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Exercise |I.1 (a) As the mass and mass accretion rate are the same in both
cases, the ratio of the accretion luminosities is simply the inverse ratio of the radii:

_1 Re
Lacc, Sun RWD

Lacc, WD — 100

The luminosity L., wp = 100 L much exceeds the white dwarf’s intrinsic
luminosity except for the very youngest, hottest white dwarfs.

(b) For the neutron star the accretion luminosity is also larger than the Sun’s by a
factor

8
Mys/Bns _ 14 696 x10°m o
1Mo /Re 1 20 x 103 m

So the accretion luminosity is a few times 10* L; this is not much below the
luminosity of the brightest, most massive stars.

Exercise 1.2 The accretion efficiency 7, is defined by Ly = nach 2.

Equating this to Equation 1.3 and solving for 7, gives

GM
Tace = ﬁ
For a neutron star with mass 1 My, = 1.99 x 10%° kg and radius 10km = 10*m,
this is
6.673 x 10" Nm? kg2 x 1.99 x 10%0kg
Nace = ~ 0.15.

1 x10%m x (2.998 x 108 ms—1)2

Exercise 1.3 (a) The mass defect Am = 4.40 x 10~ kg involved in the
fusion of four protons into one helium nucleus translates into an energy gain of
AE = Amc? per four protons. The energy input is the mass energy of the four
protons, 4mp02, so the efficiency = gain/input is

Amc? 4.40 x 10~* kg

= = ~ 0.0066.
dmpc? 4 x 1.673 x 10~2"kg

H

(b) From part (a), the efficiency of hydrogen burning, the most common nuclear
fusion reaction in the Universe, is only g =~ 0.7%. In other words, if one
kilogram of hydrogen accretes onto a neutron star, it liberates about 20 times more
energy (in the form of heat and radiation, say) than if this kilogram of hydrogen
undergoes nuclear fusion into helium.

There is no other process in the Universe that could persistently sustain the
conversion of such a large fraction of mass energy (= 10%) into energy for a
macroscopic amount of mass. There are processes with 100% efficiency such as
the annihilation of electron—positron pairs (see Chapters 7 and 8), but these
involve antimatter, which is not abundant in the known Universe.

Exercise 1.4 The accretion disc luminosity is

(Eqn 1.8)
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where R is the inner disc radius. Equating this with Ly, = Uach ¢ and solving
for nyec gives

1GM
e = Re?
We set R = 3Rg and use Equation 1.11 to obtain
GM GM 1
Tace = = = — =~ 0.083 = 8.3%.

6Rgc?  12GMc?/c? 12

Exercise 1.5 On the right-hand side, the first term is the gravitational potential
of the primary star. The denominator is the magnitude of the vector pointing from
the primary to the point of reference.

The second term is the corresponding gravitational potential of the secondary.

The third term describes the effect of the centrifugal force. The quantity

(w X (r —r¢))? is the scalar product of the vector w X (r — 7.) with itself. The
vector w X (r — r) has the magnitude wr |, where r | is the distance of the point
of reference from the rotational axis. The vector w is parallel to the rotational axis
and has magnitude w, the orbital angular speed.

Exercise 1.6 If the two stars with masses M and M5 are at x = 0 and x = a,
respectively, and the centre of mass is at z = z, then Mz, = Ma(a — z.), so
that (M, + Ms)x. = Msa, and hence

My My
M M T M
where M = M; + Mj is the total binary mass. This is also the distance a; of the
primary from the centre of mass. The distance of the secondary from the centre of
mass is ay = a — x. = (M1 /M)a.

T¢ a,

Equation 1.16 describing the Roche potential contains the following vectors:
r = (z,0,0),r; = (0,0,0), r2 = (a,0,0), r. = (2,0,0) and w = (0,0,w). So
we have |r — r| =z, |r — 2] = a — z, and

(@ X (1 —10))? = w2(z — 20)? = ? <$ - ]\J\?a)Q.

Therefore, for 0 < x < a, the Roche potential as a function of the coordinate x is

Now in the z-direction, V&r = d®g(x)/dz, so
d®g(7) +GM1 G M, o ( M2> .

= T —a—-

dz x? (a —x) M

The Roche potential at the centre of mass, i.e. at © = x, = aMy/M, is (note that
a—x.=aM/M)

GMM  GMyM GM (M3 — M?
Or(z.) = - -0= .
Mga Mla a M1M2
The gradient at z = z is
dogr(z) GMiM?  GMyM? - GM? My My
dr MZa? M3a? e \ M2 M}E)
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So the force F' = —m d®y(z)/dx has magnitude

GmM 2 M 1 M. 2
a? M2 M}
and it is in the —x-direction for My > My (4x-direction for My < M>).

F =

Exercise 1.7 We have 1pc = 3.086 x 10'®m and 1 AU = 1.496 x 10! m, so
1pc = 2.063 x 105 AU. Therefore | = 2 x 10> AU ~ 10~2 pc.

Exercise 1.8 The size of the emitting region is
7 ~ 30 light-days = 30 x 86400 x 3 x 10°m ~ 10'° m.
From Equation 1.19, the mass is
(W)r (6 x10%)2m?s72 x 101°m

M ~ - =54 x 1038 ke ~ 3 x 108 M.
G 6.673x10-11 Nm2kg 2 & ©

Exercise 1.9 (a) We recall that 1 My yr—! = 6.31 x 10?2kgs™!
(Equation 1.4). From Equation 1.21 we find

3x6.673x 107" Nm?kg 2 0.6 x 1.99 x 103%kg x 1072 x 6.31 x 10*2kgs~*
T 8T x 5.671 x 1078 Tm 2K 451 (8.7 x 106 m)3 ’

which gives Theax ~ 3.2 x 10 K.

(2 X Tpear)*

(b) For the neutron star we have instead

T 05 (3 X 6.673 x 107" Nm?kg ™2 x 1.4 x 1.99 x 103 kg x 1073 x 6.31 x 10?2 kgs_1>1/4
peak == 0.

87 x 5.671 x 1078 Tm 2K *s~1 x (104 m)3
or Theak =~ 1.1 x 107 K.
Exercise 1.10  (a) Using Equations 1.21 and 1.11, we find

_ 3GMM 3GMM M
T 810(3Rs)?  8mo x 33 x (2GM/c?)3 576 1G2o M?

- S xMeyrt [ M -2 M
© 576 G20 M2 \ Mg Mg yr—1

_ (2.998 x 108 m)® x 6.31 x 1022kgs™*
© 5767 x (6.673 x 1071 Nm? kg 2)2 x 5.671 x 108 Tm 2K ~*s~1 x (1.99 x 1030 kg)2

(M
Mg Moyr=t |
This gives

_ . 1/4
M\ 2 M
Toeak ~ 1.1 x 10°K [ — — . 1.17
peck <10 (MQ) (Mer—1> (17

Note that the actual peak temperature is slightly different from this value because
general relativistic corrections have to be applied.
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(b) For My =10Mg and M =107 Mg yr~!, Equation 1.17 becomes
Theak = 1.1 x 109K x 10774 x 10712 = 6 x 10°K.

