
Exercises and solutions
for

Essentials of Programming in
Mathematica®

PAUL WELLIN

1
Programming with Mathematica

Getting started: exercises1.2
Generate a random real number between one and one hundred. Then create a vector of twelve

random numbers between one and one hundred. Finally, create a 4⨯4 array of such numbers

and then compute the determinant of that array.

1.

Using Table, create a 4⨯4 Hilbert matrix. The entry aij in row i, column j of the Hilbert matrix

is given by

1
i+j-1

. Check your solution against the built-in HilbertMatrix.
2.

Add the two lists, {1, 2, 3, 4, 5} and {2, 4, 6, 8, 10}. Then multiply them element-wise.
Finally, multiply the two lists as vectors (dot product).

3.

Generate a list of the first twenty-five integers in five different ways.4.

Add the integers one through one thousand in as many different ways as you can.5.

A 2⨯2 matrix can be created using lists such as {{�, �}, {�, �}}. Define a 2⨯2 numerical
matrix and then find its inverse, determinant, transpose, and trace.

6.

Create the following matrix using list notation:7.

1 1
1 0

Then find the inverse, determinant, and transpose of the matrix. Finally, compute the fifth

matrix power of this matrix (m.m.m.m.m).

Solutions1.2
First, here is a random real number between one and one hundred.1.

In[1]:= RandomReal[{1, 100}]

Out[1]= 83.1802

This gives a vector of twelve such random numbers.

In[2]:= RandomReal[{1, 100}, {12}]

Out[2]= {91.5353, 8.35684, 68.0464, 57.9997, 37.9279,

97.2452, 62.8762, 36.5797, 4.61388, 87.2442, 58.6649, 45.0762}

A 4⨯4 array of them.

In[3]:= RandomReal[{1, 100}, {4, 4}]

Out[3]= {{71.1387, 15.5669, 32.9543, 10.6077}, {8.89123, 59.9753, 5.55336, 92.4248},

{31.9101, 49.9324, 51.6797, 26.3127}, {79.4064, 50.808, 4.1497, 82.4448}}

And the determinant of this array.

In[4]:= Det[%]

Out[4]= -3.65557×106

The entry aij entry of the Hilbert matrix is defined as

1
i+j-1

.2.

In[5]:= Table
1

i + j - 1
, j, 4, i, 4

Out[5]= 1,
1

2
,
1

3
,
1

4
,

1

2
,
1

3
,
1

4
,
1

5
,

1

3
,
1

4
,
1

5
,
1

6
,

1

4
,
1

5
,
1

6
,
1

7

Check against the built-in function.

In[6]:= HilbertMatrix[4]

Out[6]= 1,
1

2
,
1

3
,
1

4
,

1

2
,
1

3
,
1

4
,
1

5
,

1

3
,
1

4
,
1

5
,
1

6
,

1

4
,
1

5
,
1

6
,
1

7

First, add the two lists.3.

In[7]:= {1, 2, 3, 4, 5} + {2, 4, 6, 8, 10}

Out[7]= {3, 6, 9, 12, 15}

To multiply the two lists, put a space between them.

In[8]:= {1, 2, 3, 4, 5} {2, 4, 6, 8, 10}

Out[8]= {2, 8, 18, 32, 50}

The dot product can be computed using either a built-in function or traditional mathematical
notation.

In[9]:= Dot[{1, 2, 3, 4, 5}, {2, 4, 6, 8, 10}]

Out[9]= 110

In[10]:= {1, 2, 3, 4, 5}.{2, 4, 6, 8, 10}

Out[10]= 110

First the straightforward ways of generating the list of the first twenty-five integers.4.

2 Essentials of Programming in Mathematica

In[11]:= Range[25]

Out[11]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}

Here are two alternate syntaxes for the Range function, a prefix form and a postfix form:

In[12]:= Range@25

Out[12]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}

In[13]:= 25 // Range

Out[13]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}

Using Table:

In[14]:= Tablei, i, 1, 25

Out[14]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}

The coefficients of the linear term in the first 25 rows of the binomial expansion of (1 + x)n:

In[15]:= TableBinomial[n, 1], {n, 1, 25}

Out[15]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}

A very roundabout (and not terribly efficient) way to do this: get the coefficients of the follow-
ing series.

In[16]:= series = Series
1

(1 - x)2
, {x, 0, 24}

Out[16]= 1 + 2 x + 3 x2 + 4 x3 + 5 x4 + 6 x5 + 7 x6 + 8 x7 + 9 x8 + 10 x9 +

11 x10 + 12 x11 + 13 x12 + 14 x13 + 15 x14 + 16 x15 + 17 x16 + 18 x17 +

19 x18 + 20 x19 + 21 x20 + 22 x21 + 23 x22 + 24 x23 + 25 x24 + O[x]25

In[17]:= CoefficientListNormalseries, x

Out[17]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}

Several mathematical functions are built in that will compute the sum directly.5.

In[18]:= Sumi, i, 103

Out[18]= 500500

The same sum can be computed using familiar mathematical notation, templates for which are

available from the �������� menu.

1.2 Getting started: exercises 3

In[19]:=

i

103

i

Out[19]= 500500

In fact the sum can be done in parallel (assuming you are working on a multi-core machine) by

using a parallelized version of Sum.

In[20]:= ParallelSumi, i, 103

Out[20]= 500500

If you are already acquainted with an imperative style of programming, such as is found in

procedural languages like C, Fortran, and Java, then the following looping constructs should

be familiar.

In[21]:= i = 0;

Doi = i + j, j, 103;

i

Out[23]= 500500

In[24]:= res = 0;

i = 0;

Fori = 1, i ≤ 103, i++, res = i + res;

res

Out[27]= 500500

In[28]:= res = 0;

i = 0;

Whilei ≤ 103, res = i + res; i++;

res

Out[31]= 500500

A declarative style of programming – including functional languages such as Lisp, Haskell,
Scheme, F♯ – is one in which functions are used to declare what the program should do, rather
than giving explicit steps or actions to be performed. In such languages, computation is done

by evaluating functions that operate on the appropriate inputs. In this case, the input is a list of
the first thousand positive integers; the semicolon is used to suppress the display of the output
of that particular input.

In[32]:= lis = Range103;

In[33]:= ApplyPlus, lis

Out[33]= 500500

In[34]:= FoldPlus, 0, lis

Out[34]= 500500

4 Essentials of Programming in Mathematica

In[35]:= LastAccumulatelis

Out[35]= 500500

In[36]:= Totallis

Out[36]= 500500

Other approaches can be considered as well, including a recursive approach (Prolog, Haskell or
Scheme), one using replacement rules, and another using sparse array arithmetic.

In[37]:= s[0] = 0;

s[n_] := s[n] = s[n - 1] + n

In[39]:= s[1000]

Out[39]= 500500

In[40]:= lis /. {x_, y__}⧴ x + y

Out[40]= 500500

In[41]:= mat = SparseArrayi_, i_ ⧴ lisi, 103, 103;

Tr[mat]

Out[42]= 500500

One approach to computing the sum of the first n integers is to use the fact (known to Gauss at

a young age) that the sum is equal to the binomial
n + 1

2
.

In[43]:= n = 103;

Binomial[n + 1, 2]

Out[44]= 500500

Although all of these approaches give the same answer (they had better!), some are more

efficient in terms of memory management and some are faster than others. We don’t expect
that these examples will all make sense to you at this point but after having read this book, you

should be quite comfortable with each of these paradigms so that you can apply them to a wide

variety of problems and choose the best approach for the programming problems you will
encounter.

Here is a 2⨯2 matrix filled with numbers.6.

In[45]:= mat = {{3, 5}, {1, 2}};

And here are the operations on that matrix.

In[46]:= Inverse[mat]

Out[46]= {{2, -5}, {-1, 3}}

In[47]:= Det[mat]

Out[47]= 1

1.2 Getting started: exercises 5

In[48]:= Transpose[mat]

Out[48]= {{3, 1}, {5, 2}}

In[49]:= Tr[mat]

Out[49]= 5

Here is the list representation of the matrix given in the exercise.7.

In[50]:= mat = {{1, 1}, {1, 0}};

Here are the inverse, determinant, and transpose.

In[51]:= Inverse[mat]

Out[51]= {{0, 1}, {1, -1}}

In[52]:= Det[mat]

Out[52]= -1

In[53]:= Transpose[mat]

Out[53]= {{1, 1}, {1, 0}}

As for the matrix power, you could write it out explicitly.

In[54]:= mat.mat.mat.mat.mat

Out[54]= {{8, 5}, {5, 3}}

But that is tedious and wouldn’t be sensible for the 100th power say. Another built-in function

can be used for the matrix power. You should see the Fibonacci numbers lurking in the output,
a fact which is explored in Section 5.4.

In[55]:= MatrixPower[mat, 5]

Out[55]= {{8, 5}, {5, 3}}

In[56]:= MatrixPower[mat, 100]

Out[56]= {{573147844013817084101, 354224848179261915075},

{354224848179261915075, 218922995834555169026}}

In[57]:= Fibonacci[101]

Out[57]= 573147844013817084101

In[58]:= Clears, lis, mat, n, i, res

6 Essentials of Programming in Mathematica

2
The Mathematica language

Expressions: exercises2.1
Determine if each of the following are atomic expressions. If the expression is not atomic, find

its head.
1.

8 / 5a.

8 / 5 + xb.

{{a, b}, {c, d}}c.

"8/5 + x"d.

Give the full (internal) form of the expression a (b + c).2.

What is the traditional representation of Times[a, Power[Plus[b, c], -1]].3.

What is the part specification of the symbol b in the expression a x2 + b x + c?4.

What will be the result of evaluating each of the following? Use FullForm on the expressions

to help you understand their structures.
5.

x2 + y z / w[[2, 1, 2]]a.

(a / b)[[2, 2]]b.

Use Level to find all the factors in the following expression. Then find all the terms inside the

parentheses of the output.
6.

In[1]:= expr = LegendreP[5, x]

Out[1]=

1

8
15 x - 70 x3 + 63 x5

Explain why the following expression returns an integer instead of displaying the internal
representation of the fraction.

7.

In[2]:= FullForm
12

4

Out[2]//FullForm= 3

Modify the code for the one-dimensional random walk in this section to create two-dimen-
sional random walks. In this case the step directions will be the vectors pointing in the com-
pass directions, {0, 1}, {0, -1}, {1, 0}, and {-1, 0}.

8.

Solutions2.1
The functions AtomQ, Head, and FullForm will help answer these questions.1.

 The fraction 8 / 5 is atomic with head Rational.a.

In[1]:= AtomQ[8/5], Head[8/5]

Out[1]= {True, Rational}

The expression 8 / 5 + x is not atomic. It is a normal expression with head Plus.b.

In[2]:= AtomQ[8/5 + x], Head[8/5 + x], FullForm[8/5 + x]

Out[2]= {False, Plus, Plus[Rational[8, 5], x]}

The list {{a, b}, {c, d}} is not atomic. It has head List.c.

In[3]:= AtomQa, b, c, d, Heada, b, c, d

Out[3]= {False, List}

The string "8/5 + x" is atomic. It has head String.d.

In[4]:= AtomQ"8/5+x", Head"8/5+x"

Out[4]= {True, String}

The expression a (b + c) is given in full form as Times[a, Plus[b, c]].2.
This is simply

a
b+c

 as can be seen by evaluating the full form expression.3.

In[5]:= Timesa, PowerPlusb, c, -1

Out[5]=

a

b + c

There are three elements in the expression; b x is the second element. 4.

In[6]:= expr = a x2 + b x + c;

In[7]:= FullForm[expr]

Out[7]//FullForm= Plus[c, Times[b, x], Times[a, Power[x, 2]]]

The first element of Times[b, x] is b, so the part specification is 2, 1.

8 Essentials of Programming in Mathematica

In[8]:= expr[[2]]

Out[8]= b x

In[9]:= expr[[2, 1]]

Out[9]= b

Looking at the internal representation of this expression with FullForm helps to unwind the

part specification.
5.

Here is the internal representation of the expression:a.

In[10]:= FullForm
x2 + y z

w

Out[10]//FullForm= Times[Power[w, -1], Plus[Power[x, 2], y], z]

In[11]:=

x2 + y z

w
[[2, 1, 2]]

Out[11]= 2

From the FullForm of a / b, you can see that the second part is Power[b, -1] and the

second part of that is -1. Note the need for parentheses here as the Part function has higher
precedence than Power. For more information on operator precedence, see the tutorial
Operator Input Forms (WLDC)

b.

In[12]:= FullFormab

Out[12]//FullForm= Times[a, Power[b, -1]]

In[13]:= ab[[2, 2]]

Out[13]= -1

At first, you might try getting the expressions at level two as follows:6.

In[14]:= expr = LegendreP[5, x]

Out[14]=

1

8
15 x - 70 x3 + 63 x5

In[15]:= Level[expr, 2]

Out[15]=
1

8
, 15 x, -70 x3, 63 x5, 15 x - 70 x3 + 63 x5

But that gets all the parts down to level two. To extract just those parts at level two, use a

slightly different syntax with Level.

In[16]:= Level[expr, {2}]

Out[16]= 15 x, -70 x3, 63 x5

2.1 Expressions: exercises 9

http://reference.wolfram.com/language/tutorial/OperatorInputForms.html

Mathematica evaluates arguments to functions before passing them up to the calling function. So

the fraction first evaluates to 3 and the head of 3 is of course Integer. To get the internal
representation of the expression before it is evaluated, use Defer.

7.

In[17]:= DeferFullForm[12/4]

Out[17]= Times[12, Power[4, -1]]

The directions are the two-dimensional lists that can be thought of as vectors pointing in the

compass directions north, south, east, and west.
8.

In[18]:= dirs = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};

This picks a direction at random.

In[19]:= RandomChoicedirs

Out[19]= {1, 0}

This chooses five such.

In[20]:= RandomChoicedirs, 5

Out[20]= {{1, 0}, {0, 1}, {0, 1}, {-1, 0}, {0, -1}}

Here are the running sums, just like in the one-dimensional case.

In[21]:= Accumulate[%]

Out[21]= {{1, 0}, {1, 1}, {1, 2}, {0, 2}, {0, 1}}

And here is the nested code to create a 25 000-step two-dimensional random walk.

In[22]:= ListLinePlotAccumulateRandomChoicedirs, 25000, PlotStyle → Thin

Out[22]=

-20 20 40 60

-150

-100

-50

Numbers: exercises2.2
Is the expression 2 + π a number? Is it numeric? What is the difference?1.

Convert the base 10 integer 65 to base 2. Then convert back to base 10.2.

Define a function complexToPolar that converts complex numbers to their polar representa-
tions. Then, convert the numbers 3 + 3 ⅈ and ⅇπⅈ/3 to polar form.

3.

10 Essentials of Programming in Mathematica

Use NumberForm to display an approximate number with exactly four precise digits and three

digits to the right of the decimal. Then use PaddedForm to display the numbers in the following

vector with precisely two digits to the right of the decimal:

4.

In[1]:= vec = RandomReal[{0, 1}, 8]

Out[1]= {0.897363, 0.629743, 0.657265, 0.959865, 0.681584, 0.706607, 0.995883, 0.111384}

Make a histogram of the frequencies of the first 100 000 digits of π. It is an open problem in

number theory as to whether the digits are normal, meaning that each of the digits zero through

nine occur with about the same frequency in the decimal expansion of π. See Bailey et al. (2012)
for more information on normality and the digits of π.

5.

Convert each of the characters in a string such as “Apple” to their eight-bit binary character
code representation. For example, the character code for the letter A is 65:

6.

In[2]:= ToCharacterCode"A"

Out[2]= {65}

The eight-bit binary representation of 65 is 1000001, so your solution should return that base 2

number for the letter A. Binary representations of letters are used in certain ciphers such as the

XOR cipher discussed in Exercise 5 of Section 7.1.

Graphs consist of a set of vertices and edges connecting some subset of those vertices. They are

implemented in Mathematica with Graph, which takes two arguments: a list of vertices and a list

of edges. Create a random graph on n vertices by choosing m edges from the

n
2

 possible

edges. Such random graphs are commonly specified as G(n, m) and are essentially the model
upon which the built-in RandomGraph is based.

7.

Extract the first 5000 digits in the decimal expansion of 1 / 17 or any other rational number.
Then play them using ListPlay, which emits sound whose amplitude is given by the sequence

of digits. Compare with the first 5000 digits of π.

8.

RandomReal by default outputs numbers uniformly distributed on the interval [0, 1]. 9.

In[3]:= data = RandomReal{0, 1}, 104;

Histogramdata, 15

Out[4]=

0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

Bias the list of random numbers toward the lower end of this interval, giving a histogram

similar to those in Figure 2.1.

2.2 Numbers: exercises 11

http://www.davidhbailey.com/dhbpapers/normality-digits-pi.pdf

Distributions of random number data biased toward the lower end of the interval [0, 1].Figure 2.1.

0.2 0.4 0.6 0.8 1.0
0

500

1000

1500

2000

2500

3000

0.2 0.4 0.6 0.8 1.0
0

500

1000

1500

2000

Information theory, as conceived by Claude Shannon in the 1940s and 1950s, was originally

interested in maximizing the amount of data that can be stored and retrieved over some

channel such as a telephone line. Shannon devised a measure, now called entropy, that gives the

theoretical maxima for such a signal. Entropy can be thought of as the average uncertainty of a

single random variable and is computed by the following, where p(x) is the probability of event
x over a domain X:

10.

H(X) = -∑x∈X p(x) log2 p(x)

Generate a plot of the entropy (built into Mathematica as Entropy) as a function of success

probability. You can simulate n trials of a coin toss with probability p using a Bernoulli distribu-
tion as follows:

RandomVariateBernoulliDistribution[�], �

Solutions2.2
The expression 2 + π is certainly numeric as both 2 and π are numeric.1.

In[1]:= NumericQ[2 + π]

Out[1]= True

But it is not an explicit number because π is not an explicit number.

In[2]:= NumberQ[2 + π]

Out[2]= False

This converts the base 2 representation of the number 65 to base 10.2.

In[3]:= 2^^1000001

Out[3]= 65

To go in the other direction, use BaseForm:

In[4]:= BaseForm[65, 2]

Out[4]//BaseForm= 10000012

This function gives the polar form as a list consisting of the magnitude and the polar angle.3.

12 Essentials of Programming in Mathematica

In[5]:= complexToPolar[z_] := Abs[z], Arg[z]

In[6]:= complexToPolar[3 + 3 ⅈ]

Out[6]= 3 2 ,
π

4

Check against a built-in function (introduced inMathematica 10.1):

In[7]:= AbsArg[3 + 3 ⅈ]

Out[7]= 3 2 ,
π

4

In[8]:= complexToPolarⅇ
π ⅈ

3

Out[8]= 1,
π

3

In[9]:= AbsArgⅇ
π ⅈ

3

Out[9]= 1,
π

3

Here is an approximation of π to 20-digit precision.4.

In[10]:= pi = N[π, 20]

Out[10]= 3.1415926535897932385

Display four precise digits with three digits to the right of the decimal point.

In[11]:= NumberFormpi, {4, 3}

Out[11]//NumberForm=

3.142

For the second part of the exercise, here is a vector of machine precision numbers.

In[12]:= vec = RandomReal[{0, 1}, 8]

Out[12]= {0.650946, 0.238017, 0.664332, 0.840782, 0.211514, 0.0455802, 0.612099, 0.228518}

This forces the display to use three digits in total with two digits to the right of the decimal.

In[13]:= PaddedForm[vec, {3, 2}]

Out[13]//PaddedForm=

{ 0.65, 0.24, 0.66, 0.84, 0.21, 0.05, 0.61, 0.23}

To get the digits of π, use RealDigits.5.

In[14]:= RealDigits[N[π]]

Out[14]= {{3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3}, 1}

What is returned is a list with the digits first, followed by the exponent, 1. We are only interested

in the first sublist, so use First.

2.2 Numbers: exercises 13

In[15]:= First[%]

Out[15]= {3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3}

Here then, is a list of the first 100 000 digits of π, suppressing the display of the output using the

semicolon.

In[16]:= pidigs = FirstRealDigitsNπ, 105;

This histogram shows that each of the digits zero through nine appear with about the same

frequency. This is referred to as the normality of the digits of π (see Bailey et al. 2012) .

In[17]:= Histogrampidigs

Out[17]=

0 2 4 6 8 10
0

2000

4000

6000

8000

10000

First, here are the character codes of the letters in our test string, “Apple”.6.

In[18]:= ToCharacterCode"Apple"

Out[18]= {65, 112, 112, 108, 101}

Here are the base two representation of each of the above character codes.

In[19]:= IntegerDigits[%, 2]

Out[19]= {{1, 0, 0, 0, 0, 0, 1}, {1, 1, 1, 0, 0, 0, 0},

{1, 1, 1, 0, 0, 0, 0}, {1, 1, 0, 1, 1, 0, 0}, {1, 1, 0, 0, 1, 0, 1}}

Because the numbers are less than 128, the base two representation only have seven bits. To get
the eight-bit representations, use a third argument to IntegerDigits.

In[20]:= IntegerDigitsToCharacterCode"Apple", 2, 8

Out[20]= {{0, 1, 0, 0, 0, 0, 0, 1}, {0, 1, 1, 1, 0, 0, 0, 0},

{0, 1, 1, 1, 0, 0, 0, 0}, {0, 1, 1, 0, 1, 1, 0, 0}, {0, 1, 1, 0, 0, 1, 0, 1}}

The built-in Graph function takes two arguments: a list of the vertex indices and a list of the

edges. For a graph with n vertices, the vertex indices are simply the list of the integers one

through n.

7.

In[21]:= n = 5;

vertices = Range[5]

Out[22]= {1, 2, 3, 4, 5}

For the edges, we need a list of all possible edges in a graph with n vertices. CompleteGraph[�]

14 Essentials of Programming in Mathematica

http://www.davidhbailey.com/dhbpapers/normality-digits-pi.pdf

is a graph with all possible edges on n vertices so we can borrow that list from CompleteGraph.

In[23]:= edgesCG = EdgeListCompleteGraph[n]

Out[23]= {1 2, 1 3, 1 4, 1 5, 2 3, 2 4, 2 5, 3 4, 3 5, 4 5}

To randomly choose m of them, use RandomChoice. RandomChoice chooses elements with

replacement. Note that nothing prohibits what are referred to as multi-graphs, that is, graphs

where multiple edges exist between pairs of vertices.

In[24]:= RandomChoiceedgesCG, 8

Out[24]= {1 3, 4 5, 2 5, 2 3, 1 4, 2 3, 1 2, 1 2}

To avoid multi-edges, use RandomSample which chooses without replacement. But you will

need to keep the desired number of edges, m, smaller than

n
2

.

In[25]:= RandomSampleedgesCG, 8

Out[25]= {1 5, 3 4, 2 3, 1 2, 2 4, 2 5, 1 3, 3 5}

This puts the pieces together and scales it up a bit. Repeated evaluation will cause different
random graphs to be displayed, all with n vertices and m edges.

In[26]:= n = 13;

m = 15;

GraphRange[n], RandomSampleEdgeListCompleteGraph[n], m

Out[28]=

Also note that because we have used CompleteGraph, there are no self-edges, that is, an edge

from a vertex to itself.

2.2 Numbers: exercises 15

In[29]:= n = 21;

m = 167;

GraphRange[n], RandomSampleEdgeListCompleteGraph[n], m

Out[31]=

The built-in RandomGraph constructs only simple graphs – no multi-edges and no self loops,

hence the total possible number of edges cannot exceed

n
2

.

In[32]:= RandomGraph[{21, 211}]

RandomGraph::args : RandomGraph{21, 211} called with invalid parameters.

Out[32]= RandomGraph[{21, 211}]

In[33]:= Binomial[21, 2]

Out[33]= 210

First, note that RealDigits returns a list with two elements, the digits and the exponent, in this

case indicating that the first digit starts one place to the right of the decimal point.
8.

In[34]:= RealDigits[N[1/17, 20]]

Out[34]= {{5, 8, 8, 2, 3, 5, 2, 9, 4, 1, 1, 7, 6, 4, 7, 0, 5, 8, 8, 2}, -1}

To get only the digits, use First.

In[35]:= First[%]

Out[35]= {5, 8, 8, 2, 3, 5, 2, 9, 4, 1, 1, 7, 6, 4, 7, 0, 5, 8, 8, 2}

Here then are the first 5000 digits of 1 / 17.

In[36]:= digs = FirstRealDigits[N[1/17, 5000]];

And this plays them through the speakers of your computer.

In[37]:= ListPlaydigs

Out[37]=

���� � | ���� ��

16 Essentials of Programming in Mathematica

There are several ways that the random number sequences can be biased. First look at a picture

of unbiased data. The random number generator uses a uniform probability distribution by

default so we expect to see numbers uniformly distributed across the interval [0, 1].

9.

In[38]:= data = RandomReal{0, 1}, 104;

In[39]:= Histogramdata, 10

Out[39]=

0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000

One way to bias the numbers toward zero is to transform them in such a way that they bunch

around zero. Since these numbers are all less than one, raising them to a power will make them

smaller.

In[40]:= Histogramdata1.5, 10, ImageSize → 160, Histogramdata2, 10, ImageSize → 160

Out[40]=

0.2 0.4 0.6 0.8 1.0
0

500

1000

1500

2000

,

0.2 0.4 0.6 0.8 1.0
0

500

1000

1500

2000

2500

3000

Of course, choosing from a different distribution biases the numbers in a sense.

In[41]:= data = RandomVariateBenfordDistribution[10], 104;

Histogramdata, 10

Out[42]=

2 4 6 8 10
0

500

1000

1500

2000

2500

3000

In Chapters 3 and 9 we discuss listability, which will explain why we can raise every element in

a vector to a power using the syntax above.

In[43]:= a, b, c, d, e1.5

Out[43]= a1.5, b1.5, c1.5, d1.5, e1.5

Run 10 000 trials with a range of probabilities from zero to one in increments of .001. The

table creates pairs consisting of p together with the entropy (in base 2) for each trial.
10.

In[44]:= trials = 10000;

incr = 0.001;

info = Tablep, Entropy2, RandomVariateBernoulliDistribution[p], trials,

p, 0, 1, incr;

2.2 Numbers: exercises 17

Make a plot.

In[47]:= ListPlotinfo, AspectRatio → 1, GridLines → Automatic

Out[47]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Definitions: exercises2.3
Create a function reciprocal �

�
 that returns the reciprocal of the fraction ab. Check your

solution with numeric and symbolic fractions and with fractions containing zero in the
numerator.

1.

Using Total, create a function to sum the first n positive integers.2.

Create a function to compute the sum of the digits of any integer. Write an additional rule to
give the sum of the base-b digits of an integer. Then use your function to compute theHamming
weight of any integer: the Hamming weight of an integer is given by the number of ones in the
binary representation of that number. It has wide use in computer science (modular exponentia-
tion and hash tables), cryptography, and coding theory (Knuth 2011) .

3.

Write a function sumsOfCubes[�] that takes a positive integer argument n and computes the
sums of cubes of the digits of n (Hayes 1992).

4.

What rules are created by each of the following functions? Check your predictions by evaluat-
ing them and then queryingMathematicawith ? ��������_����.

5.

randLis1[n_] := RandomReal[1, {n}]a.

randLis2[n_] := (x = RandomReal[]; Table[x, {n}])b.

randLis3[n_] := (x := RandomReal[]; Table[x, {n}])c.

randLis4[n_] = Table[RandomReal[], {n}]d.

Consider two functions f and g, which are identical except that one is written using an immedi-
ate assignment and the other using a delayed assignment.

6.

In[1]:= f[n_] = Sum(1 + x)j, j, 1, n;

In[2]:= g[n_] := Sum(1 + x)j, j, 1, n

Explain why the outputs of these two functions look so different. Are they in fact different?

18 Essentials of Programming in Mathematica

http://www-cs-faculty.stanford.edu/~uno/taocp.html

In[3]:= f[2]

Out[3]=

(1 + x) -1 + (1 + x)2

x

In[4]:= g[2]

Out[4]= 1 + x + (1 + x)2

Write rules for a function log (note lowercase) that encapsulate the following identities:7.

log a b = log (a) + logb;
log a

b
 = log (a) - logb;

log (an) = n log(a).

Create a piecewise-defined function g(x) based on the following; then plot the function from

-2 to 0.
8.

g (x) = - 1 - (x + 2)2
-2 ≤ x ≤ - 1

1 -x2 x < 0

The built-in function RotateRight rotates the elements in a list one place to the right, with the

last element swinging around to the front.
9.

In[5]:= RotateRighta, b, c, d, e

Out[5]= {e, a, b, c, d}

Create a function IntegerRotateRight[�] that takes an integer n and returns an integer with

the original digits rotated one place to the right. Use this function to first verify that 142 857 is a

divisor of its right rotation and then find all such numbers less than one million

(Project Euler, Problem#168).

The Champernowne constant is a famous number that is created by concatenating successive

integers and interpreting them as decimal digits. For example, here are the first 31 digits of the

base-10 Champernowne number:

10.

In[6]:= NChampernowneNumber[10], 31

Out[6]= 0.1234567891011121314151617181920

Concatenation can be used to generate integers also. Create a function to generate the nth

Smarandache–Wellin number, formed by concatenating the digits of successive primes. The

first such number is 2, then 23, then 235, followed by 2357, 235711, and so on. Numerous open

questions exist about these numbers: for example, it is not known if an infinite number of
them are prime; see Crandall and Pomerance (2005) and Sloane (A019518).

2.3 Definitions: exercises 19

http://projecteuler.net/problem=168
http://www.springer.com/us/book/9780387252827
http://oeis.org/A019518

Solutions2.3
Note that simply giving the reciprocal on the right-hand side does not work.1.

In[1]:= reciprocala_b_ := b a

In[2]:= reciprocal[3/4]

Out[2]=

4

3

Look at the internal form to see why the pattern matcher failed to match 3/4 with a_ / b_.

In[3]:= FullForm[3/4]

Out[3]//FullForm= Rational[3, 4]

So a better approach is to use the internal form of such fractions.

In[4]:= reciprocalRationala_, b_ := Rationalb, a

Alternatively, match with the head.

In[5]:= reciprocalz_Rational := Denominator[z]Numerator[z]

This works for numeric and symbolic fractions.

In[6]:= reciprocal[3/4]

Out[6]=

4

3

In[7]:= reciprocal[z/(x + y)]

Out[7]=

x + y

z

But there is an issue with fractions containing zero in the numerator.

In[8]:= reciprocal[0/5]

Power::infy : In�nite expression

1

0
 encountered.

Out[8]= ComplexInfinity

We will wait until Section 2.4 to resolve this issue.

Generate the list of integers 1 through n, then total that list.2.

In[9]:= sumInts[n_] := Total[Range[n]]

In[10]:= sumInts[100]

Out[10]= 5050

In[11]:= sumInts[1000]

Out[11]= 500500

20 Essentials of Programming in Mathematica

We have not been careful to check that the arguments are positive integers here. See Section 4.1

for a discussion of patterns used to perform argument checking on your functions.

Once you have a list of the digits in any integer (IntegerDigits), simply total the list.3.

In[12]:= DigitSum[n_] := TotalIntegerDigits[n]

In[13]:= DigitSum[10!]

Out[13]= 27

One rule can cover both parts of this exercise, using a default value of 10 for the base (see

Section 5.4 for a discussion of default values).

In[14]:= DigitSumn_, base_: 10 := TotalIntegerDigitsn, base

The Hamming weight of a number is the number of ones in its binary representation.

In[15]:= DigitSum231 - 1, 2

Out[15]= 31

Here is a comparison with a built-in function:

In[16]:= DigitCount231 - 1, 2, 1

Out[16]= 31

Here is the sumsOfCubes function.4.

In[17]:= sumsOfCubes[n_Integer] := TotalIntegerDigits[n]3

In[18]:= sumsOfCubes[124]

Out[18]= 73

This exercise focuses on the difference between immediate and delayed assignments.5.

This will generate a list of n random numbers.a.

In[19]:= randLis1[n_] := RandomReal[1, {n}]

In[20]:= randLis1[3]

Out[20]= {0.726437, 0.820623, 0.349356}

Since the definition for x is an immediate assignment, its value does not change in Table.
But each time randLis2 is called, a new value is assigned to x.

b.

In[21]:= randLis2[n_] := x = RandomReal[]; Table[x, {n}]

In[22]:= randLis2[3]

Out[22]= {0.974798, 0.974798, 0.974798}

In[23]:= randLis2[3]

Out[23]= {0.621851, 0.621851, 0.621851}

2.3 Definitions: exercises 21

Because the definition for x is a delayed assignment, the definition for randLis3 is function-
ally equivalent to randLis1.

c.

In[24]:= randLis3[n_] := x := RandomReal[]; Table[x, {n}]

In[25]:= randLis3[3]

Out[25]= {0.412708, 0.253301, 0.361384}

In an immediate assignment, the right-hand side of the definition is evaluated first. But in

this case, n does not have a value, so Table is not able to evaluate properly.
d.

In[26]:= randLis4[n_] = TableRandomReal[], {n}

Out[26]= {0.138356, 0.374127, 0.873417, 0.769375, 0.0394529, 0.983081, 0.160601,

0.982007, 0.191435, 0.744383, 0.761298, 0.311281, 0.461935, 0.525905,

0.921668, 0.41622, 0.442365, 0.389952, 0.171867, 0.992726, 0.406445}

In[27]:= Clear[x, n]

The definition for f given in the exercise evaluates the sum first (immediate assignment), giving

a symbolic expression for the general sum from 1 to n. When f[2] is evaluated, the argument 2

is then substituted into this expression for n. In the case of g, the value of n is substituted and

then the sum is evaluated. Although the resulting expressions output by these two functions

look different at first, expanding them gives the same result.

6.

In[28]:= f[n_] = Sum(1 + x)j, j, 1, n

Out[28]=

(1 + x) (-1 + (1 + x)n)

x

In[29]:= g[n_] := Sum(1 + x)j, j, 1, n

In[30]:= Expandf[2]

Out[30]= 2 + 3 x + x2

In[31]:= Expand[g[2]]

Out[31]= 2 + 3 x + x2

The rules for the logarithm function are as follows. Note, there is no need to program the

division rule separately. Do you see why? (Look at FullForm[x / y].)
7.

In[32]:= loga_*b_ := log[a] + logb

In[33]:= loga_n_
 := n log[a]

In[34]:= logx y2 z3

Out[34]= log[x] + 2 log[y] + 3 log[z]

In[35]:= log[x/y]

Out[35]= log[x] - log[y]

Using Piecewise, we have:8.

22 Essentials of Programming in Mathematica

In[36]:= g[x_] := Piecewise-1 1 - (x + 2)2 , -2 ≤ x ≤ -1, 1 - x2 , x < 0

In[37]:= Plot[g[x], {x, -2, 0}]

Out[37]=
-2.0 -1.5 -1.0 -0.5

-1.0

-0.5

0.5

1.0

First get a list of the digits of the integer.9.

In[38]:= IntegerDigits[142857]

Out[38]= {1, 4, 2, 8, 5, 7}

Next rotate the list using RotateRight.

In[39]:= RotateRightIntegerDigits[142857]

Out[39]= {7, 1, 4, 2, 8, 5}

Reconstruct the number from the list of digits using FromDigits.

In[40]:= FromDigitsRotateRightIntegerDigits[142857]

Out[40]= 714285

Here is the function:

In[41]:= IntegerRotateRight[n_Integer] := FromDigitsRotateRightIntegerDigits[n]

And this shows that 142857 is a divisor of its right rotation (third divisor from the end):

In[42]:= DivisorsIntegerRotateRight[142857]

Out[42]= {1, 3, 5, 9, 11, 13, 15, 27, 33, 37, 39, 45, 55, 65, 99, 111, 117, 135,

143, 165, 185, 195, 297, 333, 351, 407, 429, 481, 495, 555, 585, 715,

999, 1221, 1287, 1443, 1485, 1665, 1755, 2035, 2145, 2405, 3663, 3861,

4329, 4995, 5291, 6105, 6435, 7215, 10989, 12987, 15873, 18315, 19305,

21645, 26455, 47619, 54945, 64935, 79365, 142857, 238095, 714285}

In[43]:= MemberQDivisorsIntegerRotateRight[142857], 142857

Out[43]= True

Here are all the integers less than one million that satisfy this property; most are palindromes

(see Chapter 5 for discussion of Select and also pure functions).

2.3 Definitions: exercises 23

In[44]:= SelectRange10, 106, MemberQDivisorsIntegerRotateRight[#], # &

Out[44]= {11, 22, 33, 44, 55, 66, 77, 88, 99, 111, 222, 333, 444, 555, 666,

777, 888, 999, 1111, 2222, 3333, 4444, 5555, 6666, 7777, 8888, 9999,

11111, 22222, 33333, 44444, 55555, 66666, 77777, 88888, 99999,

102564, 111111, 128205, 142857, 153846, 179487, 205128, 222222,

230769, 333333, 444444, 555555, 666666, 777777, 888888, 999999}

One approach to creating these numbers is to use IntegerDigits to extract the digits of
successive primes and then use FromDigits to concatenate this list of digits.

10.

To prototype, get the digits from the first ten prime numbers.

In[45]:= TablePrimei, i, 10

Out[45]= {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}

In[46]:= IntegerDigits[%]

Out[46]= {{2}, {3}, {5}, {7}, {1, 1}, {1, 3}, {1, 7}, {1, 9}, {2, 3}, {2, 9}}

(As an aside, the above works because IntegerDigits is listable and hence automatically maps

across lists.)

Next, flatten the output from IntegerDigits and turn that list into a number using

FromDigits.

In[47]:= Flatten[%]

Out[47]= {2, 3, 5, 7, 1, 1, 1, 3, 1, 7, 1, 9, 2, 3, 2, 9}

In[48]:= FromDigits[%]

Out[48]= 2357111317192329

Here then is a function that creates the nth Smarandache-Wellin number.

In[49]:= SmarandacheWellin[n_] :=

FromDigitsFlattenIntegerDigits@TablePrimei, i, n

And here are the first ten such numbers.

In[50]:= TableSmarandacheWellini, i, 10

Out[50]= {2, 23, 235, 2357, 235711, 23571113, 2357111317,

235711131719, 23571113171923, 2357111317192329}

Which are prime numbers themselves?

In[51]:= Select%, PrimeQ

Out[51]= {2, 23, 2357}

And here is a really big Smarandache-Wellin prime.

24 Essentials of Programming in Mathematica

In[52]:= SmarandacheWellin[1429] // N

Out[52]= 2.357111317192329×105718

In[53]:= PrimeQSmarandacheWellin[1429]

Out[53]= True

In Section 7.2 wewill look at an alternative approach to constructing these numbers using
string functions.

Predicates and Boolean operations: exercises2.4
Create a predicate function that returns a value of True if its argument is between -1 and 1.1.

Define a predicate function StringCharacterQ[���] that returns True if its argument str is a
single string character, and returns False otherwise.

2.

Write a predicate function NaturalQ[�] that returns a value of True if n is a natural number
and a value of False otherwise, that is, NaturalQ[�] gives True if n is among 0, 1, 2, 3, ….

3.

Create a predicate function, SquareNumberQ[�] that returns True if n is a square number, such
as 1, 4, 9, 16,….

4.

Create a predicate function TriangularNumberQ[�] that returns Truewhenever its argument t
is a triangular number. The nth triangular number Tn is given by the formula

5.

Tn =∑k=1
n k = 1 +2 +3 +⋯+n = n(n+1)

2
=

n + 1
2

Based on the solution to the two previous exercises, create a predicate function
SquareTriangularNumberQ[�] that returns a value of True if n is both a square number and a
triangular number. Then use this predicate to find all square triangular numbers less than one
million.

6.

Create a predicate function RealPositiveQ[�] that returns a value of True if x is a positive
real number (“real” in the mathematical sense, i.e., x ∈). Add a second rule that accepts
vectors as arguments and returns True if every element of the vector argument is a positive real
number.

7.

The built-in function CoprimeQ[�, �] returns True if a and b are relatively prime (share no
common factors other than 1) and returns False otherwise. Use ArrayPlot to visualize pairs
of relatively prime numbers from 1 to 100. Use Boole to convert the table of True/False values
returned by CoPrimeQ to zeros and ones.

8.

2.4 Predicates and Boolean operations: exercises 25

An undirected graph gr is considered dense if the number of edges in gr is close to the maximum

number of edges. The maximum for a graph with n edges occurs when every pair of vertices is

connected by an edge and, assuming no self-loops and no multi-edges, is given by the number

of two-element subsets of n objects,
n
2

. The density of a graph can be defined as

9.

 =
E

V (V - 1)

where E is the number of edges and V is the number of vertices (given by EdgeCount and

VertexCount, respectively). A graph with all possible edges has a density of 1 and a graph with

no edges has density 0. Although there are differences of opinion as to where the cutoff is,
assume that a graph is dense if its density is greater than or equal to 0.5.

Define a function DenseGraphQ[��] that returns a value of True if gr is dense in the above

sense and returns a value of False otherwise. As tests, DenseGraphQ should give True for
CompleteGraph[�] for any n and it should return False for
RandomGraph[BernoulliGraphDistribution[�, ��]] for small probabilities pr.

Solutions2.4
There are several ways to define this function, either using the relational operator for less than,
or with the absolute value function.

1.

In[1]:= f[x_] := -1 < x < 1

In[2]:= f[x_] := Abs[x] < 1

In[3]:= f[4]

Out[3]= False

In[4]:= f[-0.35]

Out[4]= True

The requirements here are that the argument be both a string (StringQ) and have length

(StringLength) one.
2.

In[5]:= StringCharacterQch_ := StringQch && StringLengthch ⩵ 1

In[6]:= StringCharacterQ"v"

Out[6]= True

In[7]:= StringCharacterQ"vi"

Out[7]= False

In[8]:= StringCharacterQ[v]

Out[8]= False

26 Essentials of Programming in Mathematica

A number n can be considered a natural number if it is both an integer and greater than or equal
to zero. There is some historical precedent for not including zero, but most mathematicians and

computer scientists now include it and so for our purposes, we will adopt the convention that
zero is a natural number.

3.

In[9]:= NaturalQ[n_] := IntegerQ[n] && n ≥ 0

In[10]:= NaturalQ[0]

Out[10]= True

In[11]:= NaturalQ[-4]

Out[11]= False

To check that a number is a perfect square, it is sufficient to see if its square root is an integer.4.

In[12]:= SquareNumberQ[n_] := IntegerQ n

In[13]:= SquareNumberQ[10]

Out[13]= False

In[14]:= SelectRange[100], SquareNumberQ

Out[14]= {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

Since any triangular number T is equal to n(n + 1) /2 for some n, a bit of algebraic manipulation

gives:
5.

2 T = n2 + n
8 T = 4 n2 + 4 n

Completing the square gives:

8 T + 1 = 4 n2 + 4 n + 1
= (2 n + 1)2

So, T is triangular if and only if 8 T + 1 is an odd perfect square. Here then is the test.

In[15]:= TriangularNumberQ[t_] := OddQ 8 t + 1 && SquareNumberQ[8 t + 1]

In[16]:= TriangularNumberQ[6]

Out[16]= True

In[17]:= TriangularNumberQ[55]

Out[17]= True

In[18]:= TriangularNumberQ[56]

Out[18]= False

Combine the previous two solutions with a conjunction.6.

In[19]:= SquareTriangularNumberQ[n_] := TriangularNumberQ[n] && SquareNumberQ[n]

2.4 Predicates and Boolean operations: exercises 27

In[20]:= SelectRange[1000000], SquareTriangularNumberQ

Out[20]= {1, 36, 1225, 41616}

First, create a predicate that checks if a single number is real and positive.7.

In[21]:= RealPositiveQn_?NumericQ := Im[n]⩵ 0 && Positive[n]

In[22]:= Select{-4, 23, 3 + 4 I, π}, RealPositiveQ

Out[22]= {23, π}

Now, add a rule that checks if a vector consists entirely of numbers that are real and positive.
AllTrue[����, ����] applies the test to each of the elements in expr and returns True if all of
them are true.

In[23]:= RealPositiveQvec_?VectorQ := AllTruevec, RealPositiveQ

In[24]:= RealPositiveQ[{-4, 23, 3 + 4 I, π}]

Out[24]= False

Actually we canmake this code a bit more compact by using the two-argument form of
VectorQ. The second argument is a predicate that tests each element of the vector calling the
one argument form of RealPositiveQ.

In[25]:= ClearRealPositiveQ;

RealPositiveQn_?NumericQ := Im[n]⩵ 0 && Positive[n]

In[27]:= RealPositiveQ[vec_] := VectorQvec, RealPositiveQ

Wrapping the table produced by CoprimeQ in Boole converts the true/false values to zeros and
ones, which is what ArrayPlot needs.

8.

In[28]:= ArrayPlotBooleTableCoprimeQa, b, {a, 100}, b, 100

Out[28]=

Given the definition of graph density in the exercise, here is an implementation that takes a
graph as an argument.

9.

In[29]:= DenseGraphQgr_Graph :=

2 EdgeCount[gr](VertexCount[gr] (VertexCount[gr] - 1)) ≥ 0.5

28 Essentials of Programming in Mathematica

In[30]:= gr = RandomGraph[{20, 90}]

Out[30]=

In[31]:= DenseGraphQ[gr]

Out[31]= False

Complete graphs are dense as they have all possible edges.

In[32]:= CompleteGraph[10]

Out[32]=

In[33]:= DenseGraphQ[%]

Out[33]= True

Actually, there is a built-in function that gives the density explicitly.

In[34]:= GraphDensityCompleteGraph[10]

Out[34]= 1

In[35]:= GraphDensity[gr]

Out[35]=

9

19

So an simpler definition would just use that.

In[36]:= DenseGraphQgr_Graph := GraphDensity[gr] ≥ 0.5

Attributes: exercises2.5
Ordinarily, when you define a function, it has no attributes. The arguments are evaluated
before being passed up to the calling function. So, in the following case, 2 + 3 is evaluated
before it is passed to g.

1.

In[1]:= g[x_ + y_] := x2
+ y2

2.5 Attributes: exercises 29

In[2]:= g[2 + 3]

Out[2]= g[5]

Use one of the Hold attributes to give g the property that its argument is not evaluated first.
The resulting output should look like this:

In[3]:= g[2 + 3]

Out[3]= 13

Define a function that takes each number, x, in a vector of numbers and returns x if it is within
a certain interval, say -0.5 < x < 0.5, and returns x otherwise. Thenmake your function
listable so that it can operate on vectors (lists) directly.

2.

The definitions used in the solution to Exercise 1 of Section 2.3 for the reciprocal function
failed to properly deal with the special case of zero in the numerator.

3.

In[4]:= reciprocalRationala_, b_ := Rationalb, a

In[5]:= reciprocal[0/5]

Out[5]= reciprocal[0]

Correct this problem by giving reciprocal the appropriate attribute.

Solutions2.5
First clear any definitions and attributes that might be associated with g.1.

In[1]:= ClearAll[g]

Then set the HoldAll attribute to prevent initial evaluation of the argument of this function.

In[2]:= SetAttributesg, HoldAll

In[3]:= g[x_ + y_] := x2
+ y2

In[4]:= ga + b

Out[4]= a2 + b2

In[5]:= g[2 + 3]

Out[5]= 13

Here is a small list of random numbers to use.2.

In[6]:= vec = RandomReal[{-1, 1}, 10]

Out[6]= {-0.798986, -0.84542, -0.747004, -0.44054, 0.117601,

-0.243944, -0.227587, 0.994751, -0.107316, 0.692977}

The function could be set up to take two arguments, the number and the bound.

In[7]:= funx_?NumberQ, bound_ := If-bound < x < bound, x, x

30 Essentials of Programming in Mathematica

Make fun listable.

In[8]:= SetAttributesfun, Listable

In[9]:= fun[vec, 0.5]

Out[9]= {0. + 0.89386 ⅈ, 0. + 0.919467 ⅈ, 0. + 0.864294 ⅈ, -0.44054,

0.117601, -0.243944, -0.227587, 0.997372, -0.107316, 0.832452}

First, here is the original definition for reciprocal.3.

In[10]:= reciprocalz_Rational := Denominator[z]Numerator[z]

In[11]:= reciprocal[0/5]

Power::infy : In�nite expression

1

0
 encountered.

Out[11]= ComplexInfinity

Give it the HoldAll attribute to prevent fractions such from first evaluating and being reduced.

In[12]:= SetAttributesreciprocal, HoldAll

In[13]:= reciprocalz_Rational := Denominator[z]Numerator[z]

In[14]:= reciprocal[0/5]

Power::infy : In�nite expression

1

0
 encountered.

Out[14]= ComplexInfinity

We have resolved one problem, but a new one arises. The unevaluated form of 0 / 5 is in fact
not a Rational. It will become Rational once it is evaluated.

In[15]:= FullFormHoldForm[0/5]

Out[15]//FullForm= HoldForm[Times[0, Power[5, -1]]]

So, one more rule is needed to cover this situation.

In[16]:= reciprocalTimesa_, Powerb_, -1 := b a

In[17]:= reciprocal[0/5]

Power::infy : In�nite expression

1

0
 encountered.

Out[17]= ComplexInfinity

In[18]:= reciprocal[2/3]

Out[18]=

3

2

In fact, this last rule now handles more complicated rational expressions such as the following.

2.5 Attributes: exercises 31

In[19]:= reciprocal[x/(y + z)]

Out[19]=

y + z

x

32 Essentials of Programming in Mathematica

3
Lists and associations

Creating and displaying lists: exercises3.1
Create a list of the multiples of five less than or equal to one hundred.1.

Create a list of the reciprocals of the powers of two as the powers go from zero to sixteen.2.

Generate the list {{0}, {0, 2}, {0, 2, 4}, {0, 2, 4, 6}, {0, 2, 4, 6, 8}} in two

different ways using the Table function.
3.

Generate both of the following arrays using the Table function:4.

In[1]:= Arrayf, 5

Out[1]= f[1], f[2], f[3], f[4], f[5]

In[2]:= Arrayf, {3, 4}

Out[2]= f[1, 1], f[1, 2], f[1, 3], f[1, 4],

f[2, 1], f[2, 2], f[2, 3], f[2, 4], f[3, 1], f[3, 2], f[3, 3], f[3, 4]

Use Table to create an n⨯n matrix consisting of the positive integers one through n2
 arranged

such that the first row is the list {1, 2, 3, …, n}, the second row is the list
{1 + n, 2 + n, 3 + n, …, 2 n}, and in general the kth row is the list
1 + k - 1 n, 2 + k - 1 n, 3 + k - 1 n, …, n2. For example, for n = 4, you should have

5.

{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}

In matrix form, this would be:

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Using Table, create a symmetric matrix of the binomial coefficients for any n similar to that in

Table 3.1.
6.

��������������������� = 5Table 3.1.

1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

Given an m⨯m square lattice like the grid graph below, color all vertices on the bottom red, and

on the top white. Your solution should be as general as possible, so that changing the size of
the lattice (changing the value of m) will still work to color the lattice.

7.

In[3]:= m = 5;

GridGraph{m, m}, VertexLabels → "Name"

Out[4]=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

To change the property of select vertices in a graph, use HighlightGraph. For example, the

following colors vertices 1, 13, and 25 red.

In[5]:= HighlightGraph

GridGraph{m, m}, VertexLabels → "Name",

Style{1, 13, 25}, Red, VertexSize → Medium

Out[5]=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Import six images, resize them to the same dimensions, then display them inside a 3⨯2 grid

using options for Grid to format the output.
8.

Construct an integer lattice graphic like in Figure 3.1. Start by creating a list of the pairs of
coordinate points. Then connect the appropriate pairs of coordinates with lines (use

Graphics[Line[…]]). Add points with Graphics[Point[…]]. See Chapter 8 for details

about creating plots from graphics primitives. Consider the function CoordinateBoundsArray

to get the list of integer coordinates.

9.

34 Essentials of Programming in Mathematica

A 5⨯3 rectangular lattice.Figure 3.1.

Solutions3.1
Using Table, here are the multiples of 5.1.

In[1]:= Table5 j, j, 1, 100/5

Out[1]= {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100}

This can also be done with Range.

In[2]:= Range[5, 100, 5]

Out[2]= {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100}

Here are the reciprocals of the powers of two.2.

In[3]:= Table
1

2i
, i, 0, 16

Out[3]= 1,
1

2
,
1

4
,
1

8
,

1

16
,

1

32
,

1

64
,

1

128
,

1

256
,

1

512
,

1

1024
,

1

2048
,

1

4096
,

1

8192
,

1

16384
,

1

32768
,

1

65536

In[4]:= 1/(2^Range[0, 16])

Out[4]= 1,
1

2
,
1

4
,
1

8
,

1

16
,

1

32
,

1

64
,

1

128
,

1

256
,

1

512
,

1

1024
,

1

2048
,

1

4096
,

1

8192
,

1

16384
,

1

32768
,

1

65536

You can take every other element in the iterator list, or encode that in the expression 2 j.3.

In[5]:= Tablej, i, 0, 8, 2, j, 0, i, 2

Out[5]= {{0}, {0, 2}, {0, 2, 4}, {0, 2, 4, 6}, {0, 2, 4, 6, 8}}

In[6]:= Table2 j, i, 0, 4, j, 0, i

Out[6]= {{0}, {0, 2}, {0, 2, 4}, {0, 2, 4, 6}, {0, 2, 4, 6, 8}}

These lists can be generated with Table, using two iterators for the second example.4.

In[7]:= Tablefi, i, 5

Out[7]= f[1], f[2], f[3], f[4], f[5]

3.1 Creating and displaying lists: exercises 35

In[8]:= Tablefi, j, i, 3, j, 4

Out[8]= f[1, 1], f[1, 2], f[1, 3], f[1, 4],

f[2, 1], f[2, 2], f[2, 3], f[2, 4], f[3, 1], f[3, 2], f[3, 3], f[3, 4]

There are numerous ways to create this array. Here is one approach:5.

In[9]:= n = 4;

Table1 + i + j, j, 0, n2 - 1, n, i, 0, n - 1

Out[10]= {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}

But in fact, a more direct implementation using the statement of the problem, gives the

following:

In[11]:= n = 4;

Tablej + k n, k, 0, n - 1, j, 1, n

Out[12]= {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}

In[13]:= MatrixForm[%]

Out[13]//MatrixForm=

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

The binomial coefficients can be generated with Binomial. For example here are the coeffi-
cients in the expansion of (1 + x)5:

6.

In[14]:= TableBinomial5, k, k, 0, 5

Out[14]= {1, 5, 10, 10, 5, 1}

In[15]:= Expand(1 + x)5

Out[15]= 1 + 5 x + 10 x2 + 10 x3 + 5 x4 + x5

So to get all coefficients for exponent n, as n runs from one to six say, we need a second iterator
for Table. A bit of thought is needed to determine which iterator list comes first and to make j
dependent upon n.

In[16]:= n = 6;

TableBinomialj, i, i, 0, n - 1, j, i, n + i - 1

Out[17]= {{1, 1, 1, 1, 1, 1}, {1, 2, 3, 4, 5, 6}, {1, 3, 6, 10, 15, 21},

{1, 4, 10, 20, 35, 56}, {1, 5, 15, 35, 70, 126}, {1, 6, 21, 56, 126, 252}}

In[18]:= MatrixForm[%]

Out[18]//MatrixForm=

1 1 1 1 1 1
1 2 3 4 5 6
1 3 6 10 15 21
1 4 10 20 35 56
1 5 15 35 70 126
1 6 21 56 126 252

36 Essentials of Programming in Mathematica

First, here is the grid graph:7.

In[19]:= m = 5;

gg = GridGraph{m, m}, VertexLabels → "Name"

Out[20]=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Since this is a square grid, the vertex numbers on the top of the lattice are multiples of m up to

m2.

In[21]:= top = Rangem, m2, m

Out[21]= {5, 10, 15, 20, 25}

The bottom vertices range from one to m2 -m + 1 in increments of m.

In[22]:= bot = Range1, m2 - m + 1, m

Out[22]= {1, 6, 11, 16, 21}

To change the properties of a set of vertices, use Style.

In[23]:= HighlightGraphGridGraph{m, m}, VertexLabels → "Name",

Stylebot, Red, Styletop, White

Out[23]=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Changing the size of the lattice should not trigger a need to change the code.

3.1 Creating and displaying lists: exercises 37

In[24]:= m = 7;

top = Rangem, m2, m;

bot = Range1, m2 - m + 1, m;

HighlightGraphGridGraph{m, m}, VertexLabels → "Name",

Stylebot, Red, Styletop, White

Out[27]=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Here are some sample images to work with.8.

In[28]:= images = MapExampleData, "TestImage", "Girl2", "TestImage", "Peppers",

"TestImage", "Aerial", "TestImage", "Moon", "TestImage", "Tank2",

"TestImage", "Ruler";

Get their dimensions.

In[29]:= MapImageDimensions, images

Out[29]= {{256, 256}, {512, 512}, {256, 256}, {256, 256}, {512, 512}, {512, 512}}

Resize the larger images.

In[30]:= img1 = images[[1]];

img2 = ImageResizeimages[[2]], 256;

img3 = images[[3]];

img4 = images[[4]];

img5 = ImageResizeimages[[5]], 256;

img6 = ImageResizeimages[[6]], 256;

Finally, put in a grid with some formatting.

38 Essentials of Programming in Mathematica

In[36]:= Grid

img1, img2, img3,

img4, img5, img6

, Frame → All, Spacings → {1, 1}, ItemSize → {3, 3}

Out[36]=

A bit of thought is needed to get the iterators right using Table.9.

In[37]:= xmin = -2; xmax = 2; ymin = -1; ymax = 1;

hlines = Tablexmin, y, {xmax, y}, y, ymin, ymax

Out[38]= {{{-2, -1}, {2, -1}}, {{-2, 0}, {2, 0}}, {{-2, 1}, {2, 1}}}

In[39]:= vlines = Tablex, ymin, {x, ymax}, x, xmin, xmax

Out[39]= {{{-2, -1}, {-2, 1}}, {{-1, -1}, {-1, 1}},

{{0, -1}, {0, 1}}, {{1, -1}, {1, 1}}, {{2, -1}, {2, 1}}}

Join the two sets of lines and then flatten to remove one set of braces.

In[40]:= pairs = Flattenhlines, vlines, 1

Out[40]= {{{-2, -1}, {2, -1}}, {{-2, 0}, {2, 0}},

{{-2, 1}, {2, 1}}, {{-2, -1}, {-2, 1}}, {{-1, -1}, {-1, 1}},

{{0, -1}, {0, 1}}, {{1, -1}, {1, 1}}, {{2, -1}, {2, 1}}}

In[41]:= GraphicsLinepairs

Out[41]=

Actually, this can be done more compactly. First create the coordinate points for a 5⨯3 lattice.

In[42]:= coords = Tablei, j, i, 1, 5, j, 1, 3

Out[42]= {{{1, 1}, {1, 2}, {1, 3}}, {{2, 1}, {2, 2}, {2, 3}},

{{3, 1}, {3, 2}, {3, 3}}, {{4, 1}, {4, 2}, {4, 3}}, {{5, 1}, {5, 2}, {5, 3}}}

This gives the vertical lines:

3.1 Creating and displaying lists: exercises 39

In[43]:= GraphicsLinecoords

Out[43]=

Transposing the coordinates gives a list that can be used for the horizontal lines. Look carefully

at the structure of coords to understand what exactly is being transposed.

In[44]:= Transpose@coords

Out[44]= {{{1, 1}, {2, 1}, {3, 1}, {4, 1}, {5, 1}},

{{1, 2}, {2, 2}, {3, 2}, {4, 2}, {5, 2}},

{{1, 3}, {2, 3}, {3, 3}, {4, 3}, {5, 3}}}

In[45]:= GraphicsLineTranspose@coords

Out[45]=

This puts everything together, adding points at each coordinate. Module is a localization

construct, discussed in Section 6.1.

In[46]:= Latticexdim_, ydim_ := Modulecoords,

coords = Tablei, j, i, 1, xdim, j, 1, ydim;

Graphics

Linecoords, LineTransposecoords,

PointSizeMedium, PointFlattencoords, 1

In[47]:= Lattice[{6, 4}]

Out[47]=

Alternatively, you could use CoordinateBoundsArray, new in Mathematica 10.1:

40 Essentials of Programming in Mathematica

In[48]:= ?CoordinateBoundsArray

CoordinateBoundsArray{{����, ����}, {����, ����}, …} generates an array of

{�, �, …} coordinates with integer steps in each dimension.

CoordinateBoundsArray{������, ������, …}, �

uses step � in each dimension.

CoordinateBoundsArray{������, ������, …}, {��, ��, …}

uses steps ��, ��, … in successive dimensions.

CoordinateBoundsArray{������, ������, …}, Into[�]

divides into � equal steps in each dimension.

CoordinateBoundsArray{������, ������, …}, �����, �������

speci�es offsets to use for each coordinate point.

CoordinateBoundsArray{������, ������, …}, �����, �������, �

expands the array by � elements in every direction.

So the following would simplify the computation:

In[49]:= coords = CoordinateBoundsArray[{{1, 5}, {1, 3}}]

Out[49]= {{{1, 1}, {1, 2}, {1, 3}}, {{2, 1}, {2, 2}, {2, 3}},

{{3, 1}, {3, 2}, {3, 3}}, {{4, 1}, {4, 2}, {4, 3}}, {{5, 1}, {5, 2}, {5, 3}}}

This gives five triples of coordinates and if you look carefully, these can be used to get the

vertical lines.

In[50]:= Dimensionscoords

Out[50]= {5, 3, 2}

In[51]:= GraphicsLinecoords

Out[51]=

The horizontal lines can be obtained by transposing the coordinates returned by Coordi

nateBoundsArray.

In[52]:= Transposecoords

Out[52]= {{{1, 1}, {2, 1}, {3, 1}, {4, 1}, {5, 1}},

{{1, 2}, {2, 2}, {3, 2}, {4, 2}, {5, 2}},

{{1, 3}, {2, 3}, {3, 3}, {4, 3}, {5, 3}}}

3.1 Creating and displaying lists: exercises 41

In[53]:= GraphicsLinecoords, LineTransposecoords

Out[53]=

In[54]:= Latticexmin_, xmax_, ymin_, ymax_ := Modulecoords,

coords = CoordinateBoundsArrayxmin, xmax, ymin, ymax;

GraphicsLinecoords, LineTransposecoords

In[55]:= Lattice[{1, 5}, {1, 3}]

Out[55]=

Testing and measuring lists: exercises3.2
What is the length of the following list? What are its dimensions? What is the position of g?1.

{a, b}, {c, d}, e, f, {g, h}

The following input generates a list of 10 000 zeros and ones weighted heavily toward the ones.
Determine if there are any zeros in this list and if there are, find how many.

2.

In[1]:= lis = RandomChoice[{.0001, .9999} → {0, 1}, {10000}];

Given a list of integers such as the following, count the number of zeros. Find a way to count
all those elements of the list which are not ones.

3.

In[2]:= ints = RandomInteger[{-5, 5}, 30]

Out[2]= {1, 4, -1, 2, -2, 4, 4, -5, 5, 3, 4, -3, -3, 1,

0, 4, -1, -2, 2, 0, -5, 1, -5, -4, 3, -5, -2, -3, 3, 0}

Given the list {{{1, a}, {2, b}, {3, c}}, {{4, d}, {5, e}, {6, f}}}, determine its

dimensions. Use the Dimensions function to check your answer.
4.

Find the positions of the nines in the following list. Confirm using Position.5.

{{2, 1, 10}, {9, 5, 7}, {2, 10, 4}, {10, 1, 9}, {6, 1, 6}}

Determine if there are any prime numbers in the interval [4 302 407 360, 4 302 407 713]. Once

you have a list of the integers that you want to test for primality, use Position (see Section 4.1)
and Extract to return the explicit primes.

6.

42 Essentials of Programming in Mathematica

Solutions3.2
The following list has length four because it has four elements, the four pairs. 1.

In[1]:= lis = a, b, c, d, e, f, g, h;

In[2]:= Lengthlis

Out[2]= 4

Its dimensions are 4⨯2; that is, it has four rows and two columns when thought of as a rectangu-
lar array.

In[3]:= Dimensionslis

Out[3]= {4, 2}

In[4]:= MatrixFormlis

Out[4]//MatrixForm=

a b
c d
e f
g h

The element g is in the fourth row first column.

In[5]:= Positionlis, g

Out[5]= {{4, 1}}

Each time your evaluate the following input you will get a different list of 10 000 zeros and

ones. Seeding the random number generator will give repeatable results.
2.

In[6]:= SeedRandom[1];

lis = RandomChoice[{.0001, .9999} → {0, 1}, {10000}];

On the computer on which this was run, this seed gives some zeros in the list.

In[8]:= FreeQlis, 0

Out[8]= False

In[9]:= Countlis, 0

Out[9]= 2

Here is the list of integers to use.3.

In[10]:= ints = RandomInteger[{-5, 5}, 30]

Out[10]= {0, 2, 5, -4, 3, -2, 5, -4, 1, -5, -5, 3, -3, -3,

-4, -2, -2, -4, 2, -5, -2, -5, 1, 4, 4, -4, 1, 0, -2, 2}

Count all elements that match 0.

In[11]:= Countints, 0

Out[11]= 2

3.2 Testing and measuring lists: exercises 43

Count all integers in ints that do not match 1.

In[12]:= Countints, Except[1]

Out[12]= 27

From the top level, there are two lists, each consisting of three sublists, each sublist consisting of
two elements.

4.

In[13]:= Dimensions{1, a}, 2, b, {3, c}, 4, d, {5, e}, 6, f

Out[13]= {2, 3, 2}

The Position function tells us that the 9s are located in the second sublist, first position, and in

the fourth sublist, third position.
5.

In[14]:= Position[{{2, 1, 10}, {9, 5, 7}, {2, 10, 4}, {10, 1, 9}, {6, 1, 6}}, 9]

Out[14]= {{2, 1}, {4, 3}}

Here is the interval we are interested in:6.

In[15]:= ints = Range[4 302407360, 4302407713];

Using some pattern matching (look ahead to Section 4.1), this gives the positions of the integers

in ints that pass the PrimeQ test.

In[16]:= pos = Positionints, p_?PrimeQ

Out[16]= {{354}}

Extract and Position work well together. The positions given by Position can be given

directly to Extract to get those elements in ints that are specified by the positions in

Position.

In[17]:= Extractints, pos

Out[17]= {4302407713}

In[18]:= PrimeQ[%]

Out[18]= {True}

Operations on lists: exercises3.3
Given a list of coordinate pairs such as the following:1.

{{x1, y1}, {x2, y2}, {x3, y3}, {x4, y4}, {x5, y5}}

separate the x and y components to get

{{x1, x2, x3, x4, x5}, {y1, y2, y3, y4, y5}}

44 Essentials of Programming in Mathematica

Use the Part function to extract the elements of a list that are in the even-indexed positions. So

in the list below, the even-indexed elements are {3, 8, 3, 4, 2, 13}. Then extract all those ele-
ments in the odd-indexed positions.

2.

In[1]:= lis = RandomInteger[{1, 20}, {12}]

Out[1]= {5, 3, 3, 8, 17, 3, 3, 4, 20, 2, 11, 13}

Given the following list of integers, find the five largest numbers in the list. Then find the five

smallest numbers in the list.
3.

In[2]:= nums = RandomInteger[{-100, 100}, {25}]

Out[2]= {38, 6, -15, -31, 44, 11, -100, 47, -14, 26, 50,

48, -72, 24, 12, 66, 10, 31, 78, 85, 11, -67, 23, 63, -45}

Use Table to create the following matrix. Once created, use Table again to add all the elements

on and above the diagonal.
4.

1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16

Rearrange the list of numbers one through ten so that any adjacent numbers (for example, 1

and 2, 2 and 3, and so on) are not adjacent in the output.
5.

Create a list of all prime numbers less than 100. Repeat for a list of primes less than 1000.
Consider using the functions Prime and PrimePi.

6.

Take the partitioned list of integers from the solution to Exercise 5 in Section 3.1 and use Grid

to display the partitioned list in a grid similar to that in Figure 3.2.
7.

A 6⨯6 integer grid.Figure 3.2.

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36

Make a histogram of the frequencies of the leading digit in the first 10 000 Fibonacci numbers.
The resulting distribution is an instance of Benford’s law, which concerns the frequency of the

leading digits in many kinds of data. The phenomenon, whereby a 1 occurs about 30% of the

time, a 2 occurs about 17.6% of the time, and so on, has been shown to occur in well-known

numerical sequences, population counts, death rates, Fibonacci numbers, and has even been

used to detect corporate and tax fraud.

8.

3.3 Operations on lists: exercises 45

Given a matrix, use list component assignment to swap any two rows.9.

Create a function AddColumn[���, ���, ���] that inserts a column vector col into the matrix

mat at the column position given by pos. For example:
10.

In[3]:= mat = RandomInteger[9, {4, 4}];

MatrixForm[mat]

Out[4]//MatrixForm=

4 8 5 9
9 4 1 9
1 9 5 5
9 5 6 7

In[5]:= AddColumnmat, a, b, c, d, 3 // MatrixForm

Out[5]//MatrixForm=

4 8 a 5 9
9 4 b 1 9
1 9 c 5 5
9 5 d 6 7

How would you perform the same task as Prepend[{x, y}, z] using the Join function?11.

Starting with the lists {1, 2, 3, 4} and {a, b, c, d}, create the list {2, 4, b, d}. Then

create the list {1, a, 2, b, 3, c, 4, d}.
12.

Many lotteries include games that require you to pick several numbers and match them against
the lottery’s random number generator. The numbers are independent, so this is essentially

random sampling with replacement. The built-in RandomChoice does this. For example, here

are five random samples from the integers zero through nine:

13.

In[6]:= RandomChoice[Range[0, 9], 5]

Out[6]= {5, 4, 1, 1, 3}

Write your own function randomChoice[���, �] that performs a random sampling with

replacement, where n is the number of elements being chosen from the list lis. Here is a typical
result using a list of symbols:

In[7]:= randomChoicea, b, c, d, e, f, g, h, 12

Out[7]= e, c, h, b, g, c, d, c, b, c, b, f

Given two lists, find all those elements that are not common to the two lists. For example,
starting with the lists {a, b, c, d} and {a, b, e, f}, your answer would return the list
{c, d, e, f}.

14.

One of the tasks in computational linguistics involves statistical analysis of text using what are

called n-grams – sequences of n adjacent letters or words. Their frequency distribution in a

body of text can be used to predict word usage based on the previous history or usage.

15.

Import a file consisting of some text and find the twenty most frequently occurring word

combinations. Pairs of words that are grouped like this are called bigrams, that is, n-grams for
n = 2.

Use TextWords (new in Mathematica 10.1) to split long strings into a list of words that can then

46 Essentials of Programming in Mathematica

be operated on with the list manipulation functions.

In[8]:= TextWords"Use StringSplit to split long strings into words."

