De Jong and Heller GLMs for Insurance Data Chapter 2 Solutions

Chapter 2: Response distributions

2.1 Using the notation of Section 2.2, show that the mean and variance of a Bernoulli random
variable are m and w(1 —7) respectively. More generally show that the mean and variance
of binomial random variable are nm and nw(1 — ), respectively.

Bernoulli:
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Binomial:
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2.2 Show that the mean and variance of a x> random variable are v and 2v respectively.

The pdf of the x2 distribution is
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Using similar logic, we can show that E(y
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D) =v(v+2) and Var(y) = v(r+2) —v? = 2v.

2.3 The distribution of the number of failures y till the first success in independent Bernoulli
trials, with probability of success m at each trial, is the geometric:

Show that the mean and variance of the geometric distribution are E(y) =

(1 —m)/m2.

Var(y) =

E(y)

Var(y)
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