(c) For My = 10" M, and M=1 Mg yr~!, Equation 1.17 becomes

Theak ~ 1.1 x 10°K x 10772 = 3 x 10°K.
Exercise 1.1l  Wehave 1eV = 1.602 x 107 Jand T ~ Ey,/k. So for
Epn = 1€V the temperature is

T leV 0 1.602x 107177
T 1381 x 102 JK 1 1.381 x 10-23JK !

which is of order 104 K.

=1.160 x 10*K,

Exercise 1.12 (a) We make use of Equation 1.25 (rather than the rule of
thumb) to work out the typical photon energy:

Eon 1.381 x 10723 JK ! P

— =2.70 T=23x10""*K T.

eV 1602 x10-97 8 8
For T = 3.2 x 10* K (white dwarf) this gives E,, = 7.4¢V, while for
T = 1.1 x 107 K (neutron star) we obtain Eyn = 2.5keV (these temperatures
were found in Exercise 1.9).

Also, for T = 6 x 10° K (stellar mass black hole) this gives Ep, = 1.4keV, while
for T = 3 x 10° K (AGN) we obtain Eyn = 69¢€V (these temperatures were found
in Exercise 1.10).

(b) Photon energy and wavelength \ are related as

c
Eyn =h—.
ph Y
With Equation 1.25 this gives
he 6.626 x 10731 Js x 2.998 x 108ms™t 1 5 1

= = X — =5.3275 x 107" mK x —

2.7kT 2.7 x 1.381 x 10~ 8 JK L T T
For T = 3.2 x 10*K (white dwarf) this gives A = 1.7 x 10~" m. For
T = 1.1 x 107 K (neutron star) we obtain A = 4.8 x 107'm = 0.48 nm.
These wavelengths are much shorter than the wavelengths of visible light
(~ 400-800 nm). The first is in the classical X-ray range, the second in the
ultraviolet range.

A

For the accreting stellar mass black hole we find A = 0.9 nm (soft X-rays), while
for the AGN we obtain A = 18 nm (near the ultraviolet/X-ray boundary).

Exercise 1.13  For hv > kT we have exp(hv/kT) > 1 and hence
exp(hv/kT) — 1 ~ exp(hv/kT), so that the Planck function becomes the Wien
tail (Equation 1.27).

For the case hv < kT we introduce the quantity x = hv/kT. As © < 1 we can
use the first-order expansion exp(x) ~ 1 + x to obtain for the denominator in
Equation 1.23 exp(hv/kT) — 1 ~ hv/kT. Hence

_ 2h? kT

sl 2,2
B,(T) ~ 2 X7 2kTv" /e,
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confirming Equation 1.28 for the Rayleigh—Jeans tail.

Exercise 2.1 The results are given in the following table.

q f(q) f(q) Af/fin%
Eggleton | Paczynski

0.5 | 0.3208 0.3203 0.14
1.0 | 0.3789 0.3667 32
2.0 | 0.4400 0.4036 8.3

The last column denotes the difference between the f values calculated according
to Equation 2.7 (column 2) and Equation 2.8 (column 3), divided by the value in
column 2, expressed in %.

Given that Eggleton’s approximation is accurate to within 1%, it is clear that
Paczynski’s relation is at most 4% off for ¢ < 1, and even for ¢ = 2 it is good to
within 9%.

Exercise 2.2 (a) We solve Kepler’s law for the period,
3 472
GM’
and multiply both the numerator and denominator on the right-hand side by
(Rp2/a). Hence

2 _
Porb_a

p2 _ a®4n? (Ry2/a)3 _ R%’Q 472 1
o " GM (Rpa/a)3 GM (Rpa/a)3®

Inserting Paczyriski’s approximation for Ry, 2/a gives

P2 o Ri4m® M _ Ar?  Ri,
o GM 0.4623M,  0.4623G My
Taking the square root and noting that
_ My
P~ r/3) x RZ,

(the stellar radius R9 equals the Roche-lobe radius Ry ), we have

9 1/2 ~1/2 1/2
Porb ~ in 41? = il ﬁ_1/2'
0.4623 G 3 0.4623 G

So
Porb _ Porb _ 1 3m 1/2 > ﬁ % 103 kg m73 ~L/2
h  3600s  3600s \ 0.4623 x 6.673 x 10~11 Nm? kg2 103 kgm™3
and hence
Porb ﬁ 12
— 2105 ————= ,
h 103kgm

as required.

(b) We used Paczynski’s approximation for Ry, 2/a, so Equation 2.9 is valid only
in the range of mass ratios ¢ where this approximation is good, i.e. for ¢ < 0.8.
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Exercise 2.3 In the previous exercise we obtained the expression
o 0.4623 G M,
with Ry instead of Ry, 2, so

P 2 Rg/Z
orb = 3/2 (11/2 5 1/2
0.4623/2 G1/ M2/
or
Poo 2Ry LA A A
h ~ 3600s x 0.4623/2 (G Mg)Y/2 \Rg Mg, '
With the dimensionless constant
27rRé/2
ko ~ 8.856

36005 x 0.4623/2 (G M)1/2

this becomes

Porka Ry 3/2 My —1/2
h ~ “\Ro Mo ‘

Taking logs in this equation reproduces Equation 2.10, as log;q k2 = 0.9472.

Exercise 2.4 Consider two point masses M and M5 on circular orbits around
the common centre of mass, with separation a. The masses M7 and M> execute
circular orbits with radii a; and ag, respectively, and angular speed w about the
common centre of mass. The total orbital angular momentum in the system

is then J = Mla%w + Mga%w. From a = a1 4+ a9 and a1 My = as My we

find a; = (My/M)a and ay = (M;/M)a. Using Kepler’s law we have

w? =4x%/P? = GM /a3, so

My\? ,(GM)'/? Mi\? L(GM)Y2 My My(Ga)'/?
JZMl(M> e U T ™ S VT R

Ga 1/2
= M1M2 (M) )

which reproduces Equation 2.17.

Exercise 2.5 Paczynski’s approximation for the Roche-lobe radius is

L\ /3
Ry, o ~ 0.462 (ﬁ) a. (Eqn 2.8)

Taking the logarithmic derivative gives
R 1My 1M & 1My
Lz -2 1M 6 M 4 (2.18)
RLo 3My 3M a 3My a

as M = 0 for conservative mass transfer. To find the logarithmic derivative of a,
we solve the expression for the orbital angular momentum (Equation 2.17) for a,
J2M
0= ——5—3,
GM2M2
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and take its logarithmic derivative:

a J M M M, J My My
) LT ) Ik ) i ) LAY T 2.19
P AV M; My g M; My (2.19)

(M =0, My = —DM>). Substituting from Equation 2.19 into Equation 2.18 gives

R My My My _J
B2 (1o2) 2 4922 4 9%
Ry, 2 M,y My M, J
Collecting terms gives
—2 — 92 4 (29— 3) =2,
RL,Q J + ( q 3) M2

Comparing this with Equation 2.18 shows that (1, = 2¢ — 5/3.

Exercise 2.6 The table below gives a representative radius of the 5 M, star
at the beginning of the corresponding mass transfer case. The orbital period
Py was calculated using Equation 2.10. The mass ratio is just larger than 1,
so it is still acceptable to use Paczyfiski’s approximation (Equation 2.8), and
Equation 2.10 does indeed use this approximation.