Out[8]= {Use, StringSplit, to, split, long, strings, into, words}

Based on the previous exercise, create a function NGrams[���, �] that takes a string of text and

returns a list of n-grams, that is, a list of the n adjacent words. For example:
16.

In[9]:= NGrams"Use StringSplit to split long strings into words.", 3

Out[9]= {{Use, StringSplit, to}, {StringSplit, to, split}, {to, split, long},

{split, long, strings}, {long, strings, into}, {strings, into, words}}

Write your own user-defined functions using the Characters and StringJoin functions to

perform the same operations as StringInsert and StringDrop.
17.

Use ToCharacterCode and FromCharacterCode to perform the same operations as the built-in

StringJoin and StringReverse functions.
18.

Compute the first ten square-pyramidal numbers in three different ways. The first few square-
pyramidal numbers are 12 = 1, 12 + 22 = 5, 12 + 22 + 32 = 14,…. The number of stacked spheres

with a square base (Figure 3.3) are represented by these numbers. In addition, they give a

solution to the problem of counting squares in an n⨯n grid.

19.

Graphical representation of square-pyramidal numbers.Figure 3.3.

+ + =

Solutions3.3
This is a straightforward use of the Transpose function.1.

In[1]:= Transpose[{{x1, y1}, {x2, y2}, {x3, y3}, {x4, y4}, {x5, y5}}]

Out[1]= {{x1, x2, x3, x4, x5}, {y1, y2, y3, y4, y5}}

The most direct way to extract the even (or odd) indexed elements is to use the Span function as

a second argument to Part.
2.

In[2]:= lis = {5, 3, 3, 8, 17, 3, 3, 4, 20, 2, 11, 13};

In[3]:= Partlis, 2 ;; -1 ;; 2

Out[3]= {3, 8, 3, 4, 2, 13}

3.3 Operations on lists: exercises 47

Here is the shorthand notation:

In[4]:= lis[[2 ;; -1 ;; 2]]

Out[4]= {3, 8, 3, 4, 2, 13}

And here are the elements in the odd positions.

In[5]:= lis[[1 ;; -1 ;; 2]]

Out[5]= {5, 3, 17, 3, 20, 11}

Here is the list of numbers:3.

In[6]:= nums = RandomInteger[{-100, 100}, {25}]

Out[6]= {-45, -24, 9, 38, -82, -60, -21, -66, 23, 70, -67, -13,

-98, -68, -97, -55, 10, -11, 25, -13, 7, -100, 88, 36, -86}

Sorting gives:

In[7]:= Sort[nums]

Out[7]= {-100, -98, -97, -86, -82, -68, -67, -66, -60, -55,

-45, -24, -21, -13, -13, -11, 7, 9, 10, 23, 25, 36, 38, 70, 88}

The smallest five:

In[8]:= Take[Sort[nums], 5]

Out[8]= {-100, -98, -97, -86, -82}

The largest five:

In[9]:= Take[Sort[nums], -5 ;; -1]

Out[9]= {25, 36, 38, 70, 88}

Alternatively, use the built-in functions TakeLargest and TakeSmallest:

In[10]:= TakeLargest[nums, 5]

Out[10]= {88, 70, 38, 36, 25}

In[11]:= TakeSmallest[nums, 5]

Out[11]= {-100, -98, -97, -86, -82}

There are several ways to create the matrix. One way is to use Table with two iterators.4.

In[12]:= mat = Tablei j, i, 1, 4, j, 1, 4

Out[12]= {{1, 2, 3, 4}, {2, 4, 6, 8}, {3, 6, 9, 12}, {4, 8, 12, 16}}

48 Essentials of Programming in Mathematica

In[13]:= MatrixForm[mat]

Out[13]//MatrixForm=

1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16

Another way is to use Outer (discussed in Section 5.1).

In[14]:= OuterTimes, Range[4], Range[4]

Out[14]= {{1, 2, 3, 4}, {2, 4, 6, 8}, {3, 6, 9, 12}, {4, 8, 12, 16}}

To add only those elements on or above the diagonal in mat, the following will pick out only

those elements.

In[15]:= Tablemati, j, i, 1, 4, j, 1, i

Out[15]= {{1}, {2, 4}, {3, 6, 9}, {4, 8, 12, 16}}

Then flatten the nested lists.

In[16]:= Flatten[%]

Out[16]= {1, 2, 4, 3, 6, 9, 4, 8, 12, 16}

And finally, use Total to sum this list.

In[17]:= Total[%]

Out[17]= 65

There are many possible approaches to this problem including a brute-force approach that
creates all permutations and selects on those that meet the criteria. Another approach is to split
the list and shuffle:

5.

In[18]:= lis = Range[10]

Out[18]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

In[19]:= p = Partitionlis, 5

Out[19]= {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}}

In[20]:= Riffle[p[[1]], p[[2]]]

Out[20]= {1, 6, 2, 7, 3, 8, 4, 9, 5, 10}

Once you are familiar with the Apply function (Chapter 5), this is done more compactly as

follows:

In[21]:= ApplyRiffle, p

Out[21]= {1, 6, 2, 7, 3, 8, 4, 9, 5, 10}

First, note that PrimePi[�] returns the number of primes less than n.6.

3.3 Operations on lists: exercises 49

In[22]:= PrimePi[100]

Out[22]= 25

So to list all the primes less than 100, we want the first PrimePi[100] = 25 primes.

In[23]:= TablePrime[n], n, PrimePi[100]

Out[23]= {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}

An n⨯n grid with rows of length n will have n2
 elements in total. Starting with the list of integers

one through n2, partition it into sublists of length n. For example, for n = 4:
7.

In[24]:= n = 4;

lis = PartitionRangen2, n

Out[25]= {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}

And then put the list into a grid:

In[26]:= Gridlis, Frame → All

Out[26]=

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Alternatively, you can use Multicolumn:

In[27]:= n = 4;

lis = MulticolumnRangen2, n, Appearance → "Horizontal", Frame → All

Out[28]=

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

In[29]:= Clear[n]

To extract the leading digit of any number, use IntegerDigits to generate a list of the digits in

a number, and then take the first element in that list. For example, here are the digits in the 50th

Fibonacci number.

8.

In[30]:= IntegerDigitsFibonacci[50]

Out[30]= {1, 2, 5, 8, 6, 2, 6, 9, 0, 2, 5}

And this gives the first digit from that list.

In[31]:= First[%]

Out[31]= 1

To do this for the first 100 000 Fibonacci numbers, use Table.

50 Essentials of Programming in Mathematica

In[32]:= digits = TableFirstIntegerDigitsFibonaccii, i, 104;

In[33]:= Histogramdigits

Out[33]=

2 4 6 8 10
0

500

1000

1500

2000

2500

3000

The standard procedural approach is to use a temporary variable to do the swapping.9.

In[34]:= mat = RandomInteger[9, {4, 4}];

MatrixForm[mat]
Out[35]//MatrixForm=

4 1 2 6
1 6 2 8
0 7 2 4
1 7 6 9

In[36]:= temp = mat[[1]];

mat[[1]] = mat[[2]];

mat[[2]] = temp;

MatrixForm[mat]
Out[39]//MatrixForm=

1 6 2 8
4 1 2 6
0 7 2 4
1 7 6 9

But you can use parallel assignments to avoid the temporary variable.

In[40]:= mat = RandomInteger[9, {4, 4}];

MatrixForm[mat]
Out[41]//MatrixForm=

2 8 2 8
1 2 7 8
0 0 7 7
4 2 7 2

In[42]:= {mat[[2]], mat[[1]]} = {mat[[1]], mat[[2]]};

MatrixForm[mat]
Out[43]//MatrixForm=

1 2 7 8
2 8 2 8
0 0 7 7
4 2 7 2

In fact you can make this a bit more compact.

3.3 Operations on lists: exercises 51

In[44]:= mat = RandomInteger[9, {4, 4}];

MatrixForm[mat]
Out[45]//MatrixForm=

3 5 8 7
1 2 1 2
5 1 1 9
5 6 2 8

In[46]:= mat[[{2, 1}]] = mat[[{1, 2}]];

MatrixForm[mat]
Out[47]//MatrixForm=

1 2 1 2
3 5 8 7
5 1 1 9
5 6 2 8

A key point to notice is that in this exercise, the matrix mat was overwritten in each case; in

other words, these were destructive operations. Section 6.1 discusses how to handle row and

column swapping properly so that the original matrix remains untouched.

We prototype with a small matrix.10.

In[48]:= mat = RandomInteger[10, {3, 3}];

MatrixForm[mat]
Out[49]//MatrixForm=

0 3 6
3 6 8
2 9 6

Using Mean on a matrix produces a vector consisting of column means.

In[50]:= Mean[mat]

Out[50]=
5

3
, 6,

20

3

To subtract the means from their respective columns in mat, operate on the transposed matrix.

In[51]:= centeredMat = Transpose[Transpose[mat] - Mean[mat]]

Out[51]= -
5

3
, -3, -

2

3
,

4

3
, 0,

4

3
,

1

3
, 3, -

2

3

In[52]:= MeancenteredMat

Out[52]= {0, 0, 0}

Alternatively, you could create a centering matrix which, when multiplied by the original
matrix, centers it.

In[53]:= CenteringMatrix[n_] := IdentityMatrix[n] - ConstantArray[1/n, {n, n}]

In[54]:= CenteringMatrix[3].mat

Out[54]= -
5

3
, -3, -

2

3
,

4

3
, 0,

4

3
,

1

3
, 3, -

2

3

52 Essentials of Programming in Mathematica

As an aside, the centering matrix is symmetric and idempotent.

In[55]:= SymmetricMatrixQCenteringMatrix[3]

Out[55]= True

In[56]:= CenteringMatrix[3].CenteringMatrix[3] == CenteringMatrix[3]

Out[56]= True

This can also be accomplished with the built-in function Standardize.

In[57]:= Standardize[mat, Mean, 1 &]

Out[57]= -
5

3
, -3, -

2

3
,

4

3
, 0,

4

3
,

1

3
, 3, -

2

3

You need to first transpose the matrix to operate on the columns as rows. 11.

In[58]:= mat = RandomInteger[9, {4, 4}];

MatrixForm[mat]
Out[59]//MatrixForm=

8 2 2 9
3 7 9 7
1 2 7 9
0 2 6 5

In[60]:= Transpose[mat]

Out[60]= {{8, 3, 1, 0}, {2, 7, 2, 2}, {2, 9, 7, 6}, {9, 7, 9, 5}}

Now insert the column vector at the desired position. Then transpose back.

In[61]:= InsertTranspose[mat], a, b, c, d, 3 // MatrixForm

Out[61]//MatrixForm=

8 3 1 0
2 7 2 2
a b c d
2 9 7 6
9 7 9 5

In[62]:= Transpose@InsertTranspose[mat], a, b, c, d, 3 // MatrixForm

Out[62]//MatrixForm=

8 2 a 2 9
3 7 b 9 7
1 2 c 7 9
0 2 d 6 5

Here then is the function, with some basic argument checking to make sure the number of
elements in the column vector is the same as the number of rows of the matrix.

In[63]:= AddColumnmat_, col_, pos_ /; Lengthcol ⩵ Length[mat] :=

TransposeInsertTranspose[mat], col, pos

Join expects lists as arguments.12.

3.3 Operations on lists: exercises 53

In[64]:= Join[{z}, {x, y}]

Out[64]= {z, x, y}

Joining the two lists and then using Part with Span is the most direct way to do this.13.

In[65]:= expr = Join{1, 2, 3, 4}, a, b, c, d

Out[65]= {1, 2, 3, 4, a, b, c, d}

In[66]:= expr[[2 ;; -1 ;; 2]]

Out[66]= {2, 4, b, d}

For the second part of this exercise, the function Riffle is perfect for this task.

In[67]:= Riffle{1, 2, 3, 4}, a, b, c, d

Out[67]= {1, a, 2, b, 3, c, 4, d}

This can also be done in two steps by first transposing the two lists and then flattening.

In[68]:= Transpose{1, 2, 3, 4}, a, b, c, d

Out[68]= {{1, a}, {2, b}, {3, c}, {4, d}}

In[69]:= Flatten[%]

Out[69]= {1, a, 2, b, 3, c, 4, d}

One way to do this is to take the list and simply pick out elements at random locations. The

right-most location in the list is given by Length[���], using Part and RandomInteger.
14.

In[70]:= randomChoicelis_, n_ := lisRandomInteger1, Lengthlis, {n}

In[71]:= randomChoicea, b, c, d, e, f, g, h, 12

Out[71]= h, b, a, g, b, c, f, a, g, f, a, d

This is another way of asking for all those elements that are in the union but not the intersec-
tion of the two sets.

15.

In[72]:= A = a, b, c, d;

B = a, b, e, f;

In[74]:= ComplementA⋃ B, A⋂ B

Out[74]= c, d, e, f

In[75]:= ComplementUnion[A, B], Intersection[A, B]

Out[75]= c, d, e, f

We will use Darwin’s On the Origin of Species text, built into Mathematica via ExampleData.16.

54 Essentials of Programming in Mathematica

In[76]:= darwin = ExampleData"Text", "OriginOfSpecies";

words = TextWordsdarwin

Out[77]=

INTRODUCTION, When, on, board, H.M.S., Beagle, as,

naturalist, I, was, much, ⋯ 149960⋯ , most, beautiful,

and, most, wonderful, have, been, and, are, being, evolved

large output show less show more show all set size limit...

First, partition the list of words into pairs with overlap one.

In[78]:= par = Partitionwords, 2, 1

Out[78]=

{INTRODUCTION, When}, {When, on}, {on, board},

{board, H.M.S.}, {H.M.S., Beagle}, ⋯ 149971⋯ , {have, been},

{been, and}, {and, are}, {are, being}, {being, evolved}

large output show less show more show all set size limit...

Then tally them and sort by the frequency count, given by the last element in each sublist.
Finally, take the last twenty expressions, those bigrams occurring the most frequently.

In[79]:= tally = SortByTally[par], Last;

Taketally, -20

Out[80]= {{has, been}, 190}, {{each, other}, 192}, species, of, 201,

of, life, 227, {{with, the}, 230}, {{natural, selection}, 234},

{{it, is}, 237}, {{and, the}, 238}, {{by, the}, 242}, from, the, 256,

{{in, a}, 256}, {{to, be}, 267}, of, a, 268, {{have, been}, 432},

{{that, the}, 434}, {{on, the}, 498}, {{to, the}, 582},

{{the, same}, 715}, {{in, the}, 1024}, of, the, 1993

Here are the next twenty most frequently occurring bigrams.

In[81]:= Taketally, -40 ;; -21

Out[81]= {{to, have}, 120}, {{which, are}, 121}, conditions, of, 124,

{{between, the}, 125}, {{do, not}, 128}, {{and, in}, 132},

{{the, case}, 133}, {{can, be}, 137}, {{will, be}, 138}, {{as, the}, 140},

{{would, be}, 142}, number, of, 144, {{all, the}, 150}, {{at, the}, 157},

{{the, most}, 160}, {{the, other}, 166}, for, the, 170,

{{the, species}, 172}, {{I, have}, 185}, {{may, be}, 189}

This can be done in one step using WordCounts (new in Mathematica 10.1) with a second argu-

3.3 Operations on lists: exercises 55

ment to count bigrams only.

In[82]:= WordCountsdarwin, 2

Out[82]=

of, the → 1993, {in, the} → 1023, {the, same} → 715,

{to, the} → 582, {on, the} → 497, ⋯ 47987⋯ , {a, barrier} → 1,

{a, barnacle} → 1, {a, bare} → 1, {a, bar} → 1, {a, bank} → 1

large output show less show more show all set size limit...

In[83]:= Take[%, 20]

Out[83]= of, the → 1993, {in, the} → 1023, {the, same} → 715, {to, the} → 582,

{on, the} → 497, {that, the} → 434, {have, been} → 431, of, a → 268,

{to, be} → 267, {in, a} → 256, from, the → 256, {by, the} → 240,

{and, the} → 238, {it, is} → 235, {natural, selection} → 233, {with, the} → 228,

of, life → 227, species, of → 200, {each, other} → 192, {has, been} → 190

This is a straightforward extension of the previous exercise.17.

In[84]:= NGrams[text_, n_] := PartitionTextWords[text], n, 1

In[85]:= sentence = "Use StringSplit to split long strings into words.";

NGrams[sentence, 3]

Out[86]= {{Use, StringSplit, to}, {StringSplit, to, split}, {to, split, long},

{split, long, strings}, {long, strings, into}, {strings, into, words}}

Here is our user-defined stringInsert.18.

In[87]:= stringInsert[str1_, str2_, pos_] := StringJoin@Join

TakeCharacters[str1], pos - 1,

Characters[str2],
DropCharacters[str1], pos - 1

In[88]:= stringInsert"Joy world", "to the ", 5

Out[88]= Joy to the world

In[89]:= stringDrop[str_, pos_] := StringJoinDropCharacters[str], pos

In[90]:= stringDrop"ABCDEF", -2

Out[90]= ABCD

The idea in these two examples is to convert a string to a list of characters, operate on that list
using list manipulation functions like Join, Take, and Drop, then convert back to a string. More

efficient approaches use string manipulation functions directly (see Chapter 7).

First, here is how we might write our own StringJoin.19.

56 Essentials of Programming in Mathematica

In[91]:= FromCharacterCodeJoin

ToCharacterCode"To be, ", ToCharacterCode"or not to be"

Out[91]= To be, or not to be

And here is a how we might implement a StringReverse.

In[92]:= FromCharacterCodeReverseToCharacterCode"never odd or even"

Out[92]= neve ro ddo reven

First we could use the Sum function to add k2
 as k goes from 1 to n.20.

In[93]:= Sumk2, k, 1, 10

Out[93]= 385

Here is a list of the first ten square pyramidal numbers.

In[94]:= TableSumk2, k, 1, n, {n, 1, 10}

Out[94]= {1, 5, 14, 30, 55, 91, 140, 204, 285, 385}

A closed form expression will be much faster.

In[95]:= Sumk2, k, 1, n

Out[95]=

1

6
n (1 + n) (1 + 2 n)

In[96]:= Table
1

6
n (1 + n) (1 + 2 n), {n, 1, 10}

Out[96]= {1, 5, 14, 30, 55, 91, 140, 204, 285, 385}

Another way of looking at the computation is that we are squaring each of the first n numbers

and then adding those squares together. Think dot product of the list of the first n integers with

itself.

In[97]:= Range[10].Range[10]

Out[97]= 385

In[98]:= Table[Range[n].Range[n], {n, 1, 10}]

Out[98]= {1, 5, 14, 30, 55, 91, 140, 204, 285, 385}

Or, more directly, square each of the integers one through ten, then add them up.

In[99]:= TotalRange[10]2

Out[99]= 385

3.3 Operations on lists: exercises 57

Associations: exercises3.4
Create an association consisting of several songs in your music library. Include keys for song

title, artist, release date, album cover. Once the association is defined, convert all the album

covers to smaller images using Thumbnail.

1.

Modify the MakeRef function to display the year of publication at the end of the line for
authors. Adjust the style so that the year displays in a bold font.

2.

In[1]:= MakeRefhamming1950

���������������� (����)

��

������//�����������/�������/������-�-���

Solutions3.4
Here is a small association consisting of information on three albums.1.

In[1]:= alb1 = Association

"SongTitle" → "Desvairada",

"AlbumArtist" → "Paulo Bellinati",

"AlbumTitle" → "The Guitar Works of Garoto",

"Year" → "1991",

"Cover" →

;

In[2]:= alb2 = Association

"SongTitle" → "Monk's Mood",

"AlbumArtist" → "Bud Powell",

"AlbumTitle" → "Round About Midnight At The Blue Note",

"Year" → "1962",

"Cover" →

;

58 Essentials of Programming in Mathematica

In[3]:= alb3 = Association

"SongTitle" → "Dounia",

"AlbumArtist" → "Rokia Traoré",

"AlbumTitle" → "Tchamantché",

"Year" → "2008",

"Cover" →

;

In[4]:= MapThumbnail, alb1"Cover", alb2"Cover", alb3"Cover"

Out[4]= , ,

It is first necessary to modify the MakeRef function so that newline characters do not appear
between all items. We want the author text to be followed by the date and then a newline. So

instead of using a default separator in Row, we will manually put them where we want them.

2.

In[5]:= makeAuthorref_ := Styleref "Author", "TR"

In[6]:= makeTitleref_ := Styleref "Title", "TI"

In[7]:= makeLinkref_ := HyperlinkStyleref "Url", "TR", ref "Url"

In[8]:= makeDateref_ :=

RowStyle" (", "TR", Styleref "Year", "TB", Style")", "TR"

In[9]:= MakeRefref_ := CellPrint@TextCellRow

makeAuthorref , makeDateref , "\n",

makeTitleref , "\n",

makeLinkref

, "Text", ShowStringCharacters → False

3.4 Associations: exercises 59

In[10]:= art1 = Association@

"Author" → "Hamming, Richard W.",

"Title" → "Error detecting and error correcting codes",

"Journal" → "The Bell System Technical Journal",

"Year" → 1950,

"Volume" → 29,

"Issue" → 2,

"Pages" → "147�160",
"Url" → "https://archive.org/details/bstj29-2-147"

Out[10]= Author → Hamming, Richard W.,

Title → Error detecting and error correcting codes,

Journal → The Bell System Technical Journal, Year → 1950, Volume → 29,

Issue → 2, Pages → 147�160, Url → https://archive.org/details/bstj29-2-147

In[11]:= MakeRef[art1]

������������������� (����)

��
������//�����������/�������/������-�-���

60 Essentials of Programming in Mathematica

4
Patterns and rules

Patterns: exercises4.1
Explain why the following pattern match fails. Then find two different patterns that correctly

match a complex number such as 3 +4 �.
1.

In[1]:= MatchQ3 + 4 I, a_ + b_I

Out[1]= False

Use conditional patterns to find all those numbers in a list of integers that are divisible by 2 or 3

or 5.
2.

Write down four conditional patterns that match the expression {4, {a, b}, "g"}.3.

Explain why the expression 1 / y is not matched by the pattern a_ / b_.4.

In[2]:= MatchQ1/y, a_b_

Out[2]= False

Determine the correct pattern that can be used to match the symbolic expression x / y.

In[3]:= MatchQ[x/y, Power[a_, -1]]

Out[3]= False

Write a function Collatz that takes an integer n as an argument and returns 3n + 1 if n is an

odd integer and returns n /2 if n is even.
5.

Write the Collatz function from the above exercise, but this time you should also check that
the argument to Collatz is positive.

6.

Use alternatives to write a function abs[�] that returns x if x ≥ 0, and -x if x < 0, whenever x is

an integer or a rational number. Whenever x is complex, abs[�] should return

re(x)2 + im(x)2 .

7.

Create a function swapTwo[���] that returns lis with only its first two elements interchanged;
for example, the input swapTwo[{a, b, c, d, e}] should return {b, a, c, d, e}. If lis has

fewer than two elements, swapTwo just returns lis. Write swapTwo using three clauses: one for
the empty list, one for one-element lists, and one for all other lists. Then write it using two

clauses: one for lists of length zero or one and another for all longer lists.

8.

Explain the different results from the following three pattern matches:9.

In[4]:= MatchQ{4, 6, 8}, x_ /; Length[x] > 4

Out[4]= False

In[5]:= MatchQ{4, 6, 8}, {x___} /; Length[x] > 4

Length::argx : Length called with 3 arguments; 1 argument is expected.

Out[5]= False

In[6]:= MatchQ{4, 6, 8}, {x___} /; Plus[x] > 10

Out[6]= True

Write a rule for the one-dimensional case of showWalk described in this section. Then write an

additional rule to handle multiple one-dimensional random walks.
10.

In[7]:= Needs"EPM`RandomWalks`"

In[8]:= walk = RandomWalk1000, Dimension → 1;

showWalkwalk

Out[9]=

200 400 600 800 1000

-60

-50

-40

-30

-20

-10

In[10]:= walks = TableRandomWalk1000, Dimension → 1, {25};

showWalkwalks

Out[11]=
200 400 600 800 1000

-50

50

Given a set of data like that in Figure 4.1, remove all outliers, defined here by being greater than

two standard deviations from the mean of the data.
11.

In[12]:= rawData = RandomVariateNormalDistribution[0, 2], {200};

62 Essentials of Programming in Mathematica

Scatter plots of original data and data with outliers removed.Figure 4.1.

100 200 300 400

-6

-4

-2

2

4

6
Raw data

50 100 150 200 250

-6

-4

-2

2

4

6
Filtered data

Solutions4.1
Look at the internal representation of the complex number.1.

In[1]:= FullForm[3 + 4 I]

Out[1]//FullForm= Complex[3, 4]

Although this is an equivalent representation to the traditional notation 3 +4 ⅈ, it is not the

same syntactically and the pattern matcher is a syntactic creature. Instead, match on head

Complex.

In[2]:= MatchQ3 + 4 I, _Complex

Out[2]= True

Although giving different information, you could also check that the expression is a number.

In[3]:= MatchQ3 + 4 I, _?NumberQ

Out[3]= True

Start by creating a list of integers with which to work.2.

In[4]:= lis = RandomInteger[1000, {20}]

Out[4]= {270, 885, 466, 194, 374, 237, 249, 228, 184,

704, 636, 922, 10, 619, 806, 497, 290, 329, 463, 168}

IntegerQ is a predicate; it returns True or False, so we need to use the logical OR to separate

clauses here.

In[5]:= Caseslis, n_ /; IntegerQ[n /2] || IntegerQ[n /3] || IntegerQ[n /5]

Out[5]= {270, 885, 466, 194, 374, 237, 249, 228, 184, 704, 636, 922, 10, 806, 290, 168}

This is a bit more compact and direct.

In[6]:= Caseslis, n_ /; Mod[n, 2]⩵ 0 || Mod[n, 3]⩵ 0 || Mod[n, 5]⩵ 0

Out[6]= {270, 885, 466, 194, 374, 237, 249, 228, 184, 704, 636, 922, 10, 806, 290, 168}

Once you are familiar with pure functions (Section 5.5), you can also do this with Select.

4.1 Patterns: exercises 63

In[7]:= Selectlis, Mod[#, 2]⩵ 0 || Mod[#, 3]⩵ 0 || Mod[#, 5]⩵ 0 &

Out[7]= {270, 885, 466, 194, 374, 237, 249, 228, 184, 704, 636, 922, 10, 806, 290, 168}

FullForm should help to guide you.3.

In[8]:= FullForm4, a, b, "g"

Out[8]//FullForm= List[4, List[a, b], "g"]

In[9]:= MatchQ4, a, b, "g", x_List /; Length[x] == 3

Out[9]= True

In[10]:= MatchQ4, a, b, "g", {_, y_, _} /; y〚0〛 == List

Out[10]= True

In[11]:= MatchQ4, a, b, "g", {x_, y_, z_} /; AtomQ[z]

Out[11]= True

In[12]:= MatchQ4, a, b, "g", {x_, _, _} /; EvenQ[x]

Out[12]= True

Look at the internal representation of these two expressions:4.

In[13]:= FullForm[1/x]

Out[13]//FullForm= Power[x, -1]

In[14]:= FullForma_b_

Out[14]//FullForm= Times[Pattern[a, Blank[]], Power[Pattern[b, Blank[]], -1]]

So 1 / x is a special case of the pattern a_ / b_ but it is one that Mathematica simplifies to an

expression with head Power.

x / y can be matched by the pattern a_ / b_.

In[15]:= MatchQx/y, a_b_

Out[15]= True

The Collatz function has a direct implementation based on its definition. There is no need to

check explicitly that the argument is an integer since OddQ and EvenQ handle that.
5.

In[16]:= Collatzn_?OddQ := 3 n + 1

In[17]:= Collatzn_?EvenQ :=
n

2

Here we iterate the Collatz function fifteen times starting with an initial value of 23.

In[18]:= NestListCollatz, 23, 15

Out[18]= {23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1}

Check for arguments that do not match the patterns above.

64 Essentials of Programming in Mathematica

In[19]:= Collatz[24.0]

Out[19]= Collatz[24.]

Here again is the Collatz function, but this time using a condition on the right-hand side of the

definition.
6.

In[20]:= ClearCollatz

In[21]:= Collatz[n_] := 3 n + 1 /; OddQ[n] && Positive[n]

In[22]:= Collatz[n_] :=
n

2
/; EvenQ[n] && Positive[n]

In[23]:= Collatz[4.3]

Out[23]= Collatz[4.3]

In[24]:= Collatz[-3]

Out[24]= Collatz[-3]

In[25]:= NestListCollatz, 22, 15

Out[25]= {22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1}

You could also put the conditions inside the pattern on the left-hand side if you prefer.

In[26]:= ClearCollatz

In[27]:= Collatzn_ /; OddQ[n] && Positive[n] := 3 n + 1

In[28]:= Collatzn_ /; EvenQ[n] && Positive[n] :=
n

2

In[29]:= NestListCollatz, 22, 15

Out[29]= {22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1}

Using alternatives, this gives the definition for real, integer, or rational arguments.7.

In[30]:= absx_Real x_Integer x_Rational := If[x ≥ 0, x, -x]

Here is the definition for complex arguments.

In[31]:= absx_Complex := Re[x]2
+ Im[x]2

Note that these rules are not invoked for symbolic arguments.

In[32]:= Mapabs, -3, 3 + 4 I,
-4

5
, a

Out[32]= 3, 5,
4

5
, abs[a]

We first have to consider the base cases. Given a list with no elements, swapTwo should return

the empty list. And, given a list with one element, swapping should give that one element back.
8.

4.1 Patterns: exercises 65

In[33]:= swapTwo[{}] := {}

swapTwo[{x_}] := {x}

Now, we use the triple-blank to indicate that r could be a sequence of zero or more elements.

In[35]:= swapTwo[{x_, y_, r___}] := {y, x, r}

In[36]:= swapTwo[{}]

Out[36]= {}

In[37]:= swapTwo[{a}]

Out[37]= {a}

In[38]:= swapTwoa, b, c, d

Out[38]= {b, a, c, d}

Notice in this second definition for swapTwo that the second clause covers both the situation

where the argument is the empty list and when it contains only one element.

In[39]:= swapTwo2[{x_, y_, r___}] := {y, x, r}

swapTwo2[x_] := x

In[41]:= swapTwo[{}]

Out[41]= {}

In[42]:= swapTwo[{a}]

Out[42]= {a}

In[43]:= swapTwoa, b, c, d

Out[43]= {b, a, c, d}

In the first example, x was associated with the entire list {4, 6, 8}; since the length of the list
{4, 6, 8} is not greater than 4, the match failed. In the second example, x became the sequence

4, 6, 8 so that the condition was Length[4, 6, 8] > 4; but Length can only have one argu-
ment, hence the error. In the last example, x was again associated with 4, 6, 8, but now the

condition was Plus[4, 6, 8] > 10, which is perfectly valid syntax, and true.

9.

To write the one-dimensional rule, you can simply use ListLinePlot on the right hand side.
The pattern on the left hand side though needs to match a one-dimensional list of numbers.
VectorQ can be used to check for this.

10.

In[44]:= showWalkcoords_?VectorQ := ListLinePlotcoords

In[45]:= Needs"EPM`RandomWalks`"

66 Essentials of Programming in Mathematica

In[46]:= walk = RandomWalk1000, Dimension → 1;

showWalkwalk

Out[47]=

200 400 600 800 1000

10

20

30

40

50

60

The case of multiple walks is a bit trickier. First note the structure of a list of multiple one-
dimensional random walks. Here we have 25 ten-step walks.

In[48]:= walks = TableRandomWalk10, Dimension → 1, {25};

Dimensionswalks

Out[49]= {25, 10}

In situations where you are not sure what the pattern needs to be to match a complicated

expression, it oftentimes helps to look at some representative examples.

In[50]:= ShortTakewalks, 5, 2

Out[50]//Short= {{-1, -2, -1, -2, -3, -4, -3, -4, -5, -4},

3, {-1, -2, -3, -2, -3, -2, -3, -4, -5, -4}}

So the structure is {{�������}, {�������}, …{�������}} and in this specific example we

have 25 repeats or trials. We don’t know how long each walk will be ahead of time so we need a

double blank to accommodate walks of length one or more. And we will check that each walk

list consists of numbers. Here is the rule. We have also added a style directive to thin out the

lines.

In[51]:= showWalkcoords : __?NumberQ .. :=

ListLinePlotcoords, PlotStyle → DirectiveThin

In[52]:= walks = TableRandomWalk1000, Dimension → 1, {25};

showWalkwalks

Out[53]=
200 400 600 800 1000

-60

-40

-20

20

40

60

4.1 Patterns: exercises 67

The mean and standard deviation of the data can be obtained with built-in functions.11.

In[54]:= data = RandomVariateNormalDistribution[0, 2], {200};

In[55]:= {μ, σ} = Meandata, StandardDeviationdata

Out[55]= {-0.00968766, 1.93378}

This extracts all those elements of data that are within one standard deviation of the mean.

In[56]:= filtered = Casesdata, p_ /; Abs[μ - p] < σ;

len = Lengthfiltered

Out[57]= 132

In[58]:= ListPlotdata, Epilog →

Dashed, Line{0, σ}, len, σ, Line{0, -σ}, len, -σ

Out[58]=

50 100 150 200

-4

-2

2

4

Transformation rules: exercises4.2
Here is a rule designed to switch the order of each pair of expressions in a list. It works fine on

the first example, but fails on the second.
1.

In[1]:= a, b, c, d, e, f /. {x_, y_}⧴ {y, x}

Out[1]= {b, a}, {d, c}, f, e

In[2]:= a, b, c, d /. {x_, y_}⧴ {y, x}

Out[2]= {{c, d}, {a, b}}

Explain what has gone wrong and rewrite this rule to correct the situation, that is, so that the

second example returns {{b, a}, {d, c}}.

Given a 3⨯3 matrix, here is a rule intended to swap the elements in the second and third

columns:
2.

In[3]:= mat = a, b, c, d, e, f, g, h, i;

68 Essentials of Programming in Mathematica

In[4]:= mat /. {x_, y_, z_}⧴ {x, z, y} // MatrixForm

Out[4]//MatrixForm=

a b c
g h i
d e f

Explain what has gone wrong and rewrite the rule so that it correctly swaps columns two and

three.

Use pattern matching to extract all negative solutions of the following polynomial:3.

x9 + 3.4 x6 - 25 x5 - 213 x4 - 477 x3 + 1012 x2 + 111 x - 123

Then extract all real solutions; that is, those which are not complex.

Create a rewrite rule that uses a repeated replacement to “unnest” the nested lists within a list.4.

In[5]:= unNest[{{α, α, α}, {α}, {{β, β, β}, {β, β}}, {α, α}}]

Out[5]= {α, α, α, α, β, β, β, β, β, α, α}

Define a function using pattern matching and repeated replacement to sum the elements of a

list such as that produced by Range[100].
5.

Using the built-in function ReplaceList, write a function cartesianProduct that takes two

lists as input and returns the Cartesian product of these lists.
6.

In[6]:= cartesianProduct[{x1, x2, x3}, {y1, y2}]

Out[6]= {{x1, y1}, {x1, y2}, {x2, y1}, {x2, y2}, {x3, y1}, {x3, y2}}

Write a function to count the total number of multiplications in any polynomial expression.
For example, given a power, your function should return one less than the exponent.

7.

In[7]:= MultiplyCountt5

Out[7]= 4

In[8]:= MultiplyCount[a x y t]

Out[8]= 3

In[9]:= MultiplyCounta x y t4 + w t

Out[9]= 7

Create six graphical objects, one each to represent the faces of a standard six-sided die.
Dice[�] should display the face of the appropriate die, as below. Then use the Dice function

to create a function RollDice[] that “rolls” two dice and displays them side-by-side. Create an

additional rule, RollDice[�], that rolls a pair of dice n times and displays the result in a list or
row.

8.

4.2 Transformation rules: exercises 69

In[10]:= TableDice[n], {n, 1, 6}

Out[10]= , , , , ,

One way to approach this problem is to think of a die face as a grid of nine elements, some of
which are turned on (white) and some turned off (blue above). Then create one set of rules for
each of the six die faces. Once your rules are defined, you could use something like the follow-
ing graphics code (a bit incomplete as written here) to create your images:

Dice[n_] := GraphicsGrid

MapGraphics, Partition[Range[9], 3] /. rules[[n]], {2}

Make a scatter plot of the points used to construct the polygons in a torus, which is given

parametrically as follows:
9.

In[11]:= ParametricPlot3D(2 + Cos[v]) Sin[u], (2 + Cos[v]) Cos[u], Sin[v],

{u, 0, 2 π}, {v, 0, 2 π}

Out[11]=

Solutions4.2
The problem here is that the pattern is too general and has been matched by the entire expres-
sion, which has the form {x_, y_}, where x is matched by {a, b} and y is matched by {c, d}.
To fix this, use patterns to restrict the expressions that match.

1.

In[1]:= a, b, c, d /. x_Symbol, y_Symbol ⧴ {y, x}

Out[1]= {{b, a}, {d, c}}

In[2]:= a, b, c, d, e, f /. x_Symbol, y_Symbol ⧴ {y, x}

Out[2]= {b, a}, {d, c}, f, e

Here is the matrix.2.

70 Essentials of Programming in Mathematica

In[3]:= mat = a, b, c, d, e, f, g, h, i;

MatrixForm[mat]

Out[4]//MatrixForm=

a b c
d e f
g h i

This rule swaps the second and third rows, not the columns.

In[5]:= mat /. {x_, y_, z_}⧴ {x, z, y} // MatrixForm

Out[5]//MatrixForm=

a b c
g h i
d e f

It appears as if the pattern matcher starts at the outer list expression rather than at the bottom

of the nested expression. Starting at the top, the rule matches the entire matrix with the first
row matching the pattern x_, the second row matching y_ and the third row matching z_.
Some additional constraints will help here.

In[6]:= mat /. x_Symbol, y_Symbol, z_Symbol ⧴ {x, z, y} // MatrixForm

Out[6]//MatrixForm=

a c b
d f e
g i h

First, get the solutions to this polynomial.3.

In[7]:= soln = Solvex9 + 3.4 x6 - 25 x5 - 213 x4 - 477 x3 + 1012 x2 + 111 x - 123⩵ 0, x

Out[7]= {{x → -2.80961}, {x → -1.85186 - 2.15082 ⅈ}, {x → -1.85186 + 2.15082 ⅈ},

{x → -0.376453}, {x → 0.323073}, {x → 1.06103 - 3.12709 ⅈ},

{x → 1.06103 + 3.12709 ⅈ}, {x → 1.30533}, {x → 3.13931}}

The pattern needs to match an expression consisting of a list with a rule inside where the value

on the right-hand side of the rule should pass the Negative test.

In[8]:= Casessoln, x_ → _?Negative

Out[8]= {{x → -2.80961}, {x → -0.376453}}

Here are two solutions for the noncomplex roots.

In[9]:= Casessoln, _ → _Real

Out[9]= {{x → -2.80961}, {x → -0.376453}, {x → 0.323073}, {x → 1.30533}, {x → 3.13931}}

In[10]:= DeleteCasessoln, _ → _Complex

Out[10]= {{x → -2.80961}, {x → -0.376453}, {x → 0.323073}, {x → 1.30533}, {x → 3.13931}}

The transformation rule unnests lists within a list.4.

In[11]:= unNestlis_ := Map(# //.{x__}⧴ x &), lis

In[12]:= unNest{a, a, a}, {a}, b, b, b, b, b, {a, a}

Out[12]= {a, a, a, a, b, b, b, b, b, a, a}

4.2 Transformation rules: exercises 71

Note the need to put y in a list on the right-hand side of the rule. Also, an immediate rule is

required here.
5.

In[13]:= sumListlis_ := Firstlis //.{x_, y___} → x + {y}

In[14]:= sumList[{1, 5, 8, 3, 9, 3}]

Out[14]= 29

The triple blank is required both before and after the variables x and y.6.

In[15]:= cartesianProductlis1_, lis2_ :=

ReplaceListlis1, lis2, {{___, x_, ___}, {___, y_, ___}} ⧴ {x, y}

We could also have a rule for an argument consisting of the empty list.

In[16]:= cartesianProduct[{}] := {}

In[17]:= Clearx, y, z, a, b, c, d

In[18]:= cartesianProducta, b, c, {x, y, z}

Out[18]= {{a, x}, {a, y}, {a, z}, {b, x}, {b, y}, {b, z}, {c, x}, {c, y}, {c, z}}

In[19]:= cartesianProduct[{}]

Out[19]= {}

For an expression of the form Power[�, �], the number of multiplies is b - 1.7.

In[20]:= Cases[{x^4}, Power[_, exp_]⧴ exp - 1]

Out[20]= {3}

For an expression of the form Times[�, �, �, …], the number of multiplications is given by

one less then the number of arguments.

In[21]:= Casesa b c d e, fac_Times ⧴ Lengthfac - 1

Out[21]= {4}

For a mix of terms of these two cases, we will need to total up the counts from the respective

terms. Here is a function that puts this all together. Use Infinity as a third argument to Cases

to make sure the search goes all the way down the expression tree.

In[22]:= MultiplyCount[expr_] :=

Total@Cases{expr}, Power[_, exp_]⧴ exp - 1, Infinity +

Total@Cases{expr}, fac_Times ⧴ Lengthfac - 1, Infinity

In[23]:= MultiplyCounta b2 c d5

Out[23]= 8

In[24]:= poly = Expand(x + y - z)3

Out[24]= x3 + 3 x2 y + 3 x y2 + y3 - 3 x2 z - 6 x y z - 3 y2 z + 3 x z2 + 3 y z2 - z3

72 Essentials of Programming in Mathematica

In[25]:= MultiplyCountpoly

Out[25]= 28

Ideally we should check that the expression passed to this function is a polynomial first. That is

addressed in Exercise 5, Section 6.2.

First, we create a grid of the nine locations on the die.8.

In[26]:= lis = Partition[Range[9], 3];

Gridlis

Out[27]=

1 2 3
4 5 6
7 8 9

Next, use graphics primitives to indicate if a location on the grid is colored (on) or not (off).

In[28]:= off = Red, Disk[];

on = White, Disk[];

Here are the rules for a five.

In[30]:= GraphicsGridMapGraphics,

lis /. 1 → on, 2 → off, 3 → on, 4 → off, 5 → on, 6 → off, 7 → on, 8 → off, 9 → on,

{2}, Background → Red, Spacings → 10, ImageSize → 40

Out[30]=

The five other rules are straightforward. Here then is a function that wraps up the code. Note

the use of the Background option to GraphicsGrid to pick up the color from the value of off.

In[31]:= Dice[n_] := Modulerules, off = Darker@Blue, Disk[], on = White, Disk[],

rules =

1 → off, 2 → off, 3 → off, 4 → off, 5 → on, 6 → off, 7 → off, 8 → off, 9 → off,

1 → off, 2 → off, 3 → on, 4 → off, 5 → off, 6 → off, 7 → on, 8 → off, 9 → off,

1 → off, 2 → off, 3 → on, 4 → off, 5 → on, 6 → off, 7 → on, 8 → off, 9 → off,

1 → on, 2 → off, 3 → on, 4 → off, 5 → off, 6 → off, 7 → on, 8 → off, 9 → on,

1 → on, 2 → off, 3 → on, 4 → off, 5 → on, 6 → off, 7 → on, 8 → off, 9 → on,

1 → on, 2 → off, 3 → on, 4 → on, 5 → off, 6 → on, 7 → on, 8 → off, 9 → on

;

GraphicsGridMapGraphics,

Partition[Range[9], 3] /. rules[[n]],
{2}, Background → Firstoff, Spacings → 10, ImageSize → 40

4.2 Transformation rules: exercises 73

In[32]:= TableDice[n], {n, 1, 6}

Out[32]= , , , , ,

This can be done a bit more compactly by using a 3⨯3 matrix of zeros and ones.

In[33]:= Dicen_, OptionsPattern[] := Modulerules, color, grid,

color = OptionValueColor;

rules = 0 → color, Disk[], 1 → White, Disk[];

grid = {

{0, 0, 0, 0, 1, 0, 0, 0, 0},

{0, 0, 1, 0, 0, 0, 1, 0, 0},

{0, 0, 1, 0, 1, 0, 1, 0, 0},

{1, 0, 1, 0, 0, 0, 1, 0, 1},

{1, 0, 1, 0, 1, 0, 1, 0, 1},

{1, 0, 1, 1, 0, 1, 1, 0, 1}

};

GraphicsGridMapGraphics, Partitiongrid[[n]], 3 /. rules, {2},

Background → color, Spacings → 10, ImageSize → 40

Using Array, we create a list of the six dice.

In[34]:= ArrayDice, {6}

Out[34]= , , , , ,

Rolling a pair is randomly choosing (with replacement).

In[35]:= RollDice[] := GraphicsRowRandomChoiceArrayDice, {6}, {2}

In[36]:= RollDice[]

Out[36]=

And here is the rule for rolling the pair of dice � times.

In[37]:= RollDice[n_] := TableRollDice[], {n}

74 Essentials of Programming in Mathematica

In[38]:= RollDice[4]

Out[38]= , ,

,

Here is the torus:9.

In[39]:= torus = ParametricPlot3D(2 + Cos[v]) Sin[u], (2 + Cos[v]) Cos[u], Sin[v],

{u, 0, 2 π}, {v, 0, 2 π}

Out[39]=

The internal form of the graphic shows the form we are looking for.

In[40]:= Short[InputForm[torus], 5]

Out[40]//Short=

Graphics3DGraphicsComplex

1.3464×10-6, 2.999999999999597, 4.48799×10-7, {<< 3 >>}, << 2296 >>,

{-2.0674956344646818, 2.067494242630337, -0.38268379517170614},

<< 2 >>, {<< 9 >>}

Mirroring what was done in the plot example in this section, here is the expression to extract
only coordinate triples.

4.2 Transformation rules: exercises 75

In[41]:= points = Casestorus, GraphicsComplex[pts : {{_, _, _} ..}, __]⧴ pts, Infinity

Out[41]=

1.3464×10-6, 3., 4.48799×10-7,

⋯ 2297⋯ , {-2.0675, 2.06749, -0.382684}

large output show less show more show all set size limit...

And here is the scatter plot of these points.

In[42]:= ListPointPlot3Dpoints, PlotStyle → PointSizeSmall

Out[42]=

Examples: exercises4.3
Create a predicate function compositeQ that tests whether a positive integer is composite.
Check it against the built-in CompositeQ.

1.

Plot the function Sinc[�] over the interval [–2 π, 2 π] and then use a transformation rule to

display a reflection in the y-axis. Use Show[���� /. ���� ⧴ ����, PlotRange → All] to display

the transformed plot in such a way that a new plot range is computed.

2.

Occasionally, when collecting data from an instrument, the collector fails or returns a bad

value. In analyzing the data, the analyst has to make a decision about what to use to replace

these bad values. One approach is to replace them with a column mean. Given an array of
numbers such as the following, create a function to replace each "NAN" with the mean of the

numbers that appear in that column:

3.

In[1]:= data =

0.9034 "NAN" 0.7163 0.8588
0.3031 0.5827 0.2699 0.8063
0.0418 0.8426 "NAN" 0.8634
"NAN" 0.8913 0.0662 0.8432

;

Given a two-column array of data4.

76 Essentials of Programming in Mathematica

In[2]:= data = RandomInteger[{0, 9}, {5, 2}];

In[3]:= MatrixFormdata, TableAlignments → "."

Out[3]//MatrixForm=

7 0
8 2
1 5
8 0
6 7

create a new array that consists of three columns where the first two columns are identical to

the original, but the third column consists of the mean of the two numbers from the first two

columns.

7 0 7

2

8 2 5
1 5 3
8 0 4

6 7 13

2

Given a graphic produced by Plot, use a transformation rule to halve the y-coordinate of each

point used to construct the plot, then display the result.
5.

Extend the counting coins example to take images of coins as the argument to the function.6.

In[4]:= CountChange , , , ,

Out[4]= 0.42

Create a function FindSubsequence[������, ������] to find the positions of a subsequence

subseq within a sequence of numbers given by digits. Assume both digits and subseq are lists of
numbers. Your function should return a list of the starting and ending positions where the

subsequence occurs in the sequence, similar to what Position returns. For example, here are

the first 50 digits of π:

7.

In[5]:= pidigs = FirstRealDigits[π, 10, 100]

Out[5]= {3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3,

3, 8, 3, 2, 7, 9, 5, 0, 2, 8, 8, 4, 1, 9, 7, 1, 6, 9, 3, 9, 9, 3, 7, 5, 1,

0, 5, 8, 2, 0, 9, 7, 4, 9, 4, 4, 5, 9, 2, 3, 0, 7, 8, 1, 6, 4, 0, 6, 2, 8,

6, 2, 0, 8, 9, 9, 8, 6, 2, 8, 0, 3, 4, 8, 2, 5, 3, 4, 2, 1, 1, 7, 0, 6, 7}

The subsequence 38 appears in two locations in pidigs.

In[6]:= FindSubsequencepidigs, {3, 8}

Out[6]= {{18, 19}, {26, 27}}

Write another definition of FindSubsequence that takes two integers as arguments. So, for
example, the following should work:

8.

4.3 Examples: exercises 77

In[7]:= SeedRandom[6];

n = RandomInteger10200

Out[8]= 38962167906640602500170931211955779575023497774170227858878429522794529

744062342783143699902237900976316871609846545097431390396795087845924

977005230435025177652637766538981421277296525589205107229653

In[9]:= FindSubsequence[n, 965]

Out[9]= {{181, 183}, {197, 199}}

Compute the area of a triangle using the following formula for three two-dimensional coordi-
nates (xi, yi, zi) embedded in three-dimensional space:

9.

A△ =
1
2

x1 y1 1
x2 y2 1
x3 y3 1

2

+

y1 z1 1
y2 z2 1
y3 z3 1

2

+

z1 x1 1
z2 x2 1
z3 x3 1

2

Using historical global surface temperatures, make a plot showing the difference in °C from the

1950–1980 average for each year. Data is available from numerous sources, including NASA’s

Goddard Institute for Space Studies (NASA 2015). After importing the data you will need to

remove header and footer information before pouring the pairs {����, ������_����} into

TimeSeries. Make the plot using DateListPlot and include a smoothed five-year moving

average together with the plot of the raw data.

10.

Sunspots are caused by magnetic fields which in turn are caused by the current generated by

the motion of hot plasma inside the sun. In regions where the induced magnetic field is most
intense, the increased pressure causes the region to rise to the surface causing darker regions –

sunspots – where the temperature is lower. The mean magnetic field of the sun has been

recorded since 1975 and is available from the Wilcox Solar Observatory at Stanford University:

11.

In[10]:= data = Import"http://wso.stanford.edu/meanfld/MF_timeseries.txt", "Table";

Takedata, 10

Out[11]= {{Date, Daily, MF, (uT)}, {1975:05:16_20h, 29},

{1975:05:17_20h, 22}, {1975:05:18_20h, 24}, {1975:05:19_20h, 24},

{1975:05:20_20h, 13}, {1975:05:21_20h, 4}, {1975:05:22_20h, 4},

{1975:05:23_20h, XXXX}, {1975:05:24_20h, -3}}

Import the solar magnetic field data and create rules to convert the timestamps to a form that
the time series functions can work with. You will need to convert the missing measurements

(denoted ”XXXX” in the data) of the magnetic field strength to Missing[] which the time

series functions will handle more gracefully. Finally, make a plot of the data over the time

period using DateListPlot.

To convert the date to a usable format, use DateList and specify the explicit delimiters.

78 Essentials of Programming in Mathematica

http://climate.nasa.gov/vital-signs/global-temperature

In[12]:= DateList

"1975:05:18_20h", "Year", ":", "Month", ":", "Day", "_", "Hour", "h"

Out[12]= {1975, 5, 18, 20, 0, 0.}

Solutions4.3
First, the argument is checked to see if it has head Integer and if it is greater than one.1.

In[1]:= compositeQ[n_Integer /; n > 1] := NotPrimeQ[n]

Check a few numbers for compositeness.

In[2]:= compositeQ[16]

Out[2]= True

In[3]:= compositeQ231 - 1

Out[3]= False

In[4]:= compositeQ263 - 1 === CompositeQ263 - 1

Out[4]= True

Here is the plot of the sinc function.2.

In[5]:= splot = PlotSinc[x], {x, -2 π, 2 π}

Out[5]=

-6 -4 -2 2 4 6

-0.2

0.2

0.4

0.6

0.8

1.0

This replacement rule replaces each pair of numbers {x, y} with the pair {x, -y}, giving a

reflection in the y-axis. Note the need to modify the plot range here.

4.3 Examples: exercises 79

In[6]:= Showsplot /. x_?NumberQ, y_?NumberQ ⧴ {x, -y}, PlotRange → All

Out[6]=

-6 -4 -2 2 4 6

-1.0

-0.8

-0.6

-0.4

-0.2

0.2

The argument checking (_?NumberQ) is necessary here so that pairs of arbitrary expressions

embedded somewhere in the graphics expression are not pattern matched. We only want to

interchange pairs of numbers, not pairs of options or other expressions that might be present in

the underlying expression representing the graphic.

First, here is the data with which we will work.3.

In[7]:= array =

0.9034 "NAN" 0.7163 0.8588 0.1228
0.3031 0.5827 0.2699 0.8063 "NAN"
0.0418 0.8426 "NAN" 0.8634 0.9682
0.9163 0.8913 0.0662 0.8432 0.0547
0.7937 0.6905 0.9105 0.5589 0.8993

;

Get only the numeric values from the second column.

In[8]:= col2 = arrayAll, 2;

Casescol2, _?NumberQ

Out[9]= {0.5827, 0.8426, 0.8913, 0.6905}

Compute the mean of the second column.

In[10]:= MeanCasescol2, _?NumberQ

Out[10]= 0.751775

Replace the string with the column mean.

In[11]:= col2 /. "NAN" → MeanCasescol2, _?NumberQ // MatrixForm

Out[11]//MatrixForm=

0.751775
0.5827
0.8426
0.8913
0.6905

Turn it into a function.

In[12]:= fixcolumncol_ :=

arrayAll, col /. "NAN"⧴ MeanCasesarrayAll, col, _?NumberQ

80 Essentials of Programming in Mathematica

Try this function out on column 1 of our matrix.

In[13]:= fixcolumn[1]

Out[13]= {0.9034, 0.3031, 0.0418, 0.9163, 0.7937}

Map this function across all the columns.

In[14]:= Mapfixcolumn, RangeLengthFirst[array] // MatrixForm

Out[14]//MatrixForm=

0.9034 0.3031 0.0418 0.9163 0.7937
0.751775 0.5827 0.8426 0.8913 0.6905
0.7163 0.2699 0.490725 0.0662 0.9105
0.8588 0.8063 0.8634 0.8432 0.5589
0.1228 0.51125 0.9682 0.0547 0.8993

This operated on the columns, so the array is a list of the transformed column vectors. Trans-
pose it back to put things right.

In[15]:= MatrixForm[Transpose[%]]

Out[15]//MatrixForm=

0.9034 0.751775 0.7163 0.8588 0.1228
0.3031 0.5827 0.2699 0.8063 0.51125
0.0418 0.8426 0.490725 0.8634 0.9682
0.9163 0.8913 0.0662 0.8432 0.0547
0.7937 0.6905 0.9105 0.5589 0.8993

Next, turn this into a reusable function, FixArray.

In[16]:= FixArray[mat_] := Modulefixcolumn,

fixcolumncol_ :=

matAll, col /. "NAN"⧴ MeanCasesmatAll, col, _?NumberQ;

TransposeMapfixcolumn, RangeLengthFirst[mat]

In[17]:= FixArray[array] // MatrixForm

Out[17]//MatrixForm=

0.9034 0.751775 0.7163 0.8588 0.1228
0.3031 0.5827 0.2699 0.8063 0.51125
0.0418 0.8426 0.490725 0.8634 0.9682
0.9163 0.8913 0.0662 0.8432 0.0547
0.7937 0.6905 0.9105 0.5589 0.8993

We are embedding the two-dimensional data into a three-dimensional array. The embedding

function is written directly as a transformation rule.
4.

In[18]:= data = RandomReal[{0, 1}, {8, 2}]

Out[18]= {{0.0130644, 0.16409}, {0.639823, 0.731402},

{0.997011, 0.621673}, {0.0157075, 0.409658}, {0.705118, 0.514003},

{0.0233511, 0.539084}, {0.487938, 0.503521}, {0.848247, 0.874698}}

4.3 Examples: exercises 81

In[19]:= data /. {x_, y_}⧴ {x, y, Mean[{x, y}]} // MatrixForm

Out[19]//MatrixForm=

0.0130644 0.16409 0.088577
0.639823 0.731402 0.685612
0.997011 0.621673 0.809342
0.0157075 0.409658 0.212683
0.705118 0.514003 0.60956
0.0233511 0.539084 0.281217
0.487938 0.503521 0.495729
0.848247 0.874698 0.861472

Here is a plot of the sin function.5.

In[20]:= plot = PlotSin[x], {x, 0, 2 π}

Out[20]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

This rule replaces each pair {x, y} with the pair {x, y /2}.

In[21]:= plot /. x_?NumericQ, y_?NumericQ ⧴ {x, y /2}

Out[21]=

0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

Because the plot range is simply inherited from the original plot we lose some information

after the transformation. To adjust the plot range, wrap the expression in Show and give an

explicit plot range.

82 Essentials of Programming in Mathematica

In[22]:= Show

plot /. x_?NumericQ, y_?NumericQ ⧴ {x, y /2},

PlotRange → {{0, 2 π}, {-1, 1}}

Out[22]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

For U.S. coins, you can import images from the U.S. Mint (www.usmint.gov); adjust accord-
ingly for different currencies.

6.

In[23]:= q, d, n, p = , , , ;

In[24]:= coins = p, p, q, n, d, d, p, q, q, p

Out[24]= , , , , ,

, , , ,

Here are the values, given by a list of rules.

In[25]:= values = p → .01, n → .05, d → .10, q → .25;

This replaces each coin by its value.

In[26]:= coins /. values

Out[26]= {0.01, 0.01, 0.25, 0.05, 0.1, 0.1, 0.01, 0.25, 0.25, 0.01}

And here is the value of the set of coins.

In[27]:= Totalcoins /. values

Out[27]= 1.04

4.3 Examples: exercises 83

Finally, here is a function that wraps up all these steps.

In[28]:= CountChangecoins_List :=

Totalcoins /. → .01, → .05, → .10,

→ .25

In[29]:= CountChange , , , , ,

, , , ,

Out[29]= 1.04

To prototype, we will only work with a small number of digits so we can easily check on our
progress. Here are the first 50 digits of π, starting from the right of the decimal point.

7.

In[30]:= pidigs = FirstRealDigits[π, 10, 50]

Out[30]= {3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3,

3, 8, 3, 2, 7, 9, 5, 0, 2, 8, 8, 4, 1, 9, 7, 1, 6, 9, 3, 9, 9, 3, 7, 5, 1}

The subsequence we are searching for is also given as a list of digits.

In[31]:= subseq = {3, 2, 3, 8};

One approach to this problem is to partition the list of digits in pidigs into lists of the same

length as the list subseq, with overlapping sublists of offset one. This means that we will
examine all sublists of length four from pidigs.

84 Essentials of Programming in Mathematica

In[32]:= p = Partitionpidigs, Lengthsubseq, 1

Out[32]= {{3, 1, 4, 1}, {1, 4, 1, 5}, {4, 1, 5, 9}, {1, 5, 9, 2}, {5, 9, 2, 6}, {9, 2, 6, 5},

{2, 6, 5, 3}, {6, 5, 3, 5}, {5, 3, 5, 8}, {3, 5, 8, 9}, {5, 8, 9, 7}, {8, 9, 7, 9},

{9, 7, 9, 3}, {7, 9, 3, 2}, {9, 3, 2, 3}, {3, 2, 3, 8}, {2, 3, 8, 4},

{3, 8, 4, 6}, {8, 4, 6, 2}, {4, 6, 2, 6}, {6, 2, 6, 4}, {2, 6, 4, 3},

{6, 4, 3, 3}, {4, 3, 3, 8}, {3, 3, 8, 3}, {3, 8, 3, 2}, {8, 3, 2, 7},

{3, 2, 7, 9}, {2, 7, 9, 5}, {7, 9, 5, 0}, {9, 5, 0, 2}, {5, 0, 2, 8},

{0, 2, 8, 8}, {2, 8, 8, 4}, {8, 8, 4, 1}, {8, 4, 1, 9}, {4, 1, 9, 7},

{1, 9, 7, 1}, {9, 7, 1, 6}, {7, 1, 6, 9}, {1, 6, 9, 3}, {6, 9, 3, 9},

{9, 3, 9, 9}, {3, 9, 9, 3}, {9, 9, 3, 7}, {9, 3, 7, 5}, {3, 7, 5, 1}}

Now we are ready for the pattern match. From the list p above, we are looking for the positions

of any sublist that matches {3, 2, 3, 8}. The subsequence 3238 occurs starting at the sixteenth

digit in pidigs (fifteen digits to the right of the decimal point).

In[33]:= pos = Positionp, subseq

Out[33]= {{16}}

To mirror the default output of Position, we give the starting and ending positions of this

match.

In[34]:= pos /. num_?IntegerQ ⧴ num, num + Lengthsubseq - 1

Out[34]= {{16, 19}}

Finally, let us turn this into a function and test it on a much larger example. Note that we use

the pattern _List on both arguments, digits and subseq, so that FindSubsequence will only

match arguments that have head List.

In[35]:= FindSubsequencedigits_List, subseq_List :=

PositionPartitiondigits, Lengthsubseq, 1, subseq /.

num_?IntegerQ ⧴ num, num + Lengthsubseq - 1

Store the first 10 000 000 digits of π in the symbol pidigs.

In[36]:= pidigs = FirstRealDigitsπ, 10, 107, -1;

The subsequence 314159 occurs seven times in the first 10 000 000 digits of π, starting with the

176 451st digit.

In[37]:= FindSubsequencepidigs, {3, 1, 4, 1, 5, 9} // Timing

Out[37]= {10.2297, {{176451, 176456},

{1259351, 1259356}, {1761051, 1761056}, {6467324, 6467329},

{6518294, 6518299}, {9753731, 9753736}, {9973760, 9973765}}}

In Section 7.2 we will see a different approach to this problem, one using string-processing

functions that gives a substantial speedup compared to the computation above.

4.3 Examples: exercises 85

This creates another rule associated with FindSubsequence that simply takes each integer
argument, converts it to a list of integer digits, and then passes that off to the rule above.

8.

In[38]:= FindSubsequencen_Integer, subseq_Integer :=

FindSubsequenceIntegerDigits[n], IntegerDigitssubseq

Create the list of the first 100 000 digits of π.

In[39]:= pi = FromDigitsFirst@RealDigitsNPi, 105 - 3;

The subsequence 1415 occurs seven times at the following locations in this digit expansion of π.

In[40]:= FindSubsequencepi, 1415

Out[40]= {{1, 4}, {6955, 6958}, {29136, 29139}, {45234, 45237},

{79687, 79690}, {85880, 85883}, {88009, 88012}}

This is a direct translation of the formula given in the exercise using a transformation rule to

embed the two-dimensional vectors in three-space. It is important to get the pattern on the left-
hand side of this definition correct so it matches a list consisting of three expressions (the three

points).

9.

In[41]:= areaTriangle[pts : {_, _, _}] :=

1

2

DetptsAll, {2, 3} /. a_, b_ ⧴ a, b, 12
+

DetptsAll, {3, 1} /. a_, b_ ⧴ a, b, 12
+

DetptsAll, {1, 2} /. a_, b_ ⧴ a, b, 12

And here is a check against the built-in function.

In[42]:= pts = {{0, 0, 0}, {3, 4, 0}, {5, 5, 5}};

In[43]:= AreaTriangle[pts]

Out[43]= 5
13

2

In[44]:= areaTriangle[pts]

Out[44]= 5
13

2

First, import data from NASA’s Goddard Institute for Space Studies. 10.

In[45]:= data = Import"http://data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts+dSST.txt",

"Table", "Data";

We need to strip out the header and footer information and just deal with the raw data: inspec-
tion of the data (not shown here) indicates the header info is in the first eight rows and footer
info is in the last twelve rows.

86 Essentials of Programming in Mathematica

In[46]:= data[[9 ;; -13]];

Some filtering is also necessary as the web page repeats header row (column names) frequently.

In[47]:= DeleteCasesdata[[9 ;; -13]], "Year", __ {};

Finally, we want row fourteen, the yearly temp difference from the norm. Also, divide by 100 to

get actual °C.

In[48]:= tempData = TimeSeries%All, 14100., "1880", "2014"

Out[48]= TimeSeries
Time: 01 Jan 1880 to 01 Jan 2014

Data points: 136

Smooth with a five-year moving average.

In[49]:= avg = MovingAverage[tempData, 5];

Plot original data (light gray) together with smoothed data (gray). Put a thick red line on the

mean.

In[50]:= DateListPlot{tempData, avg}, PlotStyle → LightGray, Gray, Mesh → All,

MeshStyle → DirectivePointSizeSmall, Gray,

GridLines → ToString /@ Range[1880, 2010, 10], Automatic, ImageSize → Small,

Epilog → Pink, Thick, Line"1880", 0, "2015", 0,

FrameLabel → None, "Difference from 1951-1980 average (°C)",

PlotLegends → "yearly data", "5-year moving avg"

Out[50]=

1900 1950 2000

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

D
if
fe
re
n
ce

fr
o
m

1
9
5
1
-
1
9
8
0
av
er
ag

e
(°
C
)

������ ����

�-���� ������ ���

In[51]:= Clearx, y, z, f, g, p, q, d, n, a, b, c, d, e

This imports the data from the Wilcox Observatory:11.

4.3 Examples: exercises 87

In[52]:= data = Import"http://wso.stanford.edu/meanfld/MF_timeseries.txt", "Table"

Out[52]=

{Date, Daily, MF, (uT)}, {1975:05:16_20h, 29},

{1975:05:17_20h, 22}, ⋯ 14320⋯ , {2014:08:01_20h, 69},

{2014:08:02_20h, 34}, {2014:08:03_20h, 6}

large output show less show more show all set size limit...

The data is of the form {����, ��} where date is a string and the magnetic field measurement
an integer giving the mean magnetic field measurement in μ T (micro-Teslas).

In[53]:= data[[2]] // InputForm

Out[53]//InputForm= {�����������_��������}

Using the suggestion in the exercise, create a function to convert the string to a date object.

In[54]:= dateConvertstr_String :=

DateListstr, "Year", ":", "Month", ":", "Day", "_", "Hour", "h"

Then, using a rule, convert all the dates:

In[55]:= data2 = Rest@data /. date_String, val_ ⧴ dateConvertdate, val

Out[55]=

{{1975, 5, 16, 20, 0, 0.}, 29}, {{1975, 5, 17, 20, 0, 0.}, 22},

{{1975, 5, 18, 20, 0, 0.}, 24}, ⋯ 14319⋯ , {{2014, 8, 1, 20, 0, 0.}, 69},

{{2014, 8, 2, 20, 0, 0.}, 34}, {{2014, 8, 3, 20, 0, 0.}, 6}

large output show less show more show all set size limit...

Next, we need to deal with missing data. In the data set, they are indicated by the string “XXXX”.

In[56]:= data2[[8]] // InputForm

Out[56]//InputForm= {{����������������������}��������}

The next rule converts this string to Missing[] which the time series functions can deal with

better.

88 Essentials of Programming in Mathematica

In[57]:= data3 = data2 /. date_List, _String ⧴ date, Missing[]

Out[57]=

{{1975, 5, 16, 20, 0, 0.}, 29}, {{1975, 5, 17, 20, 0, 0.}, 22},

{{1975, 5, 18, 20, 0, 0.}, 24}, ⋯ 14319⋯ , {{2014, 8, 1, 20, 0, 0.}, 69},

{{2014, 8, 2, 20, 0, 0.}, 34}, {{2014, 8, 3, 20, 0, 0.}, 6}

large output show less show more show all set size limit...

Now, convert data3 to a time series object and plot.

In[58]:= tsData = TimeSeriesdata3

Out[58]= TimeSeries
Time: 16 May 1975 to 03 Aug 2014

Data points: 14325

In[59]:= DateListPlottsData, AspectRatio → 1/4, PlotStyle → Thin, PlotRange → All

Out[59]=

1980 1990 2000 2010

-200

-100

0

100

200

300

An alternative approach could use the DateStringFormat option to Import to put the dates in

the proper form for the time series, but it is a bit slower to do the processing during import.

In[60]:= data = Rest@Import"http://wso.stanford.edu/meanfld/MF_timeseries.txt",

"Table", "DateStringFormat" →

"Year", ":", "Month", ":", "Day", "_", "Hour", "h"

Out[60]=

 ��� �� ��� ���� , 29, ��� �� ��� ���� , 22, ��� �� ��� ���� , 24, ��� �� ��� ���� , 24,

⋯ 14317⋯ , ��� �� ��� ���� , 87, ��� � ��� ���� , 69, ��� � ��� ���� , 34, ��� � ��� ���� , 6

large output show less show more show all set size limit...

In[61]:= tsData = TimeSeriesdata

Out[61]= TimeSeries
Time: 16 May 1975 to 03 Aug 2014

Data points: 14325

4.3 Examples: exercises 89

In[62]:= DateListPlottsData, AspectRatio → 1/4, PlotStyle → Thin, PlotRange → All

Out[62]=

1980 1990 2000 2010

-200

-100

0

100

200

300

90 Essentials of Programming in Mathematica

5
Functions

Functions for manipulating expressions: exercises5.1
Use Partition and Mean to create a two-term moving average. Then repeat for a three-term

moving average. Check your results against the built-in MovingAverage function.
1.

In[1]:= MovingAveragea, b, c, d, e, 2

Out[1]=
a + b

2
,
b + c

2
,
c + d

2
,
d + e

2

Use Apply to rewrite the definition of squareMatrixQ given in Section 4.1.2.

Use Inner to replicate the result in the text that used Thread to create a list of equations.3.

In[2]:= ThreadEqual{x, y, z}, a, b, c

Out[2]= {x⩵ a, y⩵ b, z⩵ c}

Heron’s formula for the area of a triangle is given as follows:4.

A = s (s - a) s - b (s - c)

where a, b, and c are the lengths of the three sides of the triangle and s is the semiperimeter of
the triangle, defined by s = a + b + c2. Compute the area of any triangle using Heron’s

formula. You can check your result against the built-in Area function.

In[3]:= pt1 = {0, 0}; pt2 = {5, 2}; pt3 = {3, 4};

GraphicsTriangle[{pt1, pt2, pt3}], Axes → Automatic

Out[4]=

1 2 3 4 5

1

2

3

4

In[5]:= AreaTriangle[{pt1, pt2, pt3}]

Out[5]= 7

Find all square numbers that contain the digits one through nine exactly once

(see Madachy 1979) . Use SquareNumberQ from Exercise 4 in Section 2.4.
5.

