〉.

2 If x ≥ 2k , then the algorithm outputs “fail”.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©



binary representation algorithm

Algorithm 1 BR(x , k) - An algorithm for computing a binary rep-
resentation of a natural number a using k bits.

1 Base Cases:
1 If x ≥ 2k then return (fail).
2 If k = 1 then return (x).

2 Reduction Rule:
1 If x ≥ 2k−1 then return (1 ◦ BR(x − 2k−1, k − 1)).
2 If x ≤ 2k−1 − 1 then return (0 ◦ BR(x , k − 1)).

example: execution of BR(2, 1) and BR(7, 3)

Theorem

If x ∈ N, k ∈ N
+, and x < 2k , then algorithm BR(x , k) returns a

k-bit binary string A[k − 1 : 0] such that 〈A[k − 1 : 0]〉 = x.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©



unique binary representation

corollary

Every positive integer x has a binary representation by a k-bit
binary string if k ≥ ⌊log2(x)⌋ + 1.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©



unique binary representation

corollary

Every positive integer x has a binary representation by a k-bit
binary string if k ≥ ⌊log2(x)⌋ + 1.

Theorem (unique binary representation)

The binary representation function 〈〉k : {0, 1}k → N defined by

〈A[k − 1 : 0]〉k
△
=

k−1
∑

i=0

A[i ] · 2i

is a bijection (i.e., one-to-one and onto) from {0, 1}k to
{0, . . . , 2k − 1}.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©



shifting

We claim that when a natural number is multiplied by two, its
binary representation is “shifted left” while a single zero bit is
padded from the right. That property is summarized in the
following lemma.

Lemma

Let a ∈ N. Let A[k − 1 : 0] be a k-bit string such that

a = 〈A[k − 1 : 0]〉. Let B [k : 0]
△
= A[k − 1 : 0] ◦ 0, then

2 · a = 〈B [k : 0]〉.

Example

〈1000〉 = 2 · 〈100〉 = 22 · 〈10〉 = 23 · 〈1〉 = 8.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©