Case | logyg R/Re | R/Re | Pow

A 0.5 3 22.3h
B 1.0 10 5.2d
C 2.0 100 165d

If both stars formed at the same time, and this is the first time the system
experiences mass transfer, then a mass ratio ¢ < 1 is unphysical because the more
massive binary component evolves faster and fills its Roche lobe first. So at

the start of a case A, B or C mass transfer, the mass ratio is > 1. (There are
exceptions, however, such as systems where very strong wind losses have reduced
the mass of the primary so much that, at the point of first contact with its Roche
lobe, it is less massive than the less evolved secondary star.)

Exercise 2.7 For the Sun we have
6.673 x 107" Nm? kg2 x (1.99 x 103 kg)?
6.96 x 103m x 3.83 x 1026 Js~1
With R o« M and L o« M*, we also have
M? M?

R S VIVE

=9.91 x 10Ms=3.1 x10"yr.

kg =

x M3,
SO
Mo\ ~°
tknp ~ 3.1 x107yr [ — | .
KH X yr (M@ )
Therefore the Kelvin—Helmholtz time for a 0.5 M main-sequence star is about

2.5 x 10 yr, while for a 5 M, main-sequence star it is about 2.5 x 10° yr.

Exercise 2.8 The mass transfer rate is
% _ 2jsys/J - (RQ/R2)nuc

Moy ¢—<L
258
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By assumption we have { — (. =0 — (L ~ 1, jsys/J =0, (RQ/RQ) = 1/tw, and
therefore —MQ = My /ty. The thermal time ¢y, is just the Kelvin—Helmholtz time,

Mo\ 3
tcn ~ 3.1 x 107 yr [ —=
KH X yr (MQ)

(see Exercise 2.7). So, Equation 2.22 becomes
. Mo\
— My(case B) ~ 3 x 1078 Mg yr_1 X (—) . (2.20)
Mg
(Hence the case B transfer rate is 2 x 10'9/3.1 x 107 ~ 6 x 10? times larger than

the case A rate; see Worked Example 2.2.) For My = 0.5 My, 1 My, 5 Mg, this is
2x1072,3 x 1078, 2 x 1075 M, yr—!, respectively.

Exercise 2.9 For conservative mass transfer and ( = 1, Equation 2.22 becomes
My —Jar/J
Mo 4/3 — Mo /My

According to Equation 2.11 we also have My /Mg ~ P,4/8.8h = 0.23. Hence
Equation 2.25 becomes

jGR o -8 —1 ]. X 023 —8/3 o —~10 1
7 = —1.27x 10 yr X Tgl/:; X 2 = —4.29 x 10 yr -,

so putting this value into Equation 2.22

~My 429 x 1070y !
023Mg  4/3-0.23/1

This gives — Mo = 8.9 x 107 Mg yr— L,

Exercise 2.10 Assuming conservative mass transfer, the stability criterion
requires ¢ S 1, or My < M; = 1.4Mg. The longest orbital period is

realized for the most massive donor that still allows stable mass transfer, so

Pop >~ 8.8h x 1.4 = 12h (Equation 2.11). A note of caution: the actual radius of
a 1.4 M main-sequence star can be up to a factor of 2 larger than what was
assumed in Equation 2.11, so the period could be up to 2!> ~ 3 times longer than
the value that we have just calculated.

Exercise 2.11 The orbital speed v of the companion is given by Equation 2.1,
but applied to the star with mass M instead of Ms. As by assumption My < M7,
we can set My /(M + M) ~ 1, so

( GM, ) 1/2
v = 5
a
where « is the orbital separation of the circular pre-supernova orbit. The escape
speed of the companion from the binary is

1/2
Vesc = (2GM1> . (Eqn 1.10)

a

Immediately after a prompt supernova explosion, the orbital speed of the
companion is still v as calculated above, but the escape speed has changed. The
binary will remain bound if v is smaller than the new escape speed, i.e.

<%>1/2 § <2G(M1 - AM))V{

a a
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Here AM is the mass ejected in the supernova explosion, so the primary has
a post-supernova mass M, — AM. Therefore M; < 2(M; — AM) or
AM < My/2.

Exercise 3.1 A rather famous differentially rotating body is the Sun. This can
be seen when groups of sunspots move across the disc of the Sun. Sunspots at
higher latitudes lag behind sunspots that are closer to the equatorial region. Hence
the angular velocity in equatorial regions is larger than in polar regions.

An indirect example of differential rotation can be seen when sprinters in separate
lanes follow the curve of a stadium (e.g. in a 400 m heat). Even if the athletes in
the inner and outer lanes run at the same speed, if they start at the same point, the
one in the inner lane will be ahead of the one in the outer lane as the inner lane is
closer to the centre of the circle that defines the bend. The angular velocity of the
inner sprinter is larger than that of the outer sprinter, so the group of sprinters
‘rotates’ differentially. (Of course, to compensate for this, the lanes are staggered
so that the sprinter in the inner lane starts further back than the one in the outer
lane.)

Exercise 3.2 The product rule gives

d(rw) ow or ow
=r—tw.—= ,
or or or or
and this is non-zero (i.e. equal to w) even in the absence of shear. But viscous
stresses exist only in the presence of shearing motion. If w = constant, there is no
shear, hence no stress, so we must have os = 0 in this case. Therefore only the
first term, 7 Ow /Or, can contribute to the shear stress os.

Exercise 3.3 Equation 3.8 reads
0
Glis = 277 Wyis 212 —w.
or
The unit of the right-hand side is
mx (mxms™!) x (kgm™2) x m? x (s"'m™1).
Collecting terms, this is m®> 3 s~ 2 kg = m? s~ 2 kg.
With torque = force x distance, the corresponding unit is

N xm=(kgms?) x m=kgm?s™ 2

as above.

Exercise 3.4 In the case of Keplerian motion the angular speed is
(Equation 3.3)

GM 1/2

So the radius derivative is

& _ Gy (—30)

Inserting this into Equation 3.11 gives
D(r) = Sinis Yr?GM (—%)2 o,
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Hence
GM
D(T) = %Vvis Er—3’
as required.

Exercise 3.5 Equation 3.17 describes the conservation of angular momentum

in the disc:
0 0 1 0G,;
Yn 2 v TZ 2 _ - v1s.
rat( rw)—i—ar(rv rew) 5 Br

The two terms on the left-hand side describe the angular momentum balance
when 0G\is/0r = 0, i.e. in the absence of the so-called source term on the
right-hand side. In this case the angular momentum J of a disc ring between
radii 7 and r + Ar changes only if there is an imbalance between the angular
momentum that flows into the ring via the mass that flows into the ring, and the
angular momentum leaving the ring via the mass flowing out of the ring. We find
the flow rate of angular momentum at radius r by multiplying the mass flow rate
dM /dt with the specific angular momentum that this mass has. The specific
angular momentum is just 2w, and dM /dt is given by Equation 3.15 as

M(r,t) = —2mrv, .
So the local flow rate of angular momentum is just

J= —27TTUTE’I"2(4).

To work out the net change A.J in the angular momentum J of the disc ring due
to this mass flow in a small time interval At, we take the difference between the
local flow rates at » + Ar and r, and multiply it by At. This can be written as

AJ = [J'(r + Ar,t) — J(r, t)} « At~ ar 2 ar

or
Hence
AJ o.J B I(2mrv,.Yriw)
E_ATE__AT—ar .
This becomes
AJ O(v,r¥riw)

On the other hand, the total angular momentum .J in the disc ring is

J = mass in the ring x specific angular momentum = 277 Ar x ¥ x r2w.