In Section 2.4 we defined a predicate PerfectQ[�] that returns True if n is a perfect number (n

is a perfect number if it is equal to the sum of its proper divisors). Create a function

PerfectSearch[�] that finds all perfect numbers less than n. Then find all perfect numbers

less than 106.

6.

Turn the computation from Exercise 6 of Section 3.3 into a reusable function

PrimesLessThan[�] that returns all prime numbers less than n.
7.

One of the tasks in analyzing DNA sequences is determining the frequency with which the

individual nucleotides G, C, A, and T occur. In addition, the frequency of longer “words” is

often also of interest. For example, words of length two (or longer) such as AG, AT, CC are

sometimes used to find locations in the sequence where an evolutionary change may have

occurred.

8.

Nucleotides are generally represented as strings, so starting with the list
{"A", "T", "G", "C"}, create a list of all possible two-letter words from this alphabet. You

can use StringJoin to return a string consisting of the concatenation of two strings.

In[6]:= StringJoin"A", "T" // InputForm

Out[6]//InputForm= AT

Finally, generalize this process to create words of length n for any such alphabet. For example,
you could use a list of the amino acids as your alphabet.

In[7]:= aa = "A", "R", "N", "D", "C", "E", "Q", "G", "H", "I", "L", "K", "M", "F",

"P", "O", "U", "S", "T", "W", "Y", "V";

92 Essentials of Programming in Mathematica

http://www.amazon.com/Madachys-Mathematical-Recreations-Joseph-Madachy/dp/0486237621

Create a function LeadingDigit[�] that takes an integer n as an argument and returns the

leading digit of n (see Exercise 7, Section 3.3). Set up your function so that it returns the leading

digits of a list of numbers such as the first 10 000 Fibonacci numbers.

9.

Given a set of points in the plane, find the bounding rectangle that fully encloses the points. For
three-dimensional sets of points, find the bounding rectangular box. (See Figure 5.1.)

10.

Bounding boxes (dashed lines) for points in two and three dimensions.Figure 5.1.

-10 -5 5 10

-10

-5

5

10

Given a set of points in the plane (or 3-space), find the maximum distance between any pair of
these points. This is often called the diameter of the point set. If your definition is general
enough it should be able to handle points in any dimension.

11.

Create a graphic that consists of n randomly colored circles in the plane with random centers

and random radii. Consider using Thread or MapThread to thread Circle[…] across the lists

of centers and radii.

12.

While matrices can easily be added using Plus, matrix multiplication is a bit more involved.
The Dot function, written as a single period, is used.

13.

In[8]:= {{1, 2}, {3, 4}}.{x, y}

Out[8]= {x + 2 y, 3 x + 4 y}

Perform matrix multiplication on {{1, 2}, {3, 4}} and {x, y} without using Dot.

An adjacency matrix can be thought of as representing a graph of vertices and edges where a

value of one in position aij indicates an edge between vertex i and vertex j, whereas a value of
zero indicates no such edge between vertices i and j.

14.

In[9]:= mat = RandomInteger[1, {5, 5}];

MatrixForm[mat]
Out[10]//MatrixForm=

1 0 1 0 1
0 1 0 1 1
1 1 1 1 0
0 1 0 0 1
0 1 1 1 1

5.1 Functions for manipulating expressions: exercises 93

In[11]:= AdjacencyGraphmat, VertexLabels → "Name"

Out[11]=
1

2

34

5

Compute the total number of edges for each vertex in both the adjacency matrix and graph

representations. For example, you should get the following edge counts for the five vertices

represented in the above graph. Note: self-loops count as two edges each.

{5, 7, 7, 5, 8}

Create a function ToEdges[���] that takes a list of pairs of elements and transforms it into a list
of directed edges suitable for a graph. For example:

15.

In[12]:= lis = RandomInteger[9, {12, 2}]

Out[12]= {{1, 4}, {1, 5}, {1, 7}, {1, 9}, {8, 0},

{3, 1}, {9, 2}, {6, 2}, {3, 4}, {4, 4}, {7, 6}, {2, 8}}

In[13]:= ToEdgeslis

Out[13]= {1 4, 1 5, 1 7, 1 9, 8 0, 3 1, 9 2, 6 2, 3 4, 4 4, 7 6, 2 8}

Make sure that your function also works in the case where its argument is a single list of a pair
of elements.

In[14]:= ToEdges[{3, 6}]

Out[14]= 3 6

FactorInteger[�] returns a nested list of prime factors and their exponents for the number n.16.

In[15]:= FactorInteger[3628800]

Out[15]= {{2, 8}, {3, 4}, {5, 2}, {7, 1}}

Use Apply to reconstruct the original number from this nested list.

Repeat the above exercise but instead use Inner to reconstruct the original number n from the

factorization given by FactorInteger[�].
17.

Create a function PrimeFactorForm[�] that formats its argument n in prime factorization

form. You will need to use Superscript and CenterDot to format the factored integer.
18.

In[16]:= PrimeFactorForm[12]

Out[16]= 22·31

The Vandermonde matrix arises in Lagrange interpolation and in reconstructing statistical
distributions from their moments. Construct the Vandermonde matrix of order n:

19.

94 Essentials of Programming in Mathematica

1 x1 x1
2 ⋯ x1

n-1

1 x2 x2
2 ⋯ x2

n-1

⋮ ⋮ ⋮ ⋱ ⋮

1 xn xn2 ⋯ xnn-1

Using Inner, write a function div[����, ����] that computes the divergence of an n-dimen-
sional vector field, vecs = {�1, �2, …, ��}, dependent upon n variables,
vars = {�1, �2, …, ��}. The divergence is given by the sum of the pairwise partial
derivatives.

20.

∂e1

∂v1
+
∂e2

∂v2
+⋯ +

∂en

∂vn

Using Outer, create a function JacobianMatrix[���, ����] that returns the Jacobian of the

vector vec in the variables given by the list vars. Then use JacobianMatrix to compute the

volume of the hypersphere in two (circle) and three (sphere) dimensions by integrating the

absolute value of the determinant of the Jacobian.

21.

The example in this section on Select and Pick found Mersenne numbers 2n - 1 that are

prime for exponents n from 1 to 100. Modify that example to only use prime exponents – a

basic theorem in number theory states that a Mersenne number with composite exponent
must be composite (Crandall and Pomerance 2005).

22.

Solutions5.1
If we are doing a 2-term moving average, then partition into 2-element lists.1.

In[1]:= Cleara, b, c, d, e, f, g, h, i

In[2]:= Partitiona, b, c, d, e, 2, 1

Out[2]= {{a, b}, {b, c}, {c, d}, {d, e}}

Then take the mean of each pair.

In[3]:= Map[Mean, %]

Out[3]=
a + b

2
,
b + c

2
,
c + d

2
,
d + e

2

Check against the built-in function.

In[4]:= MovingAveragea, b, c, d, e, 2

Out[4]=
a + b

2
,
b + c

2
,
c + d

2
,
d + e

2

Similarly for the 3-term moving average.

5.1 Functions for manipulating expressions: exercises 95

http://www.springer.com/us/book/9780387252827

In[5]:= MapMean, Partitiona, b, c, d, e, 3, 1

Out[5]=
1

3
(a + b + c),

1

3
(b + c + d),

1

3
(c + d + e)

First, here is the definition given in Section 4.1.2.

In[6]:= squareMatrixQmat_?MatrixQ := Dimensions[mat][[1]]⩵ Dimensions[mat][[2]]

For a matrix, Dimensions returns a list of two integers. Applying Equal to the list will return

True if the two dimensions are identical, that is, if the matrix is square.

In[7]:= squareMatrixQmat_?MatrixQ := ApplyEqual, Dimensions[mat]

In[8]:= squareMatrixQa, b, c, d, e, f

Out[8]= False

In[9]:= squareMatrixQa, b, c, d, e, f, g, h, i

Out[9]= True

Here is the example from the text.3.

In[10]:= Clear[x, y, z]

In[11]:= ThreadEqual{x, y, z}, a, b, c

Out[11]= {x⩵ a, y⩵ b, z⩵ c}

The first argument to Inner is a function that will be threaded over the following lists. After-
wards, the fourth argument to Inner will be applied to the result. So we use Equal as that first
function.

In[12]:= InnerEqual, {x, y, z}, a, b, c, List

Out[12]= {x⩵ a, y⩵ b, z⩵ c}

Given three points that define a triangle, we need the distances between every pair of points,
that is, the length of the sides of the triangles.

4.

In[13]:= pt1 = {0, 0};

pt2 = {5, 2};

pt3 = {3, 5};

First, make a list of the possible pairs of points.

In[16]:= pairs = Subsets[{pt1, pt2, pt3}, {2}]

Out[16]= {{{0, 0}, {5, 2}}, {{0, 0}, {3, 5}}, {{5, 2}, {3, 5}}}

Then apply EuclideanDistance at level one to get the distance between each pair.

In[17]:= a, b, c = ApplyEuclideanDistance, pairs, {1}

Out[17]= 29 , 34 , 13

Here is the semiperimeter:

96 Essentials of Programming in Mathematica

In[18]:= s = a + b + c2

Out[18]=

1

2
 13 + 29 + 34

And finally, the area computation given by Heron’s formula:

In[19]:= s (s - a) s - b (s - c) // Simplify

Out[19]=

19

2

Check:

In[20]:= AreaTriangle[{pt1, pt2, pt3}]

Out[20]=

19

2

In[21]:= Cleara, b, c, s

Here is the definition of SquareNumberQ from Exercise 4 in Section 2.4.5.

In[22]:= SquareNumberQ[n_Integer] := IntegerQ n

First, create the numbers that contain each of the digits using FromDigits.

In[23]:= FromDigits[{1, 2, 3, 4, 5, 6, 7, 8, 9}]

Out[23]= 123456789

This then creates all such permutations.

In[24]:= nums = MapFromDigits, Permutations[Range[9]]

Out[24]=

123456789, 123456798, 123456879, 123456897,

123456978, 123456987, 123457689, 123457698, 123457869,

⋯ 362862⋯ , 987653241, 987653412, 987653421, 987654123,

987654132, 987654213, 987654231, 987654312, 987654321

large output show less show more show all set size limit...

And here are those numbers from nums that are square.

In[25]:= Selectnums, SquareNumberQ

Out[25]= {139854276, 152843769, 157326849, 215384976, 245893761, 254817369,

326597184, 361874529, 375468129, 382945761, 385297641, 412739856,

523814769, 529874361, 537219684, 549386721, 587432169, 589324176,

597362481, 615387249, 627953481, 653927184, 672935481, 697435281,

714653289, 735982641, 743816529, 842973156, 847159236, 923187456}

5.1 Functions for manipulating expressions: exercises 97

A quick check that these are all square numbers.

In[26]:= %

Out[26]= {11826, 12363, 12543, 14676, 15681, 15963, 18072, 19023, 19377, 19569,

19629, 20316, 22887, 23019, 23178, 23439, 24237, 24276, 24441, 24807,

25059, 25572, 25941, 26409, 26733, 27129, 27273, 29034, 29106, 30384}

What would happen if you first found all 9-digit square numbers and then determined which of
those contained only the digits one through nine? A bit of thought should convince you that
that approach would be quite time and resource intensive as the first step would require

checking every number below 109
 to see if it was a square.

Here is the definition of PerfectQ.6.

In[27]:= PerfectQ[n_] := TotalDivisors[n] ⩵ 2 n

To find all perfect numbers less than n, use Select on the list given by Range[�], using

PerfectQ as the test.

In[28]:= PerfectSearch[n_] := SelectRange[n], PerfectQ

This finds the four perfect numbers less than one million.

In[29]:= PerfectSearch106 // Timing

Out[29]= {9.25325, {6, 28, 496, 8128}}

This is quite compute-intensive. You can speed things up by using a built-in function that is

designed specifically for this task, DivisorSigma.

In[30]:= PerfectQ[n_] := DivisorSigma[1, n]⩵ 2 n

In[31]:= PerfectSearch106 // Timing

Out[31]= {4.1752, {6, 28, 496, 8128}}

Based on Exercise 6 from Section 3.3, here is the definition:7.

In[32]:= PrimesLessThan[n_] := TablePrime[p], p, PrimePi[n]

In[33]:= PrimesLessThan[100]

Out[33]= {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}

Since we are interested in all possible two-letter combinations of the list of nucleotides, the

function that should come to mind is Outer. The only question is what function to thread

across the lists? A moment’s thought should convince you that StringJoin is what is needed.

8.

In[34]:= lis = OuterStringJoin, "A", "C", "T", "G", "A", "C", "T", "G"

Out[34]= {{AA, AC, AT, AG}, {CA, CC, CT, CG}, {TA, TC, TT, TG}, {GA, GC, GT, GG}}

You can see what is happening by using a symbolic function sj instead of StringJoin:

98 Essentials of Programming in Mathematica

In[35]:= Outersj, "A", "C", "T", "G", "A", "C", "T", "G"

Out[35]= {{sj[A, A], sj[A, C], sj[A, T], sj[A, G]},

{sj[C, A], sj[C, C], sj[C, T], sj[C, G]},

{sj[T, A], sj[T, C], sj[T, T], sj[T, G]},

{sj[G, A], sj[G, C], sj[G, T], sj[G, G]}}

Finally, we need to flatten the list lis.

In[36]:= Flattenlis

Out[36]= {AA, AC, AT, AG, CA, CC, CT, CG, TA, TC, TT, TG, GA, GC, GT, GG}

Generalizing is a bit tricky. Here is what we would need to do for words of length three.

In[37]:= OuterStringJoin, "A", "C", "T", "G", "A", "C", "T", "G",

"A", "C", "T", "G" // Flatten

Out[37]= {AAA, AAC, AAT, AAG, ACA, ACC, ACT, ACG, ATA, ATC, ATT, ATG, AGA, AGC, AGT, AGG, CAA,

CAC, CAT, CAG, CCA, CCC, CCT, CCG, CTA, CTC, CTT, CTG, CGA, CGC, CGT, CGG, TAA,

TAC, TAT, TAG, TCA, TCC, TCT, TCG, TTA, TTC, TTT, TTG, TGA, TGC, TGT, TGG, GAA,

GAC, GAT, GAG, GCA, GCC, GCT, GCG, GTA, GTC, GTT, GTG, GGA, GGC, GGT, GGG}

But what about words of length four or fourteen? Surely we can’t manually keep adding the list
of nucleotides inside Outer. Well, for words of length four say, we want a sequence of four copies

of the list {"A", "C", "T", "G"}. We can use Table to generate that but then we have too

many nested lists to pass to Outer.

In[38]:= Table"A", "C", "T", "G", {4}

Out[38]= {{A, C, T, G}, {A, C, T, G}, {A, C, T, G}, {A, C, T, G}}

In[39]:= OuterStringJoin, %

Out[39]= {{A, C, T, G}, {A, C, T, G}, {A, C, T, G}, {A, C, T, G}}

The key here is to pass a sequence of these four lists. There is a function designed specifically for
this situation: Sequence. We will apply it to the result of Table above and then give that
sequence as the second argument to Outer.

In[40]:= ApplySequence, Table"A", "C", "T", "G", {4}

Out[40]= Sequence[{A, C, T, G}, {A, C, T, G}, {A, C, T, G}, {A, C, T, G}]

5.1 Functions for manipulating expressions: exercises 99

In[41]:= OuterStringJoin, % // Flatten

Out[41]= {AAAA, AAAC, AAAT, AAAG, AACA, AACC, AACT, AACG, AATA, AATC, AATT, AATG, AAGA,

AAGC, AAGT, AAGG, ACAA, ACAC, ACAT, ACAG, ACCA, ACCC, ACCT, ACCG, ACTA, ACTC,

ACTT, ACTG, ACGA, ACGC, ACGT, ACGG, ATAA, ATAC, ATAT, ATAG, ATCA, ATCC, ATCT,

ATCG, ATTA, ATTC, ATTT, ATTG, ATGA, ATGC, ATGT, ATGG, AGAA, AGAC, AGAT, AGAG,

AGCA, AGCC, AGCT, AGCG, AGTA, AGTC, AGTT, AGTG, AGGA, AGGC, AGGT, AGGG, CAAA,

CAAC, CAAT, CAAG, CACA, CACC, CACT, CACG, CATA, CATC, CATT, CATG, CAGA, CAGC,

CAGT, CAGG, CCAA, CCAC, CCAT, CCAG, CCCA, CCCC, CCCT, CCCG, CCTA, CCTC, CCTT,

CCTG, CCGA, CCGC, CCGT, CCGG, CTAA, CTAC, CTAT, CTAG, CTCA, CTCC, CTCT, CTCG,

CTTA, CTTC, CTTT, CTTG, CTGA, CTGC, CTGT, CTGG, CGAA, CGAC, CGAT, CGAG, CGCA,

CGCC, CGCT, CGCG, CGTA, CGTC, CGTT, CGTG, CGGA, CGGC, CGGT, CGGG, TAAA, TAAC,

TAAT, TAAG, TACA, TACC, TACT, TACG, TATA, TATC, TATT, TATG, TAGA, TAGC, TAGT,

TAGG, TCAA, TCAC, TCAT, TCAG, TCCA, TCCC, TCCT, TCCG, TCTA, TCTC, TCTT, TCTG,

TCGA, TCGC, TCGT, TCGG, TTAA, TTAC, TTAT, TTAG, TTCA, TTCC, TTCT, TTCG, TTTA,

TTTC, TTTT, TTTG, TTGA, TTGC, TTGT, TTGG, TGAA, TGAC, TGAT, TGAG, TGCA, TGCC,

TGCT, TGCG, TGTA, TGTC, TGTT, TGTG, TGGA, TGGC, TGGT, TGGG, GAAA, GAAC, GAAT,

GAAG, GACA, GACC, GACT, GACG, GATA, GATC, GATT, GATG, GAGA, GAGC, GAGT, GAGG,

GCAA, GCAC, GCAT, GCAG, GCCA, GCCC, GCCT, GCCG, GCTA, GCTC, GCTT, GCTG,

GCGA, GCGC, GCGT, GCGG, GTAA, GTAC, GTAT, GTAG, GTCA, GTCC, GTCT, GTCG,

GTTA, GTTC, GTTT, GTTG, GTGA, GTGC, GTGT, GTGG, GGAA, GGAC, GGAT, GGAG,

GGCA, GGCC, GGCT, GGCG, GGTA, GGTC, GGTT, GGTG, GGGA, GGGC, GGGT, GGGG}

Here then is a function that generalizes this process. We have included some pattern matching

of the arguments to insure that the alphabet is a list of one or more strings and that the word

length n is a positive integer.

In[42]:= Clear[NGrams]

In[43]:= NGramsalphabet : __String, n_Integer ?Positive :=

FlattenOuterStringJoin, ApplySequence, Tablealphabet, {n}

In[44]:= NGrams"A", "C", "T", "G", 3

Out[44]= {AAA, AAC, AAT, AAG, ACA, ACC, ACT, ACG, ATA, ATC, ATT, ATG, AGA, AGC, AGT, AGG, CAA,

CAC, CAT, CAG, CCA, CCC, CCT, CCG, CTA, CTC, CTT, CTG, CGA, CGC, CGT, CGG, TAA,

TAC, TAT, TAG, TCA, TCC, TCT, TCG, TTA, TTC, TTT, TTG, TGA, TGC, TGT, TGG, GAA,

GAC, GAT, GAG, GCA, GCC, GCT, GCG, GTA, GTC, GTT, GTG, GGA, GGC, GGT, GGG}

Here is a list of all possible words of length two from the alphabet of amino acids.

In[45]:= alphabet = "K", "P", "W", "G", "E", "V", "Y", "L", "M", "Q", "R", "S",

"F", "D", "H", "I", "C", "T", "N", "A";

100 Essentials of Programming in Mathematica

In[46]:= NGramsalphabet, 2

Out[46]= {KK, KP, KW, KG, KE, KV, KY, KL, KM, KQ, KR, KS, KF, KD, KH, KI, KC, KT, KN, KA, PK,

PP, PW, PG, PE, PV, PY, PL, PM, PQ, PR, PS, PF, PD, PH, PI, PC, PT, PN, PA, WK,

WP, WW, WG, WE, WV, WY, WL, WM, WQ, WR, WS, WF, WD, WH, WI, WC, WT, WN, WA, GK,

GP, GW, GG, GE, GV, GY, GL, GM, GQ, GR, GS, GF, GD, GH, GI, GC, GT, GN, GA, EK,

EP, EW, EG, EE, EV, EY, EL, EM, EQ, ER, ES, EF, ED, EH, EI, EC, ET, EN, EA, VK,

VP, VW, VG, VE, VV, VY, VL, VM, VQ, VR, VS, VF, VD, VH, VI, VC, VT, VN, VA, YK,

YP, YW, YG, YE, YV, YY, YL, YM, YQ, YR, YS, YF, YD, YH, YI, YC, YT, YN, YA, LK,

LP, LW, LG, LE, LV, LY, LL, LM, LQ, LR, LS, LF, LD, LH, LI, LC, LT, LN, LA, MK,

MP, MW, MG, ME, MV, MY, ML, MM, MQ, MR, MS, MF, MD, MH, MI, MC, MT, MN, MA, QK,

QP, QW, QG, QE, QV, QY, QL, QM, QQ, QR, QS, QF, QD, QH, QI, QC, QT, QN, QA, RK,

RP, RW, RG, RE, RV, RY, RL, RM, RQ, RR, RS, RF, RD, RH, RI, RC, RT, RN, RA, SK,

SP, SW, SG, SE, SV, SY, SL, SM, SQ, SR, SS, SF, SD, SH, SI, SC, ST, SN, SA, FK,

FP, FW, FG, FE, FV, FY, FL, FM, FQ, FR, FS, FF, FD, FH, FI, FC, FT, FN, FA, DK,

DP, DW, DG, DE, DV, DY, DL, DM, DQ, DR, DS, DF, DD, DH, DI, DC, DT, DN, DA, HK,

HP, HW, HG, HE, HV, HY, HL, HM, HQ, HR, HS, HF, HD, HH, HI, HC, HT, HN, HA, IK,

IP, IW, IG, IE, IV, IY, IL, IM, IQ, IR, IS, IF, ID, IH, II, IC, IT, IN, IA, CK,

CP, CW, CG, CE, CV, CY, CL, CM, CQ, CR, CS, CF, CD, CH, CI, CC, CT, CN, CA, TK,

TP, TW, TG, TE, TV, TY, TL, TM, TQ, TR, TS, TF, TD, TH, TI, TC, TT, TN, TA, NK,

NP, NW, NG, NE, NV, NY, NL, NM, NQ, NR, NS, NF, ND, NH, NI, NC, NT, NN, NA, AK,

AP, AW, AG, AE, AV, AY, AL, AM, AQ, AR, AS, AF, AD, AH, AI, AC, AT, AN, AA}

IntegerDigits[�] gives a list of the digits in n. First returns the first element in that list. Here

then is the function definition.
9.

In[47]:= LeadingDigit[n_Integer] := FirstIntegerDigits[n]

In[48]:= LeadingDigit[2495874985797]

Out[48]= 2

By default, this function has no attributes, in particular it is not listable.

In[49]:= LeadingDigit[{434, 826, 5632}]

Out[49]= LeadingDigit[{434, 826, 5632}]

We could map the function across lists, but instead we will give it the attribute that causes it to

automatically map across lists. Set the function to have the Listable attribute.

In[50]:= SetAttributesLeadingDigit, Listable

Now, create a table of the first 10 000 Fibonacci numbers.

In[51]:= fibs = TableFibonaccii, i, 10000;

Because LeadingDigit is now a listable function, it automatically maps across the list fibs.
Here then is a histogram of the leading digits of the first 10 000 Fibonacci digits.

5.1 Functions for manipulating expressions: exercises 101

In[52]:= HistogramLeadingDigitfibs

Out[52]=

2 4 6 8 10
0

500

1000

1500

2000

2500

3000

Start with a set of points in the plane.10.

In[53]:= data = RandomReal[{-20, 20}, {40, 2}];

In[54]:= ListPlotdata, AspectRatio → Automatic

Out[54]=
-20 -15 -10 -5 5 10 15

-20

-10

10

20

The data are of the form {{x1, y1}, {x2, y2}, …}.

In[55]:= Takedata, 2

Out[55]= {{9.93547, -12.4866}, {-2.23917, -14.5885}}

Transposing the data gives a list all the x-coordinates, followed by a list of all the y-coordinates.

In[56]:= Transpose[{{x1, y1}, {x2, y2}, {x3, y3}}]

Out[56]= {{x1, x2, x3}, {y1, y2, y3}}

Then map Min and Max over this list.

In[57]:= MapMin, %

Out[57]= {Min[x1, x2, x3], Min[y1, y2, y3]}

Here then are the computations for our data. Notice the parallel assignments saving some

typing.

In[58]:= xmin, ymin = MapMin, Transposedata

Out[58]= {-19.4808, -19.9974}

102 Essentials of Programming in Mathematica

In[59]:= {xmax, ymax} = MapMax, Transposedata

Out[59]= {18.7094, 19.5983}

As it turns out, a built-in function is available for this task. MinMax operates on vectors of
numbers. So we will map it across the transposed data. Note the form of the data that is

returned: first a list of the min and max x-coordinates and then likewise for the y-coordinates. A

bit of rearranging is needed for Rectangle.

In[60]:= xmin, xmax, ymin, ymax = MapMinMax, Transposedata

Out[60]= {{-19.4808, 18.7094}, {-19.9974, 19.5983}}

In[61]:= ListPlotdata, AspectRatio → Automatic, Epilog →

Opacity[.25], EdgeFormDashed, Rectanglexmin, ymin, {xmax, ymax}

Out[61]=
-20 -15 -10 -5 5 10 15

-20

-10

10

20

And here is the three-dimensional case:

In[62]:= data3d = RandomReal[{-10, 10}, {25, 3}];

In[63]:= xmin, xmax, ymin, ymax, zmin, zmax = MapMinMax, Transposedata3d

Out[63]= {{-9.06054, 8.82294}, {-9.13641, 8.77756}, {-9.47419, 8.14716}}

In[64]:= Graphics3D

Pointdata3d,

Blue, Opacity[.5], Cuboidxmin, ymin, zmin, {xmax, ymax, zmax}

, Boxed → False

Out[64]=

First create a set of points with which to work.11.

In[65]:= pts = RandomReal[1, {100, 2}];

5.1 Functions for manipulating expressions: exercises 103

The set of all two-element subsets is given by:

In[66]:= pairs = Subsets[pts, {2}];

Apply the distance function to pairs. Note the need to apply EuclideanDistance at level one.

In[67]:= ApplyEuclideanDistance, pairs, {1};

The maximum distance (diameter) is given by Max.

In[68]:= Max[%]

Out[68]= 1.27562

Here is a function that puts it all together.

In[69]:= PointsetDiameterpts_List :=

MaxApplyEuclideanDistance, Subsets[pts, {2}], {1}

In[70]:= PointsetDiameter[pts]

Out[70]= 1.27562

To get the coordinate points that give this maximum distance, use MaximalBy:

In[71]:= MaximalBypairs, ApplyEuclideanDistance, # &

Out[71]= {{{0.94701, 0.0541054}, {0.0448236, 0.95592}}}

A quick check:

In[72]:= ApplyEuclideanDistance, %, {1}

Out[72]= {1.27562}

In fact, this function works on n-dimensional point sets.

In[73]:= pts3D = RandomReal[1, {5, 3}]

Out[73]= {{0.00512186, 0.739216, 0.594529},

{0.88659, 0.837747, 0.72644}, {0.274863, 0.754823, 0.71913},

{0.291825, 0.990644, 0.528335}, {0.88648, 0.339045, 0.871665}}

In[74]:= PointsetDiameter[pts3D]

Out[74]= 1.00684

Because of the use of Subsets, this computation will not scale well. Computing subsets has

computational complexity On2 and so the time to compute subsets is quadratic in the size of
the set.

In[75]:= TimingSubsets[Range[1000], {2}];

Out[75]= {0.07042, Null}

Twice as large of a set should cause the time to quadruple.

104 Essentials of Programming in Mathematica

In[76]:= TimingSubsets[Range[2000], {2}];

Out[76]= {0.315402, Null}

Exercise 5, Section 9.1 explores another approach – one that involves the convex hull – to speed

up the computation.

First, create the random centers and radii.12.

In[77]:= n = 12;

centers = RandomReal[{-1, 1}, {n, 2}]

Out[78]= {{-0.391653, 0.830624}, {-0.747273, -0.460966}, {0.656809, -0.910538},

{-0.187957, -0.421397}, {0.574283, 0.718045}, {-0.620718, -0.831547},

{-0.548517, -0.791468}, {-0.578859, -0.448743}, {0.330763, 0.848178},

{-0.948835, -0.268074}, {0.911755, 0.460441}, {0.146787, 0.898121}}

In[79]:= radii = RandomReal[1, {n}]

Out[79]= {0.409292, 0.650746, 0.8457, 0.947663, 0.954289, 0.262659,

0.362816, 0.351422, 0.0984283, 0.601188, 0.0410166, 0.342364}

MapThread is perfect for the task of grabbing one center, one radii, and wrapping Circle

around them.

In[80]:= circles = MapThreadCircle, centers, radii;

In[81]:= Graphicscircles

Out[81]=

And here is a rule to transform each circle into a scoped list that includes Thick and

RandomColor. Note the need for the delayed rule (⧴); try it with an immediate rule to under-
stand why.

In[82]:= Graphicscircles /. Circle[x__]⧴ Thick, RandomColor[], Circle[x]

Out[82]=

5.1 Functions for manipulating expressions: exercises 105

This can be done either in two steps, or by using the Inner function.13.

In[83]:= Transpose[{{1, 2}, {3, 4}}] {x, y}

Out[83]= {{x, 3 x}, {2 y, 4 y}}

In[84]:= Total[%]

Out[84]= {x + 2 y, 3 x + 4 y}

In[85]:= InnerTimes, {{1, 2}, {3, 4}}, {x, y}, Plus

Out[85]= {x + 2 y, 3 x + 4 y}

Here is a test matrix.14.

In[86]:= mat = RandomInteger[1, {5, 5}];

MatrixForm[mat]
Out[87]//MatrixForm=

0 0 1 0 1
0 0 0 1 0
1 1 0 0 0
1 0 0 0 1
0 1 1 0 0

A bit of thought should convince you that adding the matrix to its transpose and then totaling

all the ones in each row will give the correct count.

In[88]:= MapTotal, mat + Transpose[mat]

Out[88]= {4, 3, 4, 3, 4}

Using graphs you can accomplish the same thing directly using VertexDegree.

In[89]:= gr = AdjacencyGraphmat, VertexLabels → "Name"

Out[89]=

1

2 3

4

5

In[90]:= VertexDegree[gr]

Out[90]= {4, 3, 4, 3, 4}

Applying DirectedEdge at level one will do the trick.15.

106 Essentials of Programming in Mathematica

In[91]:= ToEdgeslis : {{_, _} ..} := ApplyDirectedEdge, lis, {1}

In[92]:= lis = RandomInteger[9, {12, 2}];

ToEdgeslis

Out[93]= {3 6, 2 4, 0 5, 1 2, 3 6, 7 2, 3 6, 0 0, 2 8, 4 9, 3 7, 6 6}

This rule fails for the case when the argument is a single flat list of a pair of elements.

In[94]:= ToEdges[{3, 6}]

Out[94]= ToEdges[{3, 6}]

A second rule is needed for this case.

In[95]:= ToEdgeslis : {_, _} := ApplyDirectedEdge, lis

In[96]:= ToEdges[{3, 6}]

Out[96]= 3 6

To get down to the level of the nested lists, you have to use a second argument to Apply.16.

In[97]:= facs = FactorInteger[3 628800]

Out[97]= {{2, 8}, {3, 4}, {5, 2}, {7, 1}}

In[98]:= ApplyPower, facs, {1}

Out[98]= {256, 81, 25, 7}

One more use of Apply is needed to multiply these terms.

In[99]:= ApplyTimes, %

Out[99]= 3628800

Here is a function that puts this all together.

In[100]:= ExpandFactorslis_ := ApplyTimes, ApplyPower, lis, {1}

In[101]:= FactorInteger[295232799039604140847618609643520000000]

Out[101]= {{2, 32}, {3, 15}, {5, 7}, {7, 4}, {11, 3},

{13, 2}, {17, 2}, {19, 1}, {23, 1}, {29, 1}, {31, 1}}

In[102]:= ExpandFactors[%]

Out[102]= 295232799039604140847618609643520000000

Here is a factorization we can use to work through this problem.17.

In[103]:= facs = FactorInteger[3 628800]

Out[103]= {{2, 8}, {3, 4}, {5, 2}, {7, 1}}

Another approach uses Transpose to separate the bases from their exponents, then uses Inner

to put things back together.

5.1 Functions for manipulating expressions: exercises 107

In[104]:= base, exponents = Transposefacs

Out[104]= {{2, 3, 5, 7}, {8, 4, 2, 1}}

In[105]:= InnerPower, base, exponents, Times

Out[105]= 3628800

Since Tranpose returns a list of two lists in this example, we need to strip the outer list. This is

done by applying Sequence.

In[106]:= ExpandFactors2lis_ := InnerPower, Sequence @@ Transposelis, Times

In[107]:= ExpandFactors2facs

Out[107]= 3628800

First, here is the prime factorization of a test integer:18.

In[108]:= lis = FactorInteger[10!]

Out[108]= {{2, 8}, {3, 4}, {5, 2}, {7, 1}}

Apply Superscript at level one to each of the sublists:

In[109]:= ApplySuperscript, lis, {1}

Out[109]= 28, 34, 52, 71

Finally, apply CenterDot to this list.

In[110]:= Apply[CenterDot, %]

Out[110]= 28·34·52·71

Put it all together (using shorthand notation for Apply) and Apply at level one.

In[111]:= PrimeFactorForm[p_] := CenterDot @@ Superscript @@@ FactorInteger[p]

In[112]:= PrimeFactorForm[20!]

Out[112]= 218·38·54·72·111·131·171·191

Unfortunately, this rule fails for numbers that have only one prime factor.

In[113]:= PrimeFactorForm[9]

Out[113]= CenterDot32

A second rule is needed for this special case.

In[114]:= PrimeFactorFormp_?PrimePowerQ := FirstSuperscript @@@ FactorInteger[p]

In[115]:= PrimeFactorForm[9]

Out[115]= 32

A subtle point is that Mathematica has automatically ordered these two rules, putting the one

involving prime powers first.

108 Essentials of Programming in Mathematica

In[116]:= ?PrimeFactorForm

Global`PrimeFactorForm

PrimeFactorForm[p_?PrimePowerQ] :=

First[Apply[Superscript, FactorInteger[p], {1}]]

PrimeFactorForm[p_] :=

CenterDot @@ Apply[Superscript, FactorInteger[p], {1}]

This reordering (we evaluated the rules in a different order) is essential for this function to work

properly. If the general rule was checked first, it would apply to arguments that happen to be

prime powers and it would give wrong answers.

One final point: the expressions returned by PrimeFactorForm will not evaluate like ordinary

expressions due to the use of CenterDot which has no evaluation rules associated with it. You

could add an “interpretation” to such expressions by using Interpretation[����, ����] as

follows.

In[117]:= PrimeFactorForm[p_Integer] := Withfp = FactorInteger[p],

Interpretation

CenterDot @@ Superscript @@@ fp,

Times @@ Power @@@ fp

Now the output of the following expression can be evaluated directly to get an interpreted

result.

In[118]:= PrimeFactorForm[12!]

Out[118]= 210·35·52·71·111

This is a straightforward application of the Outer function.19.

In[119]:= VandermondeMatrix[n_, x_] :=

OuterPower, Tablexi, i, 1, n, Range[0, n - 1]

In[120]:= VandermondeMatrix[4, x] // MatrixForm

Out[120]//MatrixForm=

1 x1 x1
2 x1

3

1 x2 x2
2 x2

3

1 x3 x3
2 x3

3

1 x4 x4
2 x4

3

If we first look at a symbolic result, we should be able to see how to construct our function.
For three vectors and three variables, here is the divergence (think of d as the derivative

operator).

20.

5.1 Functions for manipulating expressions: exercises 109

In[121]:= Innerd, {e1, e2, e3}, {v1, v2, v3}, Plus

Out[121]= d[e1, v1] + d[e2, v2] + d[e3, v3]

So for arbitrary-length vectors and variables, we have:

In[122]:= div[vecs_, vars_] := InnerD, vecs, vars, Plus

As a check, we can compute the divergence of the standard gravitational or electric force field,
which should be zero.

In[123]:= div{x, y, z} x2 + y2 + z2
3/2

, {x, y, z}

Out[123]= -
3 x2

x2 + y2 + z2
5/2

-
3 y2

x2 + y2 + z2
5/2

-
3 z2

x2 + y2 + z2
5/2

+
3

x2 + y2 + z2
3/2

In[124]:= Simplify[%]

Out[124]= 0

Finally, we should note that this definition of divergence is a bit delicate as we are doing no

argument checking at this point. For example, it would be sensible to insure that the length of
the vector list is the same as the length of the variable list before starting the computation. Refer
to Chapter 4 for a discussion of how to use pattern matching to deal with this issue.

The Jacobian is given by the following outer product:21.

In[125]:= JacobianMatrixvec_List, vars_List := Outer[D, vec, vars]

Add a condition that the dimensions of vec and vars are the same.

In[126]:= JacobianMatrixvec_List, vars_List :=

Outer[D, vec, vars] /; Dimensions[vec]⩵ Dimensions[vars]

To compute the volume of the hypersphere in dimension two, start with a point in 2

expressed in polar coordinates:

In[127]:= x = ρ Cos[θ];

y = ρ Sin[θ];

Then compute the determinant of the Jacobian.

In[129]:= JacobianMatrix[{x, y}, {ρ, θ}] // MatrixForm

Out[129]//MatrixForm=

Cos[θ] -ρ Sin[θ]
Sin[θ] ρ Cos[θ]

In[130]:= Det[%] // Simplify

Out[130]= ρ

The volume of the hypersphere is obtained by integrating the determinant of the Jacobian over
ρ and θ:

110 Essentials of Programming in Mathematica

In[131]:= IntegrateAbs@DetJacobianMatrix[{x, y}, {ρ, θ}], {ρ, 0, r}, {θ, 0, 2 π},

Assumptions → r > 0

Out[131]= π r2

And here is the computation for dimension three:

In[132]:= x = ρ Cos[θ] Sin[ϕ];

y = ρ Sin[θ] Sin[ϕ];

z = ρ Cos[ϕ];

In[135]:= IntegrateAbs@Det@JacobianMatrix[{x, y, z}, {ρ, θ, ϕ}], {ρ, 0, r},

{θ, -π/2, π/2}, {ϕ, 0, 2 π}

Out[135]=

4 π r3

3

First create a table of primes and then use that list for values of p in the second table.22.

In[136]:= primes = TablePrime[n], {n, 1, 50}

Out[136]= {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,

71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,

151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229}

In[137]:= SelectTable2p - 1, p, primes, PrimeQ

Out[137]= {3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951,

618970019642690137449562111, 162259276829213363391578010288127,

170141183460469231731687303715884105727}

Or you could do the same thing more directly.

In[138]:= SelectTable2Prime[n] - 1, {n, 1, 50}, PrimeQ

Out[138]= {3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951,

618970019642690137449562111, 162259276829213363391578010288127,

170141183460469231731687303715884105727}

In[139]:= Cleara, b, c, d, e, x, y, z, pt1, pt2, pt3

Iterating functions: exercises5.2
Use NestWhileList to iterate the julia function similarly to how it was iterated with
FixedPointList in the text.

1.

Use NestList to iterate the process of summing cubes of digits, that is, starting with an initial
integer generate a list of the successive sums of cubes of its digits. For example, starting with 4,
the list should look like {4, 64, 280, 520, 133, …}, since 43 = 64, 63 + 43 = 280, etc. Extend
the list to at least fifteen values, experiment with other starting values, and look for patterns in
the sequences.

2.

5.2 Iterating functions: exercises 111

Following on the example in this section iterating rotations of a triangle, use Translate to

iterate the translation of a square or other polygon.
3.

Using Fold, create a function fac[�] that takes an integer n as argument and returns the

factorial of n, that is, n(n - 1) (n - 2)⋯ 3 ·2 · 1.
4.

The naive way to multiply x22
 would be to repeatedly multiply x by itself, performing 21

multiplications. But going as far back as about 200 bc in the Hindu classic Chandah-sutra,
another method has been known that significantly reduces the total number of multiplications

in performing such exponentiation. The idea is to first express the exponent in base 2.

5.

In[1]:= IntegerDigits[22, 2]

Out[1]= {1, 0, 1, 1, 0}

Then, starting with the second bit from the left, interpret a 1 to mean square the existing

expression and multiply by x, and a 0 to mean multiply just by x. Implement this algorithm

using FoldList.

The Sierpiński triangle is a classic iteration example. It can be constructed by starting with an

equilateral triangle and removing the inner triangle formed by connecting the midpoints of
each side of the original triangle.

6.

⟶

The process is iterated by repeating the same computation on each of the resulting smaller
triangles (other types of iteration can be used).

⟶ ⟶ … ⟶ …

One approach is to take the starting equilateral triangle and, at each iteration, perform the

appropriate transformations using Scale and Translate, then iterate. Implement this algo-
rithm, but be careful about nesting large symbolic graphics structures too deeply.

Solutions5.2
Here is the code with FixedPointList. The iteration stops when the distance of the iterates to

the origin exceeds 4.0.
1.

In[1]:= Clearf, z, julia

In[2]:= f[z_] := z ^2 + -0.8 - 0.156 ⅈ

julia[z_] := FixedPointListf, z, SameTest → Abs[#2] > 4.0 &

112 Essentials of Programming in Mathematica

And here it is using NestWhileList. Iteration continues so long as the distance of the iterates to

the origin is less than 4.0.

In[4]:= NestWhileListjulia, -0.5 + 1.5 I, Abs[#] < 4.0 &

Out[4]= {-0.5 + 1.5 ⅈ, {-0.5 + 1.5 ⅈ, -2.8 - 1.656 ⅈ, 4.29766 + 9.1176 ⅈ}}

For a given number, first we need to get its digits and then add their cubes.2.

In[5]:= IntegerDigits[64]

Out[5]= {6, 4}

In[6]:= IntegerDigits[64]3

Out[6]= {216, 64}

In[7]:= TotalIntegerDigits[64]3

Out[7]= 280

In[8]:= sumsOfCubes[n_] := TotalIntegerDigits[n]3

Then iterate:

In[9]:= NestListsumsOfCubes, 4, 12

Out[9]= {4, 64, 280, 520, 133, 55, 250, 133, 55, 250, 133, 55, 250}

In fact, it appears as if many initial values enter into cycles.

In[10]:= NestListsumsOfCubes, 32, 12

Out[10]= {32, 35, 152, 134, 92, 737, 713, 371, 371, 371, 371, 371, 371}

In[11]:= NestListsumsOfCubes, 123, 12

Out[11]= {123, 36, 243, 99, 1458, 702, 351, 153, 153, 153, 153, 153, 153}

To start, here is a triangle we will translate.3.

In[12]:= tri = TriangleCirclePoints[3]

Out[12]= Triangle
3

2
, -

1

2
, {0, 1}, -

3

2
, -

1

2

We will display with opacity turned on so that overlapping triangles will show through.

In[13]:= GraphicsOpacity[.35], EdgeFormBlack, tri

Out[13]=

5.2 Iterating functions: exercises 113

Translate[��, ����] takes a graphics object gr, and translates it according to the vectors vecs.
So for example, here are some translation vectors; the first vector translates by 1 /2 unit to the
right, the second vector translates up and to the right.

In[14]:= vecs =
1

2
, 0,

1

4
,

3

4
;

This translates the triangle using the first translation vector.

In[15]:= Translatetri, {1/2, 0}

Out[15]= TranslateTriangle
3

2
, -

1

2
, {0, 1}, -

3

2
, -

1

2
,

1

2
, 0

The following translation function creates two objects translated by the vectors vecs.

In[16]:= translation[gr_] := Translate[gr, vecs]

In[17]:= tranTri = NestListtranslation, tri, 1

Out[17]= Triangle
3

2
, -

1

2
, {0, 1}, -

3

2
, -

1

2
, Translate

Triangle
3

2
, -

1

2
, {0, 1}, -

3

2
, -

1

2
,

1

2
, 0,

1

4
,

3

4

Here are the translated objects along with a red version of the original triangle.

In[18]:= GraphicsOpacity[.35], EdgeFormBlack, Thin,

tranTri, Red, tri

Out[18]=

Starting with 1, fold the Times function across the first n integers.4.

In[19]:= fac[n_] := FoldTimes, 1, Range[n]

In[20]:= fac[10]

Out[20]= 3628800

To compute x25
 say, start by expressing the exponent in base 2.5.

In[21]:= IntegerDigits[25, 2]

Out[21]= {1, 1, 0, 0, 1}

Now starting with the second bit from the left (use Rest), interpret a one to mean square the

114 Essentials of Programming in Mathematica

existing expression and multiply by x, and a zero to mean multiply the existing expression by x.

In[22]:= Clearf, a, b, x

In[23]:= fa_, b_ := a ^2 x^b

In[24]:= FoldListf, x, Rest[{1, 1, 0, 0, 1}]

Out[24]= x, x3, x6, x12, x25

Once you are familiar with pure functions (Section 5.5), this is done directly (without the need

to first define an auxiliary function f) as follows:

In[25]:= FoldList[#1^2 x^#2 &, x, Rest[{1, 1, 0, 0, 1}]]

Out[25]= x, x3, x6, x12, x25

Or you can start with the first bit but you will have to adjust the initial value accordingly.

In[26]:= FoldList[#1^2 x^#2 &, 1, {1, 1, 0, 0, 1}]

Out[26]= 1, x, x3, x6, x12, x25

Here is a larger computation.

In[27]:= exp = 4523;

digs = IntegerDigits[exp, 2];

FoldList#1^2 x^#2 &, 1, digs

Out[29]= 1, x, x2, x4, x8, x17, x35, x70, x141, x282, x565, x1130, x2261, x4523

First create the vertices of the triangle. Wrapping them in N[…] helps to keep the graphical
structures small (see Section 8.3 for more on numeric vs. symbolic expressions in graphics).

6.

In[30]:= vertices = N[{{0, 0}, {1, 0}, {1/2, 1}}];

This gives the three different translation vectors.

In[31]:= translateVecs = 0.5 vertices

Out[31]= {{0., 0.}, {0.5, 0.}, {0.25, 0.5}}

Here is the set of transformations of the triangle described by vertices, scaled by 0.5, and

translated according to the translation vectors.

5.2 Iterating functions: exercises 115

In[32]:= tri = Polygonvertices;

Graphics

Blue, TranslateScaletri, 0.5, {0., 0.}, translateVecs

Out[33]=

Finally, iterate the transformations by wrapping them in Nest.

In[34]:= Graphics

Blue, NestBlue, TranslateScale[#, 0.5, {0., 0.}], translateVecs &,

Polygonvertices, 3

Out[34]=

Once you have been through the rest of this chapter, you should be able to turn this into a
reusable function, scoping local variables, using pure functions, and adding options.

In[37]:= SierpinskiTriangleiter_, opts : OptionsPatternGraphics :=

Modulevertices, vecs,

vertices = N[{{0, 0}, {1, 0}, {1/2, 1}}];

vecs = 0.5 vertices;

GraphicsBlue, NestBlue, TranslateScale[#, 0.5, {0., 0.}], vecs &,

Polygonvertices, iter, opts

116 Essentials of Programming in Mathematica

In[36]:= SierpinskiTriangle[9]

Out[36]=

Recursive functions: exercises5.3
Create a recursive function that computes the nth power of two.1.

Create a recursive function that returns the factorial of n, for n a nonnegative integer.2.

The Tower of Hanoi puzzle is a popular game invented by the Frenchmathematician Édouard
Lucas in 1883. Given three pegs, one of which contains n disks of increasing radii, the object is
to move the stack of disks to another peg in the fewest number of moves without putting a
larger disk on a smaller one (Figure 5.2).

3.

Tower of Hanoi.Figure 5.2.

Create a recursive function TowerOfHanoi[�] that computes the minimal number of moves
for a stack of n disks over three pegs. Results for n = 1, 2, …, 10 are as follows:

{1, 3, 7, 15, 31, 63, 127, 255, 511, 1023}

Legend has it that the priests in the Indian temple Kashi Vishwanath have a roomwith a stack
of 64 disks and three pegs and that when they complete moving the stack to a new peg, the
world will end. If they move one disk per second, compute how long until the “end of the
world.”

For each of the following sequences of numbers, see if you can deduce the pattern and write a
function to compute the general term:

4.

2, 3, 6, 18, 108, 1944, 209 952, …

A1 A2 A3 A4 A5 A6 A7 …
a.

5.3 Recursive functions: exercises 117

0, 1, -1, 2, -3, 5, -8, 13, -21, …

B1 B2 B3 B4 B5 B6 B7 B8 B9 …
b.

0, 1, 2, 3, 6, 11, 20, 37, 68, …

C1 C2 C3 C4 C5 C6 C7 C8 C9 …
c.

The Fibonacci sequence can also be defined for negative integers using the following formula

(Graham, Knuth, and Patashnik 1994):
5.

F-n = (-1)n-1 Fn

The first few terms are

0 1 -1 2 -3 5 -8 13 -21 …

F0 F-1 F-2 F-3 F-4 F-5 F-6 F-7 F-8 …

Write the definitions for Fibonacci numbers with negative integer arguments.

Create a recursive function to reverse the elements in a flat list.6.

Create a recursive function to transpose the elements of two lists. Write an additional rule to

transpose the elements of three lists.
7.

Using dynamic programming is one way to speed up the computation of Fibonacci numbers,
but another is to use different algorithms. A more efficient algorithm is based on the following

identities:

8.

F1 = 1
F2 = 1
F2n = 2Fn-1Fn + Fn2, for n ≥ 1

F2n+1 = Fn+1
2 + Fn2, for n ≥ 1

Program a function to generate Fibonacci numbers using these identities.

You can still speed up the code for generating Fibonacci numbers in the previous exercise by

using dynamic programming. Do so, and construct tables like those in this section, giving the

number of additions performed by the two programs.

9.

An Eulerian number, denoted
n
k
, gives the number of permutations of n-element sets with k

increasing runs of elements. For example, for n = 3 the permutations of {1, 2, 3} contain four

increasing runs of length one, namely {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, and {3, 1, 2}. Hence,
3
1
 = 4.

10.

In[1]:= Permutations[{1, 2, 3}]

Out[1]= {{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}}

This can be programmed using the following recursive definition, where n and k are assumed

to be integers:

118 Essentials of Programming in Mathematica

http://www-cs-faculty.stanford.edu/~uno/gkp.html

n
k
 = k + 1

n - 1
k

 + n - k n - 1
k - 1

, for n > 0,

0
k
 =

1 k = 0
0 k ≠ 0.

Create a function EulerianNumber[�, �]. You can check your work against Table 5.1, which

displays the first few Eulerian numbers.

������������������������Table 5.1.

�

n
0

n
1

n
2

n
3

n
4

n
5

n
6

n
7

n
8

0 1
1 1 0
2 1 1 0
3 1 4 1 0
4 1 11 11 1 0
5 1 26 66 26 1 0
6 1 57 302 302 57 1 0
7 1 120 1191 2416 1191 120 1 0
8 1 247 4293 15 619 15 619 4293 247 1 0

Because of the triple recursion, you will find it necessary to use a dynamic programming

implementation to compute any Eulerian numbers of even modest size.

Hint: Although the above formulas will compute it, you can add the following rule to simplify

some of the computation (Graham, Knuth, and Patashnik 1994):

n
k
 = 0, for k ≥ n

The Collatz sequence is generated as follows: starting with a number n, if it is even, then output
n /2; if it is odd, then output 3 n + 1. Iterate this process while the value of the iterate is not equal
to one. Using recursion and dynamic programming, create the function collatz[�, �], which

computes the ith iterate of the Collatz sequence starting with integer n. Compare its speed with

that of the procedural approach in Exercise 10 of Section 5.4.

11.

Solutions5.3
Thinking about the powers of two recursively, we have 2n = 2 × 2n-1. The base case is 20 = 1.1.

In[1]:= powersOf2[0] = 1;

In[2]:= powersOf2[n_] := 2 powersOf2[n - 1]

5.3 Recursive functions: exercises 119

http://www-cs-faculty.stanford.edu/~uno/gkp.html

In[3]:= TablepowersOf2j, j, 0, 10

Out[3]= {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}

Here are the two rules for the factorial function, defined recursively.2.

In[4]:= fact[0] = 1;

In[5]:= factn_Integer ?NonNegative := n fact[n - 1]

And here are the first ten factorials.

In[6]:= Tablefactj, j, 1, 10

Out[6]= {1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800}

Check that the rule is not called for nonintegers or negative numbers.

In[7]:= fact[3.6]

Out[7]= fact[3.6]

In[8]:= fact[-4]

Out[8]= fact[-4]

For the base case, it only takes one move to move a disk from one peg to another.3.

In[9]:= hanoi[1] = 1;

To move a stack of n disks, move the top n - 1 disks, then move the bottom disk, then move the

n - 1 disks again. Here is the recursion.

In[10]:= hanoi[n_] := 2 hanoi[n - 1] + 1

And here are the number of moves for puzzles with one through ten disks.

In[11]:= Tablehanoii, i, 10

Out[11]= {1, 3, 7, 15, 31, 63, 127, 255, 511, 1023}

In fact, there is a closed form formula for this.

In[12]:= Table2n - 1, {n, 10}

Out[12]= {1, 3, 7, 15, 31, 63, 127, 255, 511, 1023}

The key here is to get the stopping conditions right in each case.4.

This is a straightforward recursion, multiplying the previous two values to get the next.a.

In[13]:= Cleara, b, c

In[14]:= a[1] := 2

a[2] := 3

ai_ := ai - 1 ai - 2

120 Essentials of Programming in Mathematica

In[17]:= Tableai, i, 1, 8

Out[17]= {2, 3, 6, 18, 108, 1944, 209952, 408146688}

The sequence is obtained by taking the difference of the previous two values.b.

In[18]:= b[1] := 0

b[2] := 1

bi_ := bi - 2 - bi - 1

In[21]:= Tablebi, i, 1, 9

Out[21]= {0, 1, -1, 2, -3, 5, -8, 13, -21}

Here we add the previous three values.c.

In[22]:= c[1] := 0

c[2] := 1

c[3] := 2

ci_ := ci - 3 + ci - 2 + ci - 1

In[26]:= Tableci, i, 1, 9

Out[26]= {0, 1, 2, 3, 6, 11, 20, 37, 68}

You can use your earlier definition of the Fibonacci numbers, or use the built-in Fibonacci.5.

In[27]:= fn_Integer ?NonPositive := (-1)n-1 Fibonacci[-n]

In[28]:= f[0] = 0;

f[-1] = 1;

In[30]:= Tablefi, i, 0, -8, -1

Out[30]= {0, 1, -1, 2, -3, 5, -8, 13, -21}

This is similar to the length function in the text – recursion is on the tail. The base case is a list
consisting of a single element.

6.

In[31]:= reverse[{x_, y__}] := Join[reverse[{y}], {x}]

In[32]:= reverse[{x_}] := {x}

In[33]:= reverse1, β, 3/4, "practice makes perfect"

Out[33]= practice makes perfect,
3

4
, β, 1

Recursion is on the tails of the two lists, here denoted r1 and r2.7.

In[34]:= transpose[{{x1_, r1__}, {x2_, r2__}}] :=

Join[{{x1, x2}}, transpose[{{r1}, {r2}}]]

In[35]:= transpose[{{x_}, {y_}}] := {{x, y}}

In[36]:= transpose[{{x1, x2}, {y1, y2}}]

Out[36]= {{x1, y1}, {x2, y2}}

5.3 Recursive functions: exercises 121

In[37]:= transpose[%]

Out[37]= {{x1, x2}, {y1, y2}}

This implementation uses the identities given in the exercise together with some pattern

matching for the even and odd cases.
8.

In[38]:= F[1] := 1

F[2] := 1

In[40]:= Fn_?EvenQ := 2 F
n

2
- 1 F

n

2
 + F

n

2

2

Fn_?OddQ := F
n - 1

2
+ 1

2
+ F

n - 1

2

2

In[42]:= Map[F, Range[10]]

Out[42]= {1, 1, 2, 3, 5, 8, 13, 21, 34, 55}

In[43]:= TimingF104;

Out[43]= {0.405646, Null}

The use of dynamic programming speeds up the computation by several orders of magnitude.9.

In[44]:= FF[1] := 1

FF[2] := 1

In[46]:= FFn_?EvenQ := FF[n] = 2 FF
n

2
- 1 FF

n

2
 + FF

n

2

2

FFn_?OddQ := FF[n] = FF
n - 1

2
+ 1

2
+ FF

n - 1

2

2

In[48]:= Map[FF, Range[10]]

Out[48]= {1, 1, 2, 3, 5, 8, 13, 21, 34, 55}

In[49]:= TimingFF105;

Out[49]= {0.000664, Null}

This is fairly fast, even compared with the built-in Fibonacci which uses a method based on

the binary digits of n.

In[50]:= TimingFibonacci105;

Out[50]= {0.000171, Null}

Here are the rules translated directly from the formulas given in the exercise.10.

In[51]:= EulerianNumber0, k_ = 0;

EulerianNumber[n_Integer, 0] = 1;

EulerianNumbern_Integer, k_Integer /; k ≥ n = 0;

In[54]:= EulerianNumbern_Integer, k_Integer :=

k + 1 EulerianNumbern - 1, k + n - k EulerianNumbern - 1, k - 1

122 Essentials of Programming in Mathematica

In[55]:= TableEulerianNumbern, k, {n, 0, 7}, k, 0, 7 // TableForm

Out[55]//TableForm=

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 4 1 0 0 0 0 0
1 11 11 1 0 0 0 0
1 26 66 26 1 0 0 0
1 57 302 302 57 1 0 0
1 120 1191 2416 1191 120 1 0

Because of the triple recursion, computing larger values is not only time and memory intensive

but also bumps up against the built-in recursion limit.

In[56]:= EulerianNumber[25, 15] // Timing

Out[56]= {16.0102, 531714261368950897339996}

This is a good candidate for dynamic programming. In the following implementation we have

temporarily reset the value of $RecursionLimit using Block.

In[57]:= ClearEulerianNumber;

In[58]:= EulerianNumber0, k_ = 0;

EulerianNumber[n_Integer, 0] = 1;

EulerianNumbern_Integer, k_Integer /; k ≥ n = 0;

In[61]:= EulerianNumbern_Integer, k_Integer := Block$RecursionLimit = Infinity,

EulerianNumbern, k = k + 1 EulerianNumbern - 1, k +

n - k EulerianNumbern - 1, k - 1

In[62]:= EulerianNumber[25, 15] // Timing

Out[62]= {0.001165, 531714261368950897 339996}

In[63]:= EulerianNumber[600, 65]; // Timing

Out[63]= {0.296621, Null}

In[64]:= NEulerianNumber[600, 65]

Out[64]= 4.998147102049161×101091

Recursion is on the tail of the iterator �.11.

In[65]:= collatz[n_, 0] := n

In[66]:= collatzn_, i_ := collatzn, i =
collatzn, i - 1

2
/; EvenQcollatzn, i - 1

In[67]:= collatzn_, i_ := collatzn, i = 3 collatzn, i - 1 + 1 /;

OddQcollatzn, i - 1

Here is the fifth iterate of the Collatz sequence for 27.

5.3 Recursive functions: exercises 123

In[68]:= collatz[27, 5]

Out[68]= 31

Here is the Collatz sequence for 27. This sequence takes a while to settle down to the cycle 4, 2, 1.

In[69]:= Tablecollatz27, i, i, 0, 114

Out[69]= {27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364,

182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790,

395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132,

566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619,

4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232,

4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61,

184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1}

Loops and flow control: exercises5.4
Create a function UpperTriangularMatrix[�] that generates an n⨯nmatrix with ones on and
above the diagonal and zeros below the diagonal. Create an alternative rule that defaults to the
value one for the upper values, but allows the user to specify a nondefault upper value.

1.

In[1]:= UpperTriangularMatrix[3] // MatrixForm

Out[1]//MatrixForm=

0 1 1
0 0 1
0 0 0

In[2]:= UpperTriangularMatrix[3, ζ] // MatrixForm

Out[2]//MatrixForm=

0 ζ ζ

0 0 ζ

0 0 0

Write a function sign[�]which, when applied to an integer x, returns -1, 0, or 1 if x is less
than, equal to, or greater than zero, respectively. Write it in four different ways: using three
clauses, using a single clause with If, using a single clause with Which, and using Piecewise.

2.

Use If to define a function that, given a list of numbers, doubles all the positive numbers but
leaves the negative numbers unchanged.

3.

The definition of the absolute value function in this section does not handle complex numbers
well:

4.

In[3]:= abs[3 + 4 I]

GreaterEqual::nord : Invalid comparison with 3 + 4 ⅈ attempted.

Less::nord : Invalid comparison with 3 + 4 ⅈ attempted.

Out[3]= abs[3 + 4 ⅈ]

Rewrite abs to include a specific rule for the case where its argument is complex.

124 Essentials of Programming in Mathematica

One of the fastest methods for computing Fibonacci numbers (Section 5.3) involves iterating

multiplication of the matrix {{0, 1}, {1, 1}} and pulling off the appropriate part. For example, the

last element in the output of mat9 is the tenth Fibonacci number.

5.

In[4]:= mat = {{0, 1}, {1, 1}};

MatrixPower[mat, 9]

Out[5]= {{21, 34}, {34, 55}}

In[6]:= Fibonacci[10]

Out[6]= 55

Without using MatrixPower, create a function FibMat[�] that iterates the matrix multiplica-
tion and then pulls off the correct element from the resulting matrix to give the nth Fibonacci
number. Check the speed of your implementation against both MatrixPower and the built-in

Fibonacci.
Using an If control structure, create a function median[���] that computes the median (the

middle value) of a one-dimensional list. You will need to consider the case when the length of
the list is odd and the case when it is even. In the latter case, the median is given by the average

of the middle two elements of the sorted list.

6.

Given a set of data representing a sine wave, perform a clipping operation where values greater
than 0.5 are clipped to 0.5, values less than -0.5 are clipped to -0.5, and all other values are left
unchanged (Figure 5.3).

7.

In[7]:= data = Tablex, Sin[x], {x, 0, 2 π, 0.1};

Discrete data of sine wave together with data clipped at amplitude 0.5.Figure 5.3.

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Original data

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0
Clipped data

Rewrite the WhatAmI function from this section so that it properly deals with expressions such

as π and ⅇ that are numerical but not explicit numbers.
8.

The bibliography example in Section 3.4 is unable to properly handle a key that has a missing

value. For example, the following association has no value for both the "Issue" key and the

"Pages" key:

9.

5.4 Loops and flow control: exercises 125

In[8]:= art2 = Association"Author" → "Hathaway, David H.", "Title" → "The solar cycle",

"Journal" → "Living Reviews in Solar Physics", "Year" → 2010,

"Volume" → 7, "Issue" → "", "Pages" → "",

"Url" → "http://dx.doi.org/10.12942/lrsp-2010-1";

In[9]:= art2"Issue"

Out[9]=

Suppose you were interested in creating a formatted bibliographic reference that displayed

volume 7, issue 4 as 7(4). But if the issue value is missing, it should display the volume value

only. Create a function that takes the volume and issue values and displays the correct informa-
tion regardless of whether or not the issue number is present.

In[10]:= volIss[art2]

Out[10]= �

In Exercise 11, Section 5.3 we introduced Collatz numbers using recursion. Write a procedural
implementation, CollatzSequence[�], that produces the Collatz sequence for any positive

integer n. Consider using NestWhileList. Here is the Collatz sequence for initial value 22:

10.

In[11]:= CollatzSequence[22]

Out[11]= {22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1}

Write a version of the Manipulate example visualizing interpolation order that used Which to

instead use Switch.
11.

Compute the square root of two using Nest (see Section 5.2) and compare with the versions in

this section using a Do loop.
12.

Do is closely related to Table, the main difference being that Do does not return any value,
whereas Table does. Use Table instead of Do to rewrite one of the findRoot functions given in

this section. Compare the efficiency of the two approaches.

13.

Compute Fibonacci numbers iteratively. The first few values in the Fibonacci sequence are 1, 1,
2, 3, 5, 8, 13, …, where, after the first two 1s, each number is the sum of the previous two num-
bers in the sequence. You will need two variables, say this and prev, giving the two most
recent Fibonacci numbers, so that after the ith iteration, this and prev have the values Fi and

Fi-1, respectively.

14.

As mentioned in the discussion of Newton’s method for root finding, one type of difficulty that
can arise occurs when the derivative of the function in question is either difficult or impossible

to compute. As a very simple example, consider the function x + 3 , which has a root at
x = -3. Both the built-in function FindRoot and our user-defined findRoot will fail with this

function, since a symbolic derivative cannot be computed.

15.

In[12]:= DAbs[x + 3], x

Out[12]= Abs′[3 + x]

126 Essentials of Programming in Mathematica

One way around such problems is to use a numerical derivative (as opposed to an analytic

derivative). The secant method approximates f ′(xk) using the difference quotient:

fxk- fxk-1

xk-xk-1

Implement a version of findRoot using the secant method by creating a rule that takes two

initial values: findRoot[� , {���, �, �}].

Using a While loop, write a function gcd[�, �] that computes the greatest common divisor
(gcd) of m and n. The Euclidean algorithm for computing the gcd of two positive integers m and

n, sets m = n and n =mmod n. It iterates this process until n = 0, at which point the gcd of m and

n is left in the value of m.

16.

Write the function gcd[�, �] implementing the Euclidean algorithm using an If function.17.

A permutation of the elements of a list is a reordering of the elements such that the original list
and the reordered list are in one-to-one correspondence. For example, the permutations of the

list a, b, c are a, b, c, a, c, b, b, a, c, b, c, a, c, a, b, c, b, a.

18.

One way to create a permutation of the elements of a list lis is to start by randomly selecting

one element from lis and putting it in a temporary list, lis2 say. Then select one element from

the complement of lis and lis2 and repeat the process. Using a Do loop, create a function

randomPermutation that implements this procedure.

Create a program InversePermutation[�] that takes a list �, that is a permutation of the

numbers one through n, and returns the inverse permutation ip. The inverse permutation ip is

such that �〚��〚�〛〛 = ��〚�〚�〛〛 = �. Check you answer against the built-in Ordering function.

See Sedgewick andWayne (2007) for a discussion of inverse permutations.

19.

Create a procedural definition for each of the following functions. For each function, create a

definition using a Do loop and another using Table.
20.

For example, the following function first creates an array consisting of zeros of the same

dimension as mat. Then inside the Do loop it assigns the element in position {j, k} in mat to

position {k, j} in matA, effectively performing a transpose operation. Finally, it returns matA,
since the Do loop itself does not return a value.

In[13]:= transposeDo[mat_] :=

ModulematA, rows = Length[mat], cols = Length[mat[[1]]], j, k,

matA = ConstantArray0, rows, cols;

DomatAj, k = matk, j,

j, 1, rows,

k, 1, cols;

matA

5.4 Loops and flow control: exercises 127

http://introcs.cs.princeton.edu/java/home/

In[14]:= mat1 = a, b, c, d, e, f, g, h, i;

MatrixForm[mat1]
Out[15]//MatrixForm=

a b c
d e f
g h i

In[16]:= MatrixForm[transposeDo[mat1]]

Out[16]//MatrixForm=

a d g
b e h
c f i

This same computation could be performed with a structured iteration using Table.

In[17]:= transposeTablemat_?MatrixQ := ModulematA, rows, cols,

rows, cols = Dimensions[mat];

matA = ConstantArray0, rows, cols;

TablematAj, k = matk, j, j, rows, k, cols

In[18]:= transposeTable[mat1] // MatrixForm

Out[18]//MatrixForm=

a d g
b e h
c f i

Create the function reverse[���] that reverses the elements in the list vec.a.

Create a function rotateRight[���, �] that rotates the elements in the list lis n places to

the right.
b.

The digit sum of a number is given by adding the digits of that number. For example, the digit
sum of 7763 is 7 + 7 + 6 + 3 = 23. If you iterate the digit sum until the resulting number has only

one digit, this is called the digit root of the original number. So the digit root of 7763 is

7763 → 7 + 7 + 6 + 3 = 23 → 2 + 3 = 5. Create a function to compute the digit root of any positive

integer.

21.

Quadrants in the Euclidean plane are traditionally numbered counterclockwise from quadrant i
(x and y positive) to quadrant iv (x positive, y negative) with some convention adopted for
points that lie on either of the axes. Use Piecewise to define a quadrant function that returns

the quadrant value for any point in the plane.

22.

Using a Do loop create a function to tally the elements in a list, returning a list of the form

{{����1, ���1}, …, {�����, ����}}. Check your result against the built-in Tally function.
23.

In[19]:= Tallya, c, a, a, c, b, a, a, b, c, a, b

Out[19]= {{a, 6}, {c, 3}, {b, 3}}

128 Essentials of Programming in Mathematica

Solutions5.4
If, for element aij, i is bigger than j, then we are below the diagonal and should insert 0, other-
wise insert a 1.

1.

In[1]:= UpperTriangularMatrix[{m_, n_}] := TableIfi ≥ j, 0, 1, i, m, j, n

A default value can be given for an optional argument that specifies the elements above the
diagonal.

In[2]:= UpperTriangularMatrix{m_, n_}, val_: 1 :=

TableIfi ≥ j, 0, val, i, m, j, n

In[3]:= UpperTriangularMatrix[{5, 5}, α] // MatrixForm

Out[3]//MatrixForm=

0 α α α α

0 0 α α α

0 0 0 α α

0 0 0 0 α

0 0 0 0 0

Here are the conditional definitions.2.

In[4]:= sign[x_ /; x < 0] := -1

sign[x_ /; x > 0] := 1

sign[0] = 0;

sign[0.0] = 0;

Actually the last two rules can be combined using alternatives.

In[8]:= sign[0 0.0] = 0;

In[9]:= Mapsign, {-2, 0, 1}

Out[9]= {-1, 0, 1}

Here is the signum function defined using If.

In[10]:= signIf[x_] := Ifx < 0, -1, If[x == 0, 0, 1]

In[11]:= MapsignIf, {-2, 0, 1}

Out[11]= {-1, 0, 1}

Here is the signum function defined using Which.

In[12]:= signWhich[x_] := Which[x < 0, -1, x > 0, 1, True, 0]

In[13]:= MapsignWhich, {-2, 0, 1}

Out[13]= {-1, 0, 1}

Finally, here is the signum function defined using Piecewise.