Hence the time derivative of J can be written as

‘Z—‘Z = 271 Ar %(zr%). (3.22)
Note that r and Ar are not affected by the partial derivative with respect to t, as
by definition this has to be taken for fixed r. For small time intervals A¢, the
expression A.J/At in Equation 3.21 becomes the derivative 0.J/0t. Equating the
right-hand side of Equation 3.22 with the right-hand side of Equation 3.21, and
dividing by 27 Ar, finally reproduces the first two terms in Equation 3.17.
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Exercise 3.6 Equation 3.27 describes the luminosity of a disc ring with inner
radius 1 and outer radius r5:

L) < SGMAL [ L1 2 (RPN L2 (R
1,%2) = 2 8l 3\ T 3\ r '

We obtain the luminosity of the whole disc if we set r; equal to the radius of the
accreting object (or inner rim of the accretion disc, if this is different), and r to
infinity. This is appropriate for an idealized, infinitely extended disc. A real disc
in, for example, a binary system is limited by the size of the Roche lobe of the
accreting star. But even in that case the choice ro = oo is usually a rather good
approximation, as 72 > r1. So, with 71 = R and ro = oo we have

3GMM | 1 2] 1 9/ R\ /2
et -2 (1 ) L3 (2))

Clearly the second term in curly brackets is identical to 0 (division by co). So
3GMM [ 1  GMM
2 3R, 2Ry

Ldisc =

Exercise 3.7 (a) Introducing T into Equation 3.28 gives

3 1/2
) =7t (2) - ()

()]

or

r

- (1)

(b) Hence with y = (Tp/T.)* and 2 = /Ry we have
y(z) =231 — 27 V2) = 273 — 2735,

(c) The maximum value of y is reached at a point xy where dy/dz = 0. As

d
d—z = 3274 — (=3.5)2745,

we have at the maximum

0= —3z;,* — (=3.5)z*°.
Solving for z, this becomes

324 = 350545 or 2/ =35/3,
hence z¢ = (7/6).

(d) The function (Te/T%)? attains a maximum value at the same radius as Ty
itself does. This radius is rg = Rqxo. Hence

7\2 _ 49
ro = Ry X (g) = %Rh
as requested.
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(e) Inserting the value for x( in the expression for y gives

o) = a® — = (8)° = (97 = ()7 (1= 9) = (1)° x &

The maximum temperature Ty = y(20)"/*T is therefore

(6/7)%>

T, ~ 0.4881T.

Exercise 3.8 The prime observational quantity is the energy flux through

the surface area (Equation 3.11). In a steady-state disc this is independent of
viscosity (Equation 3.24) because in a steady state, the viscosity must adjust itself
to obey the equilibrium condition for the surface density and mass accretion

rate expressed in Equation 3.23. So no matter what mechanism is causing the
viscosity, the value of 1y 2 is always the same.

As a further consequence the surface temperature of a steady-state disc, which is
in principle accessible via the emitted spectrum, is also independent of the
viscosity (Equation 3.28).

Exercise 3.9 We have

H
28 (Eqn 3.35)
T VK

so we need to estimate the sound speed and the Keplerian speed at r,. From
Equation 3.32 with 7' = 10* K we have ¢ ~ 10* ms~!, while from Equation 1.5
we obtain

GM 1/2
(%)
T

/6673 x 1071 Nm2kg 2 x 1.99 x 1030kg | "/*
N 0.5 X 6.96 x 108 m
=6.18 x 10°ms~ L.

So we have

H 104
r  6.18 x 105
s0 0 ~ 0.92°. The disc is indeed rather flat!

tan§ = =0.016, (3.23)

Exercise 4.1 From Equations 4.7 and 3.6 we find

2 2 3
c; c; G

wyis GM /13 - acsHGM /3 aHGM'

Noting Equation 3.35, we also have H/r = ¢s/vk, hence

cr? B cer? UK r2 <GM)1/2 1 < r3 )1/2_ 11 1

tth ~

e o = ki G = (- =t
b= WGMH T aGM csc aGM r GM dyns

T QWK o«
as required. We have used the identity for the Keplerian angular speed,
wi = (GM/r3)1/2,

Exercise 4.2 As v,;; = constant, we can move it to the front, and Equation 4.1

becomes
9% Bwis O [ 120 & 1y2
o r 8T{T 8r(zr )
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Using the product rule on the inner derivative gives

82 Sl/vis a 1/2 a 1/2 82 1/2 3VViS 8 1/2 1 82 1/2
e =z o e = s & 5 e :
ot ro or {T or (r) + ar roor | 2rt/2 N ar

Factoring in /2 gives
00X 3y 0 [X 0%
- = — =+ —=7T,.
ot r orl|2 Or

Using the sum rule, this becomes

0% _dw [0 (D), 0 (03
o r or\ 2 ar\or ) [

Now using the product rule again gives

82_3uvis{182 >’% a_z}_3uvis{§az 822}

- 2o Tar T ar 2or oz
Thus we finally obtain Equation 4.12:

08 _ w08 05

ot 2r Or

r

Exercise 4.3 The viscous time tyjs = rg /Wis 18 an appropriate estimate for the
time it takes the torus at the circularization radius to spread into a disc-like
structure. With 145 = aHcs and H ~ ¢s/wk (Equation 3.34) we obtain

2
s

(GM/r3)'/?

C,
Wyis = &

SO

r2 GMr. 1/2
tvis:@X(GM/Tg)l/Zzi( ) .

2
S QCg

Then using Equation 3.32 for the sound speed, we have

(6.673 x 107" Nm? kg2 x 0.6 x 1.99 x 10%¥ kg x 0.2 x 6.96 x 10 m)"/*
0.3 x (104ms—1)?

tvis =~

=3.5x 10°%s.
This is about 40 days, i.e. a little over a month.

Exercise 4.4 A stability analysis studies the reaction of a physical system

(e.g. an accretion disc) to perturbations. Initially the system is assumed to be in
equilibrium. Then a perturbation is applied to the system, and the reaction of the
system is calculated. The stability analysis is said to be linear if the initial
perturbations are sufficiently small, so that the resulting change of other quantities
can be described by the first (linear) term in the corresponding Taylor expansion
with respect to the perturbing quantity. The stability analysis is local if the
reaction of the system is studied only in the immediate vicinity of a given point in
the system. Therefore the reaction at this point is assumed to be determined by its
immediate vicinity only, not by events far away from this point.
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Exercise 4.5 With Kramers’ opacity kg o p7 %, the denominator of
Equation 3.41 scales as

kppH o p*T3°H,
so that with p = 3 /H,

1
krpH o E2ﬁT_3‘5H x Y2H T30 o 22774,

where for the last step we have used H o T"/2 (Equation 3.36). With this,

4
Xy
as required.

F(H) o« T892,

Exercise 4.6 (a) For r > R, the temperature profile of a steady-state disc is

3GM M
L1 = "oy

(with M, as the mass of the cengral accretor, the white dwarf). Setting » = rp,
Test(rp) = Ty and solving for M gives

(Eqn 3.28)

SWUTﬁr%
3GM;
To determine rp we note that

M =

M 1/3
Rr1~0462 ———— Eqgn 2.8
L1 (M1 —|—M2) a (Eqn 2.8)

can be used here as 1/q = M; /My ~ 1 (but note that in general, short-period CVs
would have 1/¢ > 1 in which case Equation 2.8 is not a good approximation).
Therefore

M
18 = (0.5RL1)® ~ 0.231° Mla?’.