5.4 Loops and flow control: exercises 129

In[14]:= Piecewise[{{-1, x < 0}, {1, x > 0}, {0, x == 0}}]

Out[14]=

-1 x < 0
1 x > 0
0 True

The pure function doubles its argument if it is greater than zero.3.

In[15]:= doublePoslis_ := MapIf[# > 0, 2 #, #] &, lis

In[16]:= doublePos[{4, 0, -3, x}]

Out[16]= 8, 0, -3, If[x > 0, 2 x, x]

The test as the first argument of If on the right-hand side checks to see if x is an element of the

domain of complex numbers and, if it is, then re(x)2 + im(x)2 is computed. If x is not com-
plex, nothing is done, but then the other definitions for abs will be checked.

4.

In[17]:= Clearabs;

abs[x_] := SqrtRe[x]2
+ Im[x]2

 /; x ∈ Complexes;

abs[x_] := x /; x ≥ 0

abs[x_] := -x /; x < 0

In[21]:= abs[3 + 4 I]

Out[21]= 5

In[22]:= abs[-3]

Out[22]= 3

The condition itself can appear on the left-hand side of the function definition, as part of the

pattern match. Here is a slight variation on the abs definition.

In[23]:= Clearabs

abs[x_] := If[x ≥ 0, x, -x]

absx_ /; x ∈ Complexes := SqrtRe[x]2
+ Im[x]2

In[26]:= abs[3 + 4 I]

Out[26]= 5

In[27]:= abs[-3]

Out[27]= 3

The iteration can be done with a Do loop. First, initialize the matrix tempmat to {{0, 1}, {1, 1}}.
Then multiply tempmat by the original matrix and reset tempmat to this new value. Repeat n - 2

times and then pull off the second element in the second row.

5.

In[28]:= FibMat[n_] := Module[{tempmat = {{0, 1}, {1, 1}}},

Do[tempmat = tempmat.{{0, 1}, {1, 1}}, {n - 2}];

Part[tempmat, 2, 2]

]

130 Essentials of Programming in Mathematica

In[29]:= TimingFibMat[201]

Out[29]= {0.004827, 453973694165307953 197296969697410619233826}

In[30]:= TimingFibonacci[201]

Out[30]= {0.000019, 453973694165307953 197296969697410619233826}

If the number of elements in the list is odd, then the median is the middle element of the sorted

list. Divide the length in two and take the next greater integer using Ceiling to get the position

of the middle element.

6.

In[31]:= lis = {5, 7, 2, 13, 1};

CeilingLengthlis2

Out[32]= 3

We want the element in the third position of the sorted list.

In[33]:= PartSortlis, CeilingLengthlis2

Out[33]= 5

If the length of the list is even, we take the average of the middle two elements of the sorted list.

In[34]:= lis = {65, 2, 78, 5};

In[35]:= len = Lengthlis;

PartSortlis, len2 ;; len2 + 1

Out[36]= {5, 65}

In[37]:= Mean[%]

Out[37]= 35

Here then is the function using If to branch when the length of the list is odd or even. The

pattern lis : {__} is matched by a list with one or more elements. We name the pattern lis

so that we can refer to it on the right-hand side of the definition.

In[38]:= medianPlis : {__} := Modulelen = Lengthlis,

IfOddQlen,

PartSortlis, Ceilinglen2,

Mean@PartSortlis, len2 ;; len2 + 1

Here are some test data.

In[39]:= dataO = RandomInteger[10 000, 100001];

dataE = RandomInteger[10 000, 100000];

This compares our function with the built-in Median function.

5.4 Loops and flow control: exercises 131

In[41]:= medianPdataO // Timing

Out[41]= {0.014395, 4981}

In[42]:= MediandataO // Timing

Out[42]= {0.01061, 4981}

In[43]:= medianPdataE // Timing

Out[43]= {0.010609, 4987}

In[44]:= MediandataE // Timing

Out[44]= {0.011003, 4987}

First, here is the data we will work with.7.

In[45]:= data = Tablex, Sin[x], {x, 0, 2 π, 0.1};

There are several approaches we could use. We will use Piecewise for the conditions as stated

in the exercise.

In[46]:= clipped = data /. a_, b_ ⧴ a, Piecewise0.5, b > 0.5, -0.5, b < -0.5, b;

In[47]:=

ListPlotdata, PlotLabel → "Original data",

ListPlotclipped, PlotLabel → "Clipped data", PlotRange → {-1, 1}

Out[47]=

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0
Original data

,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0
Clipped data

An additional clause is need in the Which expression, one that handles expressions that are

numeric but not explicit numbers.
8.

In[48]:= WhatAmI[expr_] := Switchexpr,

_Integer, "I am an integer",

_Rational, "I am rational",

_Real, "I am real",

_Complex, "I am complex",

_?NumericQ, "I am numeric",

_, "I am not a number"

In[49]:= WhatAmI[π]

Out[49]= I am numeric

In[50]:= WhatAmI"a string"

Out[50]= I am not a number

132 Essentials of Programming in Mathematica

Here is the function to extract and format the volume information. Here we make the volume

number format in bold.
9.

In[51]:= getVolumeref_ := Styleref "Volume", "TR", FontWeight → "Bold"

In[52]:= getIssueref_ := Ifref "Issue" ⩵ "", "",

StyleRow"(", ref "Issue", ") ", "TR"

In[53]:= volIssref_ := RowgetVolumeref , getIssueref

In[54]:= art2 = Association"Author" → "Hathaway, David H.", "Title" → "The solar cycle",

"Journal" → "Living Reviews in Solar Physics", "Year" → 2010,

"Volume" → 7, "Issue" → "", "Pages" → "",

"Url" → "http://dx.doi.org/10.12942/lrsp-2010-1";

In[55]:= volIss[art2]

Out[55]= �

First, define the auxiliary function using conditional statements.10.

In[56]:= collatz[n_] :=
n

2
/; EvenQ[n]

In[57]:= collatz[n_] := 3 n + 1 /; OddQ[n]

Alternatively, use If.

In[58]:= collatzn_Integer ?Positive := If[EvenQ[n], n /2, 3 n + 1]

Then iterate Collatz, starting with n, and continue while n is not equal to 1.

In[59]:= CollatzSequence[n_] := NestWhileListcollatz, n, # ≠ 1 &

In[60]:= CollatzSequence[17]

Out[60]= {17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1}

Here is the version of the Manipulate example using Switch instead of Which. 11.

In[61]:= data3D = TableSin[x y], {x, 0, 4, 0.5}, {y, 0, 4, 0.5};

5.4 Loops and flow control: exercises 133

In[62]:= Manipulate

ListPlot3Ddata3D, InterpolationOrder → order,

PlotLabel →

Switchorder,

"None", "Linear",

0, "Voronoi cells",

1, "Baricentric",

2, "Natural neighbor",

order, "None", "Interpolation order", "None", 0, 1, 2,

SaveDefinitions → True

Out[62]=

Interpolation order None 0 1 2

To compute the square root of a number r, iterate the following expression.12.

In[63]:= fun[x_] := x2
- r;

Simplifyx -
fun[x]

fun'[x]

Out[64]=

r + x2

2 x

This can be written as a pure function, with a second argument giving the initial guess. Here we

iterate ten times, starting with a high-precision initial value, 2.0 to 30-digit precision.

In[65]:= nestSqrtr_, init_ := Nest
r + #2

2 #
&, init, 10

In[66]:= nestSqrt[2, N[2, 30]]

Out[66]= 1.41421356237309504880168872

Here is a first basic attempt to replace the Do loop with Table.13.

In[67]:= f[x_] := x2
- 2

134 Essentials of Programming in Mathematica

In[68]:= a = 2;

Tablea = Na -
f[a]

f′[a]
, {10}

Out[69]= {1.5, 1.41667, 1.41422, 1.41421, 1.41421,

1.41421, 1.41421, 1.41421, 1.41421, 1.41421}

In[70]:= findRootfun_Symbol, var_, init_, iter_ : 10 := Modulexi = init,

Tablexi = Nxi -
funxi

fun′xi
, iter;

var → xi

In[71]:= findRootf, {x, 2}

Out[71]= {x → 1.41421}

This runs the iteration only three times.

In[72]:= findRootf, {x, 2}, 3

Out[72]= {x → 1.41422}

Note that this version of the Fibonacci function is much more efficient than the simple

recursive version given in Section 5.3, and is closer to the version there that uses dynamic

programming.

14.

In[73]:= Clearfib

In[74]:= fib[n_] := Moduleprev = 0, this = 1, next,

Donext = prev + this;

prev = this;

this = next,

{n - 1};

this

In[75]:= Tablefibi, i, 1, 10

Out[75]= {1, 1, 2, 3, 5, 8, 13, 21, 34, 55}

Actually, this code can be simplified a bit by using parallel assignments.

In[76]:= fib2[n_] := Modulef1 = 0, f2 = 1,

Dof1, f2 = f2, f1 + f2,

{n - 1};

f2

In[77]:= Tablefib2i, i, 1, 10

Out[77]= {1, 1, 2, 3, 5, 8, 13, 21, 34, 55}

Both of these implementations are quite fast and avoid the deep recursion of the classical
definition.

5.4 Loops and flow control: exercises 135

In[78]:= Timingfib[100000];, Timingfib2[100000];

Out[78]= {{0.188238, Null}, {0.132801, Null}}

Here is an implementation of the secant method, essentially modifying our earlier Newton

iteration to use a difference quotient to approximate the derivative. Two values are needed to

compute the quotient which is reflected in the updated argument structure.

15.

In[79]:= findRootf_, var_, a_, b_ := Modulex1 = a, x2 = b, df,

WhileAbsf [x2] >
1

1010
,

df =
f [x2] - f [x1]

x2 - x1
;

{x1, x2} = x2, x2 -
f [x2]

df
;

{var → x2}

In[80]:= f[x_] := Abs[x + 3]

In[81]:= findRootf, {x, -3.1, -1.8}

Out[81]= {x → -3.}

This is a direct implementation of the Euclidean algorithm.16.

In[82]:= gcd[m_, n_] := Modulea = m, b = n, tmpa,

Whileb > 0,

tmpa = a;

a = b;

b = Modtmpa, b;

a

In[83]:= With{m = 12782, n = 5531207},

gcd[m, n]

Out[83]= 11

You can avoid the need for the temporary variable tmpa by performing a parallel assignment as

in the following function. In addition, some argument checking insures that m and n are

integers.

In[84]:= gcd[m_Integer, n_Integer] := Modulea = m, b = n,

Whileb > 0,

a, b = b, Moda, b;

a

In[85]:= With{m = 12782, n = 5531207},

gcd[m, n]

Out[85]= 11

136 Essentials of Programming in Mathematica

Here is the gcd function implemented using an If structure.17.

In[86]:= Cleargcd

In[87]:= gcd[m_Integer, n_Integer] := Ifm > 0, gcdMod[n, m], m, gcd[m, n] = n

In[88]:= With{m = 12782, n = 5531207},

gcd[m, n]

Out[88]= 11

To build this function up step-by-step, start with a small list of ten elements.18.

In[89]:= lis = Range[10]

Out[89]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

The idea is to choose a position within the list at random and remove the element in that
position and put it into a new list lis2.

In[90]:= x = RandomChoicelis

Out[90]= 4

In[91]:= lis2 = {};

lis2 = Appendlis2, x

Out[92]= {4}

We then repeat the above process on the remaining elements of the list. Note that lis is

assigned the value of this new list, thus overwriting the previous value.

In[93]:= lis = Complementlis, {x}

Out[93]= {1, 2, 3, 5, 6, 7, 8, 9, 10}

In[94]:= x = RandomChoicelis

lis2 = Appendlis2, x

lis = Complementlis, lis2

Out[94]= 8

Out[95]= {4, 8}

Out[96]= {1, 2, 3, 5, 6, 7, 9, 10}

In this example we know explicitly how many iterations to perform in our Do loop: n iterations,
where n is the length of the list, lis.

In[97]:= Clearlis, lis2, x;

Now we just put the pieces of the previous computations together in one input.

5.4 Loops and flow control: exercises 137

In[98]:= lis = Range[10];

lis2 = {};

Do

x = RandomChoicelis;

lis2 = Appendlis2, x;

lis = Complementlis, lis2,

i, 1, Lengthlis

When we are done, the result is left in the new list lis2.

In[101]:= lis2

Out[101]= {2, 4, 7, 6, 9, 1, 5, 3, 8, 10}

In[102]:= lis = Range[10];

lis2 = {};

Do

x = RandomChoicelis;

lis2 = Appendlis2, x;

lis = Complementlis, lis2,

i, 1, Lengthlis

Here then is our function randomPermutation that takes a list as an argument and generates a

random permutation of that list’s elements.

In[105]:= randomPermutationarg_List := Modulelis = arg, x, lis2 = {},

Do

x = RandomChoicelis;

lis2 = Appendlis2, x;

lis = Complementlis, lis2,

i, 1, Length[arg];

lis2

Here is a permutation of the list consisting of the first 20 integers.

In[106]:= randomPermutation[Range[20]]

Out[106]= {11, 17, 16, 8, 2, 9, 14, 5, 19, 7, 1, 12, 4, 10, 20, 13, 6, 18, 15, 3}

And here is a random permutation of the lowercase letters of the English alphabet.

In[107]:= alphabet = CharacterRange"a", "z"

Out[107]= a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z

In[108]:= randomPermutationalphabet

Out[108]= b, j, s, k, q, v, u, n, h, m, e, d, c, p, x, z, f, y, r, o, i, t, a, g, w, l

This functionality is built into Mathematica via the RandomSample function.

138 Essentials of Programming in Mathematica

In[109]:= RandomSampleCharacterRange"a", "z"

Out[109]= w, z, t, y, q, g, f, h, e, k, u, p, r, v, i, n, c, x, l, b, a, o, d, s, j, m

In[110]:= Clearx, lis, lis2, alphabet

Start with a random permutation on the first ten integers.19.

In[111]:= Clearp, i, ip;

In[112]:= p = RandomSample[Range[10]]

Out[112]= {1, 8, 3, 2, 6, 10, 5, 7, 9, 4}

Initialize the inverse permutation to a list of the same length as p but filled with zeros to start.

In[113]:= ip = Table0, i, Length[p]

Out[113]= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

In[114]:= Fori = 1, i ≤ Length[p], i++, ippi = i;

ip

Out[115]= {1, 4, 3, 10, 7, 5, 8, 2, 9, 6}

In[116]:= pip ⩵ ip[[p]]

Out[116]= True

The built-in Ordering function gives essentially the same result.

In[117]:= Ordering[p]

Out[117]= {1, 4, 3, 10, 7, 5, 8, 2, 9, 6}

Each solution mirrors that of the transpose example in the exercise.20.

Create a list vecA of zeros, then use a Do loop to set vecA〚�〛 to vec〚� - �〛, where n is the

length of vec.
a.

In[118]:= Clearreverse, a, b, c, d, e

In[119]:= reverse[vec_] := ModulevecA, n = Length[vec],

vecA = ConstantArray[0, {n}];

DovecAi = vecn - i + 1,

i, 1, n;

vecA

In[120]:= reversea, b, c, d, e

Out[120]= {e, d, c, b, a}

In[121]:= reverseStruc[vec_] := ModulevecA, n = Length[vec],

vecA = ConstantArray[0, {n}];

TablevecAi = vecn - i + 1, i, n

5.4 Loops and flow control: exercises 139

In[122]:= reverseStruca, b, c, d, e

Out[122]= {e, d, c, b, a}

The key to this problem is to use the Mod operator to compute the target address for any

item from vec. That is, the element vec[�] must move to, roughly speaking, position n + i
mod Length[vec]. The “roughly speaking” is due to the fact that the Mod operator returns

values in the range 0 to Length[vec] - 1, whereas vectors are indexed by values 1 up to

Length[vec]. This causes a little trickiness in this problem.

b.

In[123]:= rotateRight[vec_, n_] := ModulevecA, len = Length[vec],

vecA = ConstantArray0, len;

DovecA1 + Modn + i - 1, len = veci, i, 1, len;

vecA

In[124]:= rotateRighta, b, c, d, e, 2

Out[124]= {d, e, a, b, c}

In[125]:= rotateRightStruc[vec_, n_] := ModulevecA, len = Length[vec],

vecA = ConstantArray0, len;

TablevecA1 + Modn + i - 1, len = veci, i, len;

vecA

In[126]:= rotateRightStruca, b, c, d, e, 3

Out[126]= {c, d, e, a, b}

Given an integer, this totals the list of its digits.21.

In[127]:= TotalIntegerDigits[7763]

Out[127]= 23

This can be accomplished without iteration as follows:

In[128]:= digitRootn_Integer ?Positive := IfMod[n, 9]⩵ 0, 9, Mod[n, 9]

In[129]:= digitRoot[7763]

Out[129]= 5

Looking ahead to Chapter 6 where localization is discussed, you could also accomplish this

with an iteration using a While loop.

In[130]:= digitRoot2n_Integer ?Positive := Modulelocn = n, lis,

While

Lengthlis = IntegerDigits@locn > 1,

locn = Totallis;

locn

140 Essentials of Programming in Mathematica

In[131]:= digitRoot2[7763]

Out[131]= 5

This is a direct implementation using Piecewise.22.

In[132]:= Piecewise[{{0, x⩵ 0 && y⩵ 0}, {-1, y⩵ 0}, {-2, x⩵ 0}, {1, x > 0 && y > 0},

{2, x < 0 && y > 0}, {3, x < 0 && y < 0}}, 4]

Out[132]=

0 x⩵ 0 && y⩵ 0
-1 y⩵ 0
-2 x⩵ 0
1 x > 0 && y > 0
2 x < 0 && y > 0
3 x < 0 && y < 0
4 True

In[133]:= quadrantPw[{x_, y_}] :=

Piecewise[{{0, x ⩵ 0 && y ⩵ 0}, {-1, y ⩵ 0}, {-2, x ⩵ 0}, {1, x > 0 && y > 0},

{2, x < 0 && y > 0}, {3, x < 0 && y < 0}}, 4]

In[134]:= MapquadrantPw, {{0, 0}, {4, 0}, {0, 1.3}, {2, 4}, {-2, 4}, {-2, -4},

{2, -4}, {2, 0}, {3, -4}}

Out[134]= {0, -1, -2, 1, 2, 3, 4, -1, 4}

Union[���] will give a list of the unique elements in lis (this is ulist below). Also, we need a

temporary list of the counts initialized to zero (cnts). Then, starting with the first element in

the input list (i = 1), check to see if it equals the first element in ulist, then the second, and so

on, incrementing by one each time they are equal. When the loops are done, transpose the list
of unique elements with the corresponding counts. Here is the function:

23.

In[135]:= Cleartally

In[136]:= tallylis_List := Moduleulist = Unionlis, cnts,

cnts = Table0, Lengthulist;

Do

DoIflisi ⩵ ulistj, ++cntsj, j, 1, Lengthulist,

i, 1, Lengthlis;

Transposeulist, cnts

In[137]:= lis = RandomChoicea, b, c, {20}

Out[137]= {c, c, a, c, a, b, c, a, a, a, a, b, b, b, a, a, a, a, b, b}

In[138]:= tallylis

Out[138]= {{a, 10}, {b, 6}, {c, 4}}

Check against the built-in function.

In[139]:= Tallylis === tallylis

Out[139]= False

5.4 Loops and flow control: exercises 141

Here is another implementation. Here we are creating rules for each unique element
(counter[#]) and then incrementing the values for those rules each time the counter comes
across an element.

In[140]:= tally2lis_ := Moduleulist = Unionlis, counter,

counter[_] = 0;

Mapcounter[#]++ &, lis ;

Map{#, counter[#]} &, ulist

In[141]:= tally2lis

Out[141]= {{a, 10}, {b, 6}, {c, 4}}

Check the speed of these two functions.

In[142]:= data = RandomInteger[{0, 9}, {50000}];

In[143]:= Timingtallydata

Out[143]= {0.975904, {{0, 5078}, {1, 5041}, {2, 4928}, {3, 4973},

{4, 4969}, {5, 5037}, {6, 4875}, {7, 5040}, {8, 5014}, {9, 5045}}}

In[144]:= Timingtally2data

Out[144]= {0.180405, {{0, 5078}, {1, 5041}, {2, 4928}, {3, 4973},

{4, 4969}, {5, 5037}, {6, 4875}, {7, 5040}, {8, 5014}, {9, 5045}}}

In[145]:= TimingTallydata

Out[145]= {0.000122, {{2, 4928}, {8, 5014}, {5, 5037}, {4, 4969},

{3, 4973}, {9, 5045}, {6, 4875}, {7, 5040}, {0, 5078}, {1, 5041}}}

Pure functions: exercises5.5
Using pure functions, compute sin(x) /x for each x in the list {0, π /6, π /4, π /3, π /2} . Check
your answer against the built-in Sinc function.

1.

Create a pure function to select all integers between one and one thousand that are square
numbers; that is, numbers that are some integer squared.

2.

In Exercise 11, Section 5.1 you were asked to create a function to compute the diameter of a set
of points in n-dimensional space. Modify that solution by instead using the Norm function and
pure functions to find the diameter.

3.

Rewrite the code from Section 5.2 for finding the next prime after a given integer so that it uses
pure functions instead of relying upon the auxiliary definition addOne and the built-in function
CompositeQ.

4.

Create a function RepUnit[�] that generates integers of length n consisting entirely of ones.
For example, RepUnit[7] should produce 1 111 111.

5.

142 Essentials of Programming in Mathematica

Rewrite the example from Section 5.2 in which NestList was used to perform several rota-
tions of a triangle to instead use pure functions and dispense with the auxiliary function

rotation used to specify the rotation angles.

6.

Given a set of numerical data, extract all those data points that are within one standard devia-
tion of the mean of the data.

7.

In[1]:= data = RandomVariateNormalDistribution[0, 1], {2500};

Using the built-in Fold function, write a function fromDigits[���, �] that accepts a list of
digits in any base b (less than 20) and converts it to a base 10 number. For example, 11012 is 13 in

base 10, so your function should handle this as follows:

8.

In[2]:= fromDigits[{1, 1, 0, 1}, 2]

Out[2]= 13

Check your solution against the built-in FromDigits function.

Write a pure function that moves a random walker from one location on a square lattice to one

of the four adjoining locations with equal probability (a two-dimensional lattice walk). For
example, starting at {0, 0}, the function should return {0, 1}, {0, -1}, {1, 0}, or {-1, 0}

with equal likelihood. Use this pure function with NestList to generate the list of step loca-
tions for an n-step random walk starting at the origin.

9.

Modify the findRoot function from this section to allow for equations of the form x2 ⩵ 2 or
Cos[x] ⩵ 0 as the first argument.

10.

Create a function findRootList that is based on findRoot and returns all the intermediate

values that are computed by the Newton iteration.
11.

A naive approach to polynomial arithmetic would require three additions and six multiplica-
tions to carry out the arithmetic in the expression a x3 + b x2 + c x + d. Using Horner’s method

for fast polynomial multiplication, this expression can be represented as d + xc + xb + a x,
where there are now half as many multiplications. You can see this using the MultiplyCount

function developed in Exercise 7 of Section 4.2.

12.

In[3]:= MultiplyCounta x3 + b x2 + c x + d

Out[3]= 6

In[4]:= MultiplyCountd + x c + x b + a x

Out[4]= 3

In general, the number of multiplications in an n-degree polynomial in traditional form is

given by:

In[5]:= Binomial[n + 1, 2]

Out[5]=

1

2
n (1 + n)

5.5 Pure functions: exercises 143

This, of course, grows quadratically with n, whereas Horner’s method grows linearly. Create a

function HornerPolynomial[���, ���] that gives a representation of a polynomial in Horner
form. Here is some sample output that your function should generate:

In[6]:= HornerPolynomiala, b, c, d, x

Out[6]= d + x (c + x (b + a x))

In[7]:= Expand[%]

Out[7]= d + c x + b x2 + a x3

Find all words in the dictionary that start with the letter q and are of length five. The following

gets all the words in the dictionary that comes with Mathematica and displays a random sample:
13.

In[8]:= words = DictionaryLookup[];

RandomSamplewords, 18

Out[9]= dare, condole, forums, attributive, impassible,

minefields, skittish, thereabout, jugful, fishiest, canter,

choral, Nanjing, toupee, solemner, Marlboro, Whigs, healthier

Given a list of angles between zero and 2 π, map them to points of the form {�, �} on the unit
circle.

14.

In[10]:= angles = RandomReal[{0, 2 π}, {8}]

Out[10]= {5.8948, 2.50319, 1.93239, 5.65609, 0.571937, 5.32786, 4.96526, 5.49373}

Once created, display the points graphically using code similar to the following:

In[11]:= GraphicsCircle[], Point[pts]

Out[11]=

Finally, create a set of lines from the origin to each of the points on the circle and display using

code similar to the following:

In[12]:= GraphicsCircle[], Point[pts], Linelines

Out[12]=

144 Essentials of Programming in Mathematica

Use FoldList to compute an exponential moving average of a list {�1, �2, �3}. You can check

your result against the built-in ExponentialMovingAverage.
15.

In[13]:= ExponentialMovingAverage[{x1, x2, x3}, α]

Out[13]= {x1, -(-1 + α) x1 + α x2, -(-1 + α) (-(-1 + α) x1 + α x2) + α x3}

A well-known programming exercise in many languages is to generate Hamming numbers,
sometimes referred to as regular numbers. These are numbers that divide powers of 60 (the

choice of that number goes back to the Babylonians, who used 60 as a number base). Generate

a sorted sequence of all Hamming numbers less than 1000. The key observation is that these

numbers have only 2, 3, and 5 as prime factors.

16.

In the text, we developed FunctionsWithAttributes to find all built-in functions with a

particular attribute. Create a new function to find all built-in functions with a given option. For
example:

17.

In[14]:= FunctionsWithOptionStepMonitor

Out[14]= {FindArgMax, FindArgMin, FindFit, FindMaximum, FindMaxValue,

FindMinimum, FindMinValue, FindRoot, NArgMax, NArgMin, NDSolve,

NDSolveValue, NMaximize, NMaxValue, NMinimize, NMinValue,

NonlinearModelFit, NRoots, ParametricNDSolve, ParametricNDSolveValue}

Several changes from FunctionsWithAttributes will be necessary: Options does not take a

string as an argument; and options are often given as nested lists of rules, requiring mapping at
the appropriate level. You might also want to delete all functions beginning with $, such as

$Context, to help speed the computation.

Graphs that are not too dense are often represented using adjacency structures which consist
of a list for each vertex vi that includes those other vertices that vi is connected to. Create an

adjacency structure for any graph, directed or undirected. For example, consider the graph gr

below.

18.

In[15]:= gr = RandomGraph{8, 12}, VertexLabels → "Name"

Out[15]=

�

�

�

�

� �

�

�

Start by creating an adjacency list for any given vertex; that is, a list of those vertices to which

the given vertex is connected. The adjacency list for vertex 4 in the above graph would be

{1, 8, 2, 3}.

The adjacency structure is then the list of adjacency lists for every vertex in that graph. It is

common to prepend each adjacency list with its vertex; typically the adjacency structure takes

5.5 Pure functions: exercises 145

the following form where this syntax indicates that vertex 1 is connected to vertices 4, 5, and 8;
vertex 2 is connected to vertices 3, 4, 7, and 8; and so on.

{{1, {4, 5, 8}}, {2, {3, 4, 7, 8}}, {3, {2, 4, 7}}, {4, {1, 2, 3, 8}},

{5, {1, 6, 7}}, {6, {5}}, {7, {2, 3, 5}}, {8, {1, 2, 4}}}

One common use of graphs is to analyze the relationships of the objects under study. For
example, if you were interested in finding all objects a certain distance from a given object, you

could use NeighborhoodGraph.

19.

Here is a grid graph on which we can start prototyping:

In[16]:= gr = GridGraph{7, 7}, VertexLabels → "Name";

NeighborhoodGraph gives all those vertices up to distance two from vertex 25.

In[17]:= HighlightGraphgr, NeighborhoodGraph[gr, 25, 2]

Out[17]=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

But suppose you were interested in all those vertices precisely distance two from vertex 25.
Implement this using two different approaches: one in which you use NeighborhoodGraph

and another using a two-argument form of VertexList in which the second argument is a

pattern.

Create a “composition” using the digits of π to represent notes on the C scale, where a digit n is

interpreted as a note n semitones from middle C. For example, the first few digits 1, 4, 1, 5 would

give the notes one, four, one, and five semitones from middle C.

20.

You can generate tones using Sound and SoundNote. For example, this emits a tone five

semitones above middle C of duration one second:

In[18]:= SoundSoundNote[5, 1] // EmitSound

And this emits the same tone but using a midi instrument instead of the default:

In[19]:= SoundSoundNote5, 1, "Vibraphone" // EmitSound

A matrix is nilpotent if it is a square matrix all of whose eigenvalues are zero. Alternatively, a

square matrix A is nilpotent if An
 is the zero matrix for some positive integer n. Create a

predicate NilpotentMatrixQ[���] that returns True if mat is nilpotent. Check your function

by verifying that any directed acyclic graph (DAG) has a nilpotent adjacency matrix. A list of

21.

146 Essentials of Programming in Mathematica

acyclic graphs is available via GraphData["Acyclic"]. See McKay et al. (2004) for informa-
tion about acyclic graphs and the eigenvalues of their adjacency matrices.

In[20]:= gr = GraphData"CayleyTree", {5, 3}

Out[20]=

In[21]:= AcyclicGraphQ[gr]

Out[21]= True

Solutions5.5
The pure function is Sin[#] / # &. 1.

In[1]:= MapSin[#]# &, {0, π/6, π/4, π/3, π/2}

Power::infy : In�nite expression

1

0
 encountered.

In�nity::indet : Indeterminate expression 0 ComplexIn�nity encountered.

Out[1]= Indeterminate,
3

π
,
2 2

π
,
3 3

2 π
,

2

π

Since Sinc is listable, it automatically maps across lists.

In[2]:= Sinc[{0, π/6, π/4, π/3, π/2}]

Out[2]= 1,
3

π
,
2 2

π
,
3 3

2 π
,

2

π

Use a piecewise function to properly deal with the point at zero.

In[3]:= MapPiecewise{1, # ⩵ 0}, Sin[#]#, # ≠ 0 &, {0, π/6, π/4, π/3, π/2}

Out[3]= 1,
3

π
,
2 2

π
,
3 3

2 π
,

2

π

One test for a number to be a square number is that its square root is an integer.2.

In[4]:= SelectRange[1000], IntegerQ # &

Out[4]= {1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289,

324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961}

5.5 Pure functions: exercises 147

https://arxiv.org/abs/math/0310423

To compute the distance between two points, use either EuclideanDistance or Norm.3.

In[5]:= pts = RandomReal[1, {4, 2}]

Out[5]= {{0.578624, 0.852785}, {0.917576, 0.509619},

{0.187069, 0.755342}, {0.879409, 0.277697}}

In[6]:= Norm[pts[[1]] - pts[[2]]]

Out[6]= 0.482339

In[7]:= EuclideanDistance[pts[[1]], pts[[2]]]

Out[7]= 0.482339

Now we need the distance between every pair of points. So we first create the set of pairs.

In[8]:= pairs = Subsets[pts, {2}]

Out[8]= {{{0.578624, 0.852785}, {0.917576, 0.509619}},

{{0.578624, 0.852785}, {0.187069, 0.755342}},

{{0.578624, 0.852785}, {0.879409, 0.277697}},

{{0.917576, 0.509619}, {0.187069, 0.755342}},

{{0.917576, 0.509619}, {0.879409, 0.277697}},

{{0.187069, 0.755342}, {0.879409, 0.277697}}}

Then we compute the distance between each pair and take the Max.

In[9]:= ApplyNorm[#1 - #2] &, pairs, {1}

Out[9]= {0.482339, 0.403498, 0.648998, 0.770727, 0.235042, 0.841118}

In[10]:= Max[%]

Out[10]= 0.841118

Or, use Outer on the set of points directly, but note the need to get the level correct.

In[11]:= Max@Outer[Norm[#1 - #2] &, pts, pts, 1]

Out[11]= 0.841118

Now put it all together using a pure function in place of the distance function. The diameter

function operates on lists of pairs of numbers, so we need to specify them in our pure function

as #1 and #2.

In[12]:= diameterlis_ := MaxApplyNorm[#1 - #2] &, Subsetslis, {2}, {1}

In[13]:= diameter[pts]

Out[13]= 0.841118

EuclideanDistance is a bit faster here, but for large data sets, the difference is more

pronounced.

148 Essentials of Programming in Mathematica

In[14]:= pts = RandomReal[1, {1500, 2}];

diameter[pts] // Timing

Out[15]= {3.29299, 1.40019}

In[16]:= MaxApplyEuclideanDistance, Subsets[pts, {2}], {1} // Timing

Out[16]= {1.1718, 1.40019}

Pure functions are needed to replace both addOne and CompositeQ:4.

In[17]:= nextPrime[n_Integer /; n > 1] := NestWhile# + 1 &, n, NotPrimeQ[#] &

Here is a quick check for correctness.

In[18]:= nextPrime2123 ⩵ NextPrime2123

Out[18]= True

Compare timing with the built-in function.

In[19]:= TimingnextPrime22500;

Out[19]= {0.217708, Null}

In[20]:= TimingNextPrime22500;

Out[20]= {0.207308, Null}

This function is ideally written as an iteration.5.

In[21]:= RepUnit[n_] := Nest[(10 # + 1) &, 1, n - 1]

In[22]:= RepUnit[7]

Out[22]= 1111111

In[23]:= MapRepUnit[#] &, Range[12]

Out[23]= {1, 11, 111, 1111, 11111, 111111, 1111111, 11111111,

111111111, 1111111111, 11111111111, 111111111111}

This can also be done in a functional style by first creating a list of the appropriate number of
ones using ConstantArray, then converting that to an integer with FromDigits.

In[24]:= RepUnit[n_] := FromDigits[ConstantArray[1, {n}]]

In[25]:= RepUnit[11]

Out[25]= 11111111111

First, here is the triangle.6.

In[26]:= vertices = {0, 0}, {1, 0}, 1/2, 3 2;

5.5 Pure functions: exercises 149

In[27]:= tri = Trianglevertices;

GraphicsLightBlue, EdgeForm[Gray], tri

Out[28]=

Here is the rotation function as defined in Section 5.2:

In[29]:= rotation[gr_] := Rotategr, π/13, RegionCentroidtri

To turn that into a pure function, replace the argument gr with the slot into which each

successive triangle will go.

In[30]:= Graphics

LightBlue, Opacity[.5], EdgeForm[Gray],

NestListRotate#, π/13, RegionCentroidtri &, tri, 10

Out[30]=

Here are some sample data taken from a normal distribution.7.

In[31]:= data = RandomVariateNormalDistribution[0, 1], {500};

Quickly visualize the data together with dashed lines drawn one standard deviation from the

mean.

150 Essentials of Programming in Mathematica

In[32]:= μ = Meandata;

σ = StandardDeviationdata;

len = Lengthdata;

ListPlotdata,

Epilog → Dashed, Red,

Line{0, μ + σ}, len, μ + σ,

Line{0, μ - σ}, len, μ - σ

Out[35]= 100 200 300 400 500

-3

-2

-1

1

2

Select those data elements whose distance to the mean is less than one standard deviation.

In[36]:= filtered = Selectdata, Abs[(# - μ)] < σ &;

Here is a quick check that we get about the value we might expect (we would expect about 68%

for normally distributed data).

In[37]:= N
Lengthfiltered

Lengthdata

Out[37]= 0.68

In[38]:= ListPlotfiltered, PlotRange → All,

Epilog → Dashed, Red,

Line{0, μ + σ}, len, μ + σ,

Line{0, μ - σ}, len, μ - σ

Out[38]=

50 100 150 200 250 300

-1.0

-0.5

0.5

1.0

5.5 Pure functions: exercises 151

This function uses a default value of 2 for the base. (Try replacing Fold with FoldList to see

more clearly what this function is doing.)
8.

In[39]:= convertdigits_List, base_ : 2 := Foldbase #1 + #2 &, 0, digits

Here are the digits for 9 in base 2:

In[40]:= IntegerDigits[9, 2]

Out[40]= {1, 0, 0, 1}

This converts them back to the base 10 representation.

In[41]:= convert[%]

Out[41]= 9

Note, this functionality is built into the function FromDigits[���, ����].

In[42]:= FromDigits[{1, 0, 0, 1}, 2]

Out[42]= 9

This function is essentially an implementation of Horner’s method for fast polynomial
multiplication.

In[43]:= converta, b, c, d, e, x

Out[43]= e + x (d + x (c + x (b + a x)))

In[44]:= Expand[%]

Out[44]= e + d x + c x2 + b x3 + a x4

Using the list of step increments in the north, south, east, and west directions, this ten-step walk

starts at the origin.
9.

In[45]:= SeedRandom[0];

NSEW = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};

NestList#1 + RandomChoice[NSEW] &, {0, 0}, 10

Out[47]= {{0, 0}, {0, 1}, {0, 2}, {-1, 2}, {-1, 1},

{0, 1}, {1, 1}, {1, 2}, {2, 2}, {3, 2}, {3, 3}}

Except for the initial value, you can get the same result with Accumulate which generates

cumulative sums.

In[48]:= SeedRandom[0];

AccumulateRandomChoice[NSEW, 10]

Out[49]= {{0, 1}, {0, 2}, {-1, 2}, {-1, 1}, {0, 1}, {1, 1}, {1, 2}, {2, 2}, {3, 2}, {3, 3}}

The key here is to take any expression of the form ��� ⩵ ��� and extract the appropriate

function whose root you will compute using the previous implementations of findRoot.
Looking at the internal form of an equation, some thought should convince you that ��� - ���
is the expression whose root we want.

10.

152 Essentials of Programming in Mathematica

In[50]:= expr = x2 ⩵ 2;

FullForm[expr]

Out[51]//FullForm= Equal[Power[x, 2], 2]

And here is the pure function that we will use with NestWhile.

In[52]:= var = x;

expr /. Equala_, b_ ⧴ FunctionEvaluate@var, a - b

Out[53]= Functionx, x2 - 2

In[54]:= ClearfindRoot;

findRootexpr_Equal, var_, init_, ϵ_: 0.0001 := Moduleresult, fun,

fun = expr /. Equala_, b_ ⧴ FunctionEvaluate@var, a - b;

result = NestWhile# -
fun[#]

fun'[#]
&, init, Absfun[#] > ϵ &;

var → result

In[56]:= findRootx2 ⩵ 2, {x, 1.0}

Out[56]= {x → 1.41422}

In[57]:= findRootCos[x]⩵ 0, {x, N[1, 20]}, 10-18

Out[57]= {x → 1.570796326794896619}

Perhaps the easiest way to see the intermediate values is to simply use NestWhileList.11.

In[58]:= findRootListexpr_, var_, init_, ϵ_: 10-15 :=

Modulefun = FunctionEvaluate[var], expr,

NestWhileList# -
fun[#]

fun'[#]
&, Ninit, Absfun[#] > ϵ &

In[59]:= findRootexpr_Equal, var_, init_, ϵ_: 0.0001 := Modulefun,

fun = expr /. Equala_, b_ ⧴ FunctionEvaluate@var, a - b;

NestWhileList# -
fun[#]

fun'[#]
&, Ninit, Absfun[#] > ϵ &

In[60]:= findRootListx2 - 2, {x, 1.0}

Out[60]= {1., 1.5, 1.41667, 1.41422, 1.41421, 1.41421}

In[61]:= findRootList[Cos[x], {x, 1.0}]

Out[61]= {1., 1.64209, 1.57068, 1.5708, 1.5708}

Alternatively, you could use Reap and Sow. Be careful where you place the closing bracket for
Sow.

5.5 Pure functions: exercises 153

In[62]:= ClearfindRootList;

findRootListexpr_, var_, init_, ϵ_: 0.0001 :=

Moduleresult, fun = FunctionEvaluate[var], expr,

Reap@NestWhileSow# -
fun[#]

fun'[#]
 &, Ninit, Absfun[#] > ϵ &

In[64]:= findRootListCos[x], {x, .5}, 10-15

Out[64]= {1.5708, {{2.33049, 1.38062, 1.57312, 1.5708, 1.5708}}}

Using Fold, this pure function requires two arguments. The key is to start with an initial value

of zero.
12.

In[65]:= HornerPolynomiallist_List, var_ := Foldvar #1 + #2 &, 0, list

In[66]:= HornerPolynomiala, b, c, d, e, x

Out[66]= e + x (d + x (c + x (b + a x)))

In[67]:= Expand[%]

Out[67]= e + d x + c x2 + b x3 + a x4

Here are the words from the built-in Mathematica dictionary.13.

In[68]:= words = DictionaryLookup[];

Here are those words that start with the letter q.

In[69]:= DictionaryLookup"q" ~~ __;

RandomSample[%, 20]

Out[70]= quadruples, quaffs, quark, quarantining, quahogs, quaff, quickie,

quadrupled, quires, quit, quell, quints, quizzes, quadriplegia,

quotation, quacking, quilter, queered, quintuple, quarterfinals

And here are those words that start with the letter q and are of length five. Note the need for
StringLength, not Length.

In[71]:= SelectDictionaryLookup"q" ~~ __, StringLength[#]⩵ 5 &

Out[71]= quack, quads, quaff, quail, quake, quaky, qualm, quark, quart,

quash, quasi, quays, queen, queer, quell, quern, query, quest, queue,

quick, quids, quiet, quiff, quill, quilt, quins, quint, quips, quire,

quirk, quirt, quite, quits, quoin, quoit, quota, quote, quoth

First, create a set of angles between zero and 2 π.14.

In[72]:= angles = RandomReal[{0, 2 π}, 6];

To turn these angles into points on the unit circle, note that the cosine of the angle gives the x-
coordinate, and sine of the angle gives the y-coordinate. So the following creates a list of the

form {Cos[θ], Sin[θ]} for each angle θ.

154 Essentials of Programming in Mathematica

In[73]:= pts = MapCos[#], Sin[#] &, angles

Out[73]= {{0.760612, 0.649207}, {-0.505615, -0.862759}, {-0.915506, 0.402304},

{-0.813205, -0.581977}, {0.5826, -0.812759}, {-0.959663, -0.281152}}

Here is the graphic.

In[74]:= GraphicsCircle[], Point[pts]

Out[74]=

Line takes a list of two points. One of those points will be the origin for each of our coordinate

pairs. Here is the code to create the pairs of points that will be passed to Line.

In[75]:= lines = Map[{#, {0, 0}} &, pts]

Out[75]= {{{0.760612, 0.649207}, {0, 0}}, {{-0.505615, -0.862759}, {0, 0}},

{{-0.915506, 0.402304}, {0, 0}}, {{-0.813205, -0.581977}, {0, 0}},

{{0.5826, -0.812759}, {0, 0}}, {{-0.959663, -0.281152}, {0, 0}}}

In[76]:= GraphicsCircle[], Point[pts], Linelines

Out[76]=

This can also be done more directly with AngleVectors which takes a polar angle as argument
and returns a point on the unit circle with that polar angle.

In[77]:= pts = MapAngleVector, angles

Out[77]= {{0.760612, 0.649207}, {-0.505615, -0.862759}, {-0.915506, 0.402304},

{-0.813205, -0.581977}, {0.5826, -0.812759}, {-0.959663, -0.281152}}

5.5 Pure functions: exercises 155

In[78]:= Graphics

Circle[],

Point[pts],

MapLine[{{0, 0}, #}] &, pts

Out[78]=

The key to solving this problem is thinking carefully about the initial value for FoldList.15.

In[79]:= FoldList[#1 + α (#2 - #1) &, x1, {x2, x3}]

Out[79]= {x1, x1 + α (-x1 + x2), x1 + α (-x1 + x2) + α (-x1 - α (-x1 + x2) + x3)}

If you were defining your own function, you would need to extract the first element of the

(data) list as the initial value of FoldList.

In[80]:= expMovingAveragelis_, α_ := FoldList#1 + α (#2 - #1) &, Firstlis, Restlis

In[81]:= expMovingAveragea, b, c, α

Out[81]= {a, a + (-a + b) α, a + (-a + b) α + α (-a + c - (-a + b) α)}

In[82]:= ExponentialMovingAveragea, b, c, α

Out[82]= {a, -a (-1 + α) + b α, c α - (-1 + α) (-a (-1 + α) + b α)}

In[83]:= Simplify[%%⩵ %]

Out[83]= True

A first, naive implementation will use the fact that the prime factors are all less than 6. Here

are the factors for a single integer.
16.

In[84]:= facs = FactorInteger[126]

Out[84]= {{2, 1}, {3, 2}, {7, 1}}

This extracts only the prime factors.

In[85]:= MapFirst, facs

Out[85]= {2, 3, 7}

In this case, they are not all less than 6.

156 Essentials of Programming in Mathematica

In[86]:= Max[%] < 6

Out[86]= False

Putting these pieces together, here are the Hamming numbers less than 1000.

In[87]:= SelectRange[1000], MaxMapFirst, FactorInteger[#] < 6 &

Out[87]= {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48,

50, 54, 60, 64, 72, 75, 80, 81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150,

160, 162, 180, 192, 200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320,

324, 360, 375, 384, 400, 405, 432, 450, 480, 486, 500, 512, 540, 576, 600,

625, 640, 648, 675, 720, 729, 750, 768, 800, 810, 864, 900, 960, 972, 1000}

Factoring is slow for large integers and so this implementation does not scale well. This finds

the 507 Hamming numbers less than 106.

In[88]:= Withn = 106,

SelectRange[n], MaxMapFirst, FactorInteger[#] < 6 &

; // Timing

Out[88]= {5.24049, Null}

See Dijkstra (1981) for a different implementation that starts with � = {1}, then builds lists 2 h,
3 h, 5 h, merges these lists, and iterates.

In[89]:= HammingNumberList[n_] := Modulelim,

lim = Ifn < 100, Ceiling[Log2[n]], CeilingLog2
n

2 × 3 × 5
 Log2[n];

Join{1},

TakeUnion @@ NestListUnion @@ OuterTimes, {2, 3, 5}, # &, {2, 3, 5}, lim,

n - 1

In[90]:= HammingNumber[n_] := PartHammingNumberList[n], n

In[91]:= HammingNumberList[20]

Out[91]= {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36}

In[92]:= HammingNumber[1691] // Timing

Out[92]= {0.0806, 2125764000}

This gives the one-millionth Hamming number.

In[93]:= HammingNumber106 // Timing

Out[93]= {14.1544,

5193127804483887360895898437500

000000000000000}

First, note that Options, unlike Attributes, does not take a string as an argument.17.

5.5 Pure functions: exercises 157

http://www.cs.utexas.edu/users/EWD/ewd07xx/EWD792.PDF

In[94]:= Options"Integrate"

Out[94]= {}

To work around this, convert strings to symbols.

In[95]:= OptionsSymbol"Integrate"

Out[95]= {Assumptions⧴ $Assumptions,

GenerateConditions → Automatic, PrincipalValue → False}

The second issue is that options are given as a list of rules which is a more deeply nested

expression structure than the list of attributes.

In[96]:= MemberQOptions[Integrate], Assumptions

Out[96]= False

The tree structure shows that the option names occur down at level two.

In[97]:= TreeFormOptions[Integrate]

Out[97]//TreeForm=

List

RuleDelayed

Assumptions $Assumptions

Rule

GenerateConditions Automatic

Rule

PrincipalValue False

The optional third argument to MemberQ can be used to specify the level at which the pattern

match should take place. In this case, at level two.

In[98]:= MemberQOptions[Integrate], Assumptions, 2

Out[98]= True

Next, note that many built-in symbols have no options, as indicated by the empty list returned.

In[99]:= OptionsRound

Out[99]= {}

Rather than search through these functions, let’s remove them from the search as well as any

function that starts with “$” such as $RecursionLimit.

Here then is the function:

In[100]:= FunctionsWithOptionopt_Symbol := Modulenames, lis,

names = ComplementNames"System`*", Names"System`$*";

lis = DeleteCasesnames, f_ /; OptionsSymbolf === {};

Selectlis, MemberQOptionsSymbol[#], opt, 2 &

158 Essentials of Programming in Mathematica

In[101]:= FunctionsWithOptionCompiled // Timing

Out[101]= 17.3194, FindArgMax, FindArgMin, FindFit, FindMaximum,

FindMaxValue, FindMinimum, FindMinValue, FindRoot, LiftingFilterData,

NDSolve, NDSolveValue, NExpectation, NIntegrate, NProbability,

NProduct, NSum, ParametricNDSolve, ParametricNDSolveValue, Play

With a little analysis you should see that we reduced the large list of functions to search from

over 5000 to a little more than 1200 (check the length of lis). The function would be quite a bit
slower otherwise.

In[102]:= LengthNames"System`*"

Out[102]= 5491

First, create a prototype graph to work with.18.

In[103]:= SeedRandom[16];

gr = RandomGraph{10, 15}, VertexLabels → "Name"

Out[104]=

1

2

3

4

5

6

7

8

9

10

And here are its edges and its vertices:

In[105]:= EdgeList[gr]

Out[105]= {1 5, 1 8, 1 9, 2 5, 2 7, 2 9, 3 4,

4 5, 4 7, 4 9, 4 10, 5 8, 6 7, 7 8, 9 10}

In[106]:= VertexList[gr]

Out[106]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Below are those edges from vertex 3 to any other vertex. In other words, this gives the adja-
cency list for vertex 3.

In[107]:= With{u = 3},

SelectVertexList[gr], EdgeQgr, UndirectedEdge[u, #] &

Out[107]= {4}

The case for directed graphs is similar. Here then is a function that returns the adjacency list for

5.5 Pure functions: exercises 159

a given vertex u in graph gr.

In[108]:= adjacencyList[gr_, u_] :=

IfDirectedGraphQ[gr],

SelectVertexList[gr], EdgeQgr, DirectedEdge[u, #] &,

SelectVertexList[gr], EdgeQgr, UndirectedEdge[u, #] &

The adjacency structure is then given by mapping the above function across the vertex list.

In[109]:= AdjacencyStructuregr_Graph := Map#, adjacencyList[gr, #] &, VertexList[gr]

A built-in function can also be used to get the adjacency lists.

In[110]:= Map#, AdjacencyList[gr, #] &, VertexList[gr]

Out[110]= {{1, {5, 8, 9}}, {2, {5, 7, 9}}, {3, {4}},

{4, {3, 5, 7, 9, 10}}, {5, {1, 2, 4, 8}}, {6, {7}},

{7, {2, 4, 6, 8}}, {8, {1, 5, 7}}, {9, {1, 2, 4, 10}}, {10, {4, 9}}}

In[111]:= AdjacencyStructuregr_Graph := Map#, AdjacencyList[gr, #] &, VertexList[gr]

In[112]:= AdjacencyStructure[gr]

Out[112]= {{1, {5, 8, 9}}, {2, {5, 7, 9}}, {3, {4}},

{4, {3, 5, 7, 9, 10}}, {5, {1, 2, 4, 8}}, {6, {7}},

{7, {2, 4, 6, 8}}, {8, {1, 5, 7}}, {9, {1, 2, 4, 10}}, {10, {4, 9}}}

Check that it works for a directed graph also.

In[113]:= gr2 = Graph{1 2, 2 1, 3 1, 3 2, 4 1, 4 2, 4 4},

VertexLabels → "Name"

Out[113]=

1

2

3 4

In[114]:= AdjacencyStructure[gr2]

Out[114]= {{1, {2, 3, 4}}, {2, {1, 3, 4}}, {3, {1, 2}}, {4, {1, 2}}}

To start, here is a 7⨯7 grid graph.19.

160 Essentials of Programming in Mathematica

In[115]:= gr = GridGraph{7, 7}, VertexLabels → "Name", VertexStyle → 25 → Blue,

VertexSize → 25 → Medium

Out[115]=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A somewhat brute force way to solve this problem is to find all vertices within distance three of
vertex 25 and subtract out the vertices within distance two of vertex 25.

In[116]:= ComplementVertexList@NeighborhoodGraph[gr, 25, 3],

VertexList@NeighborhoodGraph[gr, 25, 2]

Out[116]= {4, 10, 12, 16, 20, 22, 28, 30, 34, 38, 40, 46}

In[117]:= HighlightGraph[gr, %]

Out[117]=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Alternatively, create a function VertexNeighbors that takes a graph gr, a vertex v, and a

distance dist, and, using GraphDistance, finds all those vertices in gr that are distance dist from v.

In[118]:= VertexNeighborsgr_, v_, dist_ :=

VertexListgr, _?GraphDistance[gr, v, #]⩵ dist &

5.5 Pure functions: exercises 161

In[119]:= HighlightGraphgr, VertexNeighbors[gr, 25, 3]

Out[119]=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

First generate 100 digits for a 100-note “composition”.20.

In[120]:= digs = FirstRealDigits[N[π, 50]];

Fix note duration at 0.5 seconds.

In[121]:= SoundSoundNote[#, 0.5] & /@ digs // EmitSound

Change the duration to be dependent upon the digit. Also change the midi instrument.

In[122]:= SoundSoundNote#, 1/(# + 1), "Vibraphone" & /@ digs // EmitSound

Go a bit further, expanding the range of notes that will be played.

In[123]:= SoundSoundNote1 + 2 #, 1/(# + 1), "Vibraphone" & /@ digs // EmitSound

As a test graph, we create a directed graph and check that it is acyclic.21.

In[124]:= gr = GraphData"Antelope", {6, 6}

Out[124]=

This converts the undirected graph gr to a directed graph.

162 Essentials of Programming in Mathematica

In[125]:= dirgr = DirectedGraphgr, "Acyclic"

Out[125]=

Check that it is indeed acyclic.

In[126]:= AcyclicGraphQdirgr

Out[126]= True

Here is its adjacency matrix.

In[127]:= mat = AdjacencyMatrixdirgr;

This gives the eigenvalues of mat.

In[128]:= Eigenvalues[mat]

Out[128]= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Here then is a function that checks if the eigenvalues of a matrix are all zero. Note the use of
logical or (||) to check for both exact and approximate zero.

In[129]:= NilpotentMatrixQmat_?SquareMatrixQ :=

AllTrueEigenvalues[mat], (# == 0 || # == 0.0) &

In[130]:= NilpotentMatrixQ[mat]

Out[130]= True

Examples: exercises5.6
Write a version of the function that computes Hamming distance by using Countwith an
appropriate pattern to find the number of nonidentical pairs of corresponding numbers in two
binary signals.

1.

Write an implementation of Hamming distance using the Total function andmodular arith-
metic base 2 to compare two bits. Compare running times with the other versions discussed in
this chapter.

2.

5.6 Examples: exercises 163

Rewrite the median function from Exercise 6, Section 5.4 so that instead of using an If control
structure, you create two separate rules: one rule for the case when the list has an odd number
of elements and another rule for the case when the length of the list is even.

3.

Extend the survivor function developed in this section to a function of two arguments, so that
survivor[�, �] returns the survivor starting from a list of n people and executing every mth

person.

4.

In Section 4.3 we created a function CountChange[���] that took a list of coins and, using

transformation rules, returned the monetary value of that list of coins. Rewrite CountChange to

use a purely functional approach. Consider using Dot, or Inner, or Tally.

5.

Create a function Regular2Graph[�] that outputs an n-sided regular graph where every vertex

has degree two.
6.

In[1]:= Regular2Graph[5]

Out[1]=

Extend the visualization of PPI networks from this section by coloring vertices according to the

biological process in which they are involved. The built-in ProteinData contains this informa-
tion, for example:

7.

In[2]:= ProteinData"KLKB1", "BiologicalProcesses"

Out[2]= BloodCoagulation, Fibrinolysis, InflammatoryResponse, Proteolysis

Extend the range of ReplaceElement developed in this section to accept a list of strings

considered as nonnumeric matrix entries, each of which should be replaced by a column mean.
8.

Imagine a random walk on a graph: starting at vertex vi, the probability that you next move to

vertex vj is given by

9.

Pvi, vj =

1
dvi

, if vi vj

0, otherwise

where dvi is the degree of vertex vi. This defines what is known as a transition probability matrix

and can be used to create a Markov model to simulate random walks on graphs.

Given a graph, create its transition probability matrix where matrix element aij = P(vi, vj) as

defined above. You will need the built-in functions VertexCount and VertexDegree as well as

EdgeQ. For more on random walks on graphs, see Lovász (1993) or Aldous and Fill (2014).

164 Essentials of Programming in Mathematica

http://www.cs.elte.hu/~lovasz/erdos.pdf
http://www.stat.berkeley.edu/~aldous/RWG/book.pdf

Random graphs have a rich and deep history in spite of the fact that they were only first
defined in the mid-twentieth century in a paper by Erdős and Rényi (1959) . They have since

been used to study areas as diverse as percolation, telecommunications, social networks, and

many more.

10.

Perhaps the simplest random graph model is one in which both the number of vertices and the

number of edges are fixed. In this model, G(n, m), the m edges are placed at random among all
n
2

 possible edges. This is the model that the built-in function RandomGraph is based upon. In

an alternate model, commonly referred to as G(n, p), the probability of an edge between any

two of the n vertices is fixed. As as result, the number of edges can vary from none, for exam-

ple when p = 0, to

n
2

 when p = 1. In this exercise you are asked to create a simplified model of

the G(n, p) random graph.

Starting with a set of edges, assign a probability to each. The edges can be taken from a com-
plete graph, a graph in which there is an edge between every pair of vertices.

In[3]:= n = 7;

cg = CompleteGraph[n];

EdgeRules[cg]

Out[5]= {1 → 2, 1 → 3, 1 → 4, 1 → 5, 1 → 6, 1 → 7, 2 → 3, 2 → 4, 2 → 5, 2 → 6,

2 → 7, 3 → 4, 3 → 5, 3 → 6, 3 → 7, 4 → 5, 4 → 6, 4 → 7, 5 → 6, 5 → 7, 6 → 7}

Next choose an edge with probability p. An edge being chosen is a binary choice: either it is

chosen or it isn’t. This is essentially a coin toss distribution which, in Mathematica, is repre-
sented by BernoulliDistribution. We create a list of probabilities the same length as the

number of edges in the complete graph.

In[6]:= p = 0.45;

probs = RandomVariateBernoulliDistribution[p], EdgeCount[cg]

Out[7]= {1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1}

Finally, use Pick to include only edges whose corresponding probability is less than the

threshold value p and display the resulting graph with Graph.

Extend the grid example from Exercise 5, Section 3.1 to color the prime grid elements (Figure

5.4).
11.

5.6 Examples: exercises 165

http://www.renyi.hu/~p_erdos/1959-11.pdf

Grid of integers 1 through n2
 with prime elements highlighted.Figure 5.4.

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

Using Grid, create a truth table for a logical expression such as A B ⇒ C (Figure 5.5).12.

Truth table for A B⇒ C.Figure 5.5.

A B C AB ⇒ C
T T T T
T T F F
T F T T
T F F F
F T T T
F T F F
F F T T
F F F T

Create a function RandomNote[�] that plays a random sequence of n notes taken from the

twelve-tone scale. The twelve tones in C major can be generated using Sound and SoundNote to

create the sound objects; use EmitSound to play them through the speakers of your computer.

13.

In[8]:= SoundMapSoundNote, Range[0, 11] // EmitSound

A second argument to SoundNote can be used to alter the duration of each note, which, by

default, is for one second. Set up RandomNote to have random durations as well as random

notes. Finally, set up RandomNote to accept a second argument to set the midi instrument
through which the sound will be played.

Because of the completely random nature of how the notes are chosen in the previous exercise,
the resulting “tunes” will have no autocorrelation and the result is quite uninteresting. Create a

new function to generate sequences of notes where the randomness is applied to the distance

between notes, essentially performing a “random walk” through the C major scale. Music

generated in such a way is called Brownian because it behaves much like the movement of
particles suspended in liquid – Brownian motion.

14.

If you read musical notation, take a musical composition such as one of Bach’s Brandenburg

Concertos and write down a list of the frequency intervals x between successive notes. Then find

a function that interpolates the power spectrum of these frequency intervals and determine if
this function is of the form f (x) = c /x for some constant c. (Hint: To get the power spectrum,
you will need to square the magnitude of the Fourier transform: take Abs[Fourier[…]]2

 of
your data.) Compute the power spectra of different types of music using this procedure.

15.

Modify the clustering example in this section so that the cluster disks enclose every point in

their respective clusters (Figure 5.6).
16.

166 Essentials of Programming in Mathematica

Clustering with each disk enclosing entire cluster.Figure 5.6.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Given a set of n points in the plane, find a tour that visits each of them once, returning to the

first point visited: choose a point v1 from the set at random; then find the point that is closest to

v1, call it v2; of the points not chosen so far, find the point that is closest to v2; call it v3. In this

way create a running list {v1, v2, …, vn, v1} that gives the points to visit in order, returning to the

first point visited. This is essentially a nearest-neighbor algorithm for solving the traveling

salesman problem. It is known that this solution is sub-optimal but it will give you a good

feeling for these kinds of problems. See Section 8.4 for some variations on traveling salesman-
type problems.

17.

Starting with a set of n random points in the unit square, find the proportion that are also in the

square’s inscribed disk (Figure 5.7). As n increases, this proportion (slowly!) approaches the

value π /4.

18.

Monte Carlo simulation to approximate π.Figure 5.7.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

In Exercise 5, Section 9.2 this computation is run numerous times as a Monte Carlo simulation

to get better and better approximations to the value of π.

Solutions5.6
Here are two small sample lists.1.

5.6 Examples: exercises 167

In[1]:= l1 = {1, 0, 0, 1, 1};

l2 = {0, 1, 0, 1, 0};

First, pair them.

In[3]:= ll = Transposel1, l2

Out[3]= {{1, 0}, {0, 1}, {0, 0}, {1, 1}, {1, 0}}

Here is the conditional pattern that matches any pair where the two elements are not identical.
The Hamming distance is the number of such nonidentical pairs.

In[4]:= Countll, {p_, q_} /; p ≠ q

Out[4]= 3

Finally, here is a function that puts this all together.

In[5]:= HammingDistance3lis1_List, lis2_List :=

CountTransposelis1, lis2, {p_, q_} /; p ≠ q

In[6]:= HammingDistance3l1, l2

Out[6]= 3

The running times of this version of HammingDistance are quite a bit slower than those where

we used bit operators. This is due to additional computation (Transpose) and the use of pattern

matching and comparisons at every step.

In[7]:= HammingDistance2lis1_, lis2_ := TotalBitXorlis1, lis2

In[8]:= data1 = RandomInteger1, 106;

In[9]:= data2 = RandomInteger1, 106;

In[10]:= TimingHammingDistance2data1, data2

Out[10]= {0.020373, 501050}

In[11]:= TimingHammingDistance3data1, data2

Out[11]= {0.798615, 501050}

Using Total on the binary sum, Hamming distance can be computed as follows:2.

In[12]:= HammingDistance4lis1_, lis2_ := TotalModlis1 + lis2, 2

Timing tests show that the implementation with Total is quite a bit more efficient than the

previous versions, although still slower than the version that uses bit operators.

In[13]:= sig1 = RandomInteger1, 106;

In[14]:= sig2 = RandomInteger1, 106;

In[15]:= HammingDistance1lis1_, lis2_ :=

CountMapThreadSameQ, lis1, lis2, False

168 Essentials of Programming in Mathematica

In[16]:= Map#, Timing#sig1, sig2 &,

HammingDistance1, HammingDistance2, HammingDistance3, HammingDistance4 //

Grid

Out[16]=

HammingDistance1 {0.352712, 499983}
HammingDistance2 {0.011396, 499983}
HammingDistance3 {0.796302, 499983}
HammingDistance4 {0.038783, 499983}

The median of a list containing an odd number of elements is the middle element of the sorted

list.
3.

In[17]:= medianlis_List /; OddQLengthlis :=

PartSortlis, CeilingLengthlis2

When the list has an even number of elements, take the mean of the middle two.

In[18]:= medianlis_List /; EvenQLengthlis := Modulelen = Lengthlis2,

MeanPartSortlis, len ;; len + 1

Check the two cases – an even number of elements, and an odd number of elements. Then

compare with the built-in Median.

In[19]:= dataE = RandomInteger[10 000, 100000];

In[20]:= dataO = RandomInteger[10 000, 100001];

In[21]:= mediandataE // Timing

Out[21]= {0.010258, 4990}

In[22]:= MediandataE // Timing

Out[22]= {0.013946, 4990}

In[23]:= mediandataO // Timing

Out[23]= {0.011299, 5009}

In[24]:= MediandataO // Timing

Out[24]= {0.01085, 5009}

The two rules given here should be more careful about the input, using pattern matching to

insure that these rules only apply to one-dimensional lists. The following modifications handle

that more robustly.

In[25]:= Clearmedian

In[26]:= medianlis : {__} /; OddQLengthlis :=

PartSortlis, CeilingLengthlis2

In[27]:= medianlis : {__} /; EvenQLengthlis := Modulelen = Lengthlis2,

MeanPartSortlis, len ;; len + 1

5.6 Examples: exercises 169

Just one change is needed here: add a second argument to RotateLeft that specifies the number
of positions to rotate. We have used NestList to display the intermediate steps.

4.

In[28]:= survivor[n_, m_] := NestListRestRotateLeft[#, m - 1] &, Range[n], n - 1

In[29]:= survivor[11, 3]

Out[29]= {{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, {4, 5, 6, 7, 8, 9, 10, 11, 1, 2},

{7, 8, 9, 10, 11, 1, 2, 4, 5}, {10, 11, 1, 2, 4, 5, 7, 8}, {2, 4, 5, 7, 8, 10, 11},

{7, 8, 10, 11, 2, 4}, {11, 2, 4, 7, 8}, {7, 8, 11, 2}, {2, 7, 8}, {2, 7}, {7}}

Here is a list of coins (modify for other currencies).5.

In[30]:= coins = p, p, q, n, d, d, p, q, q, p;

First count the occurrences of each.

In[31]:= MapCountcoins, # &, p, n, d, q

Out[31]= {4, 1, 2, 3}

Then a dot product of this count vector with a value vector does the trick.

In[32]:= %.{.01, .05, .10, .25}

Out[32]= 1.04

In[33]:= CountChangelis_ :=

DotMapCountlis, # &, p, n, d, q, {.01, .05, .10, .25}

In[34]:= CountChangecoins

Out[34]= {16 + 2 d + 3 q, 44 + 2 d + 3 q, 24 + 2 d + 3 q, 20 + 2 d + 3 q, 36 + 2 d + 3 q,

52 + 2 d + 3 q, 32 + 2 d + 3 q, 40 + 2 d + 3 q, 48 + 2 d + 3 q, 28 + 2 d + 3 q}

In[35]:= CountChange2lis_ :=

InnerTimes, MapCountlis, # &, p, n, d, q, {.01, .05, .10, .25}, Plus

In[36]:= CountChange2coins

Out[36]= 1.04

And here is a rule-based approach.

In[37]:= Tallycoins /. d → .10, n → .05, p → .01, q → .25

Out[37]= {{0.01, 4}, {0.25, 3}, {0.05, 1}, {0.1, 2}}

In[38]:= TotalApplyTimes, %, {1}

Out[38]= 1.04

In[39]:= CountChange3lis_ := Modulefreq,

freq = Tallylis /. p → .01, n → .05, d → .10, q → .25;

TotalApplyTimes, freq, {1}

170 Essentials of Programming in Mathematica

In[40]:= CountChange3coins

Out[40]= 1.04

If you think of the vertex indices as one through n, then each vertex needs to be connected to

the vertex with index one less and also one more.
6.

Create the pairs using Partition with overlap one and set to cycle from the last to the first
element.

In[41]:= Partition[Range[5], 2, 1, 1]

Out[41]= {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}}

Then apply UndirectedEdge to these pairs at level one.

In[42]:= ApplyUndirectedEdge, Partition[Range[5], 2, 1, 1], {1}

Out[42]= {1 2, 2 3, 3 4, 4 5, 5 1}

This bundles up the code, using the shorthand notation for Apply at level one, @@@.

In[43]:= Regular2Graph[n_] := GraphUndirectedEdge @@@ Partition[Range[n], 2, 1, 1]

In[44]:= TableRegular2Graph[n], {n, 3, 6, 1}

Out[44]= , , ,

(* solution to appear *)7.
Column 4 of this matrix contains several different nonnumeric values.8.

In[45]:= mat3 = 0.796495, "N/A", 0.070125, "nan", 0.806554,

"nn", -0.100365, 0.992736, -0.320560, -0.0805351,

{0.473571, 0.460741, 0.030060, -0.412400, 0.788522},

{0.614974, -0.503201, 0.615744, 0.966053, -0.011776},

-0.828415, 0.035514, 0.8911617, "N/A", -0.453926;

MatrixFormcol4 = mat3All, 4

Out[46]//MatrixForm=

nan
-0.32056
-0.4124
0.966053

N/A

To pattern match on either "N/A" or "nan", use Alternatives (|).

5.6 Examples: exercises 171

In[47]:= col4 /. "N/A" "nan" → MeanCasesmat3All, 4, _?NumberQ //

MatrixForm
Out[47]//MatrixForm=

0.0776977
-0.32056
-0.4124
0.966053
0.0776977

Convert the list of strings to a set of alternatives.

In[48]:= ApplyAlternatives, "N/A", "nan", "nn"

Out[48]= N/A nan nn

Here is a third set of definitions, including a new rule for ReplaceElement where the second

argument is a list of strings. And another rule for ReplaceElement accommodates the new

argument structure of colMean.

In[49]:= colMeancol_, strings___String :=

col /. ApplyAlternatives, strings → MeanCasescol, _?NumberQ

In[50]:= ReplaceElementmat_, strings__ :=

TransposeMapcolMean#, strings &, Transpose[mat]

In[51]:= ReplaceElementmat3, "N/A", "nan", "nn" // MatrixForm

Out[51]//MatrixForm=

0.796495 -0.0268277 0.070125 0.0776977 0.806554
0.264156 -0.100365 0.992736 -0.32056 -0.0805351
0.473571 0.460741 0.03006 -0.4124 0.788522
0.614974 -0.503201 0.615744 0.966053 -0.011776
-0.828415 0.035514 0.891162 0.0776977 -0.453926

Let’s start with a random graph.9.

In[52]:= gr = RandomGraph[{5, 8}]

Out[52]=

Let us create a list of all possible edges in gr.

172 Essentials of Programming in Mathematica

In[53]:= With{n = VertexCount[gr]},

ArrayUndirectedEdge, {n, n}

Out[53]= {{1 1, 1 2, 1 3, 1 4, 1 5},

{2 1, 2 2, 2 3, 2 4, 2 5}, {3 1, 3 2, 3 3, 3 4, 3 5},

{4 1, 4 2, 4 3, 4 4, 4 5}, {5 1, 5 2, 5 3, 5 4, 5 5}}

The transition probability matrix assigns the value 1 / VertexDegree in position {i, j} if there is

an edge between vertex i and vertex j and zero otherwise. Here is the pure function that does

this.

In[54]:= IfEdgeQ[gr, #], 1VertexDegreegr, First@#, 0 &;

This needs to be mapped at level two to account for the nested lists in the array.

In[55]:= With{n = VertexCount[gr]},

MapEdgeQ[gr, #] &, ArrayUndirectedEdge, {n, n}, {2}

Out[55]= {{False, True, True, False, True},

{True, False, False, True, True}, {True, False, False, True, True},

{False, True, True, False, True}, {True, True, True, True, False}}

Finally, here then is the transition matrix.

In[56]:= With{n = VertexCount[gr]},

MapIfEdgeQ[gr, #], 1VertexDegreegr, First@#, 0 &,

ArrayUndirectedEdge, {n, n}, {2}

Out[56]= 0,
1

3
,
1

3
, 0,

1

3
,

1

3
, 0, 0,

1

3
,
1

3
,

1

3
, 0, 0,

1

3
,
1

3
, 0,

1

3
,
1

3
, 0,

1

3
,

1

4
,
1

4
,
1

4
,
1

4
, 0

In[57]:= TransitionMatrixgr_Graph := With{n = VertexCount[gr]},

MapIfEdgeQ[gr, #], 1VertexDegreegr, First@#, 0 &,

ArrayUndirectedEdge, {n, n}, {2}

In[58]:= = TransitionMatrix[gr]

Out[58]= 0,
1

3
,
1

3
, 0,

1

3
,

1

3
, 0, 0,

1

3
,
1

3
,

1

3
, 0, 0,

1

3
,
1

3
, 0,

1

3
,
1

3
, 0,

1

3
,

1

4
,
1

4
,
1

4
,
1

4
, 0

To see how to use to create a random walk using Markov processes, first create some starting

probabilities for each vertex.

In[59]:= Π = ConstantArray[1/VertexCount[gr], {VertexCount[gr]}]

Out[59]=
1

5
,
1

5
,
1

5
,
1

5
,
1

5

5.6 Examples: exercises 173

Here is the Markov process using the initial probabilities and the transition matrix.

In[60]:= = DiscreteMarkovProcess[Π,];

Create ten steps in the process.

In[61]:= data = RandomFunction[, {0, 10}]

Out[61]= TemporalData
Time: 0 to 10

Data points: 11 Paths: 1

These are the vertices that were visited on the walk.

In[62]:= data"Values"

Out[62]= {1, 2, 4, 5, 1, 2, 5, 1, 5, 2, 4}

Turn the successive vertices into edges and highlight them with the original graph.

In[63]:= walk = UndirectedEdge @@@ Partitiondata"Values", 2, 1

Out[63]= {1 2, 2 4, 4 5, 5 1, 1 2, 2 5, 5 1, 1 5, 5 2, 2 4}

In[64]:= HighlightGraphgr, Graphwalk

Out[64]=

Starting with a set of edges, we assign a probability to each. The edges are taken from a

complete graph, a graph in which there is an edge between every pair of vertices. Then, using

Pick, we include only edges whose corresponding probability is less than some threshold

value, p.

10.

In[65]:= n = 7;

cg = CompleteGraph[n]

Out[66]=

174 Essentials of Programming in Mathematica

Here are the edges.

In[67]:= EdgeRules[cg]

Out[67]= {1 → 2, 1 → 3, 1 → 4, 1 → 5, 1 → 6, 1 → 7, 2 → 3, 2 → 4, 2 → 5, 2 → 6,

2 → 7, 3 → 4, 3 → 5, 3 → 6, 3 → 7, 4 → 5, 4 → 6, 4 → 7, 5 → 6, 5 → 7, 6 → 7}

We want to choose an edge with probability p. An edge being chosen is a binary choice: either it
is chosen or it isn’t. This is essentially a coin toss distribution which, in Mathematica is repre-
sented by BernoulliDistribution.

In[68]:= p = 0.45;

probs = RandomVariateBernoulliDistribution[p], EdgeCount[cg]

Out[69]= {0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0}

We will use a three-argument form of Pick to choose the edges that meet our criteria.
Pick[���, ���, ����] returns those elements in lis for which the corresponding element of sel
matches the pattern patt. In our case, we choose edges if the corresponding Bernoulli distribu-
tion returns a value of one.

In[70]:= includedEdges = PickEdgeRules[cg], probs, 1

Out[70]= {1 → 3, 1 → 4, 1 → 5, 1 → 6, 2 → 3, 2 → 6, 3 → 5, 3 → 6, 4 → 6, 4 → 7}

Finally, turn this list of included (undirected) edges into a graph.

In[71]:= GraphincludedEdges, DirectedEdges → False

Out[71]=

Gather all these pieces and scale up the size of the graph.

In[72]:= n = 50; p = .12;

cg = CompleteGraph[n];

probs = RandomVariateBernoulliDistribution[p], EdgeCount[cg];

gr = GraphPickEdgeRules[cg], probs, 1, DirectedEdges → False

Out[74]=

A quick check that 50 vertices are returned and that the ratio of edges to possible edges is

approximately equal to the probability we specified.

5.6 Examples: exercises 175

In[75]:= VertexCount[gr], N@GraphDensity[gr]

Out[75]= {50, 0.114286}

Several exercises in Chapter 6 ask you to bundle up the code here and turn it into a reusable

function inheriting options from Graph.

As an aside, the above functionality is built into BernoulliGraphDistribution[�, ��] which

constructs an n-vertex graph, starting with an edge connecting every pair of vertices and then

selects edges independently via a Bernoulli trial with probability pr.

In[76]:= RandomGraphBernoulliGraphDistribution[50, 0.12]

Out[76]=

First construct the grid for the n2
 elements, partitioning on n.11.

In[77]:= n = 7;

lis = PartitionRangen2, n;

Gridlis, Frame → All

Out[79]=

1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 32 33 34 35
36 37 38 39 40 41 42
43 44 45 46 47 48 49

Extract the positions of the prime elements.

In[80]:= Positionlis, p_ /; PrimeQ[p]

Out[80]= {{1, 2}, {1, 3}, {1, 5}, {1, 7}, {2, 4}, {2, 6}, {3, 3},

{3, 5}, {4, 2}, {5, 1}, {5, 3}, {6, 2}, {6, 6}, {7, 1}, {7, 5}}

In[81]:= Positionlis, p_?PrimeQ

Out[81]= {{1, 2}, {1, 3}, {1, 5}, {1, 7}, {2, 4}, {2, 6}, {3, 3},

{3, 5}, {4, 2}, {5, 1}, {5, 3}, {6, 2}, {6, 6}, {7, 1}, {7, 5}}

Map a rule of the form �������� → Pink across the positions of the prime numbers.

In[82]:= Map# → Pink &, Positionlis, p_?PrimeQ

Out[82]= {1, 2} → , {1, 3} → , {1, 5} → , {1, 7} → , {2, 4} → ,

{2, 6} → , {3, 3} → , {3, 5} → , {4, 2} → , {5, 1} → ,

{5, 3} → , {6, 2} → , {6, 6} → , {7, 1} → , {7, 5} →

176 Essentials of Programming in Mathematica

Use the rules with the Background option to Grid.

In[83]:= n = 7;

lis = PartitionRangen2, n;

Gridlis,

Frame → All,

Background → Join{None, None}, Map# → Pink &, Positionlis, p_?PrimeQ

Out[85]=

1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 32 33 34 35
36 37 38 39 40 41 42
43 44 45 46 47 48 49

In[86]:= Clearn, lis

Start with a prototype logical expression.12.

In[87]:= Clear[A, B]

In[88]:= expr = (A || B) ⇒ C;

In[89]:= vars = {A, B, C};

List all the possible truth value assignments for the variables.

In[90]:= tuples = TuplesTrue, False, Length[vars]

Out[90]= {{True, True, True}, {True, True, False},

{True, False, True}, {True, False, False}, {False, True, True},

{False, True, False}, {False, False, True}, {False, False, False}}

Next, create a list of rules, associating each of the triples of truth values with a triple of variables.

In[91]:= rules = MapThread[vars → #] &, tuples

Out[91]= {{A → True, B → True, C → True}, {A → True, B → True, C → False},

{A → True, B → False, C → True}, {A → True, B → False, C → False},

{A → False, B → True, C → True}, {A → False, B → True, C → False},

{A → False, B → False, C → True}, {A → False, B → False, C → False}}

Replace the logical expression with each set of rules.

In[92]:= expr /. rules

Out[92]= {True, False, True, False, True, False, True, True}

Put these last values at the end of each “row” of the tuples.

5.6 Examples: exercises 177

In[93]:= table = Transpose@JoinTransposetuples, expr /. rules

Out[93]= {{True, True, True, True}, {True, True, False, False},

{True, False, True, True}, {True, False, False, False},

{False, True, True, True}, {False, True, False, False},

{False, False, True, True}, {False, False, False, True}}

Create a header for table.

In[94]:= head = Appendvars, TraditionalForm[expr]

Out[94]= A, B, C, A B ⇒ C

Prepend head to table.

In[95]:= Prependtable, head

Out[95]= A, B, C, A B ⇒ C, {True, True, True, True}, {True, True, False, False},

{True, False, True, True}, {True, False, False, False},

{False, True, True, True}, {False, True, False, False},

{False, False, True, True}, {False, False, False, True}

Pour into a grid.

In[96]:= GridPrependtable, head

Out[96]=

A B C A B ⇒ C
True True True True
True True False False
True False True True
True False False False
False True True True
False True False False
False False True True
False False False True

Replace True with "T" and False with "F".

In[97]:= GridPrependtable /. True → "T", False → "F", head

Out[97]=

A B C A B ⇒ C
T T T T
T T F F
T F T T
T F F F
F T T T
F T F F
F F T T
F F F T

Add formatting via options to Grid.

178 Essentials of Programming in Mathematica

In[98]:= GridPrependtable /. True → "T", False → "F", head,

Frame → True, Dividers → -2 → LightGray, 2 → LightGray,

ItemStyle → "Menu", 7

Out[98]=

� � � �� ⇒ �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

A simple “melody” with no correlation can be generated by randomly selecting notes from a

scale. First we generate the frequencies of the 12 semitones from a C major scale. This is just a

chromatic scale beginning with middle C.

13.

In[99]:= cmajor = TableSoundNotei, i, 0, 11

Out[99]= {SoundNote[0], SoundNote[1], SoundNote[2], SoundNote[3],

SoundNote[4], SoundNote[5], SoundNote[6], SoundNote[7],

SoundNote[8], SoundNote[9], SoundNote[10], SoundNote[11]}

Here is a list of ten notes randomly selected from the C major scale.

In[100]:= SoundRandomChoicecmajor, 10

Out[100]=

�� �

Add some rests and randomize the durations of each note. The symbol None is interpreted by

Sound as a rest.

In[101]:= notes = Join[{None}, Range[0, 11]]

Out[101]= {None, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

In[102]:= durations = Range[1/8, 1, 1/8]

Out[102]=
1

8
,
1

4
,
3

8
,
1

2
,
5

8
,
3

4
,
7

8
, 1

In[103]:= MapThreadSoundNote[#1, #2] &,

RandomChoice[notes, 8], RandomChoicedurations, 8

Out[103]= SoundNote[4, 1], SoundNote9,
1

8
, SoundNote[1, 1], SoundNote9,

7

8
,

SoundNote3,
1

8
, SoundNote2,

3

8
, SoundNote3,

1

2
, SoundNote3,

1

2

5.6 Examples: exercises 179

In[104]:= Sound[%]

Out[104]=

��� �

Here then is a function that takes the number of notes and the instrument as arguments.

In[105]:= RandomNotesn_Integer, instrument_ : "Piano" :=

Withnotes = Join[{None}, Range[0, 11]], durations = Range
1

8
, 1,

1

8
,

Soundinstrument, MapThreadSoundNote[#1, #2] &,

RandomChoice[notes, n], RandomChoicedurations, n

In[106]:= RandomNotes20, "Vibraphone"

Out[106]=

���� �

First set up the options structure.14.

In[107]:= OptionsBrownianSoundList = Weights → Automatic;

In[108]:= BrownianSoundListsteps_Integer, instr_: "Vibraphone", OptionsPattern[] :=

Modulewalk, durs, weights,

weights = IfOptionValueWeights === Automatic, Table[1/9, {9}],

OptionValueWeights;

walk[n_] := AccumulateRandomChoiceweights → Range[-4, 4], n;

durs = RandomChoice[Range[1/16, 1, 1/16], {steps}];
Sound@MapThreadSoundNote#1, #2, instr &, walk[steps], durs

In[109]:= BrownianSoundList18, "Vibraphone" // EmitSound

In[110]:= BrownianSoundList18, "Marimba",

Weights → Abs@RandomVariateNormalDistribution[0, 4], 9 // EmitSound

(* solution to appear *)15.
Start with one hundred points.16.

In[111]:= data = RandomReal[{-1, 1}, {100, 2}];

Partition into eight clusters.

180 Essentials of Programming in Mathematica

In[112]:= clusters = FindClustersdata, 8;

ListPlotclusters, PlotStyle → PointSize@Medium

Out[113]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

The centroid and color computations are as before.

In[114]:= centroids = MapMean, clusters

Out[114]= {{0.813483, -0.257487}, {-0.664783, 0.609614},

{0.0631635, -0.0791516}, {-0.473583, -0.731627}, {-0.446728, 0.04197},

{0.389006, -0.792897}, {0.514577, 0.263179}, {0.683372, 0.871155}}

In[115]:= colors = TakeColorData1, "ColorList", Lengthclusters

Out[115]= , , , , , , ,

To find the distance from each centroid to the point in its cluster farthest away, we want the

max of the set of distances between the cluster and the points in that cluster.

In[116]:= distances = Table

Max@MapEuclideanDistancecentroidsi, # &, clustersi,

i, 1, Lengthclusters

Out[116]= {0.429688, 0.479782, 0.516458, 0.435077, 0.355637, 0.411775, 0.364234, 0.30396}

The code to create the disks is identical to that in this section.

In[117]:= disks = MapThread#1, Disk[#2, #3] &, colors, centroids, distances;

5.6 Examples: exercises 181

In[118]:= ListPlotclusters, PlotStyle → colors, AspectRatio → Automatic, Epilog →

PointSizeMedium, Pointcentroids,

Opacity[0.25], EdgeForm[Gray], disks, PlotRangePadding → .35

Out[118]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

First create a set of points with which to prototype. Choose a small set to make it easier to

inspect the progress.
17.

In[119]:= SeedRandom[6];

pts = RandomInteger[40, {10, 2}]

Out[120]= {{16, 18}, {28, 12}, {25, 35}, {10, 13},

{26, 12}, {24, 15}, {30, 34}, {5, 0}, {16, 38}, {1, 6}}

Next, choose a point at random from this set of points.

In[121]:= base = RandomChoice[pts]

Out[121]= {16, 38}

Add it to a list path that we will maintain as the algorithm progresses.

In[122]:= path = base

Out[122]= {{16, 38}}

Next, create a list of all those points with this base points deleted, resetting pts to this new

value.

In[123]:= pts = Complementpts, path

Out[123]= {{1, 6}, {5, 0}, {10, 13}, {16, 18},

{24, 15}, {25, 35}, {26, 12}, {28, 12}, {30, 34}}

Find the point nearest this list of points. Call it the new base point.

In[124]:= base = First@Nearestpts, path

Out[124]= {{25, 35}}

Add this new base point to existing list path and reset the value of path:

182 Essentials of Programming in Mathematica

In[125]:= path = Joinpath, base

Out[125]= {{16, 38}, {25, 35}}

Iterate:

In[126]:= SeedRandom[6];

pts = RandomInteger[40, {10, 2}];

base = RandomChoice[pts];

path = base;

Do

pts = Complementpts, path;

base = First@Nearestpts, path;

path = Joinpath, base,

Length[pts] - 1;

path

Out[131]= {{16, 38}, {25, 35}, {30, 34}, {16, 18},

{24, 15}, {10, 13}, {26, 12}, {28, 12}, {1, 6}, {5, 0}}

Find the length of the path, connecting the last point to the first to make a closed loop.

In[132]:= ArcLengthLinepath /. a_, b__ ⧴ a, b, a // N

Out[132]= 150.993

Compare the built-in function for finding shortest tours. The first element in the returned list is

the length of the tour and the second element is the ordering on the positions of the points in

the tour.

In[133]:= SeedRandom[6];

pts = RandomInteger[40, {10, 2}];

FindShortestTour[pts]

Out[135]= 27 + 3 10 + 2 13 + 26 + 61 + 3 65 + 130 + 397 ,

{1, 4, 10, 8, 5, 2, 6, 7, 3, 9, 1}

In[136]:= N[%[[1]]]

Out[136]= 112.121

First, create 1000 points in the unit square.18.

In[137]:= pts = RandomReal[{-1, 1}, {1000, 2}];

Next create regions that represent the unit disk and unit square.

In[138]:= = Disk[{0, 0}, 1];

 = Polygon[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}, {-1, -1}}];

5.6 Examples: exercises 183

Now select those point that are members of the disk region. You could use Select or Count.

In[140]:= Length@Selectpts, RegionMember[, #] &

Out[140]= 782

In[141]:= Countpts, p_ /; RegionMember[, p]

Out[141]= 782

The following ratio is a crude approximation to π /4.

In[142]:= Length@Selectpts, RegionMember[, #] &Length[pts]

Out[142]=

391

500

In[143]:= 4 N[%]

Out[143]= 3.128

184 Essentials of Programming in Mathematica

6
Programs

Scoping constructs: exercises6.1
The condition number of a square matrix gives a measure of how close the matrix is to being

singular. First proposed by Alan Turing, it is often defined as the ratio of the largest singular
value of the matrix to the smallest singular value. The condition number can give a sense of
how much the solution of the matrix equation A.x = b can change for small perturbations of
the vector b.

1.

Create a function ConditionNumber[���] that takes a square matrix mat and returns its

condition number. Then test it on several Hilbert matrices (HilbertMatrix), which are

known to have very large condition numbers, thus rendering numerical computations with

them problematic from a precision point of view.
Turn the random graph example in Exercise 10, Section 5.6 into a function

RandomGraphGnp[�, �] that returns a random graph on n vertices with edges chosen ran-
domly (BernoulliDistribution) using probability p.

2.

Create a function EquilateralTriangleQ that takes a Triangle object as an argument and

returns a value of True if that triangle is equilateral and returns a value of False if it is not. A

triangle is equilateral if the lengths of its three sides are identical. Create two implementations,
one using EuclideanDistance to measure the side lengths and another using ArcLength with

MeshRegion and MeshPrimitives.

3.

Based on the row-switching example in this section, create a function to swap matrix columns.4.

Rewrite the function FindSubsequence from Exercise 7, Section 4.3 using Module to localize

the length of the subsequence subseq.
5.

The PerfectSearch function defined in Exercise 6, Section 5.1 is impractical for checking large

numbers because it has to check all numbers from 1 through n. It is inefficient to check all
numbers from 1 to 1000 if you are only looking for perfect numbers in the range 500 to 1000.
Modify PerfectSearch so that it is self-contained, defining the perfect predicate inside the

body of the function. Also, set up the argument structure to accept two numbers as input and

6.

have the function output all perfect numbers between those inputs. For example,
PerfectSearch[�, �] will return a list of all perfect numbers in the range from a to b.

A number n is k-perfect if the sum of its proper divisors equals k n. Redefine PerfectSearch

from the previous exercise so that it accepts as input two numbers a and b, a positive integer k,
and computes all k-perfect numbers in the range from a to b. Use your rule to find the only

three 4-perfect numbers less than 2 200 000.

7.

Often in processing files you are presented with expressions that need to be converted into a

format that can be more easily manipulated. For example, a file may contain dates in the form

20160702 to represent July 2, 2016. Mathematica represents its dates as a list in the following

form:

8.

{����, �����, ���, ����, �������, �������}

Write a function convertToDate[�] to convert a number consisting of eight digits such as

20160702 into a list of the form {2016, 7, 2}.

In[1]:= convertToDate[20160702]

Out[1]= {2016, 7, 2}

Create a function zeroColumns[���, � ;; �] that zeros out columns m through n in matrix

���. Include rules to handle the cases of zeroing out one column or a list of nonconsecutive

columns.

9.

Following on the code for the one-dimensional random walk, create a function walk2D[�]

that generates n steps of a two-dimensional random walk on the integer lattice (see Exercise 8,
Section 2.1). For such a walk, the directions can be thought of as the two-dimensional vectors

{0, 1}, {0, -1}, {1, 0}, and {-1, 0} pointing in the direction of the compass directions north,
south, east, and west. Then create a function walk3D[�] that returns an n-step random walk

on the three-dimensional integer lattice.

10.

Solutions6.1
Let us start with the 3⨯3 Hilbert matrix.1.

In[1]:= mat = HilbertMatrix[3]

Out[1]= 1,
1

2
,
1

3
,

1

2
,
1

3
,
1

4
,

1

3
,
1

4
,
1

5

Here are its singular values:

In[2]:= sv = SingularValueList[mat]

Out[2]= Root-1 + 138537 #1 - 9323424 #12 + 4665600 #13 &, 3,

Root-1 + 138537 #1 - 9323424 #12 + 4665600 #13 &, 2,

Root-1 + 138537 #1 - 9323424 #12 + 4665600 #13 &, 1

186 Essentials of Programming in Mathematica

We are interested in the ratio of the largest to the smallest.

In[3]:= NMax[sv]Min[sv]

Out[3]= 524.057

Actually, SingularValueList returns the singular values ordered from greatest to smallest. So

we can speed up the computation by only pulling off those positions rather than computing

maximum and minimum values.

In[4]:= NFirst[sv]Last[sv]

Out[4]= 524.057

Here is the function definition. We use Module to localize a variable sv that is used in the body

of the function. Also, the definition given in the exercise is good for square matrices so we do

some argument checking on the left-hand side of the definition.

In[5]:= ConditionNumbermat_?SquareMatrixQ := Modulesv = SingularValueList[mat],

First[sv]Last[sv]

Here are the condition numbers for the first five Hilbert matrices

In[6]:= TableConditionNumberHilbertMatrixi, i, 1, 5 // N

Out[6]= {1., 19.2815, 524.057, 15513.7, 476607.}

And this tests with a known pathological example of a 4⨯4 matrix (Rump 1991).

In[7]:= mat = {{-5 046135670319638, -3871391041510136, -5206336348183639,

-6745986988231149}, {-640 032173419322, 8694411469684959,

-564323984386760, -2807912511823001},

{-16935782447203334, -18752427538303772, -8188807358110413,

-14820968618548534}, {-1 069537498856711, -14079150289610606,

7074216604373039, 7257960283978710}};

In[8]:= ConditionNumber[mat] // N

Out[8]= 6.41354×1064

Here are the code fragments from Exercise 10 in Section 5.6.2.

In[9]:= With{n = 25, p = .2},

cg = CompleteGraph[n];

probs = RandomVariateBernoulliDistribution[p], EdgeCount[cg];

GraphPickEdgeRules[cg], probs, 1, DirectedEdges → False

Out[9]=

6.1 Scoping constructs: exercises 187

And here is the function, localizing cg and probs.

In[10]:= RandomGraphGnp[n_, p_] := Modulecg = CompleteGraph[n], probs,

probs = RandomVariateBernoulliDistribution[p], EdgeCount[cg];

GraphPickEdgeRules[cg], probs, 1, DirectedEdges → False

In[11]:= RandomGraphGnp[50, .15]

Out[11]=

Start by creating a prototypical triangle to work with.3.

In[12]:= pts = {0, 0}, {1, 0}, 1/2, 3 2;

In[13]:= tri = Triangle[pts]

Out[13]= Triangle{0, 0}, {1, 0},
1

2
,

3

2

To measure the lengths of the sides, create all possible pairs of the points and apply

EuclideanDistance (at level one).

In[14]:= ApplyEuclideanDistance, Subsets[pts, {2}], {1}

Out[14]= {1, 1, 1}

Finally, check if all distances are equal.

In[15]:= ApplyEqual, %

Out[15]= True

Here then is the first implementation:

In[16]:= EquilateralTriangleQTriangle[pts : {__}] := Moduledists,

dists = ApplyEuclideanDistance, Subsets[pts, {2}], {1};

ApplyEqual, dists

To use the region framework, first generate a mesh region from the coordinate points. MeshRe
gion takes two arguments: a list of coordinates and a region (in our case, Triangle) specified

by the coordinate indices.

In[17]:= = MeshRegionpts, Triangle[{1, 2, 3}]

188 Essentials of Programming in Mathematica

Out[17]=

The lines are the one-dimensional primitives in this region.

In[18]:= MeshPrimitives[, 1]

Out[18]= {Line[{{0., 0.}, {1., 0.}}],

Line[{{1., 0.}, {0.5, 0.866025}}], Line[{{0.5, 0.866025}, {0., 0.}}]}

Here are their lengths:

In[19]:= MapArcLength, %

Out[19]= {1., 1., 1.}

Here then is the implementation using regions.

In[20]:= EquilateralTriangleQTriangle[pts : {__}] := Moduledists,

dists = MapArcLength, MeshPrimitivesMeshRegionpts, Triangle[{1, 2, 3}],

1;

ApplyEqual, dists

In[21]:= tri = Triangle[{{-1, 0}, {1, 0}, {2, 1}}];

Graphicstri

Out[22]=

In[23]:= EquilateralTriangleQtri

Out[23]= False

In[24]:= pts = {0, 0}, {1, 0}, 1/2, 3 2;

EquilateralTriangleQTriangle[pts]

Out[25]= True

Switching columns is basically switching rows of the transposed matrix and then transposing

back.
4.

In[26]:= switchRows[mat_, {r1_, r2_}] := Modulelmat = mat,

lmat[[{r1, r2}]] = lmat[[{r2, r1}]];
lmat

In[27]:= switchColumns[mat_, {c1_, c2_}] :=

Transpose@switchRows[Transpose[mat], {c1, c2}]

6.1 Scoping constructs: exercises 189

In[28]:= mat = a, b, c, d, e, f, g, h, i;

switchColumns[mat, {2, 3}] // MatrixForm
Out[29]//MatrixForm=

a c b
d f e
g i h

The FindSubsequence function from Section 4.3 computed Length[������] twice on the right-
hand side of the definition. Setting up a local variable len that computes this value as part of the

initialization shortens the code and makes it a bit more efficient.

5.

In[30]:= FindSubsequencedigits_List, subseq_List := Modulelen = Lengthsubseq,

PositionPartitiondigits, len, 1, subseq /.

num_?IntegerQ ⧴ num, num + len - 1

In[31]:= pidigs = FirstRealDigitsπ, 10, 107, -1;

In[32]:= FindSubsequencepidigs, {3, 1, 4, 1, 5, 9} // Timing

Out[32]= {10.2822, {{176451, 176456},

{1259351, 1259356}, {1761051, 1761056}, {6467324, 6467329},

{6518294, 6518299}, {9753731, 9753736}, {9973760, 9973765}}}

The following function creates a local function perfectQ using the Module construct. It then

checks every other number between n and m by using a third argument to the Range function.
6.

In[33]:= PerfectSearch[n_, m_] := ModuleperfectQ,

perfectQj_ := DivisorSigma1, j ⩵ 2 j;

SelectRange[n, m, 2], perfectQ

In[34]:= PerfectSearch2, 107 // Timing

Out[34]= {26.3649, {6, 28, 496, 8128}}

This function does not guard against the user supplying “bad” inputs. For example, if the user
starts with an odd number, then this version of PerfectSearch will check every other odd

number, and, since it is known that there are no odd perfect numbers below at least 10300, none

is reported.

In[35]:= PerfectSearch[1, 10000]

Out[35]= {}

You can fix this situation by using the (as yet unproved) assumption that there are no odd

perfect numbers. This next version first checks that the first argument is an even number.

In[36]:= ClearPerfectSearch

In[37]:= PerfectSearchn_?EvenQ, m_ := ModuleperfectQ,

perfectQj_ := TotalDivisorsj ⩵ 2 j;

SelectRange[n, m, 2], perfectQ

190 Essentials of Programming in Mathematica

Now, the function only works if the first argument is even.

In[38]:= PerfectSearch[2, 10000]

Out[38]= {6, 28, 496, 8128}

In[39]:= PerfectSearch[1, 1000]

Out[39]= PerfectSearch[1, 1000]

This function requires a third argument.7.

In[40]:= ClearPerfectSearch;

PerfectSearchn_, m_, k_ := ModuleperfectQ,

perfectQj_ := TotalDivisorsj ⩵ k j;

SelectRange[n, m], perfectQ

The following computation can be quite time consuming and requires a fair amount of mem-
ory to run to completion. If your computer’s resources are limited, you should split up the

search intervals into smaller units or try running this in parallel. See Section 9.2 for a discussion

on how to set up parallel computation.

In[42]:= PerfectSearch[1, 2200000, 4] // AbsoluteTiming

Out[42]= {21.925, {30240, 32760, 2178540}}

Many implementations are possible for convertToDate. The task is made easier by observing

that DateList handles this task directly if its argument is a string.
8.

In[43]:= DateList"20151015"

Out[43]= {2015, 10, 15, 0, 0, 0.}

The string is necessary otherwise DateList will interpret the integer as an absolute time (from

Jan 1 1900).

In[44]:= DateList[20151015]

Out[44]= {1900, 8, 22, 5, 30, 15.}

So we need to convert the integer to a string first,

In[45]:= DateListToString[20151015]

Out[45]= {2015, 10, 15, 0, 0, 0.}

and then take the first three elements.

In[46]:= Take[%, 3]

Out[46]= {2015, 10, 15}

Here is the function that puts these steps together.

In[47]:= convertToDate[n_Integer] := TakeDateListToString[n], 3

6.1 Scoping constructs: exercises 191

In[48]:= convertToDate[20151015]

Out[48]= {2015, 10, 15}

With a bit more manual work, you could also do this with StringTake.

In[49]:= convertToDate2n_Integer /; LengthIntegerDigits[n] ⩵ 8 :=

Modulestr = ToString[n],

StringTake[str, 4], StringTake[str, {5, 6}], StringTake[str, -2]

In[50]:= convertToDate2[20151015]

Out[50]= {2015, 10, 15}

You could avoid working with strings by making use of FromDigits. This uses With to create a

local constant d, as this expression never changes throughout the body of the function.

In[51]:= convertToDate3[num_] := Withd = IntegerDigits[num],

FromDigitsTaked, 4,

FromDigitsTaked, {5, 6},

FromDigitsTaked, {7, 8}

In[52]:= convertToDate3[20151015]

Out[52]= {2015, 10, 15}

The computation of zeroing out one or more columns of a matrix can be handled with list
component assignment. We need to use a local variable here to avoid changing the original
matrix.

9.

In[53]:= mat = RandomReal[1, {5, 5}];

MatrixForm[mat]
Out[54]//MatrixForm=

0.560325 0.895832 0.087212 0.889873 0.405831
0.626251 0.787507 0.45469 0.384032 0.892384
0.296374 0.505962 0.319666 0.327262 0.825282
0.121677 0.0413138 0.994354 0.0078785 0.77109
0.205495 0.959287 0.337399 0.940264 0.900914

Here is a rule for zeroing out one column:

In[55]:= zeroColumns[mat_, n_Integer] := Modulelmat = mat,

lmatAll, n = 0;

lmat

This next rule is for zeroing out a range of columns:

In[56]:= zeroColumns[mat_, Span[m_, n_]] := Modulelmat = mat,

lmatAll, m ;; n = 0;

lmat

We also need a final rule for zeroing out a discrete set of columns whose positions are given by

a list.

192 Essentials of Programming in Mathematica

In[57]:= zeroColumnsmat_, lis : {__} := Modulelmat = mat,

lmatAll, lis = 0;

lmat

In[58]:= zeroColumns[mat, 3] // MatrixForm
Out[58]//MatrixForm=

0.560325 0.895832 0 0.889873 0.405831
0.626251 0.787507 0 0.384032 0.892384
0.296374 0.505962 0 0.327262 0.825282
0.121677 0.0413138 0 0.0078785 0.77109
0.205495 0.959287 0 0.940264 0.900914

In[59]:= zeroColumns[mat, 1 ;; 2] // MatrixForm

Out[59]//MatrixForm=

0 0 0.087212 0.889873 0.405831
0 0 0.45469 0.384032 0.892384
0 0 0.319666 0.327262 0.825282
0 0 0.994354 0.0078785 0.77109
0 0 0.337399 0.940264 0.900914

In[60]:= zeroColumns[mat, {1, 3, 5}] // MatrixForm

Out[60]//MatrixForm=

0 0.895832 0 0.889873 0
0 0.787507 0 0.384032 0
0 0.505962 0 0.327262 0
0 0.0413138 0 0.0078785 0
0 0.959287 0 0.940264 0

Here is the code for the two-dimensional walk. Except for the direction vectors, it is identical
to the code for the one-dimensional walk.

10.

In[61]:= walk2D[t_] := Moduledirs, steps,

dirs = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};

steps = RandomChoicedirs, {t};

Accumulate[steps]

Try it out for a small number of steps and a large number of steps.

In[62]:= ListLinePlotwalk2D[250], AspectRatio → 1

Out[62]= -8 -6 -4 -2 2 4 6

-6

-4

-2

2

4

6

6.1 Scoping constructs: exercises 193

In[63]:= ListLinePlotwalk2D[25000], AspectRatio → 1, PlotStyle → Thin

Out[63]=

-100 -50 50

-20

20

40

60

80

100

120

A bit of thought is needed to come up with the eight directions in the three-dimensional integer
lattice.

In[64]:= dirs3 = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {-1, 0, 0}, {0, -1, 0}, {0, 0, -1}};

Here then is the three-dimensional walk function.

In[65]:= walk3D[t_] := AccumulateRandomChoicedirs3, t

And here is a 2500-step walk on the three-dimensional integer lattice.

In[66]:= Graphics3DLinewalk3D[2500]

Out[66]=

Options and messages: exercises6.2
Modify the random graph example in Exercise 2, Section 6.1 to inherit options from Graph.1.

In Section 6.1 we developed a function switchRows that interchanged two rows in a matrix.
Create a message for this function that is issued whenever a row index greater than the size of
the matrix is used as an argument. For example,

2.

In[1]:= mat = RandomInteger[{0, 9}, {4, 4}];

MatrixForm[mat]

Out[2]//MatrixForm=

8 0 9 2
7 2 1 9
4 5 0 4
2 8 6 4

194 Essentials of Programming in Mathematica

In[3]:= switchRows[mat, {5, 2}]

switchRows::badargs : The absolute value of the row indices 5 and

2 in switchRows[mat,{5,2}] must be between 1 and 4, the size of the matrix.

Out[3]= {{8, 0, 9, 2}, {7, 2, 1, 9}, {4, 5, 0, 4}, {2, 8, 6, 4}}

You should also trap for a row index of zero.

In[4]:= switchRows[mat, {0, 2}]

switchRows::badargs : The absolute value of the row indices 0 and

2 in switchRows[mat,{0,2}] must be between 1 and 4, the size of the matrix.

Out[4]= {{8, 0, 9, 2}, {7, 2, 1, 9}, {4, 5, 0, 4}, {2, 8, 6, 4}}

Create an error message for StemPlot, developed in this section, so that an appropriate

message is issued if the argument is not a list of numbers.
3.

Extend the definitions for ToEdges from Exercise 15, Section 5.1 to include an option to output
directed or undirected edges.

4.

The function MultiplyCount given in the solution to Exercise 7, Section 4.2 does not check

that the expression passed to it is in fact a polynomial. Rewrite this function so that
MultiplyCount[����, ���] checks that poly is a polynomial in the independent variable var
and issues an appropriate message if the polynomial test fails.

5.

Solutions6.2
First, set up the options inherited from Graph.1.

In[1]:= OptionsRandomGraphGnp = OptionsGraph;

In[2]:= RandomGraphGnpn_, p_, opts : OptionsPattern[] := Modulecg, probs,

cg = CompleteGraph[n];
probs = RandomVariateBernoulliDistribution[p], EdgeCount[cg];

GraphPickEdgeRules[cg], probs, 1, opts, DirectedEdges → False

Alternatively, you could use RandomChoice to pick the True/False values.

In[3]:= RandomGraphGnpn_, p_, opts : OptionsPattern[] := Modulecg, probs,

cg = CompleteGraph[n];
probs = RandomChoice{p, 1 - p} → True, False, EdgeCount[cg];

GraphPickEdgeRules[cg], probs, opts, DirectedEdges → False

Exercise the options.

6.2 Options and messages: exercises 195

In[4]:= RandomGraphGnp30, .2, VertexSize → Large, VertexStyle → Red, EdgeStyle → Thin

Out[4]=

The message will slot in the values of the row indices being passed to the function switchRows,
as well as the length of the matrix, that is, the number of matrix rows.

2.

In[5]:= switchRows::badargs =

"The absolute value of the row indices `1` and `2` in switchRows[mat,`1`,`2`]

must be between 1 and `3`, the size of the matrix.";

The message is issued if either of the row indices have absolute value greater than the length of
the matrix or if either of these indices is equal to zero.

In[6]:= switchRows[mat_, {r1_Integer, r2_Integer}] :=

Modulelmat = mat, len = Length[mat],

IfAbs[r1] > len || Abs[r2] > len || r1 r2 ⩵ 0,

MessageswitchRows::badargs, r1, r2, len,

lmat[[{r1, r2}]] = lmat[[{r2, r1}]];

lmat

In[7]:= mat = RandomInteger[9, {4, 4}];

MatrixForm[mat]

Out[8]//MatrixForm=

4 8 5 4
4 4 3 7
0 5 7 3
8 4 1 7

In[9]:= switchRows[mat, {0, 4}]

switchRows::badargs :
The absolute value of the row indices 0 and 4 in switchRows[mat,0,4] must

be between 1 and 4, the size of the matrix.

Out[9]= {{4, 8, 5, 4}, {4, 4, 3, 7}, {0, 5, 7, 3}, {8, 4, 1, 7}}

In[10]:= switchRows[mat, {2, 8}]

switchRows::badargs :
The absolute value of the row indices 2 and 8 in switchRows[mat,2,8] must

be between 1 and 4, the size of the matrix.

Out[10]= {{4, 8, 5, 4}, {4, 4, 3, 7}, {0, 5, 7, 3}, {8, 4, 1, 7}}

If the first argument is not a list containing numbers, then issue a message.3.

In[11]:= MatchQ{1, 2, a}, __?NumericQ

Out[11]= False

196 Essentials of Programming in Mathematica

Here is the message:

In[12]:= StemPlot::badarg = "The first argument to StemPlot must be a list of numbers.";

In[13]:= OptionsStemPlot = OptionsListPlot;

In[14]:= StemPlotlis_, opts : OptionsPattern[] :=

IfMatchQlis, __?NumericQ,

ListPlotlis, opts, Filling → Axis,

MessageStemPlot::badarg

In[15]:= StemPlot[4]

StemPlot::badarg : The �rst argument to StemPlot must be a list of numbers.

In[16]:= StemPlot[{1, 2, c}]

StemPlot::badarg : The �rst argument to StemPlot must be a list of numbers.

In[17]:= StemPlot[{1, 2, 3, 4, 5}]

Out[17]=

1 2 3 4 5

1

2

3

4

5

First set up the option for ToEdges.4.

In[18]:= OptionsToEdges = DirectedEdges → True;

In[19]:= ToEdgeslis : {{_, _} ..}, OptionsPattern[] :=

IfOptionValueDirectedEdges, DirectedEdge @@@ lis, UndirectedEdge @@@ lis

In[20]:= ToEdgeslis : {_, _}, OptionsPattern[] :=

IfOptionValueDirectedEdges, DirectedEdge @@ lis, UndirectedEdge @@ lis

In[21]:= pairs = Partition[Range[5], 2, 1]

Out[21]= {{1, 2}, {2, 3}, {3, 4}, {4, 5}}

In[22]:= ToEdgespairs

Out[22]= {1 2, 2 3, 3 4, 4 5}

In[23]:= ToEdgespairs, DirectedEdges → False

Out[23]= {1 2, 2 3, 3 4, 4 5}

We use If to check if the expression expr is a polynomial in the independent variable var. If it is,
use the same code from Exercise 7, Section 4.2 to count the number of multiplies. If the test fails,
then issue a message.

5.

6.2 Options and messages: exercises 197

In[24]:= MultiplyCount[expr_, var_] :=

IfPolynomialQ[expr, var],

Total@Cases{expr}, Power[_, exp_]⧴ exp - 1, Infinity +

Total@Cases{expr}, fac_Times ⧴ Lengthfac - 1, Infinity,

MessageMultiplyCount::poly, expr

Note that we have done something a bit different here. We have used an internal usage message

poly with our MultiplyCount function. Here is the message issued by the built-in function

PolynomialRemainder.

In[25]:= PolynomialRemainder[{3 x}, x + a, x]

PolynomialRemainder::poly : {3 x} is not a polynomial.

Out[25]= PolynomialRemainder[{3 x}, a + x, x]

In[26]:= MultiplyCounta x4 + b x + 1, x

MultiplyCount::poly : 1 + b x + a x4 is not a polynomial.

In[27]:= MultiplyCounta x4 + b x + 1, x

Out[27]= 5

Examples: exercises6.3
Add a message to the RandomWalk function developed in this chapter so that a warning is

issued when a nonpositive integer is given as the first argument to RandomWalk.
1.

Consider a sequence of numbers generated by the following iterative process: starting with the

list of odd integers 1, 3, 5, 7, …, the first odd number greater than 1 is 3, so delete every third

number from the list; from the list of remaining numbers, the next number is 7, so delete every

seventh number; and so on. The numbers that remain are referred to as lucky numbers. Use a

sieving method to find all lucky numbers less than 1000. See Weisstein (Lucky Number) for
more information.

2.

Create a function TruthTable[����, ����] that takes a logical expression such as A B and

outputs a truth table similar to those in Section 2.4. You can create a list of truth values using

Tuples:

3.

In[1]:= TuplesTrue, False, 2

Out[1]= {{True, True}, {True, False}, {False, True}, {False, False}}

You will also find it helpful to consider threading rules over the tuples using MapThread or
Thread. Alternatively, consider using the built-in function BooleanTable.

198 Essentials of Programming in Mathematica

http://mathworld.wolfram.com/LuckyNumber.html

Given a list of expressions, lis, create a function NearTo[���, ����, {�}}] that returns all
elements of lis that are exactly n positions away from elem, which is assumed to be a member of
lis. For example:

4.

In[2]:= chars = CharacterRange"a", "z"

Out[2]= a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z

In[3]:= NearTochars, "q", {3}

Out[3]= {{n}, {t}}

Write a second rule, NearTo[���, ����, �], that returns all elements in lis that are within n

positions of elem.

In[4]:= NearTochars, "q", 4

Out[4]= {{m, n, o, p, q, r, s, t, u}}

Finally, create your own distance function (DistanceFunction) and use it with the built-in

Nearest to do the same computation. Two useful functions for these tasks are Position and

Extract. Extract[����, ���] returns elements from expr whose positions pos are given by

Position.

A Smith number is a composite number such that the sum of its digits is equal to the sum of the

digits of its prime factors. For example, the prime factorization of 852 is 22 ·31 ·711, and so the

sum of the digits of its prime factors is 2 + 2 + 3 + 7 + 1 = 15, which is equal to the sum of its

digits, 8 + 5 + 2 = 15. Write a program to find all Smith numbers less than 10 000.

5.

Develop auxiliary functions for one-, two-, and three-dimensional off-lattice random walks.
Then create a function offLatticeWalk[�����, ���] that uses these auxiliary functions to

return an off-lattice walk of length steps, in dimension dim. Finally, modify RandomWalk to

include an option LatticeWalk that, when set to True, calls the latticeWalk auxiliary

function and when set to False, calls this new offLatticeWalk auxiliary function.

6.

Here is some code to run a bond percolation simulation on an m⨯n lattice grid. For each edge

in the grid graph gg, it creates a probability from a Bernoulli distribution (think coin flip – only

two possible outcomes) and then picks those edges that are below the threshold probability

prob.

7.

6.3 Examples: exercises 199

In[5]:= Withm = 8, n = 13, prob = 0.47,

gg = GridGraph[{m, n}];

probs = RandomVariateBernoulliDistributionprob, EdgeCount[gg];

perc = GraphPickEdgeList[gg], probs, 1;

HighlightGraph[gg, perc]

Out[5]=

Turn the above code into a function BondPercolation[{�, �}, ����, ����] that outputs a

graph like that above. Include a check on the arguments m and n, returning an appropriate

message if they are not positive integers. Finally, have your function inherit options from

Graph and pass them into the GridGraph function.

Create a function ColorResidues[���] that takes an amino acid sequence seq and returns a

visualization like that below where the amino acids are colored according to a scheme such as

Amino, where more polar residues are brighter and more nonpolar residues are colored darker.
In addition to a ColorScheme option, add options to control the frame around each residue.

8.

In[6]:= Amino = "P", , "W", , "L", , "V", , "I", , "N", ,

"Q", , "S", , "T", , "C", , "M", , "H", ,

"A", , "G", , "F", , "Y", , "K", , "R", ,

"D", , "E", ;

In[7]:= muc6 = StringTakeProteinData"MUC6", "Sequence", 75

Out[7]= MVQRWLLLSCCGALLSAGLANTSYTSPGLQRLKDSPQTAPDKGQCSTWGAGHFSTFDHHVYDFSGTCNYIFAATC

In[8]:= ColorResiduesmuc6, ColorScheme → Amino, FrameMargins → 2

Out[8]= M V Q R W L L L S C C G A L L S A G L A N T S

Y T S P G L Q R L K D S P Q T A P D K G Q C S T W G

A G H F S T F D H H V Y D F S G T C N Y I F A A T C

Solutions6.3
Here is the message text that will be issued when the first argument to RandomWalk is not a

positive integer.
1.

In[1]:= RandomWalk::rwn = "Argument `1` is not a positive integer.";

And here is the message for the Dimensions option.

200 Essentials of Programming in Mathematica

In[2]:= RandomWalk::baddim =

"The value `1` of the option Dimension is not a positive integer.";

Because we now have several conditions to trap for (non positive integer first argument, bad

value for Dimension option), it is best to use Which to catch the various conditions and set
appropriate actions.

In[3]:= latticeWalksteps_, dim_ := Module{w, mat},

mat = JoinIdentityMatrixdim, -IdentityMatrixdim;

w = AccumulateRandomChoice[mat, steps];

Ifdim ⩵ 1, Flatten[w], w

To simplify the code it is useful to have an auxiliary predicate that tests if its argument is a

positive integer.

In[4]:= PositiveIntegerQ[n_] := IntegerQ[n] && Positive[n]

In[5]:= OptionsRandomWalk = Dimension → 2;

In[6]:= RandomWalkt_, OptionsPattern[] := Moduledim, latticeQ,

dim = OptionValueDimension;

Which

! PositiveIntegerQ[t], MessageRandomWalk::rwn, t,

! PositiveIntegerQdim, MessageRandomWalk::baddim, dim,

True, latticeWalkt, dim

First check that correct results are returned for correct values of the arguments and options.

In[7]:= RandomWalk[3]

Out[7]= {{1, 0}, {1, 1}, {1, 0}}

In[8]:= RandomWalk4, Dimension → 5

Out[8]= {{0, 0, -1, 0, 0}, {0, 0, -1, 0, -1}, {0, 0, -1, 0, -2}, {0, 0, -2, 0, -2}}

Then check for bad input.

In[9]:= RandomWalk4, Dimension → -5

RandomWalk::baddim : The value -5 of the option Dimension is not a positive integer.

In[10]:= RandomWalk4.3, Dimension → -5

RandomWalk::rwn : Argument 4.3` is not a positive integer.

Start with a small list of odd numbers.2.

6.3 Examples: exercises 201

In[11]:= ints = Range[1, 100, 2]

Out[11]= {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31,

33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65,

67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99}

On the first iteration, drop every third number, that is, drop 5, 11, 17, and so on.

In[12]:= p = ints[[2]];

ints = Dropints, p ;; -1 ;; p

Out[13]= {1, 3, 7, 9, 13, 15, 19, 21, 25, 27, 31, 33, 37, 39, 43, 45, 49,

51, 55, 57, 61, 63, 67, 69, 73, 75, 79, 81, 85, 87, 91, 93, 97, 99}

Get the next number, 7, in the list ints; then drop every seventh number.

In[14]:= p = ints[[3]];

ints = Dropints, p ;; -1 ;; p

Out[15]= {1, 3, 7, 9, 13, 15, 21, 25, 27, 31, 33, 37, 43, 45,

49, 51, 55, 57, 63, 67, 69, 73, 75, 79, 85, 87, 91, 93, 97, 99}

Iterate. You will need to be careful about the upper limit of the iterator i.

In[16]:= ints = Range[1, 1000, 2];

Do

p = intsi;

ints = Dropints, p ;; -1 ;; p,

i, 2, 32

ints

Out[18]= {1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79,

87, 93, 99, 105, 111, 115, 127, 129, 133, 135, 141, 151, 159, 163, 169,

171, 189, 193, 195, 201, 205, 211, 219, 223, 231, 235, 237, 241, 259,

261, 267, 273, 283, 285, 289, 297, 303, 307, 319, 321, 327, 331, 339, 349,

357, 361, 367, 385, 391, 393, 399, 409, 415, 421, 427, 429, 433, 451, 463,

475, 477, 483, 487, 489, 495, 511, 517, 519, 529, 535, 537, 541, 553, 559,

577, 579, 583, 591, 601, 613, 615, 619, 621, 631, 639, 643, 645, 651, 655,

673, 679, 685, 693, 699, 717, 723, 727, 729, 735, 739, 741, 745, 769, 777,

781, 787, 801, 805, 819, 823, 831, 841, 855, 867, 873, 883, 885, 895, 897,

903, 925, 927, 931, 933, 937, 957, 961, 975, 979, 981, 991, 993, 997}

It would be more efficient if you did not need to manually determine the upper limit of the

iteration. A While loop is better for this task. The test checks that the value of the iterator has

not gone past the length of the successively shortened lists.

202 Essentials of Programming in Mathematica

In[19]:= LuckyNumbersn_Integer ?Positive := Modulep, i = 2, ints = Range[1, n, 2],

Whileintsi < Lengthints,

p = intsi;

ints = Dropints, p ;; -1 ;; p;

i++;

ints

In[20]:= LuckyNumbers[1000]

Out[20]= {1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79,

87, 93, 99, 105, 111, 115, 127, 129, 133, 135, 141, 151, 159, 163, 169,

171, 189, 193, 195, 201, 205, 211, 219, 223, 231, 235, 237, 241, 259,

261, 267, 273, 283, 285, 289, 297, 303, 307, 319, 321, 327, 331, 339, 349,

357, 361, 367, 385, 391, 393, 399, 409, 415, 421, 427, 429, 433, 451, 463,

475, 477, 483, 487, 489, 495, 511, 517, 519, 529, 535, 537, 541, 553, 559,

577, 579, 583, 591, 601, 613, 615, 619, 621, 631, 639, 643, 645, 651, 655,

673, 679, 685, 693, 699, 717, 723, 727, 729, 735, 739, 741, 745, 769, 777,

781, 787, 801, 805, 819, 823, 831, 841, 855, 867, 873, 883, 885, 895, 897,

903, 925, 927, 931, 933, 937, 957, 961, 975, 979, 981, 991, 993, 997}

This latter approach is also reasonably fast. Here is the time it takes to compute all lucky

numbers less than one million; there are 71 918 of them.

In[21]:= LengthLuckyNumbers106 // Timing

Out[21]= {0.302607, 71918}

Start with a prototype logical expression.3.

In[22]:= Clear[A, B]

In[23]:= expr = (A || B) ⇒ C;

In[24]:= vars = {A, B, C};

List all the possible truth value assignments for the variables.

In[25]:= tuples = TuplesTrue, False, Length[vars]

Out[25]= {{True, True, True}, {True, True, False},

{True, False, True}, {True, False, False}, {False, True, True},

{False, True, False}, {False, False, True}, {False, False, False}}

Next, create a list of rules, associating each of the triples of truth values with a triple of variables.

In[26]:= rules = MapThread[vars → #] &, tuples

Out[26]= {{A → True, B → True, C → True}, {A → True, B → True, C → False},

{A → True, B → False, C → True}, {A → True, B → False, C → False},

{A → False, B → True, C → True}, {A → False, B → True, C → False},

{A → False, B → False, C → True}, {A → False, B → False, C → False}}

Replace the logical expression with each set of rules.

6.3 Examples: exercises 203

In[27]:= expr /. rules

Out[27]= {True, False, True, False, True, False, True, True}

Put these last values at the end of each “row” of the tuples.

In[28]:= table = Transpose@JoinTransposetuples, expr /. rules

Out[28]= {{True, True, True, True}, {True, True, False, False},

{True, False, True, True}, {True, False, False, False},

{False, True, True, True}, {False, True, False, False},

{False, False, True, True}, {False, False, False, True}}

Create a header for table.

In[29]:= head = Appendvars, TraditionalForm[expr]

Out[29]= A, B, C, A B ⇒ C

Prepend head to table.

In[30]:= Prependtable, head

Out[30]= A, B, C, A B ⇒ C, {True, True, True, True}, {True, True, False, False},

{True, False, True, True}, {True, False, False, False},

{False, True, True, True}, {False, True, False, False},

{False, False, True, True}, {False, False, False, True}

Pour into a grid.

In[31]:= GridPrependtable, head

Out[31]=

A B C A B ⇒ C
True True True True
True True False False
True False True True
True False False False
False True True True
False True False False
False False True True
False False False True

Replace True with "T" and False with "F".

In[32]:= GridPrependtable /. True → "T", False → "F", head

Out[32]=

A B C A B ⇒ C
T T T T
T T F F
T F T T
T F F F
F T T T
F T F F
F F T T
F F F T

Add formatting via options to Grid.

204 Essentials of Programming in Mathematica

In[33]:= GridPrependtable /. True → "T", False → "F", head,

Frame → True, Dividers → -2 → LightGray, 2 → LightGray,

ItemStyle → "Menu", 8

Out[33]=

� � � �� ⇒ �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Put the pieces together.

In[34]:= TruthTable[expr_, vars_] :=

Modulelen = Length[vars], tuples, rules, table, head,

tuples = TuplesTrue, False, len;

rules = Thread[vars → #1] & /@ tuples;

table = Transpose@JoinTransposetuples, expr /. rules;

head = Appendvars, TraditionalForm[expr];

GridPrependtable /. True → "T", False → "F", head,

Frame → True, FrameStyle → Thin,

Dividers → -2 → LightGray, 2 → LightGray,

BaseStyle → "Menu", 8

In[35]:= TruthTableA B ⇒ ¬ C, {A, B, C}

Out[35]=

� � � �� ⇒ ¬ �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Alternatively, the table of values can be generated directly with BooleanTable.

In[36]:= TruthTable[expr_, vars_] := Moduletable, head,

table = BooleanTableFlatten[{vars, expr}];

head = Appendvars, TraditionalForm[expr];

GridPrependtable /. True → "T", False → "F", head,

Frame → True, FrameStyle → Thin,

Dividers → -2 → LightGray, 2 → LightGray,

BaseStyle → "Menu", 8

6.3 Examples: exercises 205

In[37]:= TruthTableA B ⇒ ¬ C, {A, B, C}

Out[37]=

� � � �� ⇒ ¬ �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Position[���, ����] returns a list of positions at which elem occurs in lis. Extract[���, ���]

returns those elements whose positions are specified by Position.
4.

In[38]:= NearTolis_List, elem_, {n_} :=

Modulepos = Positionlis, elem, Extractlis, {pos - n, pos + n}

In[39]:= NearTolis_List, elem_, n_ :=

Modulepos = Positionlis, elem, Extractlis, Range[pos - n, pos + n]

In[40]:= chars = CharacterRange"a", "z";

In[41]:= NearTochars, "q", {3}

Out[41]= {{n}, {t}}

In[42]:= NearTochars, "q", 4

Out[42]= {{m, n, o, p, q, r, s, t, u}}

The key to writing the distance function is to observe that it must be a function of two variables

and return a numeric value (the distance metric). We are finding the difference of the positions

of a target element in the list with the element in question, y and x, respectively in the pure

function. The use of [[1, 1]] is to strip off extra braces returned by Position.

In[43]:= NearToNlis_, elem_, n_ :=

Nearestlis, elem, {2 n + 1, n},

DistanceFunction →

Function{x, y}, AbsPositionlis, y - Positionlis, x〚1, 1〛

In[44]:= NearToNchars, "q", 4

Out[44]= {q, p, r, o, s, n, t, m, u}

Rather than try to incorporate all the conditions into one rule, it is cleaner and more efficient to

write separate rules for the cases where the input is prime or less than or equal to one.
5.

In[45]:= SmithNumberQ[n_ /; n ≤ 1] := False

In[46]:= SmithNumberQn_?PrimeQ := False

Given the factorization of a number, separate the prime bases from their exponents using

Transpose.

206 Essentials of Programming in Mathematica

In[47]:= lis = FactorInteger[852]

Out[47]= {{2, 2}, {3, 1}, {71, 1}}

In[48]:= Transposelis

Out[48]= {{2, 3, 71}, {2, 1, 1}}

This multiplies the integer digits of each base by its multiplicity.

In[49]:= MapThreadIntegerDigits[#1] #2 &, %

Out[49]= {{4}, {3}, {7, 1}}

Here is the sum.

In[50]:= TotalFlatten[%]

Out[50]= 15

Check that it equals the sum of the digits of the original number:

In[51]:= TotalIntegerDigits[852]

Out[51]= 15

This puts the pieces together for the general rule.

In[52]:= SmithNumberQ[n_] := Withlis = FactorInteger[n],

TotalFlattenMapThreadIntegerDigits[#1] #2 &, Transposelis ⩵

TotalIntegerDigits[n]

Here are the Smith numbers less than 100.

In[53]:= SelectRange[100], SmithNumberQ

Out[53]= {4, 22, 27, 58, 85, 94}

There are 376 Smith numbers less than 10 000.

In[54]:= SelectRange104, SmithNumberQ // Length

Out[54]= 376

As an interesting aside, you can also generate Smith numbers using rep units (see Exercise 5 in

Section 5.5). For example, multiply any prime repunit by a suitable factor, e.g., 1540. For details

of the relationship between repunits and Smith numbers, see Hoffman (1999) .

In[55]:= RepUnit[n_] := Nest[(10 # + 1) &, 1, n - 1]

In[56]:= PrimeQRepUnit[19]

Out[56]= True

In[57]:= SmithNumberQ1540 RepUnit[23]

Out[57]= True

6.3 Examples: exercises 207

http://www.hachettebookgroup.com/titles/paul-hoffman/the-man-who-loved-only-numbers/9780786884063/

In the one-dimensional case, steps of unit length give the lattice walk described above. For our
off-lattice walk, we will take step directions chosen to be any real number between -1 and 1. Of
course, this means that for this case, steps are not of length one.

6.

In[58]:= walk1DOffLattice[t_] := AccumulateRandomReal[{-1, 1}, t]

In the two-dimensional case, we essentially compute polar points and so the directions are

polar angles between 0 and 2 π; the coordinates of the points are given by the pair (cos θ, sin θ),
which gives steps of unit length.

In[59]:= walk2DOffLattice[t_] :=

AccumulateMapCos[#], Sin[#] &, RandomReal[{0, 2 π}, t]

Let us quickly check that each step is of length one.

In[60]:= walk2D = walk2DOffLattice[4]

Out[60]= {{-0.856498, -0.51615}, {-0.330181, -1.36644},

{-1.32972, -1.33606}, {-0.945803, -2.25943}}

In[61]:= Partitionwalk2D, 2, 1

Out[61]= {{{-0.856498, -0.51615}, {-0.330181, -1.36644}},

{{-0.330181, -1.36644}, {-1.32972, -1.33606}},

{{-1.32972, -1.33606}, {-0.945803, -2.25943}}}

In[62]:= ApplyEuclideanDistance, %, 1

Out[62]= {1., 1., 1.}

There are several different ways to approach the three-dimensional off-lattice walk. Using a

spherical coordinate system, a point uniformly distributed on the sphere can be obtained from

the following equations (Marsaglia 1972) :

x = cos(θ) 1 - u2 ,

y = sin(θ) 1 - u2 ,
z = u.

We need to produce pairs of random numbers θ and u with θ in the interval [0, 2 π) and u in the

interval [-1, 1]. Here then is the function to generate t steps of an off-lattice random walk in

three dimensions.

In[63]:= walk3DOffLattice[t_] :=

Accumulate

TableFunction{θ, u}, Cos[θ] 1 - u2 , Sin[θ] 1 - u2 , u @@

RandomReal[{0, 2 π}], RandomReal[{-1, 1}], {t}

208 Essentials of Programming in Mathematica

http://dx.doi.org/10.1214/aoms/1177692644

Again, check that each step is of unit length.

In[64]:= walk3D = walk3DOffLattice[5]

Out[64]= {{-0.0516908, 0.919087, -0.390649},

{-0.190662, 1.07929, -1.3679}, {0.404071, 1.86198, -1.55146},

{1.37636, 1.74985, -1.75659}, {1.82819, 2.53074, -1.32523}}

In[65]:= ApplyEuclideanDistance, Partitionwalk3D, 2, 1, 1

Out[65]= {1., 1., 1., 1.}

We now use the common elements to simplify our code, similarly to what we did earlier with

the lattice walk code. The only difference amongst these three cases is the function that we are

accumulating. We will use Which to slot in the appropriate function to Accumulate, based on

the value of the dimension argument, dim.

In[66]:= offLatticeWalkt_, dim_ := Modulef1, f2, f3,

f1 := RandomReal[{-1, 1}, t];
f2 := MapCos[#], Sin[#] &, RandomReal[{0, 2 π}, t];

f3 := TableFunction{θ, u}, Cos[θ] 1 - u2 , Sin[θ] 1 - u2 , u @@

RandomReal[{0, 2 π}], RandomReal[{-1, 1}], {t};

Which

dim ⩵ 1, Accumulatef1,

dim ⩵ 2, Accumulatef2,

dim ⩵ 3, Accumulatef3

Try out the code for dimensions one through three.

In[67]:= ListLinePlotoffLatticeWalk[5000, 1]

Out[67]= 1000 2000 3000 4000 5000

-20

-10

10

6.3 Examples: exercises 209

In[68]:= ListLinePlotoffLatticeWalk[5000, 2], AspectRatio → Automatic,

PlotStyle → Thin

Out[68]=

-40 -30 -20 -10 10 20 30

-50

-40

-30

-20

-10

10

20

In[69]:= Graphics3DLine@offLatticeWalk[5000, 3]

Out[69]=

Here is the function for running bond percolation simulations taken from the exercise. Options

are inherited from GridGraph.
7.

In[70]:= ClearBondPercolation;

In[71]:= OptionsBondPercolation = OptionsGridGraph;

In[72]:= BondPercolationm_, n_, prob_, opts : OptionsPattern[] := Module{gg, gr},

gg = GridGraph[{m, n}, opts];
gr =

GraphPickEdgeList[gg], RandomVariateBernoulliDistributionprob,

EdgeCount[gg], 1;

HighlightGraphgg, gr, GraphHighlightStyle → "DehighlightFade"

In[73]:= BondPercolation{13, 21, .2}, VertexSize → .5

Out[73]=

210 Essentials of Programming in Mathematica

Add a check on the arguments m and n and issue a message if they are not positive integers.

In[74]:= PositiveIntegerQ[n_] := IntegerQ[n] && Positive[n]

In[75]:= BondPercolation::badargs =

"The parameters `1` and `2` must be positive integers.";

In[76]:= ClearBondPercolation;

BondPercolationm_, n_, prob_, opts : OptionsPattern[] := Module{gg, gr},

IfAllTrue{m, n}, PositiveIntegerQ,

gg = GridGraph[{m, n}, opts];
gr =

GraphPickEdgeList[gg], RandomVariateBernoulliDistributionprob,

EdgeCount[gg], 1;

HighlightGraphgg, gr, GraphHighlightStyle → "DehighlightFade",

MessageBondPercolation::badargs, m, n

In[78]:= BondPercolation[{13, 17, .2}]

Out[78]=

In[79]:= BondPercolation[{-13, 17, .2}]

BondPercolation::badargs : The parameters -13 and 17 must be positive integers.

Start with the color scheme. This is the Amino scheme used in RasMol. The color swatches can

be entered as RGB values and then the swatch can be copied and pasted.
8.

In[80]:= ��������[{���/��������/��������/���}]

Out[80]=

In[81]:= Amino = "P", , "W", , "L", , "V", , "I", , "N", ,

"Q", , "S", , "T", , "C", , "M", , "H", ,

"A", , "G", , "F", , "Y", , "K", , "R", ,

"D", , "E", ;

Set up the options framework. ColorResidues will inherit options from Framed and also have

6.3 Examples: exercises 211

a unique option to select different color schemes. Amino will be the default scheme.

In[82]:= OptionsColorResidues = JoinColorScheme → Amino, OptionsFramed;

Write a usage message for ColorResidues.

In[83]:= ColorResidues::usage =

"ColorResidues[���] displays a sequence of amino acids from the

protein sequence ���.";

This creates an auxiliary function that turns the color scheme into a list of rules that will be

applied in the ColorResidues function below.

In[84]:= makeAAboxscheme_, opts : OptionsPattern[] := Moduleaa, col,

aa, col = Transposescheme;

MapThread#1 ⧴ Framed#1, opts, Background → #2, FrameStyle → #2 &, aa, col

In[85]:= makeAAboxAmino

Out[85]= P⧴ P , W⧴ W , L⧴ L , V⧴ V , I⧴ I , N⧴ N ,

Q⧴ Q , S⧴ S , T⧴ T , C⧴ C , M⧴ M , H⧴ H , A⧴ A ,

G⧴ G , F⧴ F , Y⧴ Y , K⧴ K , R⧴ R , D⧴ D , E⧴ E

Finally, here is the function with the first 100 residues of the protein MUC6 as argument.

In[86]:= ColorResiduesstr_String, opts : OptionsPattern[] :=

Modulecs = OptionValueColorScheme,

RowCharacters[str] /. makeAAboxcs, FilterRules{opts}, OptionsFramed

In[87]:= Map#, ProteinData"MUC6", # &,

"BiologicalProcesses", "Memberships", "MolecularFunctions" //

TableForm

Out[87]//TableForm=

BiologicalProcesses MaintenanceOfGastrointestinalEpithelium

Memberships
ExtracellularMatrixStructuralConstituent
ExtracellularRegion
MaintenanceOfGastrointestinalEpithelium
Proteins

MolecularFunctions ExtracellularMatrixStructuralConstituent

In[88]:= muc6 = StringTakeProteinData"MUC6", "Sequence", 100;

In[89]:= ColorResiduesmuc6, ColorScheme → Amino, FrameMargins → 1

Out[89]= M V Q R W L L L S C C G A L L S A G L A N T S Y T S P G L Q R L K D

S P Q T A P D K G Q C S T W G A G H F S T F D H H V Y D F S G T C

N Y I F A A T C K D A F P T F S V Q L R R G P D G S I S R I I V E

212 Essentials of Programming in Mathematica

7
Strings

Structure and syntax: exercises7.1
Convert the first character in a string (which you may assume to be a lowercase letter) to

uppercase.
1.

Given a string of digits, for example, "10495", convert it to its integer value.2.

Create a function UniqueCharacters[���] that takes a string as its argument and returns a list
of the unique characters in that string. For example, UniqueCharacters["Mississippi"]

should return {M, i, s, p}.

3.

Using a first-name database, find all names consisting entirely of combinations of the first
letters on the keys of a typical phone (Figure 7.1), that is, names that only contain the letters a, d,
g, j,m, p, t, and w; for example, PAT. As a database source, the US Census Bureau curates lists of
common names.

4.

Telephone number pad.Figure 7.1.

A somewhat simplistic cipher, known as the XOR cipher, uses binary eight-bit keys to encode

strings. The idea is to first convert each letter in a plaintext string to their character code in

eight-bit binary. So the letter A, whose character code is 65, is converted into 1000001. A key

string, say the letter K, is similarly converted to an eight-bit binary representation. Then each

letter in the plaintext is encoded by performing a bit XOR operation on the plaintext letter and

the key, both using their eight-bit binary representation. The resulting ciphertext could remain

in binary or it could be converted back from character codes to encoded text, the ciphertext.

5.

Create an XOR cipher and encode a plaintext string to produce a ciphertext. See Exercise 6,
Section 2.2 for information on converting a string to its binary representation. As an aside, the

XOR cipher is a terribly insecure cipher as simply reversing the encoding operations makes it
easy to recover the key (Churchhouse 2001) .

Solutions7.1
Here is a test string we will use for this exercise.1.

In[1]:= str = "this is a test string"

Out[1]= this is a test string

This extracts the first character from str.

In[2]:= StringTake[str, 1]

Out[2]= t

Here is its character code.

In[3]:= ToCharacterCode[%]

Out[3]= {116}

For each lowercase letter of the English alphabet, subtracting 32 gives the corresponding

uppercase character.

In[4]:= % - 32

Out[4]= {84}

Convert back to a character.

In[5]:= FromCharacterCode[%]

Out[5]= T

Take the original string minus its first character.

In[6]:= StringDrop[str, 1]

Out[6]= his is a test string

Finally, join the previous string with the capital T.

In[7]:= StringJoin[%%, %]

Out[7]= This is a test string

You can do this more efficiently using ToUpperCase and StringTake. This approach is more

general in that it does not assume that the first character in your string is lower case.

214 Essentials of Programming in Mathematica

http://www.cambridge.org/us/academic/subjects/mathematics/discrete-mathematics-information-theory-and-coding/codes-and-ciphers-julius-caesar-enigma-and-internet

In[8]:= ToUpperCaseStringTake[str, 1]

Out[8]= T

In[9]:= StringTake[str, 2 ;; -1]

Out[9]= his is a test string

In[10]:= ToUpperCaseStringTake[str, 1] <> StringTake[str, 2 ;; -1]

Out[10]= This is a test string

This can be done most directly with Capitalize which automatically handles many of the

issues discussed above.

In[11]:= Capitalize[str]

Out[11]= This is a test string

One approach converts the string to character codes.2.

In[12]:= ToCharacterCode"10495"

Out[12]= {49, 48, 52, 57, 53}

In[13]:= % - 48

Out[13]= {1, 0, 4, 9, 5}

In[14]:= Table10j, j, 4, 0, -1

Out[14]= {10000, 1000, 100, 10, 1}

In[15]:= %.%%

Out[15]= 10495

This is a good place to use Fold. Using FoldList, you can see how the expression is built up.

In[16]:= FoldList#2 + 10 #1 &, 0, ToCharacterCode"10495" - 48

Out[16]= {0, 1, 10, 104, 1049, 10495}

Much more directly, use ToExpression.

In[17]:= ToExpression"10495"

Out[17]= 10495

Start by extracting the individual characters in a string.3.

In[18]:= str = "Mississippi";

Characters[str]

Out[19]= {M, i, s, s, i, s, s, i, p, p, i}

This gives the set of unique characters in this string.