With Kepler’s law a® = G(M; + Mg)Pozrb /472, this becomes
GM;
4mr? Fom

Inserting into the above expression for M, we have

0.231% x 870 x TAGM;
3 X 47T2GM1

rd ~0.231°

M: POZI'b

or

0.231% x 20 x T} P2

3T orb*
This is a lower limit for the mass transfer rate if the disc is meant to be stable.
Note that it scales as M « P2

orb*

M =

(b) We have
M 02313 x2x5671 x1078Im 2K %571 x (6 x 10> K)* x (36008)% [ Py \ >
Mgyr—1 3w % 6.31 x 1022kgs ™! h
P 2
—4x 107 (22
< ( )
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so M ~ 4 x 10710 Mg yr~—! at Py, = 3h. In nova-like systems with periods
longer than 3 h, the observationally estimated mass accretion rate is a few times
1072 Mg yr—!, while for shorter periods the rate is thought to be as low as a few
times 10~ 1! M, yr~! — and the vast majority of short-period cataclysmic
variables (P < 2h) are indeed dwarf novae.

Exercise 5.1 Cataclysmic variables are ideal laboratories for the study of
accretion phenomena for the following reasons:

e The mass donor is faint and does not swamp the optical and ultraviolet radiation
emitted by the accretion flow itself.

e The irradiation of the accretion disc by the hot accreting white dwarf is negligible.

e The size of the orbit is compact enough so that orbital changes can be observed
within hours — a convenient timescale for human observers.

e Eclipses and radial velocity studies allow one to map the accretion flow.

e Major brightness variations of the disc due to thermal and viscous evolution occur
on a convenient timescale of weeks to months.

Exercise 5.2  (a) The accretion luminosity is given by Equation 1.3:

GMM
Lyce = R
We set M = 1079 Mg yr—', M = 1 Mg and R = 8.7 x 10 m. Then

Lace = (6.673 x 107" Nm%kg2) x (1.99 x 103 kg) x 107 x 1.99 x 103" kg
x (365.25 x 24 x 3600s) 1 /(8.7 x 10°m)
=9.6 x 10°Nms~!

~10%7)s7 L.

The solar luminosity is L, /2 4 x 1026 Js~!. Hence, using the definition for
astronomical magnitudes, for the difference between the absolute magnitude Mcy
of the CV and the absolute magnitude Mgy, (not to be confused with the solar
mass!) we have

L
MCV - Msun - _2510g10 ( acc) .

Lo
Hence
1027
MCV —483=-25 loglo (m) s

which gives
Mcy = 4.83 — 2.5log((2.5) = 3.84.

Using the distance modulus (with zero extinction)
m = Mcv — 5+ 5logo(d/pc),

we find the apparent magnitude of the CV when it is located at a distance
d = 1000 pc:

m = 3.84 — 5 + 5log;,(1000) = 3.84 — 5 + 15.
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Hence m = 13.84.

(b) With a transfer rate M = 10~ M, yr !, this CV is one of the brighter

ones anyway, and still its apparent magnitude, at a distance of 1000 pc, is only
about 14. (Note: In reality a bolometric correction should also be applied as the
calculation here leads to the bolometric magnitude not the visual magnitude. This
correction of about 2 magnitudes would make the CV even fainter than calculated
in the V band.) This CV would only just be observable with a 12-inch telescope.
Larger telescopes and deeper surveys of the sky would of course easily detect
such a system, and also much fainter CVs, but the problem then is to distinguish
the CVs in the survey field from the much more numerous ordinary stars.

Exercise 5.3 For the compact binary disc, the inner disc radius is close to the
compact star’s radius, i.e. 7, ~ 1072Rg, which is 10° m for a white dwarf and
10* m for a neutron star. For the supermassive black hole accretor, we assume that
the inner disc radius is close to the last stable circular orbit, i.e.

2GM 6 x7x 107" Nkg2m? x 108 x 2 x 10%°k
Tin &~ 3 ~ 7 - £ ~10%m.
c? (3 x 108 ms—1)2
The outer radius for the discs in binaries is a fraction of the Roche-lobe radius of
the accretor, i.e. of order the orbital separation. For short-period systems this is

< 1Re =~ 109 m. For AGN, this is perhaps < 1072 pc ~ 101 m.

Hence we have 7oy /7in ~ 10 for cataclysmic variables and AGN, and
Tout/Tin = 10° for LMXBs.

Exercise 5.4 The surface pattern arises from lines that connect points in the
disc with constant magnitude of the radial velocity, i.e. constant magnitude of the
y-component of the orbital velocity v.

Consider now two points, A and B, in the accretion disc that are mirror-symmetric
with respect to the y-axis. If point A has coordinates (z¢, o), then point B must
have coordinates (—z, yo). The symmetry with respect to the y-axis arises
because v, at A has the same magnitude but opposite sign to v, at B. Therefore
the only difference between a point ‘to the left’ (B) and ‘to the right’ (A) of the
y-axis is that the plasma to the left is approaching, while the plasma to the right is
receding from the observer (if the orbital motion is anticlockwise).

The situation is similar if we consider two points, A and C, in the accretion disc
that are mirror-symmetric with respect to the x-axis. As point A has coordinates
(20, Yo), point C must have coordinates (¢, —o). The symmetry with respect to
the z-axis arises because v, at A has the same magnitude and sign as v, at C! The
velocities at A and C differ only in the sign of the z-component of v.

Exercise 5.5 (a) (i) Disc plasma at a distance r from the accretor with mass M
has the Keplerian speed v = (G M /r)'/? (Equation 1.5). For an edge-on system
(2 = 90°), the line-of sight velocity v varies with azimuth ¢ as v = vk cos ¢. So
the lines of constant line-of-sight velocity in Figure 5.3 are defined by the relation

cosg

rl/2 = (GM)1/2 :
(i) Converting the polar coordinates (r, ¢) into Cartesian coordinates (x,y) (see
Figure S5.1), we have cos ¢ = x/r and 7? = 22 + ¢, so

U” X X

(GM)1/2 Top3/2 T (22 + ¢y2)3/4°
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Solving for ¥,

¢

T =1CoS¢

Figure S5.1 Cartesian and polar coordinates for Exercise 5.5.

(b) From the last equation we see that y(zg) = 0 if xé/ P x (GM/ vﬁ)Q/ 3 =23, or
xg/g = (GM/vﬁ)Q/:‘", hence zg = GM/vf.

(c) Alternatively, for y = 0 we always have x = r. Therefore v = vk(r), i.e. the
line-of-sight velocity is just the Kepler speed as the disc plasma moves straight

towards (or directly away from) the observer. This gives r = G M /vk (r)?, which
is equivalent to the expression for x( that we have just found.

Exercise 5.6 (a) The Keplerian speed at distance r from the white dwarf with
mass M is (Equation 1.5)

(GM)1/2
VK = T .