7.1 Structure and syntax: exercises 215

In[20]:= UnionCharacters[str]

Out[20]= {i, M, p, s}

Union sorts the list whereas DeleteDuplicates does not.

In[21]:= DeleteDuplicatesCharacters[str]

Out[21]= {M, i, s, p}

Here then is the function.

In[22]:= UniqueCharactersstr_String := DeleteDuplicatesCharacters[str]

Try it out on a more interesting example.

In[23]:= protein = ProteinData"PP2672"

Out[23]= MKSSEELQCLKQMEEELLFLKAGQGSQRARLTPPLPRALQGNFGAPALCGIWFAEHLHPAVGMPPNYNSSMLSLSPERT

ILSGGWSGKQTQQPVPPLRTLLLRSPFSLHKSSQPGSPKASQRIHPLFHSIPRSQLHSVLLGLPLLFIQTRPSPPA

QYGAQMPLRYICFGPNIFWGSKKPQKE

In[24]:= UniqueCharactersprotein

Out[24]= {M, K, S, E, L, Q, C, F, A, G, R, T, P, N, I, W, H, V, Y}

It even works in the degenerate case.

In[25]:= UniqueCharacters""

Out[25]= {}

The U.S. Census Bureau curates lists of common first and last names. This imports a list of
common female first names.

4.

In[26]:= data =

Import

"http://www2.census.gov/topics/genealogy/1990surnames/dist.female.first",

"Table";

The names themselves are in the first column.

In[27]:= names = dataAll, 1;

RandomChoice[names, 12]

Out[28]= {CARISA, EXIE, MICHELINE, RENEE, BRETT,

INA, KATHE, ELYSE, ANDREE, LELIA, THOMASENA, KARRI}

The first letters on the keys on the phone pad are the following. We have input them here all
uppercase as the names from our database are in that format. You may have to make adjust-
ments to the case (ToUpperCase, ToLowerCase) depending upon your sources.

In[29]:= firstLetters = "A", "D", "G", "J", "M", "P", "T", "W";

Here are the letters in one of the names in the database.

216 Essentials of Programming in Mathematica

In[30]:= nChars = Characters"PAT"

Out[30]= {P, A, T}

This list of letters is a subset of the first letters from the phone pad.

In[31]:= SubsetQfirstLetters, nChars

Out[31]= True

Here then is a predicate that checks if a name consists of letters that are a subset of the phone

pad first letters.

In[32]:= PhoneNameQname_String :=

ModulenChars, firstLetters = "A", "D", "G", "J", "M", "P", "T", "W",

nChars = Characters[name];
SubsetQfirstLetters, nChars

In[33]:= PhoneNameQ"PAT"

Out[33]= True

In[34]:= Length[names]

Out[34]= 4275

In[35]:= lis = Selectnames, PhoneNameQ

Out[35]= {ADA, PAM, PAT, MA, MAGDA, JADA, AMADA, AJA, TAM, PA, JA, TAMA, ADAM, TA, JAMA}

First convert a string to binary 8-bit.5.

In[36]:= text = IntegerDigitsToCharacterCode"Orange", 2, 8

Out[36]= {{0, 1, 0, 0, 1, 1, 1, 1}, {0, 1, 1, 1, 0, 0, 1, 0}, {0, 1, 1, 0, 0, 0, 0, 1},

{0, 1, 1, 0, 1, 1, 1, 0}, {0, 1, 1, 0, 0, 1, 1, 1}, {0, 1, 1, 0, 0, 1, 0, 1}}

Now we need an 8-bit key to do the encoding. It could be a random sequence of bits or it might
be a letter in binary Ascii. For this example, our key will be the binary Ascii code for the letter K.

In[37]:= key = First@IntegerDigitsToCharacterCode"K", 2, 8

Out[37]= {0, 1, 0, 0, 1, 0, 1, 1}

Map the BitXor operator with this key across each of the binary representations of the letters in

text.

In[38]:= lis = MapBitXor#, key &, text

Out[38]= {{0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 1, 1, 1, 0, 0, 1}, {0, 0, 1, 0, 1, 0, 1, 0},

{0, 0, 1, 0, 0, 1, 0, 1}, {0, 0, 1, 0, 1, 1, 0, 0}, {0, 0, 1, 0, 1, 1, 1, 0}}

Convert from binary to the decimal character codes.

7.1 Structure and syntax: exercises 217

In[39]:= MapFromDigits[#, 2] &, lis

Out[39]= {4, 57, 42, 37, 44, 46}

Convert from character codes to Ascii letters. Although only five characters appear to be in the

ciphertext below, there are in fact six characters; the first character is a nonprintable Ascii
character with character code 4.

In[40]:= ciphertext = FromCharacterCode[%]

Out[40]= \.049*%,.

This puts the pieces together in a function.

In[41]:= XorEncodetext_String, key_String := Modulelis, bitText, bitKey,

bitText = IntegerDigitsToCharacterCode[text], 2, 8;

bitKey = First@IntegerDigitsToCharacterCodekey, 2, 8;

lis = MapBitXor#, bitKey &, bitText;

FromCharacterCodeMapFromDigits[#, 2] &, lis

In[42]:= XorEncode"Orange", "K"

Out[42]= \.049*%,.

Operations on strings: exercises7.2
Create a function PalindromeQ[���] that returns a value of True if its argument str is a palin-
drome, that is, if the string str is the same forward and backward. For example, the word refer is

a palindrome.

1.

Several dozen words in an English dictionary contain two consecutive double letters: balloon,
coffee, succeed, for example. Find all words in the dictionary that contain three consecutive

double letters. This puzzle appeared on the Car Talk radio show (CarTalk 2007) .

2.

Given two strings of equal length, create a function StringTranspose that transposes the

characters in the two strings and then joins them into a single string.
3.

In[1]:= StringTranspose"abc", "def"

Out[1]= adbecf

The built-in function StringRotateLeft rotates the characters in a string by a specified

amount.
4.

In[2]:= StringRotateLeft"a quark for Muster Mark ", 8

Out[2]= for Muster Mark a quark

Perform the same operation without using StringRotateLeft.

218 Essentials of Programming in Mathematica

http://www.cartalk.com/content/puzzlers

Create a function StringPermutations[���] that returns all permutations of the string str. For
example:

5.

In[3]:= StringPermutations"ABC" // InputForm

Out[3]//InputForm= {ABC, ACB, BAC, BCA, CAB, CBA}

Rewrite the function SmarandacheWellin from Exercise 10 of Section 2.3 to instead use strings

to construct these numbers. Test your implementation for speed against the function from

Section 2.3 that uses numerical functions only.

6.

When developing algorithms that operate on large structures (for example, large systems of
equations), it is often helpful to be able to create a set of unique symbols with which to work.
Create a function MakeVarList that creates unique symbols. For example:

7.

In[4]:= MakeVarList[x, 8]

Out[4]= {x1, x2, x3, x4, x5, x6, x7, x8}

In[5]:= MakeVarList[var, {10, 15}]

Out[5]= {var10, var11, var12, var13, var14, var15}

Create a function StringTally that counts each unique character in a string and returns a list
similar to that returned by the built-in Tally function. Include the option IgnoreCase with

default value False. When set to True, your function should convert all characters to lower-
case before doing the tally.

8.

In[6]:= StringTally"One fish, two fish, red fish, blue fish"

Out[6]= {O, 1}, {n, 1}, {e, 3}, { , 7}, f, 4, {i, 4}, {s, 4}, {h, 4},

{,, 3}, {t, 1}, {w, 1}, {o, 1}, {r, 1}, {d, 1}, {b, 1}, {l, 1}, {u, 1}

In[7]:= StringTally"One fish, two fish, red fish, blue fish", IgnoreCase → True

Out[7]= {o, 2}, {n, 1}, {e, 3}, { , 7}, f, 4, {i, 4}, {s, 4}, {h, 4},

{,, 3}, {t, 1}, {w, 1}, {r, 1}, {d, 1}, {b, 1}, {l, 1}, {u, 1}

When done, import a sample text and do a frequency analysis on the letters in that text. Letter
frequency analysis can be used to spot transposition ciphers in encoded messages as the

frequency of the letters is unchanged in such simple encoding schemes.

Exercise 9 in Section 7.4 asks you to extend this function to include an option to specify if
punctuation and digits should be included.

Generalize the Caesar cipher so that it encodes by shifting n places to the right. Include the

space character in the alphabet.
9.

A mixed-alphabet cipher is created by first writing a keyword followed by the remaining letters

of the alphabet and then using this key to encode the text. For example, if the keyword is

django, the encoding alphabet would be

10.

7.2 Operations on strings: exercises 219

djangobcefhiklmpqrstuvwxyz

So, a is replaced with d, b is replaced with j, c is replaced with a, and so on. As an example, the

text

the sheik of araby

would be encoded as

tcg scgeh mo drdjy

Implement this cipher and go one step further to output the ciphertext in blocks of length five,
omitting spaces and punctuation.

Modify the alphabet permutation cipher so that, instead of being based on single letters, it is

based on adjacent pairs of letters. The single letter cipher has 26! permutations:
11.

26 ! = 403 291 461 126 605 635 584 000 000

The adjacent pairs cipher will have 262 ! = 1.883707684133810× 101621
 permutations.

Create a function StringPad[���, {�}] that pads the end of a string with n whitespace

characters. Then create a second rule StringPad[���, �] that pads the string out to length n. If
the input string has length greater than n, issue a warning message. Finally, mirroring the

argument structure for the built-in PadLeft, create a third rule StringPad[���, �, �] that
pads with n whitespaces at the front and m whitespaces at the end of the string.

12.

Fibonacci words are formed in a similar manner as Fibonacci numbers except, instead of
adding the previous two elements, Fibonacci words concatenate the previous two elements

(Knuth 1997) . Starting with the two strings “0” and “01,” create a function FibonacciWord[�]

to generate the nth Fibonacci word. This can be generalized to start with any two strings, say

“a” and “b.” Fibonacci words are examples of a well-known object from combinatorics, Stur-
mian words.

13.

In Exercise 8, Section 5.1 a function was created to generate n-grams from a given alphabet. For
example, that function could be used to create all bigrams (words of length two) from the

nucleotide alphabet {" G ", " C ", " A ", " T "}.

14.

Import a nucleotide sequence such as the human mitochondrial genome hsMito below and

then create a histogram (as in Figure 7.2) showing the frequency of each of the sixteen possible

bigrams AA, AC, AT, etc.

In[8]:= hsMito = First@Import"ExampleData/mitochondrion.fa.gz" // Short

Out[8]//Short= GATCACAGGTCTATCACCCT… CTTAAATAAGACATCACGATG

220 Essentials of Programming in Mathematica

http://www-cs-faculty.stanford.edu/~uno/taocp.html

Distribution of nucleotide words of length two in Homo sapiens mitochondria genome.Figure 7.2.

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

0.00

0.02

0.04

0.06

0.08

0.10

Solutions7.2
Here is the function that checks if a string is a palindrome.1.

In[1]:= PalindromeQstr_String := StringReverse[str] == str

In[2]:= PalindromeQ"mood"

Out[2]= False

In[3]:= PalindromeQ"PoP"

Out[3]= True

Get all words in the dictionary that comes with Mathematica.

In[4]:= words = DictionaryLookup[];

Select those that pass the PalindromeQ test.

In[5]:= Selectwords, PalindromeQ

Out[5]= a, aha, aka, bib, bob, boob, bub, CFC, civic, dad, deed, deified, did, dud, DVD,

eke, ere, eve, ewe, eye, gag, gig, huh, I, kayak, kook, level, ma'am, madam, mam,

MGM, minim, mom, mum, nan, non, noon, nun, oho, pap, peep, pep, pip, poop, pop,

pup, radar, redder, refer, repaper, reviver, rotor, sagas, sees, seres, sexes,

shahs, sis, solos, SOS, stats, stets, tat, tenet, TNT, toot, tot, tut, wow, WWW

An argument that is a number can be converted to a string and then the previous rule is called.

In[6]:= PalindromeQ[num_Integer] := PalindromeQToString[num]

In[7]:= PalindromeQ[12522521]

Out[7]= True

First, we get the words in the dictionary.2.

In[8]:= words = DictionaryLookup[];

Here is the string pattern we are looking for: a letter (patten named x) repeated once, followed

by a letter (pattern named y) repeated once, followed by another letter repeated (pattern named

z). The pattern can be passed directly to DictionaryLookup.

7.2 Operations on strings: exercises 221

In[9]:= DictionaryLookup[___ ~~ x_ ~~ x_ ~~ y_ ~~ y_ ~~ z_ ~~ z_ ~~ ___]

Out[9]= {bookkeeper, bookkeepers, bookkeeping}

First, get the characters from the two strings.3.

In[10]:= Withstr1 = "abc", str2 = "def",

Characters[{str1, str2}]

Out[10]= {a, b, c}, d, e, f

Then perform the transpose on these two lists.

In[11]:= Transpose[%]

Out[11]= {a, d}, {b, e}, c, f

StringJoin automatically flattens the sublists.

In[12]:= StringJoin[%]

Out[12]= adbecf

In[13]:= ClearStringTranspose;

StringTranspose[str1_, str2_] :=

StringJoinTransposeCharacters[{str1, str2}]

In[15]:= StringTranspose"abc", "def"

Out[15]= adbecf

Transpose will, helpfully, return an error message if the two strings are of unequal length.

In[16]:= StringTranspose"abcd", "efg"

Transpose::nmtx : The �rst two levels of {{a, b, c, d}, {e, f, g}} cannot be transposed.

StringJoin::string :

String expected at position 1 in StringJoinTranspose{{a, b, c, d}, {e, f, g}}.

Out[16]= StringJoinTranspose{a, b, c, d}, e, f, g

Use the argument structure of RotateLeft.4.

In[17]:= stringRotateLeft[str_, n_: 1] := StringJoinRotateLeftCharacters[str], n

In[18]:= stringRotateLeft"squeamish ossifrage"

Out[18]= queamish ossifrages

In[19]:= stringRotateLeft"squeamish ossifrage", 5

Out[19]= mish ossifragesquea

Here is a list of the characters in a sample string.5.

In[20]:= chars = Characters"cold"

Out[20]= {c, o, l, d}

222 Essentials of Programming in Mathematica

And here are the permutations of this list of characters.

In[21]:= Permutations[%]

Out[21]= {{c, o, l, d}, {c, o, d, l}, {c, l, o, d}, {c, l, d, o}, {c, d, o, l}, {c, d, l, o},

{o, c, l, d}, {o, c, d, l}, {o, l, c, d}, {o, l, d, c}, {o, d, c, l}, {o, d, l, c},

{l, c, o, d}, {l, c, d, o}, {l, o, c, d}, {l, o, d, c}, {l, d, c, o}, {l, d, o, c},

{d, c, o, l}, {d, c, l, o}, {d, o, c, l}, {d, o, l, c}, {d, l, c, o}, {d, l, o, c}}

Finally, join each set of characters with StringJoin.

In[22]:= MapStringJoin, %

Out[22]= {cold, codl, clod, cldo, cdol, cdlo, ocld, ocdl, olcd, oldc, odcl, odlc,

lcod, lcdo, locd, lodc, ldco, ldoc, dcol, dclo, docl, dolc, dlco, dloc}

And here is the function putting these pieces together.

In[23]:= StringPermutationsstr_String := MapStringJoin, PermutationsCharacters[str]

In[24]:= StringPermutations"ACGT"

Out[24]= {ACGT, ACTG, AGCT, AGTC, ATCG, ATGC, CAGT, CATG, CGAT, CGTA, CTAG, CTGA,

GACT, GATC, GCAT, GCTA, GTAC, GTCA, TACG, TAGC, TCAG, TCGA, TGAC, TGCA}

The approach here, in comparison with that in Exercise 10 in Section 2.3, is to convert the

integers to strings and operate on the strings. When done, we convert the string back to an

integer. To start, here are the first few primes.

6.

In[25]:= Prime[Range[10]]

Out[25]= {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}

Convert to strings and then concatenate.

In[26]:= MapToString, % // InputForm

Out[26]//InputForm= {��
�����}

In[27]:= StringJoin[%] // InputForm

Out[27]//InputForm= ������������������

Finally, convert the above string to a number.

In[28]:= ToExpression[%] // InputForm

Out[28]//InputForm= ����������������

In[29]:= Prime[Range[12]]

Out[29]= {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}

In[30]:= NumberJoin[{x__}] := ToExpressionStringJoinMapToString, {x}

In[31]:= SmarandacheWellin2n_Integer ?Positive := NumberJoinPrime[Range[n]]

7.2 Operations on strings: exercises 223

In[32]:= SmarandacheWellin2[10]

Out[32]= 2357111317192329

Compared with the solution from Section 2.3, the string-based solution is a bit faster, even with

all the conversion from numbers to strings and back.

In[33]:= SmarandacheWellinn_Integer ?Positive :=

FromDigitsFlattenIntegerDigits@TablePrimei, i, n

In[34]:= TimingSmarandacheWellin[50000];

Out[34]= {0.228937, Null}

In[35]:= TimingSmarandacheWellin2[50000];

Out[35]= {0.136362, Null}

In[36]:= SmarandacheWellin[50000] == SmarandacheWellin2[50000]

Out[36]= True

Although there is a built-in function, Unique, that does this, it has some limitations for this

particular task.
7.

In[37]:= TableUnique"x", {8}

Out[37]= {x55, x56, x57, x58, x59, x60, x61, x62}

One potential limitation of Unique is that it uses the first unused symbol of a particular form. It
does this to avoid overwriting existing symbols.

In[38]:= TableUnique"x", {8}

Out[38]= {x63, x64, x65, x66, x67, x68, x69, x70}

However, if you want to explicitly create a list of indexed symbols with a set of specific indices,
it is useful to create a different function. First, note that a string can be converted to a symbol
using ToExpression or by wrapping the string in Symbol.

In[39]:= Head"x1"

Out[39]= String

In[40]:= ToExpression"x1" // Head

Out[40]= Symbol

In[41]:= Symbol"x1" // Head

Out[41]= Symbol

StringJoin is used to concatenate strings. So, let us concatenate the variable with the index,
first with one number and then with a range of numbers.

224 Essentials of Programming in Mathematica

In[42]:= StringJoin"x", "8" // FullForm

Out[42]//FullForm= "x8"

In[43]:= ToExpressionMap"x" <> ToString[#] &, Range[12]

Out[43]= {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12}

Put all the pieces of code together.

In[44]:= MakeVarListx_Symbol, n_Integer :=

ToExpressionMapToString[x] <> ToString[#] &, Range[n]

Let us create an additional rule for this function that takes a range specification as its second

argument.

In[45]:= MakeVarListx_Symbol, {n_Integer, m_Integer} :=

ToExpressionMapToString[x] <> ToString[#] &, Range[n, m]

In[46]:= MakeVarList[tmp, {20, 30}]

Out[46]= {tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27, tmp28, tmp29, tmp30}

Note that we have not been too careful about argument checking.

In[47]:= MakeVarList[tmp, {-2, 2}]

Out[47]= {-2 + tmp, -1 + tmp, tmp0, tmp1, tmp2}

Using a negative index is a problem when the string is converted using ToExpression.

In[48]:= Clear[x]

In[49]:= ToString[x] <> ToString[-2] // FullForm

Out[49]//FullForm= "x-2"

In[50]:= ToExpression[%] // FullForm

Out[50]//FullForm= Plus[-2, x]

Argument checking with a different pattern corrects this problem.

In[51]:= ClearMakeVarList

In[52]:= MakeVarListx_Symbol, n_Integer ?Positive, m_Integer ?Positive :=

ToExpressionMapToString[x] <> ToString[#] &, Range[n, m]

In[53]:= MakeVarList[tmp, {2, 4}]

Out[53]= {tmp2, tmp3, tmp4}

Starting with one word, first get a list of the characters in the lowercase version of that word:8.

In[54]:= str = "Mississippi";

Characters[ToLowerCase@str]

Out[55]= {m, i, s, s, i, s, s, i, p, p, i}

7.2 Operations on strings: exercises 225

In[56]:= Tally[%]

Out[56]= {{m, 1}, {i, 4}, {s, 4}, {p, 2}}

In[57]:= StringTally[str_] := TallyCharacters[ToLowerCase@str]

To try this out on a large text, first import Lewis Caroll’s Alice’s Adventures in Wonderland from

gutenberg.org.

In[58]:= alice = Import"http://www.gutenberg.org/ebooks/28885.txt.utf-8", "Text";

In[59]:= StringTallyalice // Sort

Out[59]= {!, 457}, {@, 2}, {#, 1}, {%, 1}, {&, 2}, {*, 48}, {(, 89},

{), 89}, {_, 514}, {-, 884}, {[, 41}, {], 41}, {., 1240}, {,, 2591},

{;, 198}, {", 2307}, {?, 212}, {', 802}, {/, 31}, {:, 277}, {

, 4045}, { , 31914}, {0, 27}, {1, 77}, {2, 23}, {3, 22}, {4, 18}, {5, 21},

{6, 16}, {7, 9}, {8, 31}, {9, 16}, {a, 10191}, {b, 1806}, {c, 3114},

{d, 5678}, {e, 15877}, f, 2446, {g, 3029}, {h, 8102}, {i, 8949},

{j, 238}, {k, 1314}, {l, 5456}, {m, 2546}, {n, 8358}, {o, 9775},

{p, 2051}, {q, 237}, {r, 6881}, {s, 7498}, {t, 12637}, {u, 4134}, ù, 1,

{v, 1000}, {w, 3049}, {x, 185}, {y, 2672}, {z, 79}, {$, 2}, {·, 13}

Let’s sort on the characters, the first element in each sublist; then take the twenty-six pairs that
give the Ascii letter tallies.

In[60]:= counts = TakeSortStringTallyalice, -29 ;; -3

Out[60]= {a, 10191}, {b, 1806}, {c, 3114}, {d, 5678}, {e, 15877}, f, 2446,

{g, 3029}, {h, 8102}, {i, 8949}, {j, 238}, {k, 1314}, {l, 5456}, {m, 2546},

{n, 8358}, {o, 9775}, {p, 2051}, {q, 237}, {r, 6881}, {s, 7498}, {t, 12637},

{u, 4134}, ù, 1, {v, 1000}, {w, 3049}, {x, 185}, {y, 2672}, {z, 79}

Here is a bar chart of the tallies for each of these letters.

In[61]:= BarChartcountsAll, 2, ChartLabels → countsAll, 1, ChartStyle → 24

Out[61]=

a b c d e f g h i j k l m n o p q r s t u ù v w x y z
0

5000

10000

15000

This is a simple modification of the code given in the text. But first we add the space character to

the alphabet.
9.

226 Essentials of Programming in Mathematica

In[62]:= ToCharacterCode" "

Out[62]= {32}

In[63]:= alphabet = JoinFromCharacterCode[32], CharacterRange"a", "z"

Out[63]= , a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z

Giving coderules an argument n will allow you to shift an arbitrary number of places. We give n

a default value of 1 so that omitting the argument will default to the value n = 1.

In[64]:= coderules[n_: 1] := Threadalphabet → RotateRightalphabet, n

In[65]:= decoderules[n_] := MapReverse, coderules[n]

In[66]:= codestr_String, n_ := ApplyStringJoin, Characters[str] /. coderules[n]

In[67]:= decodestr_String, n_ := ApplyStringJoin, Characters[str] /. decoderules[n]

In[68]:= code"squeamish ossifrage", 5

Out[68]= nlp whdncvjnndamwb

In[69]:= decode[%, 5]

Out[69]= squeamish ossifrage

First, here is the list of characters from the plaintext alphabet.10.

In[70]:= PlainAlphabet = CharacterRange"a", "z"

Out[70]= a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z

Here is our key, django:

In[71]:= key = "django"

Out[71]= django

And here is the cipher text alphabet, prepending the key:

In[72]:= StringJoinCharacters@key, ComplementPlainAlphabet, Characters@key

Out[72]= djangobcefhiklmpqrstuvwxyz

Make a reusable function.

In[73]:= CipherAlphabetkey_String := Withk = Characterskey,

StringJoink, ComplementCharacterRange"a", "z", k

Generate the coding rules:

In[74]:= codeRules = ThreadPlainAlphabet → Characters@CipherAlphabet"django"

Out[74]= a → d, b → j, c → a, d → n, e → g, f → o, g → b, h → c, i → e, j → f, k → h, l → i, m → k,

n → l, o → m, p → p, q → q, r → r, s → s, t → t, u → u, v → v, w → w, x → x, y → y, z → z

The encoding function follows that in the text of this section.

7.2 Operations on strings: exercises 227

In[75]:= encodestr_String := StringJoinCharacters[str] /. codeRules

In[76]:= encode"the sheik of araby"

Out[76]= tcg scgeh mo drdjy

Omit spaces and punctuation and output in blocks of length 5 (using stringPartition from

Section 7.5).

In[77]:= stringPartitionstr_String, seq__ :=

MapStringJoin, PartitionCharacters[str], seq

In[78]:= StringSplitencode"the sheik of araby", RegularExpression"\\W+"

Out[78]= {tcg, scgeh, mo, drdjy}

In[79]:= StringJoinRifflestringPartitionStringJoin[%], 5, 5, 1, "", " "

Out[79]= tcgsc gehmo drdjy

Finally, this puts all these pieces together.

In[80]:= Clearencode;

encodestr_String, key_String, blocksize_: 5 :=

ModuleCipherAlphabet, codeRules, s1, s2, s3,

CipherAlphabetk_ :=

StringJoinCharactersk , ComplementCharacterRange"a", "z",

Charactersk ;

codeRules =

ThreadCharacterRange"a", "z" → Characters@CipherAlphabetkey;

s1 = StringJoinCharacters[str] /. codeRules;

s2 = StringSplits1, RegularExpression"\\W+";

s3 = stringPartitionStringJoin[s2], blocksize, blocksize, 1, "";

StringJoinRiffles3, " "

In[82]:= encode"the sheik of araby", "django", 3

Out[82]= tcg scg ehm odr djy

(* solution to appear *)11.
First, using StringJoin, put n spaces at the end of the string.12.

In[83]:= StringPadstr_String, {n_} := StringJoinstr, Table" ", {n}

In[84]:= StringPad"ciao", {5} // FullForm

Out[84]//FullForm= "ciao "

For the second rule, first create a message that will be issued if the string is longer than the pad

length, n.

228 Essentials of Programming in Mathematica

In[85]:= StringPad::badlen =

"Pad length `1` must be greater than the length of string `2`.";

In[86]:= StringPadstr_String, n_ :=

Withlen = StringLength[str],

Iflen > n, MessageStringPad::badlen, n, str, StringPadstr, n - len

In[87]:= StringPad"ciao", 8 // FullForm

Out[87]//FullForm= "ciao "

In[88]:= StringPad"ciao", 3

StringPad::badlen : Pad length 3 must be greater than the length of string ciao.

Finally, here is a rule for padding at the beginning and end of the string.

In[89]:= StringPadstr_String, n_, m_ :=

StringJoinTable" ", {n}, str, Table" ", {m}

In[90]:= StringPad"ciao", 3, 8 // FullForm

Out[90]//FullForm= " ciao "

Note, StringInsert could also be used.

In[91]:= StringInsert"ciao", " ", {1, -1} // FullForm

Out[91]//FullForm= " ciao "

In[92]:= StringPad2str_String, n_, m_ :=

StringInsertstr, " ", JoinTable[1, {n}], Table[-1, {m}]

In[93]:= StringPad2"ciao", 3, 8 // FullForm

Out[93]//FullForm= " ciao "

The definition looks very similar to that for Fibonacci numbers except that the first two

values are strings and the operation is string concatenation (StringJoin).
13.

In[94]:= FibonacciWord[1] = "0";

FibonacciWord[2] = "01";

In[96]:= FibonacciWord[n_] := FibonacciWord[n - 1] <> FibonacciWord[n - 2]

In[97]:= FibonacciWord[12]

Out[97]= 0100101001001010010100100101001001010010100100101001010010010100100101001010010

0101001001010010100100101001010010010100100101001010010010100101001001010010

0101001010010010100100101001010010010100101001001010010010100101001001010010

01

There lots of interesting things that you can discover regarding Fibonacci words.

In[98]:= TableStringCountFibonacciWordi, "1", i, 1, 15

Out[98]= {0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377}

7.2 Operations on strings: exercises 229

If you were generating very large Fibonacci words, it would be advisable to use dynamic

programming as described in Section 5.3 to reduce the scope of the recursion.

Start by importing the example FASTA file containing the mitochondrial human genome

sequence.
14.

In[99]:= hsMito = First@Import"ExampleData/mitochondrion.fa.gz";

Here is the NGrams function:

In[100]:= NGramsalphabet : __String, n_Integer ?Positive :=

FlattenOuterStringJoin, ApplySequence, Tablealphabet, {n}

This gives all possible bigrams from the DNA alphabet.

In[101]:= bigrams = NGrams"A", "T", "G", "C", 2

Out[101]= {AA, AT, AG, AC, TA, TT, TG, TC, GA, GT, GG, GC, CA, CT, CG, CC}

This finds all the above bigrams in the sequence.

In[102]:= data = StringCaseshsMito, Alternatives @@ bigrams, Overlaps → True;

In[103]:= RandomSampledata, 12

Out[103]= {TC, CC, GG, GG, AT, CC, AC, CT, CC, AC, AA, TC}

And here is the histogram plot.

In[104]:= Histogramdata /. Threadbigrams → RangeLengthbigrams, Automatic,

"PDF", ChartLabels → None, PlacedStyle#, "SR", 6 & /@ bigrams, Bottom,

Ticks → None, Automatic, AspectRatio → .4, ChartStyle → "Pastel"

Out[104]=

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

0.00

0.02

0.04

0.06

0.08

0.10

String patterns: exercises7.3
Given a list of words, some of which start with uppercase characters, convert them all to words

in which the first character is lowercase. You can use the words in the dictionary as a good

sample set.

1.

Create a function Palindromes[�] that finds all palindromic words of length n in the dictio-
nary. For example, kayak is a five-letter palindrome.

2.

230 Essentials of Programming in Mathematica

Modify the listSort function from Section 4.3 by creating another rule that can be used to

sort lists of string characters.
3.

Find the number of unique words in a body of text such as Alice in Wonderland. This text can be

imported from ExampleData:
4.

In[1]:= ExampleData"Text", "AliceInWonderland";

After splitting the text into words, convert all uppercase characters to lowercase so that you

count words such as hare and Hare as the same word.

Another important task in computational linguistics is comparing the complexity of text-
based materials such as newspapers or school texts. There are many measures that you might
use: the length of the text, average sentence length, levels of reasoning required, word fre-
quency, and many more. One metric is word length. Use the built-in function TextWords (new

in Mathematica 10.1) to generate a histogram like that in Figure 7.3 showing the word-length

distribution for a text.

5.

Word-length distribution for Alice in Wonderland.Figure 7.3.

5 10 15
0.00

0.05

0.10

0.15

0.20

0.25

���� ������

�
��
�
�
�
�
�
�

Then compare the word-length distribution for several different text sources such as those

available in ExampleData[" Text "] or on gutenberg.org.

Repeat Exercise 5 but use sentence length instead of word length as the measure.6.

Semordnilaps (“palindromes” spelled backwards) are words that, when reversed, also spell a

word. For example, live and stressed are semordnilaps because reversed, they still spell words: evil
and desserts. Find all semordnilaps in the dictionary.

7.

7.3 String patterns: exercises 231

Solutions7.3
We will work with a small sample of words from the dictionary.1.

In[1]:= SeedRandom[0];

words = DictionaryLookup[];

sample = RandomSamplewords, 12

Out[3]= unaccustomed, Godhead, Jutland, dilated, observe, matchplay,

wintergreen, clans, hobgoblin, rampantly, disinheriting, performances

StringReplace operates on any words that match the pattern and leave those that do not
match unchanged.

In[4]:= StringReplacesample, f_?UpperCaseQ ~~ r___ ⧴ ToLowerCasef ~~ r

Out[4]= unaccustomed, godhead, jutland, dilated, observe, matchplay,

wintergreen, clans, hobgoblin, rampantly, disinheriting, performances

But there is a function built in that does this directly.

In[5]:= ?Decapitalize

Decapitalize[string] yields a string in
which the �rst character has been made lower case.

In[6]:= Decapitalizesample

Out[6]= unaccustomed, godhead, jutland, dilated, observe, matchplay,

wintergreen, clans, hobgoblin, rampantly, disinheriting, performances

You can do a dictionary lookup with a pattern that tests whether the word is palindromic. Then

find all palindromic words of a given length. Note the need for BlankSequence (__) as the

simple pattern _ would only find words consisting of one character.

2.

In[7]:= Palindromeslen_Integer :=

DictionaryLookupw__ /; w == StringReverse[w] && StringLength[w]⩵ len

We also add a rule to return all palindromes of any length.

In[8]:= Palindromes[] := DictionaryLookupw__ /; w == StringReverse[w]

In[9]:= Palindromes[7]

Out[9]= deified, repaper, reviver

In[10]:= Palindromes[]

Out[10]= a, aha, aka, bib, bob, boob, bub, CFC, civic, dad, deed, deified, did, dud, DVD,

eke, ere, eve, ewe, eye, gag, gig, huh, I, kayak, kook, level, ma'am, madam, mam,

MGM, minim, mom, mum, nan, non, noon, nun, oho, pap, peep, pep, pip, poop, pop,

pup, radar, redder, refer, repaper, reviver, rotor, sagas, sees, seres, sexes,

shahs, sis, solos, SOS, stats, stets, tat, tenet, TNT, toot, tot, tut, wow, WWW

232 Essentials of Programming in Mathematica

A simple change to the rule from Section 4.3 will allow for lists of string characters. Here we just
add a rule to the original rule for sorting lists of numbers. As written, this only works for lists of
lowercase letters.

3.

In[11]:= listSort =

x___, a_?StringQ, b_?StringQ, y___ ⧴

x, b, a, y /; FirstToCharacterCodeb < FirstToCharacterCode[a],

x___, a_?NumericQ, b_?NumericQ, y___ ⧴ x, b, a, y /; b < a

;

In[12]:= {82, 5, 29, 98, 98, 43, 90, 11, 52, 46, 38, 48} //. listSort

Out[12]= {5, 11, 29, 38, 43, 46, 48, 52, 82, 90, 98, 98}

In[13]:= RandomSample@CharacterRange"a", "z"

Out[13]= h, t, x, b, v, g, n, w, s, m, k, o, f, l, i, y, q, c, a, p, e, j, u, r, d, z

In[14]:= strList = "i", "w", "z", "p", "a", "s", "n", "l", "h", "q", "r", "d", "c",

"f", "o", "y", "j", "u", "x", "t", "m", "b", "g", "e", "k", "v";

In[15]:= strList //. listSort

Out[15]= a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z

First import some sample text.4.

In[16]:= text = ExampleData"Text", "AliceInWonderland";

To split into words, use a similar construction to that in this section.

In[17]:= words = StringSplittext, Characters":;\"',.?/\-` *" ..;

Shortwords, 4

Out[18]//Short= I, DOWN, THE, RABBIT, HOLE, Alice, was, beginning, to, get, very,

9949, as, well, she, might, what, a, wonderful, dream, it, had, been

Get the total number of (nonunique) words.

In[19]:= Lengthwords

Out[19]= 9971

Convert uppercase to lowercase.

In[20]:= lcwords = ToLowerCasewords;

Shortlcwords, 4

Out[21]//Short= i, down, the, rabbit, hole, alice, was, beginning, to, get, very,

9949, as, well, she, might, what, a, wonderful, dream, it, had, been

Finally, count the number of unique words.

7.3 String patterns: exercises 233

In[22]:= DeleteDuplicateslcwords // Length

Out[22]= 1643

In fact, splitting words using a list of characters as we have done here is not terribly robust. A

better approach uses regular expressions (introduced in Section 7.4):

In[23]:= words = StringSplittext, RegularExpression"\\W+";

Lengthwords

Out[24]= 9969

In[25]:= lcwords = StringReplacewords,

RegularExpression"([A-Z])" ⧴ ToLowerCase"$1";

DeleteDuplicateslcwords // Length

Out[26]= 1528

Using TextWords, this can be done directly, although the count is a bit different due to slightly

different assumptions between what we used in StringSplit and what TextWords assumes.

In[27]:= words = DeleteDuplicates@ToLowerCaseTextWords[text];

Lengthwords

Out[28]= 1549

We will work with the following text: A Portrait of the Artist as a Young Man, by James Joyce

(available at Project Gutenberg). We use TextWords to get a list of the words and then use

StringLength on these words to get the distribution of word lengths.

5.

Some postprocessing with Stringtake is needed to remove metadata at the beginning and at
the end of the file.

In[29]:= joyce = StringTakeImport"http://www.gutenberg.org/cache/epub/4217/pg4217.txt",

"Text", 688 ;; -18843;

StringTakejoyce, {74, 164}

Out[30]= as animum dimittit in artes."

Ovid, Metamorphoses, VIII., 18._

</p>

Chapter 1

Once upon

234 Essentials of Programming in Mathematica

http://www.gutenberg.org/ebooks/4217

In[31]:= words = TextWordsjoyce;

HistogramStringLengthwords, Automatic, "PDF", Frame → True,

FrameLabel → "Word length", "Frequency",

FrameTicks → Automatic, None, Automatic, None

Out[32]=

5 10 15 20
0.00

0.05

0.10

0.15

0.20

0.25

Word length

Fr
eq

u
en

cy

Here we use TextSentences to split the text into discrete sentences and then map WordCount

over the list of sentences.
6.

In[33]:= sentences = TextSentencesjoyce;

In[34]:= HistogramMapWordCount, sentences, Automatic, "PDF",

Frame → True, FrameLabel → "Sentence length", "Frequency",

FrameTicks → Automatic, None, Automatic, None

Out[34]=

0 20 40 60 80 100 120 140
0.00

0.01

0.02

0.03

0.04

Sentence length

Fr
eq

u
en

cy

First, here is a list of all words in the dictionary.7.

In[35]:= words = DictionaryLookup[__];

And this reverses those words.

In[36]:= revwords = StringReversewords;

RandomSamplerevwords, 12

Out[37]= gniniatniam, ezilaitini, ecilprus, etadrohc, sriahchsup,

aerdnA, srepod, dedrof, eimmiJ, decudorper, dnuorgwohs, straehteews

Finally, here are all those reversed words that are in the dictionary.

7.3 String patterns: exercises 235

In[38]:= Intersectionwords, revwords

Out[38]= a, abut, agar, ah, aha, aka, am, animal, are, at, ate, auks, avid, bad, bag, ban,

bard, bat, bats, bed, bib, bin, bob, bod, bog, bonk, boob, boy, brag, bub, bud,

bun, buns, bur, burg, bus, but, buts, cam, CFC, civic, cod, dab, dad, dag,

dam, dart, deb, debut, decaf, decal, deed, deem, deep, deeps, deer, deffer,

deified, deliver, denier, denies, denim, deres, desserts, devil, dew, dial,

dialer, diaper, did, dim, diva, dob, doc, dog, don, doom, door, dos, drab,

draw, drawer, draws, dray, dual, dub, dud, DVD, edit, eel, eh, eke, em, emir,

emit, er, era, ere, ergo, eta, etas, eve, evil, eviler, ewe, eye, faced, fer,

fires, flog, flow, gab, gad, gag, gal, gals, gar, garb, gas, gel, gem, gig,

girt, gnat, gnus, gob, god, golf, got, grub, gulp, gulper, gum, gums, guns,

gut, ha, hap, he, ho, hoop, huh, I, it, jar, kayak, keel, keels, keep, knits,

knob, know, KO, kook, laced, lag, lager, laid, lair, lamina, lap, laud, lee,

leek, leer, leg, leper, level, lever, liar, lit, live, lived, loop, loops,

loot, looter, loots, lop, ma, ma'am, mac, macs, mad, madam, mam, maps, mar,

mart, mat, maws, may, me, meed, meet, meg, MGM, mid, mils, mined, minim, mom,

mood, moor, mop, mot, mu, mug, mum, nab, nan, nap, naps, net, new, nib, nip,

nips, nit, no, nod, non, noon, not, now, nub, nun, nus, nut, nuts, ogre, oh,

oho, OK, on, oohs, pacer, pah, pal, pals, pan, pans, pap, par, part, parts,

pas, pat, paws, pay, peed, peek, peels, peep, pees, pep, per, perts, pets, pin,

pins, pip, pis, pit, plug, pol, pols, pom, pooh, pool, pools, poop, pop, ports,

pot, pots, prat, pup, pus, radar, rag, raga, rail, raj, ram, rap, raps, rat,

rats, raw, re, rebut, recap, recaps, redder, redraw, reed, reel, ref, refer,

reffed, regal, reined, relaid, relive, remit, rennet, rep, repaid, repaper,

repel, replug, retool, retros, revel, reviled, reviver, reward, rial, rime,

rood, room, rot, rotor, rub, sag, sagas, sap, saps, sate, saw, scam, seep,

sees, seined, sered, seres, serif, sexes, shahs, shoo, sip, sis, six, skua,

slag, slap, sleek, sleep, sleets, slim, sloop, sloops, slop, smart, smug, smut,

snap, snaps, snip, snips, snit, snoops, snot, snub, snug, sod, solos, sorter,

SOS, spacer, spam, span, spans, spar, spas, spat, spay, speed, spin, spins,

spit, spool, spools, spoons, sports, spot, spots, sprat, stab, star, stats,

steels, step, stets, stew, stink, stool, stop, stops, stows, strap, straw,

strep, stressed, strop, strops, stub, stun, sub, sun, sung, sup, swam, swap,

sward, sway, swot, swots, ta, tab, tam, tang, tap, taps, tar, tarp, tarps,

tat, teem, ten, tenet, tenner, ti, tide, til, time, timer, tin, tins, tip,

tips, TNT, tog, tom, ton, tons, tool, toot, top, tops, tor, tort, tot, tow,

tows, trad, tram, trams, trap, trig, trot, trow, tub, tuba, tubed, tuber, tug,

tums, tun, tut, um, war, ward, warder, warts, was, way, wed, wen, wets, wolf,

won, wonk, wort, wot, wow, WWW, xis, yam, yap, yaps, yard, yaw, yaws, yob

A word of warning: if you tried to do this by comparing every word in the dictionary with every

reversed word in the dictionary, the number of comparisons would be extremely large and bog

down the computation.

236 Essentials of Programming in Mathematica

In[39]:= TimeConstrained

DictionaryLookupword__ /; MemberQwords, StringReverseword,

20

Out[39]= $Aborted

Regular expressions: exercises7.4
Use regular expressions to count the occurrences of the vowels (a, e, i, o, u) in the following text:1.

In[1]:= text = "How many vowels do I have?";

Using regular expressions, find all words in the textAlice in Wonderland that contain the letter q.
Then find all words that contain either q orQ. The text can be imported with the following:

2.

In[2]:= words = TextWordsExampleData"Text", "AliceInWonderland";

Takewords, 11

Out[3]= {I, DOWN, THE, RABBIT-HOLE, Alice, was, beginning, to, get, very, tired}

Rewrite the genomic example in Section 7.3 to use regular expressions instead of string pat-
terns to find all occurrences of the sequence AA��������T. Here is the example using general
string patterns:

3.

In[4]:= gene = GenomeData"IGHV357";

StringCasesgene, "AA" ~~ _ ~~ "T"

Out[5]= {AAGT, AAGT, AAAT, AAGT, AAAT, AAAT}

Rewrite the web page example in Section 7.3 to use regular expressions to find all phone
numbers on the page, that is, expressions of the form nnn-nnn-nnnn. Modify accordingly for
other web pages and phone numbers formatted for other regions.

4.

Use a regular expression to find all words given by DictionaryLookup that consist only of the
letters a, e, i, o, u, and y in any order with any number of repetitions of the letters.

5.

Use regular expressions to rewrite the solution to Exercise 2 in Section 7.2 to find all words
containing three double letter repeats in a row.

6.

The basic rules for pluralizing words in the English language are roughly, as follows: if a noun
ends in ch, s, sh, j, x, or z, it is made plural by adding es to the end. If the noun ends in y and is
preceded by a consonant, replace the ywith ies. If the word ends in ium, replace with ia
(The Chicago Manual of Style 2010) . Of course, there are manymore rules and evenmore
exceptions, but you can implement a basic set of rules to convert singular words to plural
based on these rules and then try them out on the following list of words:

7.

In[6]:= words = "building", "finch", "fix", "ratio", "envy", "boy", "baby",

"faculty", "honorarium";

A common task in transcribing audio is cleaning up text, removing certain phrases such as um,
er, and so on, and other tags that are used to make a note of some sort. For example, the

8.

7.4 Regular expressions: exercises 237

http://www.chicagomanualofstyle.org/home.html

following transcription of a lecture from the University of Warwick, Centre for Applied

Linguistics (Base Corpus) contains quite a few fragments that should be removed, including

newline characters, parenthetical remarks, and nonwords. Use StringReplace with the

appropriate rules to clean this text and then apply your code to a larger corpus.

In[7]:= text =

"okay well er today we're er going to be carrying on with the er French

\nRevolution you may have noticed i was sort of getting rather er

enthusiastic \nand carried away at the end of the last one i was sort

of almost er like i sort \nof started at the beginning about someone

standing on a coffee table and s-, \nshouting to arms citizens as if i

was going to sort of leap up on the desk and \nsay to arms let's storm

the Rootes Social Building [laughter] or er let's go \nout arm in arm

singing the Marseillaise or something er like that";

Modify the solution to Exercise 8 in Section 7.2 so that StringTally includes an option

IncludeCharacters that, by default, has value LetterCharacters, which should mean that
StringTally only tallies letters; that is, excludes non-letter characters from the tally. Other
values for IncludeCharacters could be All (include all characters in the tally),
WordCharacters (include only word characters), PunctuationOnly (include only

punctuation).

9.

In web searches and certain problems in natural language processing, it is often useful to filter
out certain words prior to performing a search or processing of text to help with the perfor-
mance of the algorithms. Words such as and, the, and is are commonly referred to as stop words
for this purpose. Lists of stop words are almost always created manually based on the con-
straints of a particular application. Sample lists of stop words are also commonly available

across the Internet. For our purposes here, we will use one such list included with the materials

for this book.

10.

In[8]:= stopwords = Rest@Import"StopWords.dat", "List";

RandomSamplestopwords, 12

Out[9]= {who'll, recently, ninety, be, no, taking, isn't, unless, what, soon, name, beside}

Using the above list of stop words, or any other that you are interested in, first filter some

sample “search phrases” and then remove all stop words from a larger piece of text. If your
function was called FilterText, it might work like this:

In[10]:= searchPhrases = "Find my favorite phone", "How deep is the ocean?",

"What is the meaning of life?";

In[11]:= MapFilterText#, stopwords &, searchPhrases

Out[11]= Find, favorite, phone, {deep, ocean}, meaning, life

Modify the previous exercise so that the user can supply a list of punctuation in addition to the

list of stop words to be used to filter the text.
11.

238 Essentials of Programming in Mathematica

http://www2.warwick.ac.uk/fac/soc/al/research/collect/base

Solutions7.4
Here is the short piece of text.1.

In[1]:= text = "How many vowels do I have?";

The regular expression [aeiou] is matched by any of the vowels.

In[2]:= StringCounttext, RegularExpression"[aeiou]"

Out[2]= 7

First, get a list of the words in the text Alice in Wonderland.2.

In[3]:= words = TextWordsExampleData"Text", "AliceInWonderland";

The regular expression ".+q.+" is matched by strings starting with some number (possibly

zero) of characters, followed by an explicit q, followed by some number of characters. Flatten is

needed to remove the empty lists that are returned for each nonmatch of the pattern.

In[4]:= Flatten@StringCaseswords, RegularExpression".*q.*"

Out[4]= {quite, quite, quite, queer, question, inquisitively, Conqueror,

quiver, quite, quiet, quite, quite, quite, queer-looking, question,

quite, Conqueror, conquest, question, question, quite, question, quite,

quicker, quite, quite, quite, squeaking, quite, question, quietly,

quite, croquet, croquet, question, quite, croquet, queer-shaped,

quite, quietly, croquet, croquet, question, croquet-ground, croquet,

quarrelling, quarrel, croqueting, croquet-ground, quarreling, quite, quite}

Simply replacing q with the alternative (q Q) gets all occurrences of q either lowercase or
uppercase.

In[5]:= Flatten@StringCaseswords, RegularExpression".*(q|Q).*"

Out[5]= {quite, quite, quite, queer, question, inquisitively, Conqueror, quiver, quite,

quiet, quite, quite, quite, queer-looking, question, quite, Conqueror,

conquest, question, question, quite, question, quite, quicker, Quick,

quite, quite, quite, squeaking, quite, question, quietly, quite, Queen,

croquet, Queen, croquet, question, quite, croquet, Queen, queer-shaped,

quite, quietly, croquet, Queen, QUEEN'S, CROQUET, Queen, Queen, Queen,

Queen, Queens, QUEEN, Queen, croquet, Queen, question, Queen, Queen's,

Queen, croquet-ground, croquet, quarrelling, Queen, quarrel, Queen,

croqueting, Queen, Queen, Queen, croquet-ground, Queen, quarreling, Queen,

Queen, quite, Queen, Queen, quite, Queen, Queen, Queen, Queen, Queen}

The pattern used earlier in the chapter was "AA" ~~ _ ~~ "T". In a regular expression, we want
the character A repeated exactly once. Use the expression "A{2,2}" for this. The regular
expression "." stands for any character.

3.

In[6]:= gene = GenomeData"IGHV357";

7.4 Regular expressions: exercises 239

In[7]:= StringCasesgene, RegularExpression"A{2,2}.T"

Out[7]= {AAGT, AAGT, AAAT, AAGT, AAAT, AAAT}

First, read in the web page.4.

In[8]:= webpage = Import"http://www.wolfram.com/company/contact.cgi", "HTML";

In the original example in Section 7.3, we used the pattern NumberString, to represent arbitrary

strings of numbers. The regular expression "\\d+" accomplishes a similar thing but it will also

match strings of numbers that may not be in a phone number format (try it!). Instead, use

"\\d{3}" to match a list of exactly three digits, and so on.

In[9]:= StringCaseswebpage,

RegularExpression"\\d{3}.\\d{3}.\\d{4}" // DeleteDuplicates

Out[9]= {217-398-0700, 217-398-0747, 617-764-0094}

The first solution uses regular expressions. The second uses string patterns and alternatives.5.

In[10]:= DictionaryLookupRegularExpression"[aeiouy]+", IgnoreCase → True

Out[10]= {a, aye, eye, I, IOU, oi, ya, ye, yea, yo, you}

In[11]:= DictionaryLookup"a" "e" "i" "o" "u" "y" .., IgnoreCase → True

Out[11]= {a, aye, eye, I, IOU, oi, ya, ye, yea, yo, you}

This one is a bit tricky and requires the use of named string patterns. So in the following, \\n

refers to the immediately preceding pattern (.). It is important to name each pattern differently

so they can be matched by different characters.

6.

In[12]:= words = DictionaryLookup[];

In[13]:= StringCaseswords, RegularExpression"\\w*(.)\\1(.)\\2(.)\\3\\w*" //

Flatten

Out[13]= {bookkeeper, bookkeepers, bookkeeping}

See the built-in tutorial Regular Expressions for more information on named string patterns.

Here is the short list of words with which we will work.7.

In[14]:= words = "building", "finch", "fix", "ratio", "envy", "boy", "baby",

"faculty", "honorarium";

Using regular expressions, these rules encapsulate those given in the exercise.

240 Essentials of Programming in Mathematica

In[15]:= rules =

RegularExpression"(\\w+)x" ⧴ "$1" ~~ "x" ~~ "es",

RegularExpression"(\\w+)(ch)" ⧴ "$1" ~~ "$2" ~~ "es",

RegularExpression"(\\w+)([aeiou])(y)" ⧴ "$1" ~~ "$2" ~~ "$3" ~~ "s",

RegularExpression"(\\w+)(y)" ⧴ "$1" ~~ "ies",

RegularExpression"(\\w+)(i)um" ⧴ "$1" ~~ "$2" ~~ "a",

RegularExpression"(\\w+)(.)" ⧴ "$1" ~~ "$2" ~~ "s"

;

In[16]:= StringReplacewords, rules

Out[16]= buildings, finches, fixes, ratios, envies, boys, babies, faculties, honoraria

Of course, lots of exceptions exist:

In[17]:= StringReplace"man", "cattle", rules

Out[17]= {mans, cattles}

Check against the built-in function Pluralize:

In[18]:= MapPluralize, words

Pluralize::noplural : No valid English pluralization found for honorarium.

Out[18]= buildings, finches, fixes, ratios, envies, boys, babies, faculties, honorarium

We use a combination of string patterns and regular expressions to remove the various frag-
ments. The regular expression "\[.+\] " matches strings that start with [, followed by an

arbitrary number of characters, followed by], followed by a space. Because brackets are used in

regular expressions to denote sequences of characters, you need to escape them to refer to the

explicit characters [or].

8.

In[19]:= text =

"okay well er today we're er going to be carrying on with the er

French \nRevolution you may have noticed i was sort of getting

rather er enthusiastic \nand carried away at the end of the

last one i was sort of almost er like i sort \nof started at

the beginning about someone standing on a coffee table and s-,

\nshouting to arms citizens as if i was going to sort of leap

up on the desk and \nsay to arms let's storm the Rootes Social

Building [laughter] or er let's go \nout arm in arm singing

the Marseillaise or something er like that";

7.4 Regular expressions: exercises 241

In[20]:= StringReplacetext, "\n" → "", " er" → "", " s-" → "",

RegularExpression"\[.+\] " → ""

Out[20]= okay well today we're going to be carrying on with the French Revolution you

may have noticed i was sort of getting rather enthusiastic and carried

away at the end of the last one i was sort of almost like i sort of

started at the beginning about someone standing on a coffee table

and, shouting to arms citizens as if i was going to sort of leap up

on the desk and say to arms let's storm the Rootes Social Building or

let's go out arm in arm singing the Marseillaise or something like that

Start by setting the options framework.9.

In[21]:= ClearStringTally

In[22]:= OptionsStringTally = IncludeCharacters → LetterCharacters;

Set up a message that will be returned if the user specifies a bad value for the

IncludeCharacters option.

In[23]:= StringTally::badopt =

"The option value `1` can only take on the following values: All,

LetterCharacters, WordCharacters, PunctuationOnly.";

Here then is the rewritten function.

In[24]:= StringTallytxt_, OptionsPattern[] :=

Moduleic = OptionValueIncludeCharacters,

TallyStringCasestxt,

Which

ic === All, RegularExpression".",

ic === LetterCharacters, RegularExpression"[[:alpha:]]",

ic === WordCharacters, RegularExpression"\\w",

ic === PunctuationOnly, RegularExpression"\\W",

True, MessageStringTally::badopt, ic

Import Dostoyevsky’s Crime and Punishment which has quite a few non-Ascii characters.

In[25]:= text = Import"http://www.gutenberg.org/ebooks/2554.txt.utf-8", "Text";

242 Essentials of Programming in Mathematica

In[26]:= StringTallytext, IncludeCharacters → WordCharacters // Sort

Out[26]= {_, 506}, {0, 21}, {1, 66}, {2, 16}, {3, 13}, {4, 18}, {5, 25}, {6, 10}, {7, 8},

{8, 19}, {9, 12}, {a, 71960}, {æ, 4}, à, 2, {ä, 2}, {A, 2086}, {b, 11365},

{B, 919}, {c, 18602}, {ç, 1}, {C, 276}, {d, 38452}, {D, 762}, {e, 104695},

é, 17, è, 1, ê, 3, {E, 331}, f, 16891, {F, 316}, {g, 17969}, {G, 433},

{h, 54070}, {H, 1943}, {i, 56803}, î, 1, {ï, 222}, {I, 5846}, {j, 773},

{J, 66}, {k, 9437}, {K, 323}, {l, 35271}, {L, 580}, {m, 21968}, {M, 504},

{n, 62470}, {N, 686}, {o, 71737}, ô, 4, {O, 496}, {p, 12583}, {P, 1415},

{q, 766}, {Q, 22}, {r, 46718}, {R, 1776}, {s, 51775}, {S, 1743}, {t, 78967},

{T, 1864}, {u, 27687}, {ü, 1}, {U, 94}, {v, 11012}, {V, 100}, {w, 19588},

{W, 1407}, {x, 1322}, {X, 9}, {y, 20389}, {Y, 899}, {z, 894}, {Z, 194}

First read in some sample phrases to prototype.10.

In[27]:= searchPhrases = "Find my favorite phone", "How deep is the ocean?",

"What is the meaning of life?";

There are several ways to approach this problem. We will break it up into two steps: first
eliminating punctuation, then a sample set of stop words.

In[28]:= tmp = StringSplit"How deep is the ocean?", Characters":,;.!? " ..

Out[28]= {How, deep, is, the, ocean}

In[29]:= stopwords = "how", "the", "is", "an";

In[30]:= ApplyAlternatives, stopwords

Out[30]= how the is an

Note the need for WordBoundary in what follows; otherwise, ocean would be split leaving oce
because an is a stop word.

In[31]:= StringSplittmp, WordBoundary ~~ ApplyAlternatives, stopwords ~~ WordBoundary,

IgnoreCase → True // Flatten

Out[31]= {deep, ocean}

In[32]:= FilterTextstr_String, stopwords_List := Module{tmp},

tmp = StringSplitstr, Characters":,;.!? " ..;

Flatten@StringSplittmp, WordBoundary ~~ ApplyAlternatives, stopwords ~~

WordBoundary, IgnoreCase → True

In[33]:= stopwords = Rest@Import"StopWords.dat", "List";

In[34]:= FilterText"What is the meaning of life?", stopwords

Out[34]= meaning, life

A slight modification is needed to accept a list of punctuation.11.

7.4 Regular expressions: exercises 243

In[35]:= Characters@StringJoin".", "?" // FullForm

Out[35]//FullForm= List[".", "?"]

First remove the punctuation.

In[36]:= tmp = StringSplit"What is the meaning of life?",

Characters@StringJoin".", "?" ..

Out[36]= What is the meaning of life

Split into words.

In[37]:= First@StringCasestmp, RegularExpression"\\w+"

Out[37]= What, is, the, meaning, of, life

Remove stop words.

In[38]:= StringSplit%, WordBoundary ~~ ApplyAlternatives, stopwords ~~ WordBoundary

Out[38]= {What}, {}, {}, {meaning}, {}, life

Put these pieces together in a reusable function.

In[39]:= FilterTextstr_String, stopwords_List, punctuation_List := Module{tmp},

tmp = StringSplitstr, Characters@StringJoinpunctuation ..;

Flatten@StringSplitFirst@StringCasestmp, RegularExpression"\\w+",

WordBoundary ~~ ApplyAlternatives, stopwords ~~ WordBoundary,

IgnoreCase → True

In[40]:= FilterText"What is the meaning of life?", stopwords, ".", "?"

Out[40]= meaning, life

Try it out on a list of phrases.

In[41]:= MapFilterText#, stopwords, ".", "?" &, searchPhrases

Out[41]= Find, favorite, phone, {deep, ocean}, meaning, life

Examples: exercises7.5
Rewrite the small auxiliary function gcRatio introduced in this section to eliminate the step in
counting the AT content and instead use the length of the entire string in the denominator of
the ratio. For large strings (length over 105), this could speed up the computation by a factor of
two.

1.

244 Essentials of Programming in Mathematica

Generalize the RandomString function to allow for a Weights option so that you can provide a

weight for each character in the generated string. Include a rule to generate a message if the

number of weights does not match the number of characters or if the sum of the weights does

not equal one. For example:

2.

In[1]:= RandomString"A", "T", "C", "G", 30, Weights → {.1, .2, .3, .4}

Out[1]= GTCCTGTGATTCGGTTCCAGTAGCCCGCTT

In[2]:= RandomString"A", "T", "C", "G", {5, 10}, Weights → {.1, .4, .4, .1}

Out[2]= {CCTATCCTAG, CACCTCACCC, CCTCACTTCG, CCCTCCCCAC, TCCCTCTGTT}

In[3]:= RandomString"A", "T", "C", "G", {5, 10}, Weights → {.1, .4}

RandomString::badwt :
The length of the list of weights must be the same as the length of the list of characters.

Rewrite the function Anagrams developed in Section 7.2 without resorting to the use of
Permutations. Consider using the Sort function to sort the characters. Note the difference in

speed of the two approaches: one involving string functions and the other list functions that
operate on lists of characters. Increase the efficiency of your search by only searching for words

of the same length as your source word.

3.

Create a function that searches the built-in dictionary for words containing a specified sub-
string. Set up an option to your function whose value specifies where in the string the sub-
string occurs: start, middle, end, anywhere. For example:

4.

In[4]:= FindWordsContaining"cite", WordPosition → "End"

Out[4]= {anthracite, calcite, cite, excite, incite, Lucite, overexcite, plebiscite, recite}

Using texts from several different sources, compute and then compare the number of punctua-
tion characters per 1000 characters of text. ExampleData[" Text "] gives a listing of many

different texts that you can use.

5.

The function stringPartition was developed specifically to deal with genomic data where

one often needs uniformly sized blocks to work with. Generalize stringPartition to fully

accept the same argument structure as the built-in Partition.

6.

Rewrite the text-encoding example from Section 7.2 using StringReplace and regular expres-
sions. First create an auxiliary function to encode a single character based on a key list of the

form {{��1, ��1}, …}, where pti is a plaintext character and cti is its ciphertext encoding. For
example, the pair {z, a} would indicate the character z in the plaintext will be encoded as an a

in the ciphertext. Then create an encoding function encode[���, ���] using regular expres-
sions to encode any string str using the key made up of the plaintext/ciphertext character pairs.

7.

7.5 Examples: exercises 245

Word collocation refers to expressions of two or more words that create a familiar phrase,
such as black coffee or sharp as a tack. They are important in many linguistic applications: natural
language translation and corpus research involving social phenomena, for example. In this

exercise you will create functions for extracting pairs of words of a predetermined form

involving parts of speech such as {adjective, noun}.

8.

Start by creating some functions to preprocess your text: split the text into pairs of words and,
for simplicity, convert all words to lowercase. Next, filter out words that are not contained in

the dictionary. Then, find all remaining pairs that are of a certain form involving the parts of
speech. This information is contained in WordData:

In[5]:= WordData"split", "PartsOfSpeech"

Out[5]= {Noun, Adjective, Verb}

Finally, create a function Collocation[����, {���1, ���2}] that returns all pairs in expr that
consist of the part of speech PoS1 followed by the part of speech PoS2. For example:

In[6]:= sentence =

"Alice was beginning to get very tired of sitting by her sister on

the bank, and of having nothing to do. Once or twice she had

peeped into the book her sister was reading, but ";

In[7]:= PreProcessString[sentence]

Out[7]= {was, beginning}, {beginning, to}, {to, get}, {get, very},

{very, tired}, tired, of, of, sitting, {sitting, by}, {by, her},

{her, sister}, {sister, on}, {on, the}, {the, bank}, {bank, and},

and, of, of, having, {having, nothing}, {nothing, to}, {to, do},

{do, once}, {once, or}, {or, twice}, {twice, she}, {she, had},

{had, peeped}, {peeped, into}, {into, the}, {the, book}, {book, her},

{her, sister}, {sister, was}, {was, reading}, {reading, but}

In[8]:= Collocation%, "Verb", "Noun"

Out[8]= {{was, beginning}, {having, nothing}, {was, reading}}

Both PreProcessString and Collocation are included in the packages that accompany this

book, but you may need to create your own versions for your applications.

Generating a list of all built-in symbols and then searching for those that have a certain prop-
erty is a not uncommon task. Examples include finding all built-in functions with the attribute

Listable, or all functions that have the StepMonitor option (see Section 5.5). The full list of
built-in functions includes symbols that should be omitted from such searches. Here we

display the first and last four symbols in the System` context, that is, the built-in symbols.

9.

In[9]:= DropNames"System`*", 5 ;; -5

Out[9]= a.., b
.
., c.., d

.

., $VersionNumber, $WolframID, $WolframUUID,

Use regular expressions to create a list of only those built-in functions that begin with a capital

246 Essentials of Programming in Mathematica

letter. Then use that code to rewrite FunctionsWithOption (Exercise 17 in Section 5.5) so it
only checks this smaller list of functions for options.

Solutions7.5
Here is the gcRatio function as written in the text.1.

In[1]:= gcRatioseq_String := Module{gc, at},

gc = StringCountseq, "G" "C";

at = StringCountseq, "A" "T";

N[gc/(gc + at)]

Instead of computing the occurrences of A or T, note that the denominator of the ratio is really

the length of the entire string since DNA contains only G, C, A, and T. So instead, use

StringLength[seq] there. This will make the code a bit shorter and slightly faster.

In[2]:= gcRatioseq_String := Module{gc},

gc = StringCountseq, "G" "C";

NgcStringLength[seq]

In[3]:= seq = "GCCCTAAGGTGGCCAAGCAC"

Out[3]= GCCCTAAGGTGGCCAAGCAC

In[4]:= gcRatio[seq]

Out[4]= 0.65

One rule is needed for one-dimensional output and another for multi-dimensional output.2.

In[5]:= ClearAllRandomString

In[6]:= OptionsRandomString = Weights → {};

In[7]:= RandomString::badwt =

"The length of the list of weights must be the same as the length

of the list of characters.";

In[8]:= RandomStringc__String, n_Integer: 1, OptionsPattern[] :=

Modulewts = OptionValueWeights,

Which

Length[wts]⩵ 0, StringJoinRandomChoice[{c}, n],

Length[wts]⩵ Length[{c}], StringJoinRandomChoice[wts → {c}, n],

True, MessageRandomString::badwt

7.5 Examples: exercises 247

In[9]:= RandomStringc__String, n_Integer, len_Integer, OptionsPattern[] :=

Modulewts = OptionValueWeights,

Which

Length[wts]⩵ 0, MapStringJoin, RandomChoice{c}, n, len,

Length[wts]⩵ Length[{c}],
MapStringJoin, RandomChoicewts → {c}, n, len,

True, MessageRandomString::badwt

In[10]:= RandomString"A", "C", "T"

Out[10]= T

In[11]:= RandomString"A", "C", "T", 10

Out[11]= AATATCCTCT

In[12]:= RandomString"A", "C", "T", {4, 10}

Out[12]= {CTCAAACTCC, TATTTCTAAA, TCATAACTTT, TCTCACAATC}

In[13]:= RandomString"A", "C", "T", {4, 10}, Weights → {.2, .7, .1}

Out[13]= {CCCCACCCCA, TACCCCTCCA, CACCCCATAC, CACTCCCACC}

Check that an incorrect list for the weights returns a message.

In[14]:= RandomString"A", "C", "T", {4, 10}, Weights → {.2, .7}

RandomString::badwt :
The length of the list of weights must be the same as the length of the list of characters.

Two words are anagrams if they contain the same letters but in a different order. This function

is fairly slow as it sorts and compares every word in the dictionary with the sorted characters of
the input word.

3.

In[15]:= Anagrams2word_String :=

Modulechars = SortCharactersword,

DictionaryLookupx__ /; SortCharacters[x] ⩵ chars

In[16]:= Anagrams2"parsley" // Timing

Out[16]= {1.78331, {parleys, parsley, players, replays, sparely}}

You can speed things up a bit by only working with those words in the dictionary of the same

length as the source word.

In[17]:= Anagrams3word_String := Modulelen = StringLengthword, words,

words = DictionaryLookupw__ /; StringLength[w]⩵ len;

Selectwords, SortCharacters[#] ⩵ SortCharactersword &

248 Essentials of Programming in Mathematica

In[18]:= Anagrams3"parsley" // Timing

Out[18]= {0.728484, {parleys, parsley, players, replays, sparely}}

In fact, you can speed this up a bit further by using regular expressions even though the con-
struction of the regular expression in this case is a bit clumsy looking. The lesson here is that
conditional string patterns tend to be slower.

In[19]:= Anagrams4word_String := Modulelen = StringLengthword, words,

words = DictionaryLookupRegularExpression"\\w{" <> ToStringlen <> "}";

Selectwords, SortCharacters[#] ⩵ SortCharactersword &

In[20]:= Anagrams4"parsley" // Timing

Out[20]= {0.083218, {parleys, parsley, players, replays, sparely}}

If the test substring is cite, here is how we would find all words that end in cite. Note the triple

blank pattern to match any sequence of zero or more characters.
4.

In[21]:= DictionaryLookup___ ~~ "cite"

Out[21]= {anthracite, calcite, cite, excite, incite, Lucite, overexcite, plebiscite, recite}

You could also use StringEndsQ, but it is quite a bit slower:

In[22]:= DictionaryLookupw__ /; StringEndsQw, "cite"

Out[22]= {anthracite, calcite, cite, excite, incite, Lucite, overexcite, plebiscite, recite}

Here are all words that begin with cite.

In[23]:= DictionaryLookup"cite" ~~ ___

Out[23]= {cite, cited, cites}

In[24]:= DictionaryLookupw__ /; StringStartsQw, "cite"

Out[24]= {cite, cited, cites}

And this gives all words that have cite somewhere in them, at the beginning, middle, or end.

In[25]:= DictionaryLookup___ ~~ "cite" ~~ ___

Out[25]= {anthracite, calcite, cite, cited, cites, elicited, excite, excited, excitedly,

excitement, excitements, exciter, exciters, excites, incite, incited,

incitement, incitements, inciter, inciters, incites, Lucite, Lucites,

overexcite, overexcited, overexcites, plebiscite, plebiscites, recite,

recited, reciter, reciters, recites, solicited, unexcited, unsolicited}

7.5 Examples: exercises 249

In[26]:= DictionaryLookupw__ /; StringContainsQw, "cite"

Out[26]= {anthracite, calcite, cite, cited, cites, elicited, excite, excited, excitedly,

excitement, excitements, exciter, exciters, excites, incite, incited,

incitement, incitements, inciter, inciters, incites, Lucite, Lucites,

overexcite, overexcited, overexcites, plebiscite, plebiscites, recite,

recited, reciter, reciters, recites, solicited, unexcited, unsolicited}

Using the double blank gives words that have cite in them but not beginning or ending with cite.

In[27]:= DictionaryLookup__ ~~ "cite" ~~ __

Out[27]= {elicited, excited, excitedly, excitement, excitements, exciter,

exciters, excites, incited, incitement, incitements, inciter, inciters,

incites, Lucites, overexcited, overexcites, plebiscites, recited,

reciter, reciters, recites, solicited, unexcited, unsolicited}

Let us put these pieces together in a reusable function FindWordsContaining. We will include

one option, WordPosition that identifies where in the word the substring is expected to occur.

In[28]:= OptionsFindWordsContaining = WordPosition → "Start";

Depending upon the value of the option WordPosition, Which directs which expression will be

evaluated.