For M = 0.8 Mg (1 Mg = 1.99 x 103%kg) and R = Roy = 3.0 x 108 m, we
therefore have the velocity

6.67 x 10" Nm?kg~2 x 0.8 x 1.99 x 10¥kg \ />
VK, out = 3.0 x 10°m

=595x10°ms™' = 595kms'.

For the inner edge of the accretion disc we set R = R, = 7 x 10° m (comparable
to the white dwarf radius). As

Rout ) 1/2

VUK, in = VK, out (
2] ) Rin
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we have

7.0 x 106
=3.90 x 10°ms™! = 3900kms~!.

3.0 x 108 /2
VK, in = 9.95 X 10°ms™! x < X )

(b) The Doppler shift is given by Equation 5.1
ANy

Aem c’

Hence at the outer edge of the disc the Doppler shift is

5.95 x 10°
A>\0ut = m X 656 nm = 1.3 nm,
while at the inner edge of the disc the Doppler shift is
: 109
Ay = 22000 66 nm — 8.5nm.

3.0 x 108

Exercise 5.7 The hot spot appears brightest when it faces the observer, i.e.
immediately before phase 0 (in Figure 5.4 this is at phase 0.875). The binary is at
phase 0 when the secondary star is closest to the observer. At the opposite phase,
close to phase 0.5, the hot spot is facing away from the observer. Hardly any
light from the spot reaches the observer as the disc is in the way. This variable
contribution from the hot spot gives rise to an orbital ‘hump’ in the optical light
curve. The hump is most pronounced when the system is seen nearly edge-on. If
we see the system face-on, there is no such hump. In this case the hot spot always
contributes roughly the same (small) amount to the total light.

Exercise 5.8 The ‘shadow’ in the figure indicates those regions on the
accretion disc from where the Earth (i.e. the telescope that collects photons
emitted from the disc) cannot be seen because it is obscured by the donor star.
The shadow is long if the inclination is high. In a system seen edge-on
(inclination 90°), the shadow formally has an infinite length, while in a system
seen face-on (inclination 0°), there is no shadow.

Exercise 5.9 The Keplerian speed for accretion disc material is given by
Equation 1.5: vg = (GM/ r)l/ 2 i.e. the speed increases with decreasing r. In a
velocity map, the surface brightness of the accretion disc is plotted as a function
of the x- and y-components of the velocity v of the emitting material. Hence the
rapidly moving material from the inner regions of the accretion disc will appear at
large values of v, and v, while the slowly moving material from the outer regions
of the accretion disc will appear at small values of v, and v,.

Exercise 5.10 (a) The shift between the continuum and line flux is about

40 days.

(b) The emission line light curve needs to be shifted about 40 days earlier in
order to correlate with the continuum light curve. The emission line light curve
therefore lags about 40 days after the continuum light curve.

(c) This indicates that in this case, the emission line flux could be caused by
reprocessing or reflection of the continuum flux after an interval of about 40 days.
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This may represent the light travel time from the site of emission of the continuum
to the site of emission of the emission line light.

Exercise 6.1 The energy of the photon is given by
hc

E=hy="C
YT

Hence the frequency v for a 1 keV photon is given by
E 10%eV x 1.602 x 10719 Jev !

_ =24 x 10" Hz.
Y= 6.626 x 10311 s x 107" Hz
Also,
y o he _ (6.626 x 10734 Js) x (2.998 x 108 ms~!)

E 103eV x 1.602 x 10-19JeV~!
=12x10m=1.2nm.

Exercise 6.2 (a) Using Equation 6.9, the Eddington limit becomes
47 % 6.673 x 107 Nm? kg2 x 1.673 x 10727 kg x 2.998 x 103 ms~!
6.652 x 10729 m?

= 6.322 x (1.99 x 10%°) x (M) w
Mg

x M

Lgqg =

=1.26 x 10*! (ﬂ) Ww.
Mg

(b) In this case, M = 1.4 M, and Lgqq = 1.8 x 1031 W.
(c) Fora 10 M, black hole, Lggq = 1.3 x 1032 W.
Exercise 6.3 (a) First we need to calculate the cross-section at 1 keV:

o(E)=(co+c1 x E4co x EH)E™3 x 10" cm?,
where FE is measured in keV. Hence

o(1keV) = (120.6 4 (169.3 x 1) + (—47.7 x 1?)) x 173 x 10" ** cm ™2,
giving o0(1keV) = 2.42 x 1072 cm~2,

The fraction of radiation transmitted through the absorber, fians(E), is given by
Equation 6.15. For N = 1.5 x 10%? atom cm™2,

furans(1keV) = exp[—(1.5 x 10%2) x (2.42 x 1072%)] = 0.0265.
The fraction of energy absorbed (faps) i 1— firans, 1.€. fabs == 97%.
(b) For 5keV photons,

o(5keV) = (433 — (2.4 x 5) + (0.75 x 5%)) x 572 x 10 * cm ™2,
hence o(5keV) = 3.5 x 10724 cm?. Therefore

fabs = 1 — exp[—(1.5 x 10%?) x (3.5 x 1072*)] = 5%.

Exercise 6.4 (a) The lowest frequency is given by

1
foin = N a7 = 11
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The highest frequency is given by

1
Jimax = 2AT = %HZ-
There are N/2 frequencies in the PDS, i.e. 2.

(b) Equation 6.19 tells us that the power for frequency k, P(fx), is given by
N 2 N 2
P(fr)=C ZIj cos(2m ft;) | + ZIj sin(27 fit;) ,
j=1 j=1
where C'is a constant, k = 1,2, 5 = 1,2, 3, 4.
First, we shall tackle £ = 1, where f = i:

2 2
4 4

P(3)=C ij cos(2m x § x ;)| + ZI]- sin(27 x 1 x t;)
Jj=1 j=1

Summing the cosine terms:

4
> Ijcos(2m x § x tj) = (3x0) + (1 x —1) 4 (3% 0) + (1 x 1) = 0.
j=1

Now summing the sine terms:

4
D Isin(2rx §xt) =B x1)+(1x0)+(3x 1)+ (1 x0)=0.
j=1
Since both the sine and cosine terms are zero, P($) = 0.
Now we shall tackle & = 2, where f;, = %:
2 2

4 4
P(3)=C ZIj cos(2m x 3 X t;)| + ZI]- sin(2m x 3 x t;)
Jj=1 j=1
Summing the cosine terms:

4
D Ijcos(2mx 3 xtj)=(Bx -1+ (Ix1)+@x-1)+(1x1)=—4
j=1

Summing the sine terms:

4
D Iisin(2m x § x t;) = (3x0)+ (1 x0)+ (3x0)+ (1 x0)=0.
j=1

Hence
Py =C[(=4)*+(0)]* = C x 16.
This tells us that the light curve is produced by a cosine with frequency %

Exercise 6.5 (a) The detected flux F'is given by

L

F = ywot (Eqn 6.20)
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o)
L =F x 4rd>.
The distance d is estimated to be 8 kpc, i.e. 8000 x 3.086 x 10'6 m. Hence

L= (45x 107" Wm™2) x 47 x (8000 x 3.086 x 10'% m)?
= 3.4 x 1031 W.

This luminosity is higher than expected for a 1.4 M, neutron star accreting
hydrogen, by about a factor of 2 (see Exercise 6.2), but is in line with observations
of LMXBs in globular clusters.