In[29]:= FindWordsContainingstr_String, OptionsPattern[] :=

Modulewp = OptionValueWordPosition,

Which

wp == "Start", DictionaryLookup[str ~~ ___],

wp == "Middle", DictionaryLookup[__ ~~ str ~~ __],

wp == "End", DictionaryLookup[___ ~~ str],

wp⩵ "Anywhere", DictionaryLookup[___ ~~ str ~~ ___]

This could also be done with regular expressions. The pattern "\\bcite.*\\b" matches any

string starting with a word boundary followed by the string cite, followed by characters

repeated one or more times, followed by a word boundary.

In[30]:= DictionaryLookupRegularExpression"\\bcite.*\\b"

Out[30]= {cite, cited, cites}

With suitable modifications to the above for the target string occurring in the middle, end, or
anywhere, here is the rewritten function. Note the need for StringJoin here to properly pass

the argument str, as a string, into the body of the regular expression.

In[31]:= OptionsFindWordsContaining = WordPosition → "Start";

250 Essentials of Programming in Mathematica

In[32]:= FindWordsContainingstr_String, OptionsPattern[] :=

Modulewp = OptionValueWordPosition,

Which

wp == "Start",

DictionaryLookupRegularExpressionStringJoin"\\b", str, ".*\\b",

wp == "Middle",

DictionaryLookupRegularExpressionStringJoin"\\b.+", str, ".+\\b",

wp == "End", DictionaryLookup

RegularExpressionStringJoin"\\b.*", str, "\\b",

wp⩵ "Anywhere",

DictionaryLookupRegularExpressionStringJoin"\\b.*", str, ".*\\b"

In[33]:= FindWordsContaining"cite"

Out[33]= {cite, cited, cites}

In[34]:= FindWordsContaining"cite", WordPosition → "End"

Out[34]= {anthracite, calcite, cite, excite, incite, Lucite, overexcite, plebiscite, recite}

In[35]:= FindWordsContaining"cite", WordPosition → "Middle"

Out[35]= {elicited, excited, excitedly, excitement, excitements, exciter,

exciters, excites, incited, incitement, incitements, inciter, inciters,

incites, Lucites, overexcited, overexcites, plebiscites, recited,

reciter, reciters, recites, solicited, unexcited, unsolicited}

In[36]:= FindWordsContaining"cite", WordPosition → "Anywhere"

Out[36]= {anthracite, calcite, cite, cited, cites, elicited, excite, excited, excitedly,

excitement, excitements, exciter, exciters, excites, incite, incited,

incitement, incitements, inciter, inciters, incites, Lucite, Lucites,

overexcite, overexcited, overexcites, plebiscite, plebiscites, recite,

recited, reciter, reciters, recites, solicited, unexcited, unsolicited}

First read in a sample piece of text.5.

In[37]:= text = ExampleData"Text", "PrideAndPrejudice";

Check the length. Then partition into blocks consisting of 1000 characters each.

In[38]:= StringLength[text]

Out[38]= 682262

In[39]:= blocks = StringPartition[text, 1000];

Using regular expressions, we extract all characters from the first block that are not amongst A

through z or 0 through 9 or whitespace.

7.5 Examples: exercises 251

In[40]:= StringCasesblocks[[1]],

RegularExpression"[^A-z|0-9|\\s]"

Out[40]= {,, ,, ., ,, ,, ., ", ., ,, ", ,, ", ?, ", ., ., ", ,, ", ;,

", ., ,, ., ", ., ., ", ?, ", ., ", ,, ., ", ., ", ,, ,, ,, ., ;}

In[41]:= Tally[%] // InputForm

Out[41]//InputForm= {{�������}��{�������}��{��������}��{������}��{������}}

Now perform the same computation over all blocks and then compute the mean.

In[42]:= counts = MapStringCount#, RegularExpression"[^A-z|0-9|\\s]" &, blocks;

In[43]:= N[Mean[counts]]

Out[43]= 34.3021

Finally, perform the same computations on a different text.

In[44]:= text = ExampleData"Text", "OriginOfSpecies";

blocks = StringPartition[text, 1000];

counts = MapStringCount#, RegularExpression"[^A-z|0-9|\\s]" &, blocks;

N[Mean[counts]]

Out[47]= 21.9877

Here is the function as developed in the text.6.

In[48]:= stringPartitionstr_String, blocksize_ :=

MapStringJoin, PartitionCharacters[str], blocksize, blocksize, 1, {}

This passes the argument structure directly to Partition.

In[49]:= ClearstringPartition

In[50]:= stringPartitionstr_String, seq__ :=

MapStringJoin, PartitionCharacters[str], seq

In[51]:= str = RandomString"A", "C", "G", "T", 20

Out[51]= CCCTTAGTTTTTAATTATCC

Try out some of the argument structures commonly used with Partition. For example, this

partitions the string into blocks of length 3 with offset 1, with no padding.

In[52]:= stringPartition[str, 3, 3, 1, {}]

Out[52]= {CCC, TTA, GTT, TTT, AAT, TAT, CC}

Start by creating a substitution cipher by simply shifting the alphabet three characters to the left.7.

252 Essentials of Programming in Mathematica

In[53]:= keyRL3 =

TransposeCharacterRange"a", "z", RotateLeftCharacterRange"a", "z", 3

Out[53]= {a, d}, {b, e}, c, f, {d, g}, {e, h}, f, i, {g, j}, {h, k},

{i, l}, {j, m}, {k, n}, {l, o}, {m, p}, {n, q}, {o, r}, {p, s}, {q, t},

{r, u}, {s, v}, {t, w}, {u, x}, {v, y}, {w, z}, {x, a}, {y, b}, {z, c}

Next, encode a single character using a designated key.

In[54]:= encodeCharchar_String, key_List := First@Caseskey, char, next_ ⧴ next

In[55]:= encodeChar"z", keyRL3

Out[55]= c

Finally, here is the encoding function. Recall the "$1" on the right-hand side of the rule refers to

the first (and only in this case) regular expression on the left that is enclosed in parentheses.

In[56]:= encodestr_String, key_List :=

StringReplacestr, RegularExpression"([a-z])" ⧴ encodeChar"$1", key

The decoding uses the same key, but reverses the pairs.

In[57]:= decodestr_String, key_List := encodestr, MapReverse, key

In[58]:= encode"squeamish ossifrage", keyRL3

Out[58]= vtxhdplvk rvvliudjh

In[59]:= decode%, keyRL3

Out[59]= squeamish ossifrage

You might want to modify the encoding rule to deal with uppercase letters. One solution is

simply to convert them to lowercase.

In[60]:= encodestr_String, key_List :=

StringReplaceToLowerCase[str],

RegularExpression"([a-z])" ⧴ encodeChar"$1", key

In[61]:= encode"Squeamish Ossifrage", keyRL3

Out[61]= vtxhdplvk rvvliudjh

Here is a sample sentence.8.

In[62]:= sentence =

"Alice was beginning to get very tired of sitting by her sister on

the bank, and of having nothing to do. Once or twice she had

peeped into the book her sister was reading, but ";

Split into words.

7.5 Examples: exercises 253

In[63]:= words = TextWords[sentence]

Out[63]= Alice, was, beginning, to, get, very, tired, of, sitting, by, her,

sister, on, the, bank, and, of, having, nothing, to, do, Once, or, twice,

she, had, peeped, into, the, book, her, sister, was, reading, but

In[64]:= Clear[NGrams]

In[65]:= NGramswords : __String, len_: 2 := Partitionwords, len, 1

In[66]:= bigrams = NGramswords

Out[66]= {{Alice, was}, {was, beginning}, {beginning, to}, {to, get}, {get, very},

{very, tired}, {tired, of}, {of, sitting}, {sitting, by}, {by, her}, {her, sister},

{sister, on}, {on, the}, {the, bank}, {bank, and}, {and, of}, {of, having},

{having, nothing}, {nothing, to}, {to, do}, {do, Once}, {Once, or}, {or, twice},

{twice, she}, {she, had}, {had, peeped}, {peeped, into}, {into, the}, {the, book},

{book, her}, {her, sister}, {sister, was}, {was, reading}, {reading, but}}

The collocation grabs parts of speech data from WordData.

In[67]:= Collocationlis_List, PoS1_String, PoS2_String :=

Caseslis, p_ /; MemberQWordDatap, "PartsOfSpeech", PoS1,

q_ /; MemberQWordDataq, "PartsOfSpeech", PoS2

In[68]:= Collocationbigrams, "Noun", "Adjective"

Out[68]= {{get, very}, {sister, on}}

Try it on a larger text.

In[69]:= text = ExampleData"Text", "GettysburgAddress"

Out[69]= Four score and seven years ago, our fathers brought forth upon this continent a new

nation: conceived in liberty, and dedicated to the proposition that all men are

created equal. Now we are engaged in a great civil war...testing whether that nation,

or any nation so conceived and so dedicated. . . can long endure. We are met on a

great battlefield of that war. We have come to dedicate a portion of that field as

a final resting place for those who here gave their lives that this nation might

live. It is altogether fitting and proper that we should do this. But, in a larger

sense, we cannot dedicate...we cannot consecrate... we cannot hallow this ground.

The brave men, living and dead, who struggled here have consecrated it, far above

our poor power to add or detract. The world will little note, nor long remember,

what we say here, but it can never forget what they did here. It is for us the

living, rather, to be dedicated here to the unfinished work which they who fought

here have thus far so nobly advanced. It is rather for us to be here dedicated to

the great task remaining before us...that from these honored dead we take increased

devotion to that cause for which they gave the last full measure of devotion...

that we here highly resolve that these dead shall not have died in vain...that

this nation, under God, shall have a new birth of freedom...and that government

of the people, by the people, for the people, shall not perish from this earth.

254 Essentials of Programming in Mathematica

In[70]:= bigrams = NGramsTextWords[text], 2

Out[70]= {{Four, score}, {score, and}, {and, seven}, {seven, years}, {years, ago}, {ago, our},

{our, fathers}, {fathers, brought}, {brought, forth}, {forth, upon}, {upon, this},

{this, continent}, {continent, a}, {a, new}, {new, nation}, {nation, conceived},

{conceived, in}, {in, liberty}, {liberty, and}, {and, dedicated}, {dedicated, to},

{to, the}, {the, proposition}, {proposition, that}, {that, all}, {all, men},

{men, are}, {are, created}, {created, equal}, {equal, Now}, {Now, we}, {we, are},

{are, engaged}, {engaged, in}, {in, a}, {a, great}, {great, civil}, {civil, war},

{war, testing}, {testing, whether}, {whether, that}, {that, nation}, {nation, or},

{or, any}, {any, nation}, {nation, so}, {so, conceived}, {conceived, and}, {and, so},

{so, dedicated}, {dedicated, can}, {can, long}, {long, endure}, {endure, We}, {We, are},

{are, met}, {met, on}, {on, a}, {a, great}, {great, battlefield}, {battlefield, of},

{of, that}, {that, war}, {war, We}, {We, have}, {have, come}, {come, to}, {to, dedicate},

{dedicate, a}, {a, portion}, {portion, of}, {of, that}, {that, field}, {field, as},

{as, a}, {a, final}, {final, resting}, {resting, place}, {place, for}, {for, those},

{those, who}, {who, here}, {here, gave}, {gave, their}, {their, lives}, {lives, that},

{that, this}, {this, nation}, {nation, might}, {might, live}, {live, It}, {It, is},

{is, altogether}, {altogether, fitting}, {fitting, and}, {and, proper}, {proper, that},

{that, we}, {we, should}, {should, do}, {do, this}, {this, But}, {But, in}, {in, a},

{a, larger}, {larger, sense}, {sense, we}, {we, cannot}, {cannot, dedicate},

{dedicate, we}, {we, cannot}, {cannot, consecrate}, {consecrate, we}, {we, cannot},

{cannot, hallow}, {hallow, this}, {this, ground}, {ground, The}, {The, brave},

{brave, men}, {men, living}, {living, and}, {and, dead}, {dead, who}, {who, struggled},

{struggled, here}, {here, have}, {have, consecrated}, {consecrated, it}, {it, far},

{far, above}, {above, our}, {our, poor}, {poor, power}, {power, to}, {to, add},

{add, or}, {or, detract}, {detract, The}, {The, world}, {world, will}, {will, little},

{little, note}, {note, nor}, {nor, long}, {long, remember}, {remember, what},

{what, we}, {we, say}, {say, here}, {here, but}, {but, it}, {it, can}, {can, never},

{never, forget}, {forget, what}, {what, they}, {they, did}, {did, here}, {here, It},

{It, is}, {is, for}, {for, us}, {us, the}, {the, living}, {living, rather}, {rather, to},

{to, be}, {be, dedicated}, {dedicated, here}, {here, to}, {to, the}, {the, unfinished},

{unfinished, work}, {work, which}, {which, they}, {they, who}, {who, fought},

{fought, here}, {here, have}, {have, thus}, {thus, far}, {far, so}, {so, nobly},

{nobly, advanced}, {advanced, It}, {It, is}, {is, rather}, {rather, for}, {for, us},

{us, to}, {to, be}, {be, here}, {here, dedicated}, {dedicated, to}, {to, the}, {the, great},

{great, task}, {task, remaining}, {remaining, before}, {before, us}, {us, that},

{that, from}, {from, these}, {these, honored}, {honored, dead}, {dead, we}, {we, take},

{take, increased}, {increased, devotion}, {devotion, to}, {to, that}, {that, cause},

{cause, for}, {for, which}, {which, they}, {they, gave}, {gave, the}, {the, last},

{last, full}, {full, measure}, {measure, of}, {of, devotion}, {devotion, that},

{that, we}, {we, here}, {here, highly}, {highly, resolve}, {resolve, that}, {that, these},

{these, dead}, {dead, shall}, {shall, not}, {not, have}, {have, died}, {died, in},

{in, vain}, {vain, that}, {that, this}, {this, nation}, {nation, under}, {under, God},

{God, shall}, {shall, have}, {have, a}, {a, new}, {new, birth}, {birth, of}, {of, freedom},

{freedom, and}, {and, that}, {that, government}, {government, of}, {of, the}, {the, people},

{people, by}, {by, the}, {the, people}, {people, for}, {for, the}, {the, people},

{people, shall}, {shall, not}, {not, perish}, {perish, from}, {from, this}, {this, earth}}

7.5 Examples: exercises 255

In[71]:= Collocationbigrams, "Adjective", "Noun"

Out[71]= {{seven, years}, {continent, a}, {new, nation}, {in, liberty}, {all, men},

{engaged, in}, {in, a}, {civil, war}, {any, nation}, {dedicated, can}, {on, a},

{great, battlefield}, {in, a}, {larger, sense}, {brave, men}, {here, have},

{far, above}, {poor, power}, {world, will}, {little, note}, {dedicated, here},

{unfinished, work}, {here, have}, {far, so}, {great, task}, {honored, dead},

{increased, devotion}, {last, full}, {full, measure}, {under, God}, {new, birth}}

To find symbols in the list of built-in functions that start with a capital letter, use the following

regular expression: RegularExpression["^[[:upper:]]\\w+"]. This will be matched by a

string that starts with one of the letters A through Z, followed by any sequence of characters.
The caret ^ is used to denote the beginning of the string. We will use StringCases on the full
list of built-in symbols with this regular expression as the pattern to match against.

9.

In[72]:= StringCasesNames"System`*", RegularExpression"^[[:upper:]]\\w+";

This list will need to be flattened to delete the empty lists where a match did not occur. Here

then is the rewritten function from Exercise 17, Section 5.5.

In[73]:= FunctionsWithOptionopt_Symbol := Modulenames, lis,

names = Flatten@StringCasesNames"System`*",

RegularExpression"^[[:upper:]]\\w+";

lis = DeleteCasesnames, f_ /; OptionsSymbolf === {};

Selectlis, MemberQOptionsSymbol[#], opt, 2 &

In[74]:= FunctionsWithOptionStepMonitor

Out[74]= {FindArgMax, FindArgMin, FindFit, FindMaximum, FindMaxValue,

FindMinimum, FindMinValue, FindRoot, NArgMax, NArgMin, NDSolve,

NDSolveValue, NMaximize, NMaxValue, NMinimize, NMinValue,

NonlinearModelFit, NRoots, ParametricNDSolve, ParametricNDSolveValue}

256 Essentials of Programming in Mathematica

8
Graphics and visualization

The graphics language: exercises8.1
Create a color wheel by coloring successive sectors of a disk according to the Hue directive.1.

Construct a graphic containing a circle, a triangle, and a rectangle. Your graphic should include

an identifying label for each object.
2.

Create a three-dimensional graphic that includes six Cuboid graphics primitives, randomly

placed in the unit cube. Add an opacity directive to make them transparent.
3.

Create a graphic consisting of a cube together with a rotation of 45° about the vertical axis

through the center of that cube. Then create a dynamically rotating cube using Manipulate or
Animate.

4.

Create a three-dimensional graphic consisting of twenty-four random points in the unit cube

with every pair of points connected by a line. Add directives to make the points red and large

and the lines gray and transparent.

5.

Construct a graphic that consists of 500 points randomly distributed about the origin with

standard deviation 1. Then, set the points to have random radii between 0.01 and 0.1 and

colored randomly according to a Hue function.

6.

Create a random walk on the binary digits of π. For a one-dimensional walk, use

RealDigits[���, 2] to get the base 2 digits and then convert each 0 to –1 so that you have a

vector of ±1s for the step directions; then use Accumulate.

7.

For the two-dimensional walk, use Partition to pair up digits and then use an appropriate

transformation to have the four pairs, {0, 0}, {0, 1}, {1, 0}, and {1, 1} map to the

compass directions; then use Accumulate. See Bailey et al. (2012) for more on visualizing digits

of π.

http://www.davidhbailey.com/dhbpapers/normality-digits-pi.pdf

Create a graphic that represents the solution to the following algebraic problem that appeared

in the Calculus&Mathematica courseware (Porta, Davis, and Uhl 1994) . Find the positive numbers

r such that the following system has exactly one solution in x and y:

8.

(x - 1)2 + (y - 1)2 = 2
(x + 3)2 + (y - 4)2 = r2

Once you have found the right number r, plot the resulting circles on the same axes, plotting

the first circle with solid lines and the two solutions with dashed lines.

Create a graphic of the sine function over the interval (0, 2 π) that displays vertical lines at each

point calculated by the Plot function to produce the curve.
9.

Bundle up the code fragments for the visualization of the triangle centroid into a function

CentroidPlot that takes a Triangle graphics primitive as its argument and returns a graphic

similar to that in this section. Set up your function to inherit options from Graphics.

10.

Add a check to CentroidPlot to return a message if the three vertices of the triangle are

collinear.

In[1]:= pts = {{0, 0}, {1, 1}, {2, 2}};

CentroidPlotTriangle[pts]

CentroidPlot::collinpts :
The points {{0, 0}, {1, 1}, {2, 2}} are collinear, giving a degenerate triangle.

The centroid of a triangle is only one kind of triangle center. The circumcenter is located at the

intersection of the perpendicular bisectors of the sides of the triangle and is also the center of
the circle passing through the vertices of the triangle, the circumcircle. The incenter is located at
the intersection of the angle bisectors and is the center of the largest circle inside the triangle.
The orthocenter is located at the intersection of the altitudes of the triangle (Kimberling 1994).

11.

Triangle centers.Figure 8.1.

Centroid Circumcenter Incenter Orthocenter

Create a graphic for each of these centers similar to that created for the centroid and the

medians.

Using options to the Plot function, create a plot showing the probability density function

(PDF) of a normal distribution together with vertical lines at the first and second standard

deviations. Your plot should look something like that in Figure 8.2 for a normal distribution

with μ = 0 and σ = 1.

12.

258 Essentials of Programming in Mathematica

http://www.amazon.com/Calculus-Mathematica-Bill-Davis/dp/1579550134
http://dx.doi.org/10.2307/2690608

PDF of normal distribution with standard deviation lines.Figure 8.2.

-2σ -σ μ σ 2σ

0.1

0.2

0.3

0.4

Normal distribution: μ=0, σ=1

Solutions8.1
The color wheel can be generated by mapping the Hue directive over successive sectors of a disk.
Note that the argument to Hue must be scaled so that it falls within the range zero to one.

1.

In[1]:= colorWheel[n_] :=

GraphicsHueRescale[#, {0, 2 π}], Disk[{0, 0}, 1, {#, # + n}] & /@

Range[0, 2 π, n], ImageSize → Small

Here is a color wheel created from 256 separate sectors (hues).

In[2]:= colorWheel
π

256

Out[2]=

Here is the circle graphic primitive together with a text label.2.

In[3]:= circ = Circle[{.5, .5}, .5];

In[4]:= ctext = TextStyle"Circle", 8, {.5, -.2};

This generates the graphics primitive for the triangle and its text label.

In[5]:= tri = Triangle[{{-2, 0}, {-1, 1}, {0, 0}}];

In[6]:= ttext = TextStyle"Triangle", 8, {-1, -.2};

Here is the rectangle and label.

In[7]:= rect = Rectangle[{1.5, 0}, {2.5, 1}]

Out[7]= Rectangle[{1.5, 0}, {2.5, 1}]

8.1 The graphics language: exercises 259

In[8]:= rtext = TextStyle"Rectangle", 8, {2, -0.2};

Finally, this displays each of these graphics elements all together.

In[9]:= Graphicstri, ttext, circ, ctext, rect, rtext

Out[9]=

Triangle Circle Rectangle

Add some directives to each primitive.

In[10]:= Graphics

EdgeForm[Gray], LightBlue, tri, ttext,

Thick, Gray, circ, ctext,

EdgeForm[Gray], LightGreen, rect, rtext

Out[10]=

Triangle Circle Rectangle

Cuboid takes a list of three numbers as the coordinates of its lower-left corner. This maps the

object across two such lists.
3.

In[11]:= MapCuboid, RandomReal[1, {2, 3}]

Out[11]= {Cuboid[{0.159256, 0.199787, 0.744115}], Cuboid[{0.629273, 0.77004, 0.902954}]}

Below is a list of six cuboids and the resulting graphic. Notice the large amount of overlap of the

cubes. You can reduce the large overlap by specifying minimum and maximum values of the

cuboid.

In[12]:= cubes = MapCuboid, RandomReal[1, {6, 3}];

In[13]:= Graphics3DOpacity[.5], cubes

Out[13]=

Start by creating a unit cube centered on the origin. An opacity directive adds transparency.4.

260 Essentials of Programming in Mathematica

In[14]:= Graphics3DOpacity[.25], Cuboid[{-0.5, -0.5, -0.5}], Boxed → False,

Axes → Automatic

Out[14]=

Next rotate 45°. Note the third argument of Rotate used to specify the axis about which the

rotation should occur.

In[15]:= Graphics3DOpacity[.25], Cuboid[{-.5, -.5, -.5}],

RotateCuboid[{-.5, -.5, -.5}], 45 °, {0, 0, 1}

Out[15]=

Here is the dynamic version. The angle θ is the parameter that is manipulated here. The explicit
PlotRange option is necessary to prevent its re-computation for every new angle of rotation.

In[16]:= Manipulate

Graphics3DRotateCuboid[{-.5, -.5, -.5}], θ, {0, 0, 1}, PlotRange → 1,

{θ, 0, 2 π}

Out[16]=

θ

8.1 The graphics language: exercises 261

Start by creating the set of points.5.

In[17]:= pts = RandomReal[{0, 1}, {24, 3}];

To connect all pairs of points, use Subsets[pts, {2}].

In[18]:= Graphics3D

Opacity[.3], LineSubsets[pts, {2}],

Red, PointSizeMedium, Point[pts]

Out[18]=

To add a label to the plot, use StringForm to slot some values into the string. The binomial
n
2

gives the number of pairs of points.

In[19]:= Graphics3D

Opacity[.3], LineSubsets[pts, {2}],

Red, PointSizeMedium, Point[pts],

PlotLabel → StringForm"`1` vertices, `2` edges", Length[pts],

BinomialLength[pts], 2

Out[19]=

First we create the Point graphics primitives using a normal distribution with mean zero and

standard deviation one.
6.

In[20]:= randomcoords := PointRandomVariateNormalDistribution[0, 1], {1, 2}

This creates the point sizes according to the specification given in the statement of the problem.

In[21]:= randomsize := PointSizeRandomReal[{.01, .1}]

This creates a random color that will be used for each primitive.

In[22]:= randomcolor := RandomColorColorSpace → "Hue"

262 Essentials of Programming in Mathematica

Here then are 500 points. (You may find it instructive to look at just one of these points.)

In[23]:= pts = Tablerandomcolor, randomsize, randomcoords, {500};

And here is the graphic.

In[24]:= Graphics[pts]

Out[24]=

Alternatively, you could do it all in one step using MapThread.

In[25]:= With{n = 500},

GraphicsMapThread#1, PointSize[#2], Point[#3] &,

RandomColorn, ColorSpace → "Hue", RandomReal[{.01, .1}, n],

RandomVariateNormalDistribution[0, 1], {n, 2}

Out[25]=

Here are the binary digits of π. First is used to get only the digits from RealDigits.7.

In[26]:= FirstRealDigitsNPi, 12, 2

Out[26]= {1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,

0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0}

Convert zeros to negative ones.

In[27]:= 2 % - 1

Out[27]= {1, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1,

-1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1}

Here then is a plot for the first fifty thousand digits.

8.1 The graphics language: exercises 263

In[28]:= ListLinePlot

Withdigits = 50000,

Accumulate2 FirstRealDigitsNPi, digits, 2 - 1

Out[28]=

50000 100000 150000

-100

100

200

300

400

For the two-dimensional case, use Partition to pair up the binary digits, then a transformation

rule to convert them to compass directions.

In[29]:= Withdigs = FirstRealDigitsNPi, 50000, 2,

ListLinePlot

AccumulatePartitiondigs, 2, 2 /. {{0, 0} → {-1, 0}, {1, 1} → {0, -1}},

AspectRatio → Automatic

Out[29]=

-50 50 100

-300

-200

-100

The algebraic solution is given by the following steps. First solve the equations for x and y.8.

In[30]:= Clear[x, y, r]

In[31]:= soln = Solve(x - 1)2
+ (y - 1)2

⩵ 2, (x + 3)2
+ (y - 4)2

⩵ r2, {x, y}

Out[31]= x →
1

50
-58 + 4 r2 - 3 -529 + 54 r2 - r4 ,

y →
1

50
131 - 3 r2 - 4 -529 + 54 r2 - r4 ,

x →
1

50
-58 + 4 r2 + 3 -529 + 54 r2 - r4 ,

y →
1

50
131 - 3 r2 + 4 -529 + 54 r2 - r4

Then find those values of r for which the x and y coordinates are identical.

264 Essentials of Programming in Mathematica

In[32]:= Solve

x /. soln〚1〛 ⩵ x /. soln〚2〛,

y /. soln〚1〛 ⩵ y /. soln〚2〛,

r

Out[32]= r → -5 - 2 , r → 5 - 2 , r → -5 + 2 , r → 5 + 2

Here then are those values of r that are positive.

In[33]:= Cases%, r → _?Positive

Out[33]= r → 5 - 2 , r → 5 + 2

To display the solution, we will plot the first circle with solid lines and the two solutions with

dashed lines together in one graphic. Here is the first circle centered at (1, 1).

In[34]:= circ = Circle{1, 1}, 2 ;

Here are the circles that represent the solution to the problem.

In[35]:= r1 = 5 - 2 ;

r2 = 5 + 2 ;

In[37]:= Graphicscirc, Circle[{-3, 4}, r1], Circle[{-3, 4}, r2], Axes → Automatic

Out[37]=

-8 -6 -4 -2 2

-2

2

4

6

8

10

We wanted to display the solutions (two circles) using dashed lines. The graphics directive

Dashing[{�, �}] directs all subsequent lines to be plotted as dashed, alternating the dash x

units and the space y units. We use it as a graphics directive on the two circles c1 and c2. The

circles inherit only those directives in whose scope they appear.

In[38]:= dashc1 = Red, Dashing[{.025, .025}], Circle[{-3, 4}, r1];

dashc2 = Red, Dashing[{.05, .05}], Circle[{-3, 4}, r2];

8.1 The graphics language: exercises 265

In[40]:= Graphics

Thick, circ,

dashc1, dashc2, Axes → Automatic

Out[40]=

-8 -6 -4 -2 2

-2

2

4

6

8

10

Here is a plot of the sine function.9.

In[41]:= sinplot = PlotSin[x], {x, 0, 2 π}

Out[41]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Using pattern matching, here are the coordinates that were used to construct the curve.

In[42]:= Shortcoords = Casessinplot, Line[{x__}]⧴ x, Infinity, 2

Out[42]//Short= 1.28228×10-7, 1.28228×10-7, {22, 21}, 427, {1}, {1}

Create vertical lines from each coordinate.

In[43]:= Shortlines = MapLine[{{#[[1]], 0}, #}] &, coords, 2

Out[43]//Short= {1}

Here then is the final graphic.

266 Essentials of Programming in Mathematica

In[44]:= Showsinplot, GraphicsThickness[.001], lines

Out[44]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

First, here is the code for the triangle medians from Section 5.5.10.

In[45]:= TriangleMediansTriangle[{p1_, p2_, p3_}] := Modulemidpts,

midpts = (#1 + #2)/2 & @@@ Subsets[{p1, p2, p3}, {2}];

MapThreadLine[{#1, #2}] &, {p3, p2, p1}, midpts

Second, this bundles up the code fragments from Section 8.1 into a reusable function. We have

added options inherited from Graphics.

In[46]:= CentroidPlotTriangle[{p1_, p2_, p3_}], opts : OptionsPatternGraphics :=

Graphics

LightBlue, EdgeFormBlue, Triangle[{p1, p2, p3}],

Blue, PointSizeMedium, Point[{p1, p2, p3}],

Red, PointSizeMedium, Point@RegionCentroidTriangle[{p1, p2, p3}],

Gray, TriangleMediansTriangle[{p1, p2, p3}], PointSizeMedium,

Point(#1 + #2)/2 & @@@ Subsets[{p1, p2, p3}, {2}]

, opts

In[47]:= SeedRandom[15];

TableCentroidPlotTriangleRandomInteger[{-5, 5}, {3, 2}], {3}

Out[48]= , ,

To deal with the pathological situation where the points are collinear, first create a message that
will be issued under these conditions.

In[49]:= CentroidPlot::collinpts =

"The points `1` are collinear, giving a degenerate triangle.";

8.1 The graphics language: exercises 267

Three points are collinear if and only if the area of the triangle determined by those points is

zero. The built-in Area function returns an error message in this situation:

In[50]:= pts = {{0, 0}, {1, 1}, {2, 2}};

AreaTriangle[pts]

Area::reg : Triangle{{0, 0}, {1, 1}, {2, 2}} is not a correctly speci�ed region.

Out[51]= Area[Triangle[{{0, 0}, {1, 1}, {2, 2}}]]

We could trap for a non-numeric value returned by Area, but we will take another, more direct
approach. The area of the triangle determined by three points is given by the following

determinant:

x1 y1 1
x2 y2 1
x3 y3 1

In fact, we have already implemented this in the function SignedArea from Section 4.3.

In[52]:= SignedAreaTriangle[{v1_, v2_, v3_}] :=

1

2
Det[{v1, v2, v3} /.{x_, y_}⧴ {x, y, 1}]

In[53]:= SignedAreaTriangle[pts]

Out[53]= 0

Here then is the code to trap for this condition.

In[104]:= If[SignedArea[pts]⩵ 0, Message[CentroidPlot::collinpts, pts],

����_���� _�� _��������]

In[54]:= CentroidPlotTriangle[{p1_, p2_, p3_}], opts : OptionsPatternGraphics :=

IfSignedAreaTriangle[{p1, p2, p3}] ⩵ 0,

MessageCentroidPlot::collinpts, {p1, p2, p3},

Graphics

LightBlue, EdgeFormBlue, Triangle[{p1, p2, p3}],

Blue, PointSizeMedium, Point[{p1, p2, p3}],

Red, PointSizeMedium, Point@RegionCentroidTriangle[{p1, p2, p3}],

Gray, TriangleMediansTriangle[{p1, p2, p3}], PointSizeMedium,

Point(#1 + #2)/2 & @@@ Subsets[{p1, p2, p3}, {2}]

, opts

In[55]:= CentroidPlotTriangle[pts]

CentroidPlot::collinpts :
The points {{0, 0}, {1, 1}, {2, 2}} are collinear, giving a degenerate triangle.

268 Essentials of Programming in Mathematica

In[56]:= CentroidPlotTriangleRandomInteger[{-5, 5}, {3, 2}]

Out[56]=

In[57]:=

Start with the circumcenter which is the center of the circumscribing circle. It is located at the

intersection of the perpendicular bisectors of the sides. To find the line from the center,
perpendicular to a side, use RegionNearest and InfiniteLine. First, get the center.

11.

In[58]:= {p1, p2, p3} = {{-1, 0}, {0, 2}, {1, 0}};

center = First@Circumsphere[{p1, p2, p3}]

Out[59]= 0,
3

4

Here are the lines through each pair of vertices:

In[60]:= lines = InfiniteLine /@ Subsets[{p1, p2, p3}, {2}]

Out[60]= InfiniteLine[{{-1, 0}, {0, 2}}],

InfiniteLine[{{-1, 0}, {1, 0}}], InfiniteLine[{{0, 2}, {1, 0}}]

And this gives the point on each line closest to the center.

In[61]:= pbs = MapRegionNearest[#, center] &, lines

Out[61]= -
1

2
, 1, {0, 0},

1

2
, 1

Finally, we want a line from each of these points to the center.

In[62]:= perpLines = MapLine[{center, #}] &, MapRegionNearest[#, center] &, lines

Out[62]= Line0,
3

4
, -

1

2
, 1, Line0,

3

4
, {0, 0}, Line0,

3

4
,

1

2
, 1

8.1 The graphics language: exercises 269

In[63]:= Graphics

Blue, PointSizeMedium, Point[{p1, p2, p3}],

EdgeForm[Gray], LightBlue, Triangle[{p1, p2, p3}],

Blue, Circumsphere[{p1, p2, p3}],

Blue, PointSize[Large], Point@center,

Purple, perpLines, PointSize[Large], Point@pbs

Out[63]=

Next, compute the orthocenter. Using InfiniteLine will make it so that we can draw on the

computational geometry machinery to do our computations.

In[64]:= {p1, p2, p3} = {{-1, 0}, {0, 2}, {1, 0}};

In[65]:= lines = MapInfiniteLine, Subsets[{p1, p2, p3}, {2}]

Out[65]= InfiniteLine[{{-1, 0}, {0, 2}}],

InfiniteLine[{{-1, 0}, {1, 0}}], InfiniteLine[{{0, 2}, {1, 0}}]

The altitude is the line drawn from a vertex to the opposite side, perpendicular to that side.
Note that we need to reverse the list {p1, p2, p3} so that the proper line is paired with the

proper point.

In[66]:= altPts = MapThreadRegionNearest[#1, #2] &, lines, Reverse[{p1, p2, p3}]

Out[66]= -
3

5
,
4

5
, {0, 0},

3

5
,
4

5

We need lines from each vertex to the corresponding point in altPts.

In[67]:= altLines = MapThreadLine[{#1, #2}] &, Reverse@{p1, p2, p3}, altPts

Out[67]= Line{1, 0}, -
3

5
,
4

5
, Line[{{0, 2}, {0, 0}}], Line{-1, 0},

3

5
,
4

5

Here then is the graphic showing the triangle in gray, its vertices in blue, and the altitude lines

and points in purple.

270 Essentials of Programming in Mathematica

In[68]:= Graphics

Blue, PointSizeMedium, Point[{p1, p2, p3}],

EdgeForm[Gray], LightBlue, Triangle[{p1, p2, p3}],

Purple, PointSize[Large], Point@altPts, altLines

Out[68]=

Finally, the incenter, the center of which is the largest circle that fits entirely inside the triangle.
For the formula for the incenter, we will need a function to compute the perimeter of the

triangle. This one comes essentially from Section 4.3.

In[69]:= PerimeterTriangle[pts : {p1_, p2_, p3_}] :=

RegionMeasureLine[pts /. {p_, pn__}⧴ {p1, pn, p1}]

In[70]:= inCenter[pts : {p1_, p2_, p3_}] :=

Modulea, b, c, p = PerimeterTriangle[pts],

a, b, c = {Norm[p2 - p3], Norm[p1 - p3], Norm[p2 - p1]};

a p1[[1]] + b p2[[1]] + c p3[[1]]p,

a p1[[2]] + b p2[[2]] + c p3[[2]]p

Once you have the center, the radius will be the shortest distance from the center to one of the

sides.

In[71]:= inRadius[pts : {pt1_, pt2_, pt3_}] :=

EuclideanDistanceRegionNearestInfiniteLine[pt1, pt3], inCenter[pts],

inCenter[pts]

8.1 The graphics language: exercises 271

In[72]:= {p1, p2, p3} = {{-1, 0}, {0, 2}, {1, 0}};

pts = {p1, p2, p3};

Graphics

EdgeForm[Gray], LightBlue, Triangle[pts],

PointSize[Large], Point[pts],

Red, CircleinCenter@pts, inRadius[pts], PointSize[Large],

PointinCenter@pts,

MapLineinCenter@pts, # &, pts

, Axes → True

Out[74]=

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

2.0

First set the distribution and compute the mean and standard deviation.12.

In[75]:= = NormalDistribution[0, 1];

σ = StandardDeviation[];

μ = Mean[];

Next we manually construct four vertical lines at the standard deviations going from the

horizontal axis to the pdf curve.

272 Essentials of Programming in Mathematica

In[78]:= PlotPDF[, x], {x, -4, 4},

Filling → Axis,

Epilog →

Gray, Line[{{{μ + σ, 0}, {μ + σ, PDF[, μ + σ]}},

{{μ - σ, 0}, {μ - σ, PDF[, μ - σ]}},

{{μ + 2 σ, 0}, {μ + 2 σ, PDF[, μ + 2 σ]}},

{{μ - 2 σ, 0}, {μ - 2 σ, PDF[, μ - 2 σ]}}}],

AxesOrigin → {-4, 0},

Ticks → -2 σ, "-2σ", -σ, "-σ", μ, "μ", σ, "σ", 2 σ, "2σ",

Automatic,

AspectRatio → 0.4,

PlotLabel → StringForm"Normal distribution: μ=`1`, σ=`2` ", μ, σ

Out[78]=

-2σ -σ μ σ 2σ

0.1

0.2

0.3

0.4

Normal distribution: μ=0, σ=1

And here is a little utility function to make the code a bit more readable and easier to use.

In[79]:= sdLine[_, μ_, σ_] :=

Line[{{{μ + σ, 0}, {σ + μ, PDF[, μ + σ]}},

{{μ - σ, 0}, {-σ + μ, PDF[, μ - σ]}}}]

In[80]:= PlotPDF[, x], {x, -4, 4},

Filling → Axis,

Epilog → Gray, Thickness[.0035], sdLine[, μ, σ], sdLine[, μ, 2 σ],

AxesOrigin → {-4, 0},

Ticks → -2 σ, "-2σ", -σ, "-σ", μ, "μ", σ, "σ", 2 σ, "2σ",

Automatic,

AspectRatio → 0.4,

PlotLabel → StringForm"Normal distribution: μ=`1`, σ=`2` ", μ, σ

Out[80]=

-2σ -σ μ σ 2σ

0.1

0.2

0.3

0.4

Normal distribution: μ=0, σ=1

8.1 The graphics language: exercises 273

Dynamic graphics: exercises8.2
In the Manipulate examples in this section, the parameters were controlled by sliders. Moving

the slider changes the value of the parameter and any expression dependent upon that parame-
ter inside the Manipulate expression. Sometimes you want to choose values for a parameter
from a list of discrete values. A setter bar is a convenient control object for this. One way to set
it is to use a different syntax for the parameter list:{�����, {���1, ���2, …, ����}} will cause

Manipulate to automatically use a setter bar instead of a slider. Create a Manipulate object
showing plots of sin, cos, or tan, each selectable from a setter bar.

1.

Modify the above exercise to use a popup menu to choose the function to plot. You can

explicitly set the control by using ControlType → "PopupMenu".
2.

Here is a graphic showing an ellipsoid together with its two foci:3.

In[1]:= Witha = 5, b = 3,

f = a2 - b2 ;

Graphics

Circle{0, 0}, a, b,

Pointf, 0, Point-f, 0

, Axes → Automatic

Out[1]=
-4 -2 2 4

-3

-2

-1

1

2

3

Turn this into a dynamic graphic by making the semi-major and semi-minor axes lengths a

and b dynamic which, upon updating, will cause the ellipse to change shape. Some thought
will be needed to properly deal with the situation b > a.

Create a dynamic interface that displays various structure diagrams and space-filling plots of
the amino acids. A list of the amino acids is given by

4.

In[2]:= ChemicalData"AminoAcids"

Out[2]= ������� , ��������� , �������� , ��������� , �������� , ����������� , ���������� , ������������ ,

��������� , ������������ , ���������� ���� , ����������� , �������� , ���������� ���� ,

������������ , ����������� , ��������������� , ���������� , ���������� , ������������

The diagrams and plots that should be included are built into ChemicalData:

274 Essentials of Programming in Mathematica

In[3]:= StringCasesChemicalData"Properties", __ ~~ "Diagram" __ ~~ "Plot" //

Flatten

Out[3]= {BlackStructureDiagram, CHBlackStructureDiagram, CHColorStructureDiagram,

ColorStructureDiagram, MoleculePlot, SpaceFillingMoleculePlot}

Using the code developed in Section 8.1 for plotting the centroid of a triangle, create a dynamic

interface that displays the triangle, the medians (lines from each vertex to the midpoint of the

opposite side), and the triangle vertices as locators.

5.

In the 1920s and 1930s the artist Marcel Duchamp created what he termed rotoreliefs, spinning

concentric circles giving a three-dimensional illusion of depth (Duchamp 1926). Create your
own rotoreliefs: start with several concentric circles of different radii, then vary their centers

around a path given by another circle, and animate.

6.

Create a plot of sin(θ) side-by-side with a circle and a dynamic point that moves along the curve

and the circle as θ varies from 0 to 2 π (Figure 8.3).
7.

Dynamic visualization of sin function.Figure 8.3.

θ

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Take one of the two-dimensional random walk programs developed elsewhere in this book

(Sections 6.3 and 10.3) and create an animation displaying successive steps of the random walk.
8.

Looking forward to Chapter 10, where we develop a full application for computing and visualiz-
ing random walks, create a dynamic interface that displays random walks, adding controls to

select the number of steps from a pulldown menu, the dimension from a setter bar, and a

checkbox to turn on and off lattice walks.

9.

Create a visualization of two-dimensional vector addition (Figure 8.4). The interface should

include either a 2d slider for two vectors in the plane or locators to change the position of each
vector; the display should show the two vectors as well as their vector sum. Extend the solution

to three dimensions. (The solution of this vector interface is due to Harry Calkins of Wolfram

Research.)

10.

8.2 Dynamic graphics: exercises 275

http://www.ubu.com/film/duchamp_anemic.html

Dynamic visualization of vector arithmetic.Figure 8.4.

red vector

blue vector

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

Create a dynamic interface consisting of a locator constrained to the unit circle. Check the

documentation on Locator for information on constraining the movement of locators.
11.

Create a dynamic interface that displays twenty random points in the unit square whose
locations are randomized each time you click your mouse on the graphic. Add a checkbox to

toggle the display of the shortest path (FindShortestTour) through the points (look up

EventHandler and MouseClicked in the documentation).

12.

A suggested addition would be to add a control to change the number of points that are used

but take care to keep the total number of points manageable (see the note on Traveling

Salesman problems at the end of the chapter).

Solutions8.2
Giving the parameter list in the form {�����, {���1, ���2, ���3}} automatically causes

Manipulate to use a setter bar as the control type.
1.

In[1]:= Manipulate

Plotf[x], {x, 0, 2 π},

f, Sin, Cos, Tan

Out[1]=

f Sin Cos Tan

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

This explicitly sets the control type to a popup menu.2.

276 Essentials of Programming in Mathematica

In[2]:= Manipulate

Plotf[x], {x, 0, 2 π},

f, Sin, Cos, Tan, ControlType → PopupMenu

Out[2]=

f Sin

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

If the parameter b is greater than a, you will need to switch the foci to the vertical axis. This is

done inside the If statement before the graphics are given.
3.

In[3]:= Manipulate

f = Ifa2 - b2 ≥ 0, Absa2 - b2 , 0, 0, Absa2 - b2 ;

Graphics

Circle{0, 0}, a, b,

Pointf, Point-f

, PlotRange → Maxa, b + .1,

{a, 1, 5}, b, 1, 5

Out[3]=

a

b

8.2 Dynamic graphics: exercises 277

We will put this together in two parts: first create a function to display any amino acid using

one of the various diagrams; then pour it into a Manipulate. Note, this function is dependent
upon ChemicalData to create the displays. ChemicalData returns an Entity, hence the two

rules, one for the chemical name as a string and the other as an Entity. Alternatively, you could

modify it to use your own visualizations, such as the space-filling plots in Section 8.4.

4.

In[4]:= AminoAcidPlotaa_String, diagram_: "ColorStructureDiagram" :=

LabeledFramedChemicalDataaa, diagram, ImageSize → All,

ChemicalDataaa, "Name", LabelStyle → Directive"Menu", 9

In[5]:= AminoAcidPlotaa_Entity, diagram_: "ColorStructureDiagram" :=

LabeledFramedChemicalDataaa, diagram, ImageSize → All,

ChemicalDataaa, "Name", LabelStyle → Directive"Menu", 9

In[6]:= AminoAcidPlot"Glycine"

Out[6]=

N

O

O

N

H

N

H

O

H

�������

In[7]:= AminoAcidPlot ������� ����������

Out[7]=

N

O

O

N

H

N

H

O

H

�������

278 Essentials of Programming in Mathematica

In[8]:= Manipulate

AminoAcidPlotaminoacid, diagram,

aminoacid, "LAlanine", "Amino acid", aa,

diagram, "StructureDiagram", "CHColorStructureDiagram",

"CHStructureDiagram", "ColorStructureDiagram", "MoleculePlot",

"SpaceFillingMoleculePlot",

Initialization⧴ aa = ChemicalData"AminoAcids", SynchronousUpdating → False,

SaveDefinitions → True

Out[8]=

Amino acid ���������� ����

diagram ColorStructureDiagram

OO
H

OO
H

O

O NN
H

N
H

�-�������� ����

Borrowing the CentroidPlot from Exercise 10 from Section 8.1, here is the Manipulate.5.

In[9]:= ManipulateCentroidPlotTriangle[pts], PlotRange → {-0.2, 2.2},

{{pts, {{-1, 0}, {0, 2}, {1, 0}}}, Locator}, SaveDefinitions → True

Out[9]=

8.2 Dynamic graphics: exercises 279

Modify the radii and the centers to get different effects. Try using transparent disks instead of
circles.

6.

In[10]:= Manipulate

Graphics

TableCircler/4 Cos[t], Sin[t], 1.1 - r, {r, .2, 1, .05},

PlotRange → 1,

{t, 0, 2 π, .1}

Out[10]=

t

Putting the two graphics pieces (Graphics[…] and Plot[…]) in a grid gives you finer control
over their placement and formatting.

7.

In[11]:= Manipulate

Grid

GraphicsCircle[], Blue, PointSize[.04], PointCos[θ], Sin[θ],

Axes → True, PlotSin[x], {x, 0, 2 π},

Epilog → Blue, Line{θ, 0}, θ, Sin[θ], PointSize[.025],

Pointθ, Sin[θ], Frame → All, {θ, 0, 2 π}

Out[11]=

θ

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

First load the package that contains the random walk code. You could use you own implementa-
tion as well.

8.

In[12]:= << EPM`RandomWalks`

280 Essentials of Programming in Mathematica

Create a 1000-step, two-dimensional, lattice walk.

In[13]:= rw = RandomWalk1000, Dimension → 2, LatticeWalk → True;

This is a basic start. Take is used to display successive increments. Note the need for the 1 in the

parameter list to insure that steps only take on integer values.

In[14]:= Animate

GraphicsLineTake[rw, n],

n, 2, Length[rw], 1, AnimationRunning → False, SaveDefinitions → True

Out[14]=

�

The output above suffers from the fact that the display jumps around a lot as Mathematica tries

to figure out a sensible plot range for each frame. Instead, we should fix the plot range for all
frames to avoid this jumpiness. This is done in the definitions for xran and yran in the

Initialization below.

In[15]:= Manipulate

GraphicsLineTake[rw, n], PlotRange → {xran, yran},

n, 2, Length[rw], 1,

Initialization⧴

rw = RandomWalk1000, Dimension → 2, LatticeWalk → True;

{xran, yran} = MapMin[#1], Max[#1] &, Transpose[rw],

SaveDefinitions → True

Out[15]=

n

8.2 Dynamic graphics: exercises 281

Using the programs developed in Section 10.3, here is the code, including a pulldown menu for
the steps parameter, a setter bar for the dimension parameter, and a checkbox for the lattice

parameter.

9.

In[16]:= Manipulate

ShowWalk@RandomWalksteps, Dimension → dim, LatticeWalk → latticeQ,

{steps, {100, 250, 500, 750, 1000, 10000}},

dim, 1, "Dimension", {1, 2, 3},

latticeQ, True, "Lattice walk", True, False,

Initialization⧴ Needs"EPM`RandomWalks`", SaveDefinitions → True

Out[16]=

steps 750

Dimension 1 2 3

Lattice walk

Here is the solution using Slider2D. Using Locator instead is left for the reader.10.

282 Essentials of Programming in Mathematica

In[17]:= Manipulate

Graphics

Red, Arrow[{{0, 0}, pt1}],

Blue, Arrow[{{0, 0}, pt2}],

Green, Arrow[{{0, 0}, pt1 + pt2}],

Dashed, Orange, Line[{pt1, pt1 + pt2, pt2}],

PlotRange → 6, Axes → True, GridLines → Automatic,

pt1, {1, 4}, "Red vector", {-5, -5}, {5, 5},

pt2, {3, 1}, "Blue vector", {-5, -5}, {5, 5},

ControlPlacement → Left

Out[17]=

Red vector

Blue vector

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

The key here is to use a two-argument form of Dynamic, where the second argument gives the

constraint on the parameter.
11.

In[18]:= DynamicModule{pt = {0, .5}},

Graphics

LightBlue, Rectangle[{-1, -1}, {1, 1}],

Pink, Circle[], Thick, Circle[{0, 0}, .5],

LocatorDynamicpt, pt = .5 Normalize[#] &

, PlotRange → 1.25

Out[18]=

First, create a static version of the problem; we use GraphicsComplex to display the points

and the tour.
12.

In[19]:= pts = RandomReal[1, {25, 2}];

8.2 Dynamic graphics: exercises 283

In[20]:= GraphicsGraphicsComplexpts, Point@RangeLength[pts], Axes → Automatic

Out[20]=

0.4 0.6 0.8

0.4

0.6

0.8

1.0

In[21]:= tour = LastFindShortestTour[pts];

GraphicsGraphicsComplexpts,

Line[tour], Red, PointSizeMedium, Point[tour], Axes → Automatic

Out[22]=

0.4 0.6 0.8

0.4

0.6

0.8

1.0

Here is the dynamic interface using EventHandler to choose a new set of random points with

each mouse click.

284 Essentials of Programming in Mathematica

In[23]:= Manipulate

DynamicModulepts = RandomReal[1, {20, 2}], tour,

tour = DynamicLastFindShortestTour[pts];

EventHandler

Dynamic

GraphicsGraphicsComplexpts,

IfNotshowtour, Point@RangeLength[pts],

Line[tour], Red, PointSizeMedium, Point[tour],

Axes → Automatic,

"MouseClicked" ⧴ pts = RandomReal[1, {20, 2}]

,

showtour, False, "Show tour", True, False,

ContentSize → All

Out[23]=

Show tour

0.4 0.6 0.8

0.4

0.6

0.8

1.0

Efficient structures: exercises8.3
Create a hexagonal grid of polygons like that in Figure 8.5. First create the grid by performing
appropriate translations using Translate or the geometric transformation
TranslationTransform. Compare this approach with a multi-polygon approach.

1.

Two-dimensional hexagonal lattice.Figure 8.5.

8.3 Efficient structures: exercises 285

Take the example visualizing a 500 000-step random walk at the beginning of this section and

replicate the output using GraphicsComplex instead of ListLinePlot. Compare the running

times for each as the number of steps increases.

2.

The ShowWalk function discussed in Section 4.1 for displaying random walks uses

ListLinePlot to display the data. As mentioned in this section, ListLinePlot will get bogged

down for large numbers of points. Using the solution to the previous exercise, create a new

version for both the two- and three-dimensional cases of ShowWalk that uses

GraphicsComplex instead; then test the new implementation against the one developed in

Chapter 4.

3.

Create a graphic consisting of a three-dimensional lattice, that is, lines passing through the

integer coordinates in 3-space (Figure 8.6). Compare approaches that use multi-lines as

opposed to those that do not.

4.

Three-dimensional integer lattice.Figure 8.6.

A common problem in computational geometry is finding the boundary of a given set of
points in the plane. One way to think about the boundary is to imagine the points as nails in a

board and then to stretch a rubber band around all the nails. The stretched rubber band lies on

a convex polygon commonly called the convex hull of the point set.

5.

Create a function ConvexHullPlot for visualizing the convex hull together with the points on

the interior of the convex hull. Your function should inherit options for Graphics. The built-
in function ConvexHullMesh can be used to generate the hull polygon:

In[1]:= pts = RandomReal[1, {28, 2}];

ℛ = ConvexHullMesh[pts]

Out[2]=

The zero-dimensional objects in the mesh are points and the one-dimensional objects are lines

(two-dimensional objects would be polygons). These are the points and lines on the convex

hull.

286 Essentials of Programming in Mathematica

In[3]:= MeshPrimitives[ℛ, 0];

Take[%, 2]

Out[4]= {Point[{0.992746, 0.379391}], Point[{0.0394433, 0.0418121}]}

In[5]:= MeshPrimitives[ℛ, 1];

Take[%, 2]

Out[6]= {Line[{{0.0383976, 0.960283}, {0.0394433, 0.0418121}}],

Line[{{0.0394433, 0.0418121}, {0.225102, 0.00814885}}]}

Your function should generate output similar to the following:

In[7]:= ConvexHullPlotpts, Axes → Automatic

Out[7]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

Modify ConvexHullPlot from Exercise 5 to accept an option Dimension. With default value of
two, ConvexHullPlot should produce output like that in Exercise 5. For Dimension → 3, it
should generate the convex hull together with large red points at each vertex of the hull
(Figure 8.7).

6.

Three-dimensional convex hull with hull points highlighted.Figure 8.7.

Extend Exercise 7 from Section 8.1 to random walks on the base-n digits of π. For example, in

base 3, a 1 corresponds to an angle of 120° from the current position, 2 corresponds to 240°, and

0 to 360°. In base 4 the step angles will be multiples of 90° and in general, for base n, the step

angles will be multiples of 360 °/n. Use GraphicsComplex to visualize the walks. Include a

color function that depends on the length of the walk.

7.

Solutions8.3
Here is the implementation using TranslationTransform.1.

In[1]:= Clearvertices, n, α

8.3 Efficient structures: exercises 287

In[2]:= vertices[n_] := TableCos
2 π α

n
, Sin

2 π α

n
, {α, 0, n}

In[3]:= hexagon = Polygonvertices[6];

GraphicsEdgeForm[Gray], LightGray, hexagon

Out[3]=

In[4]:= Graphics

EdgeForm[Gray], LightGray,

TableGeometricTransformationhexagon,

TranslationTransform3 i +
3

4
(-1)j

+ 1,
3 j

2

, i, 5, j, 8

Out[4]=

Or use Translate directly.

In[5]:= gr1 = Graphics

EdgeForm[Gray], LightGray,

TableTranslatehexagon, 3 i +
3

4
(-1)j

+ 1,
3 j

2
, i, 5, j, 8

Out[5]=

This implementation contains one Polygon per hexagon.

In[6]:= Countgr1, _Polygon, Infinity

Out[6]= 40

288 Essentials of Programming in Mathematica

Now use multi-polygons. The following version of hexagon is defined so that it can take a pair
of translation coordinates. Note also the need to flatten the table of vertices so that Polygon can

be applied to the correct list structure.

In[7]:= Clearhexagon;

hexagon[{x_, y_}] := TableCos
2 π i

6
 + x, Sin

2 π i

6
 + y, i, 1, 6

In[9]:= gr2 =

GraphicsEdgeForm[Gray], LightGray,

PolygonFlattenTablehexagon3 i +
3

4
(-1)j

+ 1,
3 j

2
, i, 5, j, 8,

1

Out[9]=

In[10]:= Countgr2, _Polygon, Infinity

Out[10]= 1

Here is the usage message for GraphicsComplex.2.

In[11]:= ?GraphicsComplex

GraphicsComplex{���, ���, …}, ���� represents a

graphics complex in which coordinates given as integers
� in graphics primitives in ���� are taken to be ���.

The first argument to GraphicsComplex is a list of coordinate points, such as the output from

RandomWalk. The second argument is a set of graphics primitives indexed by the positions of
the points in the list of coordinates. The walk itself gives the coordinates that will be used as the

first argument to GraphicsComplex.

In[12]:= walk = RandomWalk5 × 105;

In[13]:= Shortwalk, 2

Out[13]//Short= {{0, 1}, {0, 2}, {0, 3}, {0, 2}, 499992,

{-447, 892}, {-446, 892}, {-445, 892}, {-445, 891}}

The second argument a list of primitives with the coordinate indices as arguments. We want to

connect the first point to the second, to the third, etc., with a line. That would look like

Line[{1, 2, 3, …}]. The length of the list is given by Length[walk].

8.3 Efficient structures: exercises 289

In[14]:= GraphicsGraphicsComplexwalk,

Line@RangeLengthwalk

Out[14]=

You could add axes and some directives and options to modify the plot.

In[15]:= GraphicsGraphicsComplexwalk,

RGBColor[.6, .4, .5], ThicknessTiny, Line@RangeLengthwalk

, Axes → Automatic // Timing

Out[15]= 0.001048,

-500-400-300-200-100 100 200

200

400

600

800

The time to compute (and display) this object is several orders of magnitude faster than that
with ListLinePlot. So why is ListLinePlot so slow with data of this size? It is designed to be

as general as possible and to deal with many extraordinary situations. This generality comes at
a cost. It is very fast for moderately sized data sets, but for large sets, another approach is

preferable.

First, using the same argument structure as that in ShowWalk (Chapter 10), we give

GraphicsComplex the list of coordinates followed by Line wrapped around a list of the point
indices 1 through n (the length of the walk).

3.

In[16]:= ShowWalkGCcoords : {{_, _} ..} := Graphics

GraphicsComplexcoords, LineRangeLengthcoords

290 Essentials of Programming in Mathematica

In[17]:= ShowWalkGCRandomWalk1500, Dimension → 2

Out[17]=

Add options and color the path.

In[18]:= ClearShowWalkGC;

ShowWalkGCcoords : {{_, _} ..}, opts : OptionsPatternGraphics := Graphics

GraphicsComplexcoords,

ColorData[1][1], LineRangeLengthcoords

, opts,

Axes → True, AspectRatio → Automatic

In[19]:= ShowWalkGCRandomWalk1500, Dimension → 2

Out[19]=

10 20 30

10

20

30

40

50

And similarly for the three-dimensional case:

In[20]:= ShowWalkGCcoords : {{_, _, _} ..}, opts : OptionsPatternGraphics3D :=

Graphics3DGraphicsComplexcoords,

ColorData[1][1], AbsoluteThickness[1], LineRangeLengthcoords,

opts, Axes → True, AspectRatio → Automatic

In[21]:= ShowWalkGCRandomWalk2500, Dimension → 3

Out[21]=

Finally, some timing comparisons between this implementation with GraphicsComplex and

8.3 Efficient structures: exercises 291

the versions that used basic graphics primitives and built-in functions.

In[22]:= walk = RandomWalk[250 000];

TimingShowWalkwalk, AspectRatio → Automatic

Out[23]= 4.28677,

-100 100 200

-500

-400

-300

-200

-100

In[24]:= TimingShowWalkGCwalk

Out[24]= 0.017871,

-100 100 200

-500

-400

-300

-200

-100

One approach to creating the lattice is to manually specify the coordinates for the lines and

then map the Line primitive across these coordinates. We will work with a small lattice.
4.

In[25]:= xmin = 0; xmax = 3;

ymin = 0; ymax = 3;

zmin = 0; zmax = 3;

Tablex, ymin, zmin, x, ymax, zmin, x, xmin, xmax

Out[28]= {{{0, 0, 0}, {0, 3, 0}}, {{1, 0, 0}, {1, 3, 0}},

{{2, 0, 0}, {2, 3, 0}}, {{3, 0, 0}, {3, 3, 0}}}

Here are the three grids.

In[29]:= gridX = Tablexmin, y, z, {xmax, y, z}, y, ymin, ymax, z, zmin, zmax;

gridY = Tablex, ymin, z, {x, ymax, z}, x, xmin, xmax, z, zmin, zmax;

gridZ = Tablex, y, zmin, {x, y, zmax}, x, xmin, xmax, y, ymin, ymax;

Finally, map Line across these grids and display as a Graphics3D object.

292 Essentials of Programming in Mathematica

In[32]:= gr1 = Graphics3D

MapLine, gridX, {2},

MapLine, gridY, {2},

MapLine, gridZ, {2}

, Boxed → False

Out[32]=

In[33]:= Countgr1, _Line, Infinity

Out[33]= 48

Using multi-lines reduces the number of Line objects substantially.

In[34]:= gr2 = Graphics3D

MapLine, gridX,

MapLine, gridY,

MapLine, gridZ

, Boxed → False

Out[34]=

In[35]:= Countgr2, _Line, Infinity

Out[35]= 12

First, generate some random points in the plane.5.

In[36]:= pts = RandomReal[1, {8, 2}];

Next, generate the mesh using a built-in function.

8.3 Efficient structures: exercises 293

In[37]:= ℛ = ConvexHullMesh[pts]

Out[37]=

Quite a bit of information is embedded in the this BoundaryMeshRegion. For example, it is easy

to extract the points on the boundary. They are mesh primitives of dimension zero.

In[38]:= Head[ℛ]

Out[38]= BoundaryMeshRegion

In[39]:= MeshPrimitives[ℛ, 0]

Out[39]= {Point[{0.643154, 0.220953}],

Point[{0.357669, 0.997291}], Point[{0.0543152, 0.400786}],

Point[{0.120583, 0.881017}], Point[{0.892886, 0.146246}]}

Similarly, lines are mesh primitives of dimension one.

In[40]:= MeshPrimitives[ℛ, 1]

Out[40]= {Line[{{0.0543152, 0.400786}, {0.643154, 0.220953}}],

Line[{{0.643154, 0.220953}, {0.892886, 0.146246}}],

Line[{{0.892886, 0.146246}, {0.357669, 0.997291}}],

Line[{{0.357669, 0.997291}, {0.120583, 0.881017}}],

Line[{{0.120583, 0.881017}, {0.0543152, 0.400786}}]}

In fact, the polygon itself is a mesh primitive of dimension two.

In[41]:= MeshPrimitives[ℛ, 2]

Out[41]= {Polygon[{{0.0543152, 0.400786}, {0.643154, 0.220953},

{0.892886, 0.146246}, {0.357669, 0.997291}, {0.120583, 0.881017}}]}

So the pieces of the mesh that we want to show are the region itself (bounded polygon, the

original points, and the points on the boundary. We will highlight the points on the boundary

by making them large and red. And we will pass options from Graphics on to the function.

In[42]:= ConvexHullPlotpts_, opts : OptionsPatternGraphics :=

Module{ℛ}, ℛ = ConvexHullMesh[pts];

Showℛ, GraphicsPoint[pts], Red, PointSizeMedium, MeshPrimitives[ℛ, 0],

opts

Try it out with a larger point set.

294 Essentials of Programming in Mathematica

In[43]:= pts = RandomReal[{-100, 100}, {60, 2}];

In[44]:= ConvexHullPlotpts, Axes → Automatic, ImageSize → Small

Out[44]=
-50 50 100

-50

50

100

First, set up the options framework.6.

In[45]:= OptionsConvexHullPlot = JoinDimension → 2, OptionsGraphics,

OptionsGraphics3D;

Here is a message that will be issued if the Dimension option is set to anything other than 2 or 3.

In[46]:= ConvexHullPlot::baddim =

"The value `1` of the Dimension option should be either 2 or 3";

In[47]:= ConvexHullPlotpts_, opts : OptionsPattern[] :=

Moduleℛ, dim = OptionValueDimension,

ℛ = ConvexHullMesh[pts];
Which

dim⩵ 2,

Show

ℛ, GraphicsPoint[pts], Red, PointSizeMedium,

MeshPrimitives[ℛ, 0],

FilterRules{opts}, OptionsGraphics,

dim⩵ 3,

Show

ℛ, Graphics3DPoint[pts], Red, PointSizeMedium,

MeshPrimitives[ℛ, 0],

FilterRules{opts}, OptionsGraphics3D,

True, MessageConvexHullPlot::baddim, dim

Here is a larger point set.

In[48]:= pts = RandomReal[1, {40, 3}];

Exercise some options.

8.3 Efficient structures: exercises 295

In[49]:= ConvexHullPlotpts, Dimension → 3, Boxed → True, Background → Gray

Out[49]=

Giving a bad value for the Dimension option should produce an error message.

In[50]:= ConvexHullPlotpts, Dimension → 4

ConvexHullPlot::baddim : The value 4 of the Dimension option should be either 2 or 3

Here is the randomwalk on the digits of π in bases given by the second argument.7.

In[51]:= RandomWalkPid_, base_ /; base > 2 := Moduledigits, angles, rules,

digits = FirstRealDigitsNπ, d, base;

angles = Rest@Range0., 2 π, 2 πbase;

rules = MapThread#1 → #2 &, Range0, base - 1, angles;

AccumulateMapCos[#], Sin[#] &, digits /. rules

Using ListPlot, here is a quick visualization on base 5 digits:

In[52]:= ListLinePlotRandomWalkPi[10000, 5], AspectRatio → Automatic

Out[52]=

-100 -50

-20

20

40

60

80

100

120

Here is the GraphicsComplex.

In[53]:= walk = RandomWalkPi[10 000, 5];

len = Lengthwalk;

296 Essentials of Programming in Mathematica

In[55]:= GraphicsGraphicsComplexwalk, AbsoluteThickness[.2], LineRangelen,

AspectRatio → Automatic

Out[55]=

And here it is with color mapped to the distance from the origin.

In[56]:= GraphicsGraphicsComplexwalk,

MapHue
#〚1〛

len
, AbsoluteThickness[.25], Line[#] &,

PartitionRange2, len, 2, 1, AspectRatio → Automatic

Out[56]=

Examples: exercises8.4
Create a function ComplexListPlot that plots a list of complex numbers in the complex plane
using ListPlot. Set initial options so that the PlotStyle is red, the PointSize is a little larger
than the default, and the horizontal and vertical axes are labeled “Re” and “Im,” respectively.
Set up options to ComplexListPlot that are inherited from ListPlot.

1.

Create a function ComplexRootPlot that plots the complex zeros of a polynomial in the plane.
Use your implementation of ComplexListPlot that you developed in the previous exercise.

2.

Use Mesh in a manner similar to its use in the RootPlot function to highlight the intersection
of two surfaces, say sin(2 x - cos(y)) and sin(x - cos(2 y)). Youmay need to increase the value
of MaxRecursion to get the sampling just right.

3.

The version of VennDiagram developed in this section used Graphics to create the circles and
then combined themwith RegionPlot using Show. Modify VennDiagram so that the circles are
created entirely inside RegionPlot.

4.

8.4 Examples: exercises 297

Create a new rule for VennDiagram that takes a logical expression as its first argument instead

of a logical function. For example, your function should be able to handle input such as the

following:

5.

In[1]:= VennDiagramA B, {A, B}

Out[1]=

A B

A B

Extend the previous exercise to a Venn diagram on three sets, using logical expressions as the

first argument.
6.

In[2]:= VennDiagramA B C && ¬ A B C, {A, B, C}

Out[2]=

A B

C

(A B C) ¬ (A B C)

Modify the dynamic Venn diagram created in this section to also display a truth table like that
in Figure 8.8. Include the truth table side-by-side with the Venn diagram. TruthTable was

developed in Exercise 3 in Section 6.3.

7.

298 Essentials of Programming in Mathematica

Dynamic visualization of logical expressions.Figure 8.8.

Logical function Xor

� � ��
� � �
� � �
� � �
� � �

A B

A B

The DotPlot function developed in this section uses a fixed window size, meaning that it only

colors a dot black if a string of length one matches a string of length one in the two sequences

under comparison. Add a WindowSize option to DotPlot that allows you to set the length of
the sequences to match – you will likely need stringPartition developed in Section 7.5.
Finally, set up DotPlot to inherit the options from ArrayPlot.

8.

In[3]:= DotPlotseq2, seq1, WindowSize → 3, FrameLabel → "DQ023146.1", "DQ232610.1"

Out[3]=

DQ232610.1

D
Q
0
2
3
1
4
6
.1

When making dot plots like in the previous exercise, if you knew you were always working

with FASTA files, you could automate both the extraction of the frame labels from the FASTA

accession ids and their insertion in the FrameLabel option of ArrayPlot.

9.

In[4]:= Import"H5N1ChickenDQ023146.1.fasta", "FASTA", "Accession"

Out[4]= {DQ023146.1}

Create a version of DotPlot that accepts two FASTA files as input and has the same options

structure as in the previous exercise.

8.4 Examples: exercises 299

In[8]:= DotPlot"H5N1ChickenDQ023146.1.fasta", "H5N1DuckDQ232610.1.fasta",

WindowSize → 3

Out[8]=

DQ232610.1

D
Q
0
2
3
1
4
6
.1

Modify the Manipulate expression animating the hypocycloid so that the plot range deals with

the case where the radius of the inner circle is larger than the radius of the outer circle.
10.

An epicycloid is a curve generated by tracing out a fixed point on a circle rolling around the

outside of a second circle. The parametric formula for an epicycloid is similar to that for the

hypocycloid:

11.

x = a + b cos(θ) - b cos a+b
b

θ,

y = a + b sin(θ) - b sin a+b
b

θ.

Create a dynamic animation of the epicycloid similar to that for the hypocycloid in this

section.

Modify PathPlot so that it inherits options from Graphics as well as having its own option,
PathClosed, that can take on values of True or False and closes the path accordingly by

appending the first point to the end of the list of coordinate points.

12.

Modify SimplePath so that the point with the smallest x-coordinate of the list of data is chosen

as the base point; repeat but with the largest y-coordinate; then try ordering the points about
the polar angle each makes with the centroid of the set of points.

13.

There are conditions under which the program SimplePath will occasionally fail (think

collinear points). Experiment by repeatedly computing SimplePath for a set of ten integer-
valued points until you see the failure. Determine the conditions that must be imposed for the

program to work consistently.