(b) The X-ray peak of a radius-expanding burst corresponds to the photosphere
shrinking down to normal size, so the black body radius gives us the radius of the
neutron star, Rys. For black body radiation,

L = 47 R¥g 0T
First, we need to work out the temperature corresponding to k7' = 2.1 keV:

2.1 x 1000 x (1.602 x 10~19)J
T= —
1.381 x 1023JK

We then obtain Ryngs using the Stefan—Boltzmann law:

=24 x 10" K.

~1.2x10*m = 12km.

5 _( 3.4 x 1031 W )1/2
M7\ 4 x 7 x 5671 x 108Wm 2K x (2.4 x 107 K)*

Exercise 6.6 We estimate the donor mass from the approximate relation

M.
Py~ 88h - 2. (Eqn 2.11)
Mg
This gives
Mo Poy 44
My, ~ 88h 88
So My = 0.5 Mg. With Ry /R ~ Ms /Mg, the radius of the donor star is
0.5 R, and as the donor is Roche-lobe filling, this is also equal to the Roche-lobe
radius, Rp 2 ~ 3.5 x 105 m.

0.5.

Since the LMXB exhibits X-ray bursts, it must contain a neutron star primary, SO
we may assume a mass of My = 1.4 My,. Therefore the mass ratio of the system
isq= My/M; ~0.5/1.4 = 0.36.

We find the neutron star’s Roche-lobe radius by noting that
RL1  fi(1/q)

Rz fag) '
where f(q) is given by Eggleton’s approximation
0.49¢2/3
f(a) (Eqn 2.7)

= 0.6¢27% 1 log.(1 + q1/3)

For ¢ = 0.36 we have 1/q = 2.8 and so f(2.8)/f(0.36) =~ 1.6. The Roche-lobe
radius of the neutron star is therefore ;. 1 ~ 1.6 X Ry 2 = 5.6 x 108 m.
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To estimate the size of the corona, we rearrange Equation 6.21 to get
27 Ryisc ATing

P, orb
Ryisc 1s estimated to be 30-50% of the Roche-lobe radius. So the smallest corona
size is obtained by taking Rgisc = 0.3 X Ry 1. Then
27 x 0.3 x (5.6 x 10%) m x 2000

4.4 x 3600

= 1.3 x 10°m.

For Rgisc = 0.5 X Ry 1, the corona is larger by a factor 0.5/0.3 = 1.7. Hence the
corona has a diameter of ~130 000-230 000 km.

Exercise 6.7 We have the relation H/r = tan (see Figures 6.22 and 6.23).
Hence 6 = tan~1(0.2) = 11.3°.

Dapc =

Dapc =

Exercise 6.8 We have to calculate the radius in the disc where the orbital
frequency equals the QPO frequency f. The angular speed w at distance r from
the accretor with mass M is

1/2
W= <GM> ) (Eqn 3.3)

3
r
Rearranging this to solve for r yields
GM\'/?
("
w

Since w = 27 f,
1/3

~ [(6.673 x 107" Nm?kg™?) x (1.4 x 1.99 x 103 kg)
B (2x 7 x6.0s71)2

Hence r = 5.2 x 10%m, or ~520 km. This is only about 30 times the neutron star
radius.

Exercise 6.9 Observations of Galactic LMXBs with known neutron star
primaries suggest that transitions from the low state to the high state occur at
0.1Lggq or less. For a neutron star with a mass of 2.1 My,

2.1M
Lpgd ~ 1.26 x 10%" x =229 — 9.7 x 103 W.
1 Mg

Since the transition occurs at ~0.1Lggq or less, we do not expect to see neutron
star LMXBs exhibit the low state at 0.01-1000 keV luminosities higher than
~2.7 x 1030 W.

Exercise 6.10 (a) The Eddington luminosity is given by

M
Lpgg = 1.26 x 10% (M—> W, (Eqn 6.10)
©

while the accretion luminosity for a Schwarschild black hole can be written as
Lace = Nace ¢2M (Equation 1.9), with 7,ec =.().O57 (see Subsection 1.2.1).
Equating these luminosities and solving for M gives
N 126 103w (M
B 70057 x 2 \ Mg
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or
. M
Mggq = 3.9 x 1078 Mg yr? (—> . (6.24)
Mg
(b) Inserting Equation 6.24 into Equation 1.17 (in the solution to Exercise 1.10)
gives
Mo\ VA
Theak = 1.5 x 10" K (—) : (6.25)
Mg

(c) For a 100 Mg, black hole accreting at the Eddington limit, this is
Theak ~= 5 X 109 K, a factor of 2—4 lower than the observed value.

Exercise 6.11 (a) If the source is unbeamed, its luminosity would be

L =F x 4rnd?
= (3.5 x 107 W) x 47 x (3.26 x 10° pc x 3.059 x 106 mpc=1)2.

So L =4.5x 1032 W.
(b) From Equation 6.10,
10Mg

Liqd = 1.26 x 103! (
©

> = 1.26 x 10°2W.

The source therefore exceeds its Eddington luminosity unless it is beamed by at
least the minimum beaming factor

4.5 x 1032 W

byin = ————————— = 3.6.
71,26 x 1032 W

(c) From Equation 6.25, by is also defined as byin = 47/AS. Hence
4 4 .
I 4 x3.141 — 3.5sr
bmin 3.6

This is a fraction 3.5/4m = 28% of the whole sphere. If the beaming factor is
larger than by, then A€) decreases, hence this is a maximum solid angle.

0=

Exercise 7.1  (a) Ata mass loss rate of 107° Mg yr— !, the Wolf-Rayet star
will lose AM = M Atying ~ 107° x 0.1 x 5 x 105 Mg = 5Mg, which is a
large fraction of its initial mass!

(b) At a mass loss rate of 1074 M, yr—?, the Sun will lose just 10~% M, over its
lifetime, which is a tiny fraction of its mass.

Exercise 7.2 Taking 6000 A as a typical optical wavelength, the application of
Equation 5.1 suggests a speed of ¢/150 or 2000 kms~*. The component along the
line of sight coincides with the actual velocity as the outflow is spherically
symmetric (a wind).

Exercise 7.3 In 27 days from 3rd April to 30th April, the two jets appear in
the sky to have moved apart by about 700 milliarcsec, which corresponds to

0.2 x 0.7 ly = 0.14 ly. Thus the speed at which the two bright spots appear to
move apart is v = (0.14 ly) /(27 days). We may express this directly in terms of
the speed of light by noting that a light-year is the distance that light travels in
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1 year. Thus v = (0.14 x 365¢)/27 ~ 1.9¢. The left bright spot has moved
further from the centre than the right spot. It is roughly at twice the distance from
the cross than the right spot. Thus the left spot has moved from the centre at about
1.3c, and the right at about 0.6¢. The left spot appears to be moving at a speed
faster than light!

Exercise 7.4 Solving Equation 7.1 for V/c gives

1/2
K=<1_i2> .
c Yy

Using the first-order expansion (1 + x)Y/2 ~ 1 + 2/2 (z < 1) with . = —1/~2,
this becomes
%4 1

~ | —

c 2+2’
as required.

Exercise 7.5 (a) Equation 7.13 gives the maximum value of « for observing a
star that is at right angles to the ecliptic (6 = 7/2). Thus apax = v/c. Converting
the angle to radians, we get o« = 217/(180 x 60 x 60)rad = 1.0 x 10~*rad. So
v/ca~10"*and v ~ 30kms~ 1.

(b) The Earth’s rotation period is Py = 24 h. The rotational velocity of a point at
the surface of the Earth’s equator (of radius Rg) is

v =27Rg /Py = 21 x 6.38 x 10%/(24 x 60 x 60) ms~ ~ 464ms~1.

We may use this in Equation 7.13 to calculate aym,x. Alternatively, we may exploit
the result of part (a): the ratio of the two speeds is equal to the ratio of the
aberration angles in the two situations. Thus cg max /21" = 464 /30000, giving

O max ~ 0.32".

Exercise 7.6 The transformation equation for = is Equation 7.7
x =~z + Vt'),
while for ¢ it is Equation 7.10: t = ~(# + Va'/c?). Hence we have

V da!
c? '

de =v(d2’ +Vdt) and dt=1 (dt’ +

So we obtain for the velocity
dz da’ +Vdt do’ /At +V v+ V

T T A+ (V@) de | 1+ (V/E)(dd/d) T 1+ Vol /R
(The corresponding transformations for v, and v, can be obtained in a similar
way.)

Exercise 7.7  (a) vyp attains a maximum for dv,p,/dé = 0. From
Equation 7.24, we get
dvgp V cos 0 B Vsin 6 Vv
dd  1—(V/c)cosf (1 —(V/c)cosh)? ¢
and applying the condition for a maximum

2
0= (1 — K cos Gmax) V cos Opmax — V— sin? O,y
c c

sin 6,
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Manipulating this further gives

|4 V. \%4 .
€08 Oipax — — €OS? Bppax — — SinZ Opax = 0 or €08 Omax — — (cos2 B max +-sin’ Omax) = 0,
c c c
thus
cOS Omax = — and so Omax = cos H(V/c).
c

(b) From cos Omax = (V/c), we get

1
Sin Omax = /1 — (V/e)? = o
Equation 7.24 thus gives

o V sin Opmax B \%4 B Vy? v
P (Ve cosOm  AL— (V2/R)] T 4

Exercise 7.8  (a) For § = w/2, Equation 7.28 gives D = 1/~.
(b) For § = 0, Equation 7.28 becomes D = [y(1 — V/c)]~L.
From the definition of v (Equation 7.1), we have
P =1+ V/e) (1= V/e] .
Soy(1—=V/e)=[y(1+V/e) ™.
Thus D = (1 4 V/c¢), which for highly relativistic speeds becomes D =~ 2.

(c) For a source moving at right angles to the observer, the received frequency is
redshifted: viec = V., /7-

For a source moving towards the observer, the received frequency is blueshifted:

/
Vrec = 27Vem-

Exercise 7.9 For the given values of the parameters, v, = 1, m1 ~ ma /72,
7 = v2/2 and Ey, ~ ~yom;c?/4, Equation 7.39 gives

_ 72m102/4 _ 72/4 _ 1 ( VY2 )
(m1+yema2)c? 1/ye+v  4\1/n+r/)’

As v9 > 1, we therefore have € ~ i = 25%.

Exercise 7.10 If the electrons execute a circular motion with speed v and
radius r, we have |[v X B| =vB, so

Mev?

evB| = (7.26)
Hence the circular speed is v = eB | r/m.. The frequency is given by
Vey = v/(27r), 50
eB|r eB |
= = . 7.27
Vey Me2Tr  2TMe ( )
Exercise 7.11 A comparison between the power emitted by a single electron by

each mechanism (Equations 7.53 and 7.59) shows that Py, /P = Up/Upag. So it
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is the relative intensity of the respective underlying fields that determines which
component dominates.

Exercise 8.1 Solving Equation 7.49 for E, we get E = 47d%S. The distance
has to be converted to m, using 1 pc = 3 x 10 m.

(a) For a Galactic halo source,
d ~50kpec =50 x 103pe x 3 x 10 mpec™ = 1.5 x 10*' m
and

E~4r x (1.5 x 102'm)? x 1072 Tm ™2 ~ 3 x 10%*J.

(b) Similarly, for the cosmological source,
d~9x10*°m~10*°m

and
E ~ 471 x (10%m)? x 1072Tm~2 ~ 10%7.

We have
Mg ¢® ~ 2 x 10%0kg x (2.998 x 103 ms™1)? ~ 2 x 1077 7J.

The energy implied for a Galactic halo source is about 10 times higher than for an
X-ray burst, and much less compared to a supernova or the mass energy of a solar
mass. The energy in a source at a cosmological distance is comparable to the
energy in a supernova, and 1/1000 of the mass energy available in 1 solar mass.

Exercise 8.2 The shorter timescale, Aty, ~ 1 ms, provides the more stringent
constraint, Ar < ¢ Aty &~ 300 km. This suggests a compact stellar object
(neutron star or black hole).

Exercise 8.3 We need to estimate n, for use in Equation 8.3. From
Equation 7.50, n, ~ L., /(47 (Ar)%chv), and using Ar = ¢ Aty,, we get
Tyy =~ orL,/ (47c? Atyy hr). Substituting values in and converting MeV to SI
units by 1eV = 1.602 x 10719 J, we obtain
~ 0.665 x 107> m~2 x 10*Js !
T % (2.998 x 1085 ms—1)2 x 10 x 1035 x 0.5 x 105eV x 1.602 x 10-19JeV—!

~7x 102,

Exercise 8.4 The source reached the apparent size R4er in 4 weeks’ time.
4 weeks corresponds to At = 4 x 7 x 24 x 60%s = 2.4 x 10%s. An estimate of
the speed V' of expansion is obtained from Rger ~ V' At, thus

10 m 4.13 x 10®
N ~413x108ms™ =

9.4 % 1055 ©onms 3% 10°
an apparent superluminal expansion as in AGN jets and microquasars.

c~1.4c,

Exercise 8.5 Using Equation 7.36 we obtain

Tais ~ 272¢ Aty = 2 % 300% x (2.998 x 108 ms 1) x (10 x 107%s) = 5.4 x 101 m ~ 5 x 10 m.
Exercise 8.6 (a) 1cm = 1072 m. Therefore 1 cm® = 10~%m3, which gives
lem 3 = 105m=3.
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(b) Substituting values in Equation 8.12, we obtain

3 v 104 1/3
Tdec = _—
dee ™ \ 47 x 1.67 x 10-27kg x (2.998 x 108ms~1) 105m—3 x 3002
~ 1.2 x 10" m,
which is about 0.004 pc or 800 AU.
Exercise 8.7 We may use the result of Exercise 8.6, rgec &~ 1.2 X 104
Equation 8.14:

m, in

A 1.2 x 10" m 95
€™ (2% 3002) x (2.998 x 108ms—1)

Exercise 8.8 For Oy = 10° &~ (.17 rad, the subtended solid angle of one jet is
AQ = 27(1 — cos(0y5/2)) (Equation 7.20). For two jets the solid angle is

AQ = 47(1 — cos5°) = 4.8 x 1072

(a) The required energy is 4m/AQ ~ 260 times less than estimated in
Exercise 8.1.

(b) As the emission is confined to a narrow jet, on average only 1 out of a few
hundred GRBs will be detected by an observer on Earth. Hence the required
source rate is a few hundred times higher than estimated in Worked Example 8.2,
where it was assumed that GRBs emit isotropically.
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