14.

Modify the ChemicalSpaceFillingPlot function to add legends that give identifying informa-
tion for each atomic element in the plot (Figure 8.9). Consider using Legended and

SwatchLegend.

15.

300 Essentials of Programming in Mathematica

Space-filling plot of serotonin (with legends).Figure 8.9.

������

��������

������

��������

Create a dynamic interface similar to the triangle circumcenter example in this section but
instead compute the orthocenter, which is located at the intersection of the three altitudes of the

triangle (Figure 8.10). The altitude of a triangle is a line through a vertex perpendicular to the

opposite side.

16.

Triangle orthocenter at the intersection of the altitudes.Figure 8.10.

Leonhard Euler in 1765 showed that for any triangle, the centroid, circumcenter, and orthocen-
ter are collinear. In fact, the line that passes through these triangle centers also passes through

several other notable points such as the incenter, the nine-point center, the de Longchamps

point, and others. And, remarkably, when you change the shape of the triangle, the relative

distances between the centers is unchanged.

17.

Construct an interface to display a triangle with dynamic vertices together with the triangle’s

centroid, circumcenter, orthocenter, and the Euler line. Give distinct colors to each of the four
sets: incenter and angle bisectors, medians and centroid, perpendicular bisectors and circum-
center and circumcircle, altitudes and orthocenter. Add a legend that identifies the objects by

color.

One way to get a sense of the extent of data, such as a two-dimensional random walk, is to

superimpose the eigenvectors of a certain tensor over a line plot of the walk. This tensor, called

the radius of gyration tensor , is discussed in Section 6.3. For a given walk, the eigenvectors of
 point in the direction of the greatest and smallest spans of the walk, while the eigenvalues of
 give a measure of how elongated the walk is in the directions pointed by the corresponding

eigenvectors.

18.

Create a function EigenvectorPlot[����, , ����] that takes a two-dimensional list walk,
the radius of gyration tensor of that walk, and generates a visualization of the walk using

8.4 Examples: exercises 301

ListLinePlot together with the eigenvector/value lines as described above.

Solutions8.4
The function ComplexListPlot plots a list of numbers in the complex plane – the real part is

identified with the horizontal axis and the imaginary part is identified with the vertical axis.
Start by setting the options for ComplexListPlot to inherit those for ListPlot.

1.

In[1]:= OptionsComplexListPlot = OptionsListPlot;

In[2]:= ComplexListPlotpoints_, opts : OptionsPattern[] :=

ListPlotMap{Re[#], Im[#]} &, points, opts,

PlotStyle → Red, PointSize[.025],

AxesLabel → Style"Re", 8, Style"Im", 8,

LabelStyle → Directive"Menu", 6

This plots four complex numbers in the plane and uses some options, inherited from ListPlot.

In[3]:= ComplexListPlot{-1 + I, 2 + I, 1 - 2 I, 0, 1},

PlotStyle → Blue, PointSizeMedium

Out[3]= -��� -��� ��� ��� ��� ���
��

-���

-���

-���

-���

���

���

��

The function ComplexRootPlot takes a polynomial, solves for its roots, and then uses

ComplexListPlot from the previous exercise to plot these roots in the complex plane.
2.

In[4]:= ComplexRootPlotpoly_, z_, opts : OptionsPattern[] :=

ComplexListPlotz /. NSolvepoly == 0, z, opts, AspectRatio → Automatic

In[5]:= ComplexRootPlotCyclotomic[17, z], z, GridLines → Automatic

Out[5]=

-��� -��� ���
��

-���

-���

���

���

��

Use PlotStyle to highlight the two different surfaces and MeshStyle and Mesh to highlight
their intersection.

3.

302 Essentials of Programming in Mathematica

In[6]:= Clearf, x, y, g

In[7]:= f[x_, y_] := Sin[2 x - Cos[y]];

g[x_, y_] := Sin[x - Cos[2 y]];

In[9]:= Plot3Df[x, y], g[x, y], {x, -π, π}, {y, -π, π}, Mesh → {{0.}},

MaxRecursion → 4, MeshFunctions → f[#1, #2] - g[#1, #2] &,

MeshStyle → Thick, Red, PlotStyle → Cyan, Yellow

Out[9]=

We can display both the circle regions as wells as the logical regions using RegionPlot. Three

changes are needed to the function definition given in the text: the first argument to

RegionPlot should now be a list with the regions (the two circles) added; a PlotStyle options

should be given that specifies the circle interiors in white and the region colored blue; the text
identifying the sets/circles needs to be added using the Epilog option. Also note that we have

added the MaxRecursion option to RegionPlot to increase the resolution a bit to avoid some

jaggedness at the intersection of the two circles (try reducing it to see the problem otherwise).

4.

In[10]:= ClearVennDiagram

In[11]:= VennDiagramf_, vars : {A_, B_} :=

Moduleregions, x, y, c1 = {-.5, 0}, c2 = {.5, 0},

regions = Apply(x - #1)2
+ (y - #2)2

< 1 &, {c1, c2}, {1};

RegionPlotregions, Applyf , regions, {x, -2, 2}, {y, -2, 2},

Frame → True, FrameTicks → None, PlotLabel → f @@ vars, AspectRatio → Automatic,

PlotRange → {{-2, 2}, {-1.2, 1.2}},

PlotStyle → White, White, LightBlue,

MaxRecursion → 4,

Epilog → TextFirst[vars], {-.5, .75}, Text[Last[vars], {.5, .75}]

In[12]:= VennDiagram[Xor, {A, B}]

Out[12]=

AB

A B

8.4 Examples: exercises 303

The key to turning the logical expression into a function that can be applied to the regions for
RegionPlot is to create a pure function. Here is a prototype expression and set of variables.

5.

In[13]:= expr = a b && ¬ a b;

vars = a, b;

This substitutes the threaded rules into the expression where a is replaced with #1, and b is

replaced with #2.

expr /. Thread[vars → {#1, #2}] &

Here then is the function.

In[15]:= ClearVennDiagram

In[16]:= VennDiagramexpr_, vars : {__} /; Length[vars]⩵ 2 :=

Modulec1, c2, regions, x, y, f,

{c1, c2} = {{-1/2, 0}, {1/2, 0}};

regions = (x - #1)2
+ (y - #2)2

< 1 & @@@ {c1, c2};

f = expr /. Thread[vars → {#1, #2}] &;

RegionPlotregions, f @@ regions, {x, -2, 2}, {y, -3/2, 3/2},

AspectRatio → Automatic, FrameTicks → None,

FrameLabel → TraditionalForm[expr],
PlotStyle → White, White, LightBlue,

MaxRecursion → 4,

Epilog → {Text[vars[[1]], {-1/2, 3/4}], Text[vars[[2]], {1/2, 3/4}]}

In[17]:= VennDiagrama b && ¬ a b, a, b

Out[17]=

(a b) ¬ (a b)

a b

To start, here are the centers and the regions for three circles (sets).6.

In[18]:= {c1, c2, c3} = {-1/2, 0}, {1/2, 0}, 0, 3 2;

regions = (x - #1)2
+ (y - #2)2

< 1 & @@@ {c1, c2, c3}

Out[18]=
1

2
+ x

2

+ y2 < 1, -
1

2
+ x

2

+ y2 < 1, x2 + -
3

2
+ y

2

< 1

304 Essentials of Programming in Mathematica

In[19]:= GraphicsCircle[c1], Circle[c2], Circle[c3],

Text[A, {-1/2, .75}], Text[B, {1/2, .75}], Text[C, {0, 1.6}]

Out[19]=

A B

C

We repeat what was done in the previous exercise but instead use an expression in three

variables.

In[20]:= expr = a b c && ¬ a b c;

vars = a, b, c;

This substitutes the threaded rules into the expression where a is replaced with #1, b is replaced

with #2, and so on.

expr /. Thread[vars → {#1, #2, #3}] &

Here then is the function. It has the same name as above but will only be called if the variable

list is of length three.

In[22]:= VennDiagramexpr_, vars : {__} /; Length[vars]⩵ 3 :=

Modulec1, c2, c3, regions, x, y, f,

{c1, c2, c3} = {-1/2, 0}, {1/2, 0}, 0, 3 2;

regions = (x - #1)2
+ (y - #2)2

< 1 & @@@ {c1, c2, c3};

f = expr /. Thread[vars → {#1, #2, #3}] &;

RegionPlotregions, f @@ regions, {x, -2, 2}, {y, -3/2, 5/2},

AspectRatio → Automatic, FrameTicks → None,

FrameLabel → TraditionalForm[expr],
PlotStyle → White, White, White, LightBlue, BoundaryStyle → GrayLevel[.65],

Epilog → {Text[vars[[1]], {-1/2, -.75}], Text[vars[[2]], {1/2, -.75}],

Text[vars[[3]], {0, 1.6}]}

8.4 Examples: exercises 305

In[23]:= VennDiagrama b c && ¬ a b c, a, b, c

Out[23]=

(a b c) ¬ (a b c)

a b

c

We will use the code for the TruthTable function from Exercise 3 in Section 6.3 together with

the VennDiagram function from this section, using Row.
7.

In[24]:= ManipulateRow

TruthTablef[A, B], {A, B},

VennDiagramA B, {A, B}

, f, Xor, "Logical function", And, Or, Xor, Implies, Nand, Nor,

SaveDefinitions → True

Out[24]=

Logical function Xor

� � � �
� � �
� � �
� � �
� � �

A B

A B

First, import two sequences.8.

In[25]:= seq1 = First@Import"H5N1ChickenDQ023146.1.fasta";

seq2 = First@Import"H5N1DuckDQ232610.1.fasta";

To set the window size, we need to partition the strings. stringPartition was defined in

Section 7.5 and is available in the EPM packages.

In[27]:= << EPM`

This sets a window size of 4, meaning that strings of length 4 will be compared in what follows.

306 Essentials of Programming in Mathematica

In[28]:= Withwindowsize = 4,

TakestringPartitionseq1, windowsize, 1, 1, {}, 12

Out[28]= {ACAT, CATC, ATCA, TCAT, CATG, ATGG, TGGC, GGCT, GCTT, CTTC, TTCT, TCTC}

First set up DotPlot to inherit options from ArrayPlot and to have one new option,
WindowSize with a default value of one.

In[29]:= OptionsDotPlot = JoinWindowSize → 1, OptionsArrayPlot;

The rest of the code is similar to what was developed in the chapter but instead of passing the

two sequences whole to ArrayPlot, we pass the two partitioned sequences. We have also set
the option Frame to True, which can be overridden by setting that option explicitly when you

use DotPlot.

In[30]:= DotPlotp1_, p2_, opts : OptionsPattern[] :=

Modulew = OptionValueWindowSize,

ArrayPlotOuterBoole[#1 == #2] &, stringPartition[p1, w, 1, 1, {}],

stringPartition[p2, w, 1, 1, {}],

FilterRules{opts}, Options@ArrayPlot, Frame → True

The noise in the earlier plots when we were comparing every nucleotide with every other
across the two sequences is clearly cleaned up.

In[31]:= DotPlotseq2, seq1, WindowSize → 4, FrameLabel → "DQ023146", "DQ232610",

ColorRules → 1 → Black, 0 → LightYellow, ImageSize → Small

Out[31]=

DQ232610

D
Q
0
2
3
1
4
6

We just need to add a few lines grabbing the sequences and the accession numbers.9.

8.4 Examples: exercises 307

In[32]:= DotPlotfile1_, file2_, opts : OptionsPattern[] :=

Modulew = OptionValueWindowSize, p1, p2, lab1, lab2,

p1 = First@Importfile1, "FASTA", "Sequence";

p2 = First@Importfile2, "FASTA", "Sequence";

lab1 = First@Importfile1, "FASTA", "Accession";

lab2 = First@Importfile2, "FASTA", "Accession";

ArrayPlotOuterBoole[#1 == #2] &,

stringPartition[p1, w, 1, 1, {}],

stringPartition[p2, w, 1, 1, {}]

, FilterRules{opts}, Options@ArrayPlot, Frame → True,

FrameLabel → lab1, lab2

In[33]:= DotPlot"H5N1ChickenDQ023146.1.fasta", "H5N1DuckDQ232610.1.fasta",

WindowSize → 3, ImageSize → Small

Out[33]=

DQ232610.1

D
Q
0
2
3
1
4
6
.1

The problem with the two radii is really only one of getting the plot range correct for the two

situations. This can be done most simply with an If statement as the value of the PlotRange

option.

10.

In[34]:= Hypocycloida_, b_, θ_ :=

a - b Cos[θ] + b Cosθ
a - b

b
, a - b Sin[θ] - b Sinθ

a - b

b

In[35]:= HypocycloidPlot[R_, r_, θ_] := Module{center},

centerth_, R1_, r2_ := (R1 - r2) Costh, Sinth;

Show

ParametricPlotHypocycloid[{R, r}, t], {t, 0, θ}, PlotStyle → Red,

Axes → None,

GraphicsBlue, Thick, Circle[{0, 0}, R], Circle[center[θ, R, r], r],

PointSize[.02], Point[center[θ, R, r]],

Thick, Linecenter[θ, R, r], Hypocycloid[{R, r}, θ],

Red, PointSize[.02], PointHypocycloid[{R, r}, θ]

, PlotRange → If[r < R, 2 R, 2 r], GridLines → Automatic, ImageSize → Medium

308 Essentials of Programming in Mathematica

In[36]:= ManipulateHypocycloidPlot[1, 3, θ], {θ, 0.1, 6 π }, SaveDefinitions → True

Out[36]=

θ

Just a few modifications to the code for the hypocycloid are needed: use the formula for the

epicycloid; change the center of the rotating circle so that its radius is R + r, not R - r; and

modify the plot range.

11.

In[37]:= EpicycloidPlot[R_, r_, θ_] := Moduleepicycloid, center,

epicycloida_, b_, t_ :=

a + b Cos[t] - b Cost
a + b

b
, a + b Sin[t] + b Sint

a + b

b
;

centerth_, R1_, r2_ := (R1 + r2) Costh, Sinth;

Show

ParametricPlotepicycloid[{R, r}, t], {t, 0, θ}, PlotStyle → Red,

Axes → None, ImageSize → Small,

Graphics

Blue, Thick, Circle[{0, 0}, R],

Circle[center[θ, R, r], r],

PointSize[.015], Point[center[θ, R, r]],

Thick, Linecenter[θ, R, r], epicycloid[{R, r}, θ],

Red, PointSize[.015], Pointepicycloid[{R, r}, θ]

, PlotRange → 1.5 (R + r), GridLines → Automatic

First, create a static image.

8.4 Examples: exercises 309

In[38]:= EpicycloidPlot[3, 1, 2 π]

Out[38]=

And here is the dynamic version.

In[39]:= ManipulateEpicycloidPlot[R, r, θ],

θ, 0 + 0.01, 2 Denominator[(R - r)/r] π,

{R, {3, 4, 5, 6, 7, 8}, Setter}, {r, {1, 2, 3, 4, 5}, Setter},

SaveDefinitions → True

Out[39]=

θ

R 3 4 5 6 7 8

r 1 2 3 4 5

First, set up the options structure.12.

In[40]:= OptionsPathPlot = JoinClosedPath → True, OptionsGraphics;

Make two changes to the original PathPlot: add an If statement that checks the value of
ClosedPath and if True, appends the first point to the end of the list; if False, it leaves the

coordinate list as is. The second change is to filter those options that are specific to Graphics

and insert them in the appropriate place.

310 Essentials of Programming in Mathematica

In[41]:= PathPlotlis_List, opts : OptionsPattern[] :=

Modulecoords = lis, IfOptionValueClosedPath,

coords = coords /. a_, b__ ⧴ a, b, a;

GraphicsLinecoords, PointSizeMedium, Red, Pointcoords,

FilterRules{opts}, OptionsGraphics

In[42]:= SeedRandom[424];

coords = RandomReal[1, {10, 2}];

In[44]:= PathPlotcoords, ClosedPath → True, GridLines → Automatic

Out[44]=

A simple change to the program SimplePath chooses the base point with the largest y-
coordinate.

13.

In[45]:= SimplePath3lis_ := Modulebase, angle, sorted,

base = LastSortBylis, Last;

anglea_, b_ := ArcTan @@ b - a;

sorted = SortComplementlis, base, anglebase, #1 ≤ anglebase, #2 &;

Joinbase, sorted

In[46]:= pts = RandomReal[1, {20, 2}];

In[47]:= PathPlotSimplePath3[pts]

Out[47]=

Choosing a base point randomly and then sorting according to the arc tangent could cause a

number of things to go wrong with the algorithm. The default branch cut for ArcTan gives

values between -π /2 and π /2 (think about why this could occasionally cause the algorithm in

the text to fail). By choosing the base point so that it lies at some extreme of the diameter of
the set of points, the polar angle algorithm given in the text will work consistently. If you

choose the base point so that it is lowest and left-most, then all the angles will be in the range

(0, π].

14.

8.4 Examples: exercises 311

In[48]:= SimplePath1lis_List := Modulebase, angle, sorted,

base = FirstSortBylis, Last;

anglea_, b_ := ArcTan @@ b - a;

sorted = SortComplementlis, base, anglebase, #1 ≤ anglebase, #2 &;

Joinbase, sorted

In[49]:= pts = RandomReal[1, {40, 2}];

In[50]:= PathPlotSimplePath1[pts]

Out[50]=

And here is a solution based on ordering the points according to the polar angle each makes

with the centroid of the set of points.

In[51]:= SimplePathCMlis_ := Modulecentroid, angle,

centroid = RegionCentroidPolygon@lis;

anglea_, b_ := ApplyArcTan, b - a;

Sortlis, anglecentroid, #1 ≤ anglecentroid, #2 &

In[52]:= PathPlotSimplePathCM[pts]

Out[52]=

Using Legended and SwatchLegend, you can add identifying information for each atomic

element.
15.

312 Essentials of Programming in Mathematica

In[53]:= ChemicalSpaceFillingPlotfile_String :=

Moduleelements, pos, radii, names, colors, labels,

pos, elements =

First /@ Importfile, "VertexCoordinates", "VertexTypes";

radii = QuantityMagnitude@MapElementData#, "VanDerWaalsRadius" &,

elements;

labels = DeleteDuplicateselements;

names = ElementData#, "StandardName" & /@ labels;

colors = labels /. ColorData"Atoms", "ColorRules";

Legended

Graphics3DSpecularityWhite, 50,

MapThreadColorData"Atoms", #1, Sphere[#2, #3] &,

elements, pos, radii

, Lighting → "Neutral",

SwatchLegendcolors, names, LegendMarkers → "SphereBubble",

LabelStyle → DirectiveFontSize → 7.5

In[54]:= ChemicalSpaceFillingPlot"5hydroxytryptamine.sdf"

Out[54]=

������

��������

������

��������

First, here is a static image of the triangle with orthocenter and altitudes.16.

8.4 Examples: exercises 313

In[55]:= {p1, p2, p3} = {{-1, 0}, {1, 2}, {2, 0}};

lines = InfiniteLine /@ Subsets[{p1, p2, p3}, {2}];

altPts = MapThreadRegionNearest[#1, #2] &, lines, Reverse[{p1, p2, p3}];

altLines = MapThreadLine[{#1, #2}] &, altPts, Reverse[{p1, p2, p3}];

iLines = ApplyInfiniteLine, altLines, {1};

center = {x, y} /. FirstSolve({x, y} ∈ #1 &) /@ iLines, {x, y};

GraphicsLightBlue, EdgeForm[Gray], Triangle[{p1, p2, p3}],

Blue, PointSizeMedium, Point[{p1, p2, p3}], PointaltPts,

PointSize[Large], Point[center], Gray, iLines, PlotLabel → "Orthocenter"

Out[60]=

Orthocenter

And here is the dynamic version. Note the orthocenter will be located outside the triangle if the

triangle is not acute.

In[61]:= DynamicModule{pts = 5 {{-1, 0}, {1, 2}, {2, 0}}},

LocatorPaneDynamicpts, Appearance → Tiny,

DynamicGraphicsEdgeForm[Gray], LightBlue, Triangle[pts],

Gray, InfiniteLine /@ Subsets[pts, {2}],

PointMapThreadRegionNearest[#1, #2] &,

InfiniteLine /@ Subsets[pts, {2}], Reverse[pts],

MapThreadInfiniteLine[{#1, #2}] &,

MapThreadRegionNearest[#1, #2] &,

InfiniteLine /@ Subsets[pts, {2}], Reverse[pts],

Reverse[pts]

Out[61]=

(* solution to appear *)17.
Start with a two-dimensional random walk.18.

In[62]:= << EPM`

In[63]:= << EPM`RandomWalks`

314 Essentials of Programming in Mathematica

In[64]:= walk = RandomWalk10 000, Dimension → 2, LatticeWalk → False;

 = RadiusOfGyrationTensorwalk

Out[65]= {{1689.48, 1477.75}, {1477.75, 1495.96}}

The eigenvectors of the radius of gyration tensor, , point in the directions of greatest and

smallest spans of the walk. The eigenvalues give a measure of how elongated the walk is in

these directions. This can be seen by creating lines along each eigenvector of a length propor-
tional to the corresponding eigenvalues. In the computation below, the slope of the line is given

by the y-coordinate of the eigenvector divided by the corresponding x-coordinate.

In[66]:= {λ1, λ2} = Eigenvalues[]

Out[66]= {3073.63, 111.809}

In[67]:= {{v1x, v1y}, {v2x, v2y}} = Eigenvectors[]

Out[67]= {{-0.729841, -0.683617}, {0.683617, -0.729841}}

In[68]:= {cmx, cmy} = Meanwalk

Out[68]= {-36.9605, -31.5695}

In[69]:= ev1 =
v1y

v1x
(x - cmx) + cmy // Expand

Out[69]= 3.05005 + 0.936665 x

In[70]:= ev2 =
v2y

v2x
(x - cmx) + cmy // Expand

Out[70]= -71.0292 - 1.06762 x

Putting all these pieces together, we create the function EigenvectorPlot that returns a plot of
the original data set together with plots of the orthogonal lines and puts a large red point at
their intersection, the center of mass.

In[71]:= EigenvectorPlotdata : {{_, _} ..}, tensor_,

opts : OptionsPatternListLinePlot :=

Module{T = tensor, cmx, cmy, λ1, λ2, v1x, v1y, v2x, v2y},

{λ1, λ2} = Eigenvalues[T];

{cmx, cmy} = Meandata;

{{v1x, v1y}, {v2x, v2y}} = Eigenvectors[T];

ShowListLinePlotdata, opts, PlotStyle → Thin,

GraphicsLinecmx - λ1, cmy -
v1y λ1

v1x
, cmx + λ1, cmy +

v1y λ1

v1x
,

Linecmx - λ2, cmy -
v2y λ2

v2x
, cmx + λ2, cmy +

v2y λ2

v2x
,

PointSize[Large], Red, PointMeandata, AspectRatio → Automatic

8.4 Examples: exercises 315

In[72]:= << EPM`RandomWalks`

In[73]:= SeedRandom[4];

walk = RandomWalk10 000, Dimension → 2, LatticeWalk → False;

 = RadiusOfGyrationTensorwalk

Out[75]= {{1977.94, -67.2011}, {-67.2011, 761.669}}

In[76]:= EigenvectorPlotwalk,

Out[76]=

20 40 60 80 100 120 140

-20

20

40

60

80

316 Essentials of Programming in Mathematica

9
Program optimization

Efficient programs: exercises9.1
One of the problems with measuring the time it takes to complete a computation is that
computers are often busy doing many things simultaneously: checking mail, running system

scripts in the background, and so on. To give a more accurate measure of the time spent on a

computational task, create a function AverageTiming that runs several trials and then averages

the results. Set up the function to return both the result and the timing, similar to Timing and

AbsoluteTiming. Be careful that your function does not evaluate its input before it is passed

into the body of the function.

1.

The nth triangular number is defined as the sum of the integers 1 through n. They are so named

because they can be represented visually by arranging rows of dots in a triangular manner
(Figure 9.1). Program several different approaches to computing triangular numbers and

compare their efficiency.

2.

Pictorial representation of the first five triangular numbers.Figure 9.1.

Recall the Anagrams function in Section 7.2 that used Select to find words in the dictionary

consisting of a permutation of the letters of a given word. Here is another implementation,
converting the word to a list of characters, getting all permutations of that list of characters,
joining the characters in each sublist, and then checking against actual words in the dictionary.

3.

In[1]:= Anagrams1word_String := Modulewords,

words = MapStringJoin, PermutationsCharactersword;

DictionaryLookupx__ /; MemberQwords, x

In[2]:= TimingAnagrams1"alerts"

Out[2]= {16.3502, {alerts, alters, salter, staler}}

And here is an implementation that uses Alternatives instead of the conditional pattern

above:

In[3]:= Anagrams2word_String := Modulechars = Charactersword, words,

words = MapStringJoin, Permutationschars;

DictionaryLookupAlternatives @@ words

In[4]:= TimingAnagrams2"alerts"

Out[4]= {0.940914, {alerts, alters, salter, staler}}

The following implementation from Chapter 7 uses regular expressions and Select but only

checks words in the dictionary of the same length as the test word:

In[5]:= Anagrams3word_String := Modulelen = StringLengthword, words,

words = DictionaryLookupRegularExpression"\\w{" <> ToStringlen <> "}";

Selectwords, SortCharacters[#] ⩵ SortCharactersword &

In[6]:= TimingAnagrams3"alerts"

Out[6]= {0.052693, {alerts, alters, salter, staler}}

Determine what is causing the sharp differences in timing between these three implementa-
tions.

Several different implementations of the Hamming distance computation were given in

Section 5.6; some run much faster than others. For example, the version with bit operators runs

about one-and-a-half orders of magnitude faster than the version using Count and MapThread.
Determine what is causing these differences.

4.

In[7]:= HammingDistance1lis1_, lis2_ :=

CountMapThreadSameQ, lis1, lis2, False

In[8]:= HammingDistance2lis1_, lis2_ := TotalBitXorlis1, lis2

In[9]:= sig1 = RandomInteger1, 106;

sig2 = RandomInteger1, 106;

In[11]:= TimingHammingDistance1sig1, sig2

Out[11]= {0.325111, 499258}

In[12]:= TimingHammingDistance2sig1, sig2

Out[12]= {0.012189, 499258}

318 Essentials of Programming in Mathematica

Consider the computation of the diameter of a set of points in d-dimensional space, d, as was

done in Exercise 11, Section 5.1.
5.

In[13]:= PointsetDiameterpts_List :=

MaxApplyEuclideanDistance, Subsets[pts, {2}], {1}

This function suffers from the fact that computing subsets is computationally expensive.
Computing pairs of subsets typically is O(n2) and so the time to do this computation will grow

quadratically with the size of the point set. Beyond about 10 000 points, the time is substantial.

In[14]:= pts = RandomReal[1, {5000, 2}];

PointsetDiameter[pts] // Timing

Out[15]= {21.2414, 1.39259}

Try to speed up the computation of the diameter by using some computational geometry. In

particular, note that the two points contained in the diameter must lie on the convex hull of
the point set. Use this observation to substantially reduce the number of subsets that are

computed (see O’Rourke 1998).

Searching for numbers which are both square and palindromic can be done by using the two

predicate functions developed earlier, SquareNumberQ (Exercise 4, Section 2.4) and

PalindromeQ (Section 1.1). For example, using these functions, the following finds all square

palindromic numbers below 106:

6.

In[16]:= Withn = 106,

SelectSelectRange[n], SquareNumberQ, PalindromeQ // Timing

Out[16]= {10.1161, {1, 4, 9, 121, 484, 676, 10201,

12321, 14641, 40804, 44944, 69696, 94249, 698896}}

Somewhat surprisingly, checking for palindromes first and then finding square numbers

amongst those, is about three to four times faster.

In[17]:= Withn = 106,

SelectSelectRange[n], PalindromeQ, SquareNumberQ // Timing

Out[17]= {3.79878, {1, 4, 9, 121, 484, 676, 10201,

12321, 14641, 40804, 44944, 69696, 94249, 698896}}

Determine why this is so.

Consider the Monte Carlo approach to approximating π discussed in several places in this

book. One way to perform the simulation is to create a large vector of random points in the

square and count the number of such points that lie within the circle x2 + y2 ≤ 1. Here are two

approaches, the first using Apply at level one, the second using Map:

7.

9.1 Efficient programs: exercises 319

http://www.cambridge.org/us/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/computational-geometry-c-2nd-edition?format=PB

In[18]:= pts = RandomReal{-1, 1}, 106, 2;

4. TotalApplyBoole[#1^2 + #2 ^2 ≤ 1] &, pts, {1}Length[pts] //

Timing

Out[19]= {3.31052, 3.1408}

In[20]:= 4. TotalMapBooleFirst[#]^2 + Last[#]^2 ≤ 1 &, ptsLength[pts] //

Timing

Out[20]= {0.27429, 3.1408}

Determine why the approach with Apply at level one is over an order of magnitude slower.

Solutions9.1
First, we set things up so that AverageTiming has the HoldAll attribute. This way its argument,
the expression to be measured, does not evaluate before it is used inside the body of the

AverageTiming function itself.

1.

In[1]:= SetAttributesAverageTiming, HoldAll

In[2]:= AverageTimingexpr_, trials_ :=

MeanTableFirstAbsoluteTiming[expr], trials

As a simple test, here we compute the time needed to invert a large matrix.

In[3]:= mat = RandomReal[1, {1000, 1000}];

AbsoluteTiming[Inverse[mat];]

Out[4]= {0.047831, Null}

And for five trials, the average time is given by the following.

In[5]:= AverageTiming[Inverse[mat], 5]

Out[5]= 0.0421236

For a compound expression, you could either enclose the subexpressions in a list or separate

them with semicolons.

In[6]:= AverageTiming[{

mat.mat,

Inverse[mat],

Det[mat]

}, 5]

Out[6]= 0.0694276

320 Essentials of Programming in Mathematica

In[7]:= AverageTiming[

mat.mat;

Inverse[mat];

Det[mat];,

5]

Out[7]= 0.068383

Collect the results of the Table and pull out the parts needed – the timings and the result.

In[8]:= SetAttributesAverageTiming, HoldAll

In[9]:= AverageTimingexpr_, trials_ := Modulelis,

lis = TableAbsoluteTiming[expr], trials;

MeanlisAll, 1, lis[[1, 2]]

In[10]:= AverageTiming[FactorInteger[50! + 1], 5]

Out[10]= {0.739426, {{149, 1}, {3989, 1}, {74195127103, 1},

{6854870037011, 1}, {100612041036938568804690996722352077, 1}}}

A first attempt, using a brute force approach, is to total the list {1, 2, …, �} for each n.2.

In[11]:= TriangularNumber[n_] := Total[Range[n]]

In[12]:= TableTriangularNumberi, i, 1, 100

Out[12]= {1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190,

210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595,

630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176,

1225, 1275, 1326, 1378, 1431, 1485, 1540, 1596, 1653, 1711, 1770, 1830, 1891,

1953, 2016, 2080, 2145, 2211, 2278, 2346, 2415, 2485, 2556, 2628, 2701, 2775,

2850, 2926, 3003, 3081, 3160, 3240, 3321, 3403, 3486, 3570, 3655, 3741, 3828,

3916, 4005, 4095, 4186, 4278, 4371, 4465, 4560, 4656, 4753, 4851, 4950, 5050}

In[13]:= TimingTriangularNumber107

Out[13]= {0.067392, 50000005000000}

A second approach uses iteration. As might be expected, this is the slowest of the approaches

here.

In[14]:= TriangularNumber2[n_] := Fold[#1 + #2 &, 0, Range[n]]

In[15]:= TimingTriangularNumber2107

Out[15]= {1.40948, 50000005000000}

This is a situation where a little mathematical knowledge goes a long way. The nth triangular

numbers is just the following binomial coefficient:
n + 1

2
 .

In[16]:= TriangularNumber3[n_] := Binomial[n + 1, 2]

9.1 Efficient programs: exercises 321

In[17]:= TimingTriangularNumber3107

Out[17]= {0.000015, 50000005000000}

Here are the three anagrams functions from the exercise.3.

In[18]:= Anagrams1word_String := Modulechars = Charactersword, words,

words = MapStringJoin, Permutationschars;

DictionaryLookupx__ /; MemberQwords, x

In[19]:= Anagrams2word_String := Modulechars = Charactersword, words,

words = MapStringJoin, Permutationschars;

DictionaryLookupAlternatives @@ words

In[20]:= Anagrams3word_String := Modulelen = StringLengthword, words,

words = DictionaryLookupRegularExpression"\\w{" <> ToStringlen <> "}";

Selectwords, SortCharacters[#] ⩵ SortCharactersword &

Anagrams1 is the slowest. Here are the two main computations in that function. Almost the

entire computational time is spent in the pattern matching second step below. This is because

every word in the dictionary is compared with the list words. This brute force approach is

clearly going to be very expensive.

In[21]:= Withchars = Characters"alerts",

Timingwords = MapStringJoin, Permutationschars;

Out[21]= {0.000828, Null}

In[22]:= TimingDictionaryLookupx__ /; MemberQwords, x;

Out[22]= {16.3338, Null}

Anagrams2, by comparison is much faster as every word in the dictionary is not being com-
pared with the list words.

In[23]:= TimingDictionaryLookupAlternatives @@ words;

Out[23]= {1.11167, Null}

But Anagrams3 is the fastest. First, it is only checking words of the same length as the test word

“alerts”. That list is nine times smaller than the entire list of words in the dictionary. But the

biggest speed improvement comes from the fact that it is not using the pattern matcher so

intensively but instead is sorting lists of characters, which, for short lists, is quite fast.

In[24]:= TimingAnagrams3"alerts";

Out[24]= {0.048765, Null}

322 Essentials of Programming in Mathematica

In[25]:= LengthDictionaryLookupw__ /; StringLength[w]⩵ StringLength"alerts"

Out[25]= 10549

In[26]:= LengthDictionaryLookup[]

Out[26]= 92518

The first implementation essentially performs a transpose of the two lists, wrapping SameQ

around each corresponding pair of numbers. It then does a pattern match (Count) to determine

which expressions of the form SameQ[����1, ����2] return False.

4.

In[27]:= HammingDistance1lis1_, lis2_ :=

CountMapThreadSameQ, lis1, lis2, False

In[28]:= HammingDistance2lis1_, lis2_ := TotalBitXorlis1, lis2

In[29]:= sig1 = RandomInteger1, 106;

In[30]:= sig2 = RandomInteger1, 106;

In this case, it is the threading that is expensive rather than the pattern matching with Count.

In[31]:= res = MapThreadSameQ, sig1, sig2; // Timing

Out[31]= {0.283291, Null}

In[32]:= Countres, False // Timing

Out[32]= {0.035301, 500001}

The reason the threading is expensive can be seen by turning on the packing message as

discussed in this section.

In[33]:= On"Packing"

In[34]:= res = MapThreadSameQ, sig1, sig2;

Developer`FromPackedArray::punpack1 : Unpacking array with dimensions {1000000}.

Developer`FromPackedArray::punpack1 : Unpacking array with dimensions {1000000}.

The other factors contributing to the significant timing differences have to do with the fact that
BitXor has the Listable attribute. MapThread does not. And so, BitXor can take advantage of
specialized (compiled) codes internally to speed up its computations.

In[35]:= AttributesBitXor

Out[35]= {Flat, Listable, OneIdentity, Orderless, Protected}

In[36]:= AttributesMapThread

Out[36]= {Protected}

In[37]:= Timingtemp = BitXorsig1, sig2;

Out[37]= {0.011554, Null}

9.1 Efficient programs: exercises 323

And finally, compute the number of ones using Total which is extremely fast at adding lists of
numbers.

In[38]:= TimingTotal[temp];

Out[38]= {0.002223, Null}

Return the packed array messaging to its default value.

In[39]:= Off"Packing"

The key observation here is to note that the two points that make up the diameter of a set of
points necessarily lie on the convex hull of that set of points.

5.

First, create some sample points in 3-space.

In[40]:= pts = RandomReal[1, {12, 3}];

This computes the convex hull.

In[41]:= ℛ = ConvexHullMesh[pts]

Out[41]=

This gives the coordinates of the points on the hull.

In[42]:= MeshCoordinates[ℛ]

Out[42]= {{0.943138, 0.120452, 0.295862},

{0.00281024, 0.0372368, 0.55261}, {0.323796, 0.539883, 0.176544},

{0.629912, 0.484183, 0.198963}, {0.404037, 0.786687, 0.905667},

{0.747504, 0.550974, 0.384268}, {0.715909, 0.0785744, 0.302986},

{0.648593, 0.864685, 0.186089}, {0.45307, 0.541464, 0.981177}}

So, instead of taking the subsets of the entire set of points, only take subsets from this list of
mesh coordinates. Here then is the function from Exercise 11, Section 5.1, with this modification.

In[43]:= PointsetDiameterCH[pts_] := Module{ℛ},

ℛ = ConvexHullMesh[pts];
Max@ApplyEuclideanDistance, SubsetsMeshCoordinates[ℛ], {2}, {1}

For timing comparisons, let’s take a large point set.

In[44]:= pts = RandomReal[1, {2500, 3}];

324 Essentials of Programming in Mathematica

First, here is the computation using Subsets.

In[45]:= PointsetDiameterpts_List :=

MaxApplyEuclideanDistance, Subsets[pts, {2}], {1}

In[46]:= TimingPointsetDiameter[pts]

Out[46]= {3.41869, 1.62249}

PointsetDiameterCH is substantially faster than the approach above using all subsets.

In[47]:= TimingPointsetDiameterCH[pts]

Out[47]= {0.041134, 1.62249}

The one disadvantage to this approach is that the computation of the convex hull mesh is only

valid for dimensions one through three.

One way to analyze the difference in this problem is to check how long it takes each of these

predicates to pick out numbers from one to one million.
6.

In[48]:= CountRange106, p_?PalindromeQ // Timing

Out[48]= {0.37367, 0}

In[49]:= CountRange106, p_?SquareNumberQ // Timing

Out[49]= {0.385763, 0}

Clearly SquareNumberQ is slow relative to PalindromeQ for checking the same number of
integers, so making it only check 1998 numbers rather than one million is what helps.

The mystery here is not clear until you look turn on the packed array messaging as described in

the text.
7.

In[50]:= On"Packing"

In[51]:= pts = RandomReal{-1, 1}, 106, 2;

4. TotalBoole[#1^2 + #2 ^2 ≤ 1] & @@@ ptsLength[pts] // Timing

Developer`FromPackedArray::punpack1 : Unpacking array with dimensions {1000000, 2}.

Out[52]= {2.47989, 3.14176}

In[53]:= pts = RandomReal{-1, 1}, 106, 2;

4. TotalBooleFirst[#]^2 + Last[#]^2 ≤ 1 & /@ ptsLength[pts] //

Timing

Out[54]= {0.282033, 3.14466}

Apply at level one (@@@), unpacks packed arrays and this step causes the significant slowdown

in this computation.

Reset the system option.

In[55]:= Off"Packing";

9.1 Efficient programs: exercises 325

Parallel processing: exercises9.2
Many different methods can be used to smooth a noisy signal. Depending upon the nature of
the data (periodic, for example) and the nature of the noise, some smoothing methods are

more appropriate than others. Given a noisy signal, compare a variety of smoothing methods

in parallel by displaying the original signal together with each smoothed version. For example,
this displays the original signal together with an eight-term weighted moving average:

1.

In[1]:= signal = TableSin[t] + RandomReal[0.2], {t, -2 π, 2 π, 0.05};

In[2]:= ma = MovingAveragesignal, {1, 2, 6, 8, 6, 2, 1}/8;

ListPlotsignal, ma, Joined → False, True, PlotStyle → Automatic, Red

Out[3]=

50 100 150 200 250

-1.0

-0.5

0.5

1.0

Example smoothers to consider include moving averages with different numbers of terms and

weights, a convolution with a Gaussian kernel, a lowpass filter, and any others you might be

familiar with (wavelets, for example).

The search for perfect numbers programmed in Exercise 6 in Section 5.1 gets bogged down for
searches of more than one million numbers. Try to speed it up by considering the range of
numbers searched, the built-in functions used, and the possibility of doing the computation in

parallel.

2.

In the eighteenth century, Leonhard Euler proved that all even perfect numbers must be of the

form 2p-1 (2p - 1) for 2p - 1 prime and p a prime number. (No one has yet proved that any odd

perfect numbers exist.) Use this fact to find all even perfect numbers for p < 104.

3.

A common task in many areas of computational linguistics is comparing certain features of a

text across a broad corpus. One such comparison is counting the occurrence of a certain word

across numerous texts. This is a good problem for parallel computation. Use the parallel tools

to import and count the occurrence of a word, say history, across four different texts. Guten-
berg.org is a good source for importing entire texts, but any available source could be used.

4.

Monte Carlo simulations are computations that use random sampling to approximate a

numerical result. One of the classical examples is the approximation to π. The idea is to

generate a large number of random numbers in a square and compute the proportion that lie

within the inscribed circle (Figure 9.2). The approximation to π is four times this proportion.
This method converges quite slowly, so a large number of points and averaging many trials is

needed to get better approximations.

5.

326 Essentials of Programming in Mathematica

Monte Carlo simulation for approximating π.Figure 9.2.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Use RandomReal to create points in a square, then count points inside the inscribed disk using

two different implementations – one with a Do loop and another using the computational
geometry machinery (RegionMember in particular). Compare the efficiency of these two

implementations.

The following code can be used to create a plot of the Mandelbrot set. It uses Table to compute

the value for each point in the complex plane on a small grid. We have deliberately chosen a

relatively coarse grid (n = 100) as this is an intensive and time-consuming computation. The

last argument to NestWhileList, 250 here, sets a limit on the number of iterations that can be

performed for each input. Increase the resolution of the graphic by running the computation

of the table of points in parallel.

6.

In[4]:= Mandelbrot[c_] := LengthNestWhileList# ^2 + c &, 0, Abs[#] < 2 &, 1, 250

In[5]:= data = With{n = 100}, TableMandelbrot[x + I y], y, -1.3, 1.3,
1

n
,

x, -2, 0.6,
1

n
;

In[6]:= ArrayPlotdata, ColorFunction → "GreenPinkTones"

Out[6]=

Solutions9.2
Here is a noisy signal to work with.1.

In[1]:= signal = TableSin[t] + RandomReal[{-.25, .25}], t, 0, 4 Pi, 0.025;

Here is an eight-term moving average.

9.2 Parallel processing: exercises 327

In[2]:= ma8 = MovingAveragesignal, {1, -2, 6, 8, 6, 2, 1}/8;

ListLinePlotsignal, ma8, PlotStyle → Automatic, Red, Thickness[.005]

Out[3]=
100 200 300 400 500

-1.0

-0.5

0.5

1.0

A six-term moving average:

In[4]:= ma = MovingAveragesignal, {1, 1, 2, 1, 1}/6;

A low-pass filter:

In[5]:= LowpassFiltersignal, .5, 31;

And a convolution with a Gaussian kernel:

In[6]:= kerneln_?OddQ := Table
Exp- k2

n2

2 π
, k, -Floor

n

2
, Floor

n

2

In[7]:= ListConvolvekernel[17], signal;

328 Essentials of Programming in Mathematica

In[8]:= ParallelTable

ListLinePlotsignal, comp,

ImageSize → Tiny,

PlotStyle → Automatic, Red, Thickness[.005],

comp,

MovingAveragesignal, {1, -2, 6, 8, 6, 2, 1}/8,

MovingAveragesignal, {1, 1, 2, 1, 1}/6,

LowpassFiltersignal, .5, 31,

kerneln_?OddQ := Table
Exp- k2

n2

2 π
, k, -Floor

n

2
, Floor

n

2
;

ListConvolvekernel[17]6, signal

Out[8]=
100 200 300 400 500

-1.0

-0.5

0.5

1.0

,
100 200 300 400 500

-1.0

-0.5

0.5

1.0

,

100 200 300 400 500

-1.0

-0.5

0.5

1.0

,
100 200 300 400 500

-1.0

-0.5

0.5

1.0

Here is the definition from Exercise 6 in Section 5.1.2.

In[9]:= PerfectSearch[n_] := ModuleperfectQ,

perfectQk_ := TotalDivisorsk ⩵ 2 k ;

SelectRange[n], perfectQ

In[10]:= PerfectSearch106 // Timing

Out[10]= {8.41595, {6, 28, 496, 8128}}

We can give a speed boost by using DivisorSigma[1, �] which gives the sum of the divisors

of k.

In[11]:= PerfectSearch2[n_] := ModuleperfectQ,

perfectQk_ := DivisorSigma1, k ⩵ 2 k ;

SelectRange[n], perfectQ

In[12]:= PerfectSearch2106 // Timing

Out[12]= {4.72435, {6, 28, 496, 8128}}

Reduce the number of sheer computations by using the, as yet, unproven conjecture that there

9.2 Parallel processing: exercises 329

are no odd perfect numbers (confirmed for n < 10300). Also use a pure function for the predicate

test.

In[13]:= PerfectSearch3[n_] := SelectRange[2, n, 2], DivisorSigma[1, #]⩵ 2 # &

In[14]:= PerfectSearch3106 // Timing

Out[14]= {2.35038, {6, 28, 496, 8128}}

In[15]:= PerfectSearchParallel[n_] :=

ParallelizeSelectRange[2, n, 2], DivisorSigma[1, #]⩵ 2 # &

In[16]:= PerfectSearchParallel106 // Timing

Out[16]= {0.143826, {6, 28, 496, 8128}}

First we find those values of p for which 2p - 1 is prime. This first step is quite compute-inten-
sive; fortunately, it parallelizes well.

3.

In[17]:= primes = ParallelizeSelectRange[10 000], PrimeQ2# - 1 &

Out[17]= {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127,

521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941}

So for each of the above values of the list primes, 2p-1 (2p - 1) will be even perfect numbers

(thanks to Euler).

In[18]:= perfectLis = Map2#-1 2# - 1 &, primes;

And finally, a check.

In[19]:= perfectQj_ := TotalDivisorsj ⩵ 2 j;

In[20]:= MapperfectQ, perfectLis

Out[20]= {True, True, True, True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True, True, True, True}

These are very large numbers indeed.

In[21]:= 2#-1 2# - 1 &[9941] // N

Out[21]= 5.988854963873362×105984

In[22]:= CloseKernels[]

Out[22]= KernelObject[1, local, <defunct>], KernelObject[2, local, <defunct>],

KernelObject[3, local, <defunct>], KernelObject[4, local, <defunct>]

Start by importing four texts, James Joyce’s Ulysses, Hermann Hesse’s Siddhartha, Emily Brontë’s

Wuthering Heights, and Virginia Woolf’s Jacob’s Room:
4.

In[23]:= joyce = Import"http://www.gutenberg.org/ebooks/4300.txt.utf-8", "Text";

In[24]:= hesse = Import"http://www.gutenberg.org/ebooks/2500.txt.utf-8", "Text";

In[25]:= bronte = Import"http://www.gutenberg.org/ebooks/768.txt.utf-8", "Text";

330 Essentials of Programming in Mathematica

In[26]:= woolf = Import"http://www.gutenberg.org/ebooks/5670.txt.utf-8", "Text";

Here is the count for the word history in the James Joyce text, accounting for possible

capitalization.

In[27]:= StringCountjoyce, "history" "History"

Out[27]= 30

And here is the computation across all four texts done in parallel.

In[28]:= LaunchKernels[];

In[29]:= ParallelTableStringCounttext, "history" "History",

text, joyce, hesse, bronte, woolf

Out[29]= {30, 0, 9, 10}

In[30]:= CloseKernels[];

First, here is the implementation using a Do loop.5.

In[31]:= PiApproxtrials_ := Modulein = 0, pt, pi, error,

pt := RandomReal[1, {2}];

DoIfTotalpt2 ≤ 1, in++, trials;

pi = N4 intrials;

error = Absπ - pi;

pi, error

In[32]:= TableFormTableJoin10i, PiApprox10i, i, 1, 6,

TableHeadings → None, "Trials", "π approx", "Error"

Out[32]//TableForm=

Trials π approx Error
10 2.8 0.341593
100 2.96 0.181593
1000 3.148 0.00640735
10000 3.1312 0.0103927
100000 3.14068 0.000912654
1000000 3.14122 0.000376654

Next, an implementation using RegionMember. Start by creating a disk and square. It is impor-
tant to use Disk and not Circle in order to then be able to use the computational geometry

function RegionMember – Circle is a region, but a one-dimensional region consisting of the

curve itself only.

In[33]:= RegionDimension@Circle[{0, 0}, 1]

Out[33]= 1

In[34]:= RegionDimension@Disk[{0, 0}, 1]

Out[34]= 2

In[35]:= = Disk[{.5, .5}, .5];

 = Polygon[{{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}];

9.2 Parallel processing: exercises 331

Here is the computation for 10 000 points.

In[37]:= pts = RandomReal{0, 1}, 104, 2;

in = Selectpts, RegionMember[, #] &;

out = Complementpts, in;

4 NLengthinLength[pts], 20

Out[40]= 3.1228000000000000000

Here is an image.

In[41]:= Graphics

Opacity[.25], EdgeFormThickness[.01], Gray, , ,

PointSizeTiny, Red, Pointin, Blue, Point[out]

, Axes → True, ImageSize → Small

Out[41]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

The first implementation is much faster given that it is purely arithmetic.

In[42]:= TimingPiApprox104

Out[42]= {0.037764, {3.1388, 0.00279265}}

In[43]:= PiMonteCarlon_, prec_: $MachinePrecision := Module, , pts, in,

 = Disk[{.5, .5}, .5];

 = Polygon[{{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}];

pts = RandomReal[{0, 1}, {n, 2}];

in = Selectpts, RegionMember[, #] &;

4 NLengthinLength[pts], prec

In[44]:= TimingPiMonteCarlo104

Out[44]= {2.10258, 3.113600000000000}

But we can speed up this second implementation by using a one-argument form of RegionMem
ber to create a RegionMemberFunction object as described in Section 9.1.

332 Essentials of Programming in Mathematica

In[45]:= PiMonteCarlo2n_, prec_: $MachinePrecision := Module, , pts, in, rm, pi,

 = Disk[{.5, .5}, .5];

 = Polygon[{{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}];

pts = RandomReal[{0, 1}, {n, 2}];

rm = RegionMember[];

in = Select[pts, rm[#] &];

pi = 4 NLengthinLength[pts], prec;

pi, Absπ - pi

Let’s parallelize. First, launch the kernels and distribute the definition of PiMonteCarlo2.

In[46]:= LaunchKernels[];

In[47]:= DistributeDefinitionsPiMonteCarlo2

Out[47]= {PiMonteCarlo2, , , pts, in}

Run twenty-four simulations and then average the results.

In[48]:= ParallelTablePiMonteCarlo2106, {24}

Out[48]= {{3.141060000000000, 0.000532653589793}, {3.141440000000000, 0.000152653589793},

{3.138152000000000, 0.003440653589793}, {3.143144000000000, 0.001551346410207},

{3.140664000000000, 0.000928653589793}, {3.142020000000000, 0.000427346410207},

{3.141864000000000, 0.000271346410207}, {3.143704000000000, 0.002111346410207},

{3.143156000000000, 0.001563346410207}, {3.139856000000000, 0.001736653589793},

{3.139976000000000, 0.001616653589793}, {3.141120000000000, 0.000472653589793},

{3.141684000000000, 0.000091346410207}, {3.140172000000000, 0.001420653589793},

{3.144920000000000, 0.003327346410207}, {3.138968000000000, 0.002624653589793},

{3.141128000000000, 0.000464653589793}, {3.139412000000000, 0.002180653589793},

{3.138632000000000, 0.002960653589793}, {3.142496000000000, 0.000903346410207},

{3.142932000000000, 0.001339346410207}, {3.138740000000000, 0.002852653589793},

{3.142288000000000, 0.000695346410207}, {3.141844000000000, 0.000251346410207}}

In[49]:= Mean[%]

Out[49]= {3.141223833333333, 0.001413221132483}

As an aside, you could try parallelizing the implementation with the Do loop by using

ParallelDo or Parallelize, but you will need to share the variable in across subkernels using

SetSharedVariable. The cost of communication between kernels to keep track of and incre-
ment this counter is quite expensive and hence any gains in running this function in parallel
will be erased.

In[50]:= CloseKernels[];

Only two changes are required to run this in parallel – distribute the definition for Mandelbrot

and change Table to ParallelTable. To increase the resolution the grid now has many more

divisions in each direction (n = 400).

6.

9.2 Parallel processing: exercises 333

In[51]:= Mandelbrot[c_] := LengthNestWhileList# ^2 + c &, 0, Abs[#] < 2 &, 1, 250

In[52]:= LaunchKernels[]

Out[52]= {KernelObject[13, local], KernelObject[14, local],

KernelObject[15, local], KernelObject[16, local]}

In[53]:= DistributeDefinitionsMandelbrot

Out[53]= {Mandelbrot}

In[54]:= data = With{n = 400}, ParallelTableMandelbrot[x + ⅈ y], y, -1.3, 1.3,
1

n
,

x, -2, 0.6,
1

n
;

In[55]:= ArrayPlotdata, ColorFunction → "CMYKColors"

Out[55]=

In[56]:= CloseKernels[];

Compiling: exercises9.3
Create a compiled function that computes the distance to the origin of a two-dimensional
point. Then compare it to some of the built-in functions such as Norm and EuclideanDistance
to compute the distances for a large set of points. If you have a C compiler installed on your
computer, use the Compile option CompilationTarget → "C" and compare the results.

1.

Modify the previous exercise under the assumption that complex numbers are given as input
to your compiled function.

2.

Padé approximants are rational functions that are often used to approximate functions whose
Taylor series does not converge. For example, the Taylor series for ln(1 + x) has poor conver-
gence on 0 ≤ x ≤ 1. Here is its third-order Padé approximant:

3.

In[1]:= PadeApproximant[Log[1 + x], {x, 0, 3}]

Out[1]=

x + x2 + 11 x3

60

1 + 3 x

2
+

3 x2

5
+

x3

20

Create a compiled function that computes the above expression for x a real number and then
evaluate a range of values from zero to two andmake a discrete plot of the differences between

334 Essentials of Programming in Mathematica

the approximated values and Log[1 + �].

Many other iteration functions can be used for the Julia set computation. Experiment with
some other functions such as c sin(z), c ⅇz, or Gaston Julia’s original function:

4.

z4 + z3 / (z - 1) + z2 / (z3 + 4 z2 + 5) + c.

For these functions, you will have to adjust the test to determine if a point is unbounded upon
iteration. Try (Abs[Im[#]] > 50 &).

Solutions9.3
First, create a test point with which to work.1.

In[1]:= pt = RandomReal[1, {2}]

Out[1]= {0.380097, 0.592515}

The following does not quite work because the default pattern is expected to be a flat
expression.

In[2]:= distReal = Compilep, _Real, SqrtFirst[p]2
+ Last[p]2

,

RuntimeAttributes → Listable, Parallelization → True

Compile::part :
Part speci�cation p〚1〛 cannot be compiled since the argument is not a tensor of suf�cient

rank. Evaluation will use the uncompiled function.

Compile::part :
Part speci�cation p〚-1〛 cannot be compiled since the argument is not a tensor of

suf�cient rank. Evaluation will use the uncompiled function.

Out[2]= CompiledFunction Argument count: 1

Argument types: {_Real}

Give a third argument to the pattern specification to deal with this: {p, _Real, 1}.

In[3]:= ArrayDepth[pt]

Out[3]= 1

In[4]:= distReal = Compilep, _Real, 1, SqrtFirst[p]2
+ Last[p]2

,

RuntimeAttributes → Listable, Parallelization → True

Out[4]= CompiledFunction Argument count: 1

Argument types: {{_Real, 1}}

In[5]:= distReal[pt]

Out[5]= 0.703951

9.3 Compiling: exercises 335

Check it against the built-in function:

In[6]:= Norm[pt]

Out[6]= 0.703951

Check that it threads properly over a list of points.

In[7]:= pts = RandomReal[1, {3, 2}]

Out[7]= {{0.73132, 0.692825}, {0.00172384, 0.878972}, {0.0588752, 0.367734}}

In[8]:= distReal[pts]

Out[8]= {1.00739, 0.878974, 0.372417}

Norm does not have the Listable attribute so it must be mapped over the list.

In[9]:= Map[Norm, pts]

Out[9]= {1.00739, 0.878974, 0.372417}

In[10]:= distReal[pts] == Map[Norm, pts]

Out[10]= True

Now scale up the size of the list of points and check efficiency.

In[11]:= pts = RandomReal1, 106, 2;

In[12]:= AbsoluteTimingdistReal[pts];

Out[12]= {0.050415, Null}

In[13]:= AbsoluteTiming[Map[Norm, pts];]

Out[13]= {0.087031, Null}

In[14]:= distReal[pts]⩵ Map[Norm, pts]

Out[14]= True

Compiling to C (assuming you have a C compiler installed), speeds things up even more.

In[15]:= distReal = Compilep, _Real, 1, SqrtFirst[p]2
+ Last[p]2

,

RuntimeAttributes → Listable, Parallelization → True, CompilationTarget → "C"

Compile::nogen : A library could not be generated from the compiled function.

Out[15]= CompiledFunction Argument count: 1

Argument types: {{_Real, 1}}

You can squeeze a little more speed out of these functions by using Part instead of First and

Last.

336 Essentials of Programming in Mathematica

In[16]:= distReal2 = Compilep, _Real, 1, Sqrtp[[1]]2
+ p[[2]]2

,

RuntimeAttributes → Listable, Parallelization → True, CompilationTarget → "C"

Compile::nogen : A library could not be generated from the compiled function.

Out[16]= CompiledFunction Argument count: 1

Argument types: {{_Real, 1}}

In[17]:= AbsoluteTimingdistReal2[pts];

Out[17]= {0.07329, Null}

As an aside, the mean distance to the origin for random points in the unit square approaches

the following, asymptotically.

In[18]:= NIntegrate x2 + y2 , {x, 0, 1}, {y, 0, 1}

Out[18]= 0.765196

In[19]:= Mean@distReal[pts]

Out[19]= 0.764885

We need to make just three slight modifications to the code from the previous exercise: remove

the rank specification; specify Complex as the type; extract the real and imaginary parts to do the

norm computation.

2.

In[20]:= distComplex = Compilez, _Complex, SqrtRe[z]2
+ Im[z]2

,

RuntimeAttributes → Listable, Parallelization → True

Out[20]= CompiledFunction Argument count: 1

Argument types: {_Complex}

In[21]:= pts = RandomComplex[1, {3}]

Out[21]= {0.707041 + 0. ⅈ, 0.0774789 + 0. ⅈ, 0.366904 + 0. ⅈ}

In[22]:= distComplex[pts]

Out[22]= {0.707041, 0.0774789, 0.366904}

In[23]:= distComplex[pts] == Map[Norm, pts]

Out[23]= True

Here is the Padé approximant for Log[1 + x] about zero, or order three.3.

9.3 Compiling: exercises 337

In[24]:= PadeApproximant[Log[1 + x], {x, 0, 3}]

Out[24]=

x + x2 + 11 x3

60

1 + 3 x

2
+

3 x2

5
+

x3

20

Create a compiled function that computes the above expression for x a real number and then

evaluates a range of values from 0 to 2 and makes a discrete plot of the differences between the

approximated values and Log[1 + x].

In[25]:= logC = Compilex, _Real,
x + x2 +

11 x3

60

1 + 3 x
2
+

3 x2

5
+

x3

20

Out[25]= CompiledFunction Argument count: 1

Argument types: {_Real}

In[26]:= DiscretePlotLog[1 + x] - logC[x], {x, 0, 2, .1}, PlotRange → All

Out[26]=

0.5 1.0 1.5 2.0

5. × 10-7

1. × 10-6

1.5 × 10-6

2. × 10-6

2.5 × 10-6

3. × 10-6

Here is a higher order approximant. Note the need to evaluate PadeApproximant before the

compilation.

In[27]:= logC = Compilex, _Real, EvaluatePadeApproximant[Log[1 + x], {x, 0, 5}]

Out[27]= CompiledFunction Argument count: 1

Argument types: {_Real}

338 Essentials of Programming in Mathematica

In[28]:= DiscretePlotLog[1 + x] - logC[x], {x, 0, 2, .1}, PlotRange → All

Out[28]=

0.5 1.0 1.5 2.0

5. × 10-7

1. × 10-6

1.5 × 10-6

2. × 10-6

2.5 × 10-6

3. × 10-6

Here is the computation for the iteration function c sin(z) using c = 1 +0.4 ⅈ.4.

In[29]:= cJulia2 = Compilez, _Complex, c, _Complex, Module{cnt = 1},

FixedPointcnt++;

c Sin[#] &, z, 100, SameTest → Abs[Im[#2]] > 50 &;

cnt, CompilationTarget → "C", RuntimeAttributes → Listable,

Parallelization → True, "RuntimeOptions" → "Speed"

Compile::nogen : A library could not be generated from the compiled function.

Out[29]= CompiledFunction Argument count: 2

Argument types: {_Complex, _Complex}

In[30]:= LaunchKernels[]

Out[30]= {KernelObject[17, local], KernelObject[18, local],

KernelObject[19, local], KernelObject[20, local]}

In[31]:= With{res = 100},

ArrayPlotParallelTable-cJulia2[x + y I, 1 + 0.4 I], y, -2 π, 2 π,
1

res
,

x, -2 π, 2 π,
1

res
, ColorFunction → ColorData"CMYKColors"

Out[31]=

In[32]:= CloseKernels[];

9.3 Compiling: exercises 339

340 Essentials of Programming in Mathematica

10
Packages

Working with packages: exercises10.3
The following set of exercises will walk you through the creation of a package Collatz, a

package of functions for performing various operations related to the Collatz problem that we

investigated earlier (Exercises 5 and 6 of Section 4.1, Exercise 11 of Section 5.3, and Exercise 10 of
Section 5.4). Recall that the Collatz function, for any integer n, returns 3 n + 1 for odd n, and n /2

for even n. The (as yet unproven) Collatz conjecture is the statement that, for any initial
positive integer n, the iterates of the Collatz function always reach the cycle 4, 2, 1,…. Start by

creating an auxiliary function collatz[�] that returns 3 n + 1 for n odd and n /2 for n even.

1.

Create the function CollatzSequence[�] that lists the iterates of the auxiliary function

collatz[�]. Here is some sample output of the CollatzSequence function:
a.

In[1]:= CollatzSequence[7]

Out[1]= {7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1}

Create a usage message for CollatzSequence and warning messages for each of the

following situations:
b.

noint: the argument to CollatzSequence is not a positive integer

argx: CollatzSequence was called with the wrong number of arguments.

Modify the definition of CollatzSequence that you created in part a. above so that it does

some error trapping and issues the appropriate warning message that you created in part b.
c.

Finally, put all the pieces together and write a package Collatz` that includes the appropri-
ate BeginPackage and Begin statements, usage messages, warning messages, and function

definitions. Make CollatzSequence a public function and collatz a private function. Put
your package in a directory where Mathematica can find it on its search path and then test it
to see that it returns correct output such as in the examples below.

d.

In[2]:= Quit[];

In[1]:= << EPM`Collatz`

In[2]:= ?CollatzSequence

CollatzSequence[�] computes the sequence of Collatz iterates starting with
initial value �. The sequence terminates as soon as it reaches the value 1.

Here are various cases in which CollatzSequence is given bad input:

In[3]:= CollatzSequence[-5]

CollatzSequence::notint : The argument, -5, to CollatzSequence must be a positive integer.

In[4]:= CollatzSequencea, b

CollatzSequence::notint : The argument, a, b, to CollatzSequence must be a positive integer.

And this computes the sequence for starting value 27:

In[5]:= CollatzSequence[27]

Out[5]= {27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364,

182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263,

790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377,

1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238,

1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077,

9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122,

61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1}

Take the StemPlot function developed in Section 6.2 and create a package around it. Include a

usage message and appropriate warning messages that are issued when bad input is supplied.
2.

Solutions10.3
Here are the definitions for the auxiliary collatz function.1.

In[1]:= collatzn_?EvenQ := n /2

In[2]:= collatzn_?OddQ := 3 n + 1

This is essentially the definition given in the solution to Exercise 5 from Section 6.2.a.

In[3]:= CollatzSequence[n_] := NestWhileListcollatz, n, # ≠ 1 &

In[4]:= CollatzSequence[7]

Out[4]= {7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1}

First we write the usage message for CollatzSequence, our public function. Notice that we

write no usage message for the private collatz function.
b.

342 Essentials of Programming in Mathematica

In[5]:= CollatzSequence::usage =

"CollatzSequence[n] computes the sequence of Collatz iterates

starting with initial value n. The sequence terminates as soon

as it reaches the value 1.";

Here is the warning message that will be issued whenever CollatzSequence is passed an

argument that is not a positive integer.

In[6]:= CollatzSequence::notint =

"First argument, `1`, to CollatzSequence must be a positive integer.";

Here is the modified definition which now issues the warning message created above

whenever the argument n is not a positive integer.
c.

In[7]:= CollatzSequence[n_] := IfIntegerQ[n] && n ≥ 0, NestWhileListcollatz, n, # ≠ 1 &,

MessageCollatzSequence::notint, n

The following case covers the situation when CollatzSequence is passed two or more argu-
ments. Note that it uses the built-in argx message, which is issued whenever built-in functions

are passed the wrong number of arguments.

In[8]:= CollatzSequence[_, args__] /;

MessageCollatzSequence::argx, CollatzSequence, Length[{args}] + 1 :=

Null

The package begins by giving usage messages for every exported function. The functions to

be exported are mentioned here – before the subcontext Private` is entered – so that the

symbol CollatzSequence has context Collatz`. Notice that collatz is not mentioned

here and hence will not be accessible to the user of this package.

d.

In[9]:= Quit[]

In[1]:= BeginPackage"EPM`Collatz`";

In[2]:= CollatzSequence::usage =

"CollatzSequence[n] computes the sequence of Collatz iterates

starting with initial value n. The sequence terminates as soon

as it reaches the value 1.";

In[3]:= CollatzSequence::notint =

"First argument, `1`, to CollatzSequence must be a positive integer.";

A new context EPM`Collatz`Private` is then begun within EPM`Collatz. All the definitions

of this package are given within this new context. The context
EPM`Collatz`CollatzSequence is defined within the System` context. The context of
collatz, on the other hand, is EPM`Collatz`Private`.

In[4]:= Begin"`Private`";

In[5]:= collatzn_?EvenQ := n /2

In[6]:= collatzn_?OddQ := 3 n + 1

10.3 Working with packages: exercises 343

In[7]:= CollatzSequence[n_] := IfIntegerQ[n] && n ≥ 0, NestWhileListcollatz, n, # ≠ 1 &,

MessageCollatzSequence::notint, n

In[8]:= CollatzSequence[_, args__] /;

MessageCollatzSequence::argx, CollatzSequence, Length[{args}] + 1 :=

Null

In[9]:= End[];

In[10]:= EndPackage[]

After the End[] and EndPackage[] functions are evaluated, $Context and $ContextPath

revert to whatever they were before, except that EPM`Collatz` is added to $ContextPath.
Users can refer to CollatzSequence using its short name, but they can only refer to the auxil-
iary function collatz by its full name. The intent is to discourage clients from using collatz at
all, and doing so should definitely be avoided, since the author of the package may change or
remove auxiliary definitions at a later time.

Here is the code for the StemPlots package.2.

In[11]:= BeginPackage"EPM`StemPlots`"

Out[11]= EPM`StemPlots`

In[12]:= StemPlot::usage =

"StemPlot[����] returns a stem plot of the discrete data, ����.";

In[13]:= StemPlot::badarg = "The first argument to StemPlot must be a list of numbers.";

In[14]:= OptionsStemPlot = OptionsListPlot;

In[15]:= Begin"`Private`"

Out[15]= EPM`StemPlots`Private`

In[16]:= StemPlotlis_, opts : OptionsPattern[] :=

IfMatchQlis, __?NumericQ,

ListPlotlis, opts, Filling → Axis,

MessageStemPlot::badarg

In[17]:= End[]

Out[17]= EPM`StemPlots`Private`

In[18]:= EndPackage[]

After saving in an appropriate location, this loads the package:

In[19]:= << EPM`StemPlots`

Check the usage message:

344 Essentials of Programming in Mathematica

In[20]:= ?StemPlot

StemPlot[����] returns a stem plot of the discrete data, ����.

And try some sample input:

In[21]:= data = RandomInteger[{-5, 10}, 12];

StemPlotdata

Out[22]=

2 4 6 8 10 12

-4

-2

2

4

6

8

In[23]:= StemPlotdata,

PlotStyle → DirectivePointSizeMedium, FillingStyle → Red

Out[23]=

2 4 6 8 10 12

-4

-2

2

4

6

8

10.3 Working with packages: exercises 345

	Essentials of Programming in Mathematica: solutions to exercises
	1 Programming in Mathematica
	1.2 Getting started
	1.2 Solutions

	2 The Mathematica language
	2.1 Expressions
	2.1 Solutions

	2.2 Numbers
	2.2 Solutions

	2.3 Definitions
	2.3 Solutions

	2.4 Predicates and Boolean operations
	2.4 Solutions

	2.5 Attributes
	2.5 Solutions

	3 Lists and associations
	3.1 Creating and displaying lists
	3.1 Solutions

	3.2 Testing and measuring lists
	3.2 Solutions

	3.3 Operations on lists
	3.3 Solutions

	3.4 Associations
	3.4 Solutions

	4 Patterns and rules
	4.1 Patterns
	4.1 Solutions

	4.2 Transformation rules
	4.2 Solutions

	4.3 Examples
	4.3 Solutions

	5 Functions
	5.1 Functions for manipulating expressions
	5.1 Solutions

	5.2 Iterating functions
	5.2 Solutions

	5.3 Recursive functions
	5.3 Solutions

	5.4 Loops and flow control
	5.4 Solutions

	5.5 Pure functions
	5.5 Solutions

	5.6 Examples
	5.6 Solutions

	6 Programs
	6.1 Scoping constructs
	6.1 Solutions

	6.2 Options and messages
	6.2 Solutions

	6.3 Examples
	6.3 Solutions

	7 Strings
	7.1 Structure and syntax
	7.1 Solutions

	7.2 Operations on strings
	7.2 Solutions

	7.3 String patterns
	7.3 Solutions

	7.4 Regular expressions
	7.4 Solutions

	7.5 Examples
	7.5 Solutions

	8 Graphics and visualization
	8.1 The graphics language
	8.1 Solutions

	8.2 Dynamic graphics
	8.2 Solutions

	8.3 Efficient structures
	8.3 Solutions

	8.4 Examples
	8.4 Solutions

	9 Program optimization
	9.1 Efficient programs
	9.1 Solutions

	9.2 Parallel processing
	9.2 Solutions

	9.3 Compiling
	9.3 Solutions

	10 Packages
	10.3 Working with packages
	10.3 Solutions

