
Solutions to exercises

Solutions to exercises
Exercise 1.1 (a) As the mass and mass accretion rate are the same in both
cases, the ratio of the accretion luminosities is simply the inverse ratio of the radii:

Lacc, WD

Lacc, Sun
= 1

R%
RWD

= 100.

The luminosity Lacc, WD = 100L% much exceeds the white dwarf’s intrinsic
luminosity except for the very youngest, hottest white dwarfs.

(b) For the neutron star the accretion luminosity is also larger than the Sun’s by a
factor

MNS/RNS

1M%/R%
=

1.4

1
× 6.96 × 108 m

20 × 103 m
≈ 4.9 × 104.

So the accretion luminosity is a few times 104 L%; this is not much below the
luminosity of the brightest, most massive stars.

Exercise 1.2 The accretion efficiency ηacc is defined by Lacc = ηaccṀc2.

Equating this to Equation 1.3 and solving for ηacc gives

ηacc =
GM

Rc2
.

For a neutron star with mass 1M% = 1.99 × 1030 kg and radius 10 km = 104 m,
this is

ηacc =
6.673 × 10−11 N m2 kg−2 × 1.99 × 1030 kg

1 × 104 m × (2.998 × 108 m s−1)2
≈ 0.15.

Exercise 1.3 (a) The mass defect Δm = 4.40 × 10−29 kg involved in the
fusion of four protons into one helium nucleus translates into an energy gain of
ΔE = Δmc2 per four protons. The energy input is the mass energy of the four
protons, 4mpc

2, so the efficiency = gain/input is

ηH =
Δmc2

4mpc2
=

4.40 × 10−29 kg
4 × 1.673 × 10−27 kg

≈ 0.0066.

(b) From part (a), the efficiency of hydrogen burning, the most common nuclear
fusion reaction in the Universe, is only ηH ≈ 0.7%. In other words, if one
kilogram of hydrogen accretes onto a neutron star, it liberates about 20 times more
energy (in the form of heat and radiation, say) than if this kilogram of hydrogen
undergoes nuclear fusion into helium.

There is no other process in the Universe that could persistently sustain the
conversion of such a large fraction of mass energy (! 10%) into energy for a
macroscopic amount of mass. There are processes with 100% efficiency such as
the annihilation of electron–positron pairs (see Chapters 7 and 8), but these
involve antimatter, which is not abundant in the known Universe.

Exercise 1.4 The accretion disc luminosity is

Ldisc =
1

2

GMṀ

R
, (Eqn 1.8)
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where R is the inner disc radius. Equating this with Lacc = ηaccṀc2 and solving
for ηacc gives

ηacc =
1

2

GM

Rc2
.

We set R = 3RS and use Equation 1.11 to obtain

ηacc =
GM

6RSc2
=

GM

12GMc2/c2
=

1

12
≈ 0.083 = 8.3%.

Exercise 1.5 On the right-hand side, the first term is the gravitational potential
of the primary star. The denominator is the magnitude of the vector pointing from
the primary to the point of reference.

The second term is the corresponding gravitational potential of the secondary.

The third term describes the effect of the centrifugal force. The quantity
(ω × (r − rc))

2 is the scalar product of the vector ω × (r − rc) with itself. The
vector ω × (r − rc) has the magnitude ωr⊥, where r⊥ is the distance of the point
of reference from the rotational axis. The vector ω is parallel to the rotational axis
and has magnitude ω, the orbital angular speed.

Exercise 1.6 If the two stars with masses M1 and M2 are at x = 0 and x = a,
respectively, and the centre of mass is at x = xc, then M1xc = M2(a − xc), so
that (M1 + M2)xc = M2a, and hence

xc =
M2

M1 + M2
a =

M2

M
a,

where M = M1 + M2 is the total binary mass. This is also the distance a1 of the
primary from the centre of mass. The distance of the secondary from the centre of
mass is a2 = a − xc = (M1/M)a.

Equation 1.16 describing the Roche potential contains the following vectors:
r = (x, 0, 0), r1 = (0, 0, 0), r2 = (a, 0, 0), rc = (xc, 0, 0) and ω = (0, 0, ω). So
we have |r − r1| = x, |r − r2| = a − x, and

(ω × (r − rc))
2 = ω2(x − xc)

2 = ω2

(
x − M2

M
a

)2

.

Therefore, for 0 < x < a, the Roche potential as a function of the coordinate x is

ΦR(x) = −GM1

x
− GM2

a − x
− 1

2ω2

(
x − M2

M
a

)2

.

Now in the x-direction, ∇ΦR = dΦR(x)/dx, so

dΦR(x)

dx
= +

GM1

x2
− GM2

(a − x)2
− ω2

(
x − a

M2

M

)
.

The Roche potential at the centre of mass, i.e. at x = xc = aM2/M , is (note that
a − xc = aM1/M )

ΦR(xc) =
GM1M

M2a
− GM2M

M1a
− 0 =

GM

a

(
M2

2 − M2
1

M1M2

)
.

The gradient at x = xc is

dΦR(x)

dx
=

GM1M
2

M2
2 a2

− GM2M
2

M2
1 a2

− 0 =
GM2

a2

(
M1

M2
2

− M2

M2
1

)
.
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So the force F = −m dΦR(x)/dx has magnitude

F =
GmM2

a2

∣∣∣∣M1

M2
2

− M2

M2
1

∣∣∣∣
and it is in the −x-direction for M1 > M2 (+x-direction for M1 < M2).

Exercise 1.7 We have 1 pc = 3.086 × 1016 m and 1 AU = 1.496 × 1011 m, so
1 pc = 2.063 × 105 AU. Therefore l = 2 × 103 AU ≈ 10−2 pc.

Exercise 1.8 The size of the emitting region is

r ≈ 30 light-days = 30 × 86 400 × 3 × 108 m ≈ 1015 m.

From Equation 1.19, the mass is

M ( 〈v2〉r
G

=
(6 × 106)2 m2 s−2 × 1015 m

6.673 × 10−11 N m2 kg−2 = 5.4 × 1038 kg ( 3 × 108 M%.

Exercise 1.9 (a) We recall that 1M% yr−1 = 6.31 × 1022 kg s−1

(Equation 1.4). From Equation 1.21 we find

(2 × Tpeak)
4 ( 3 × 6.673 × 10−11 N m2 kg−2

8π × 5.671 × 10−8 J m−2 K−4 s−1

0.6 × 1.99 × 1030 kg × 10−9 × 6.31 × 1022 kg s−1

(8.7 × 106 m)3
,

which gives Tpeak ≈ 3.2 × 104 K.

(b) For the neutron star we have instead

Tpeak ( 0.5×
(

3 × 6.673 × 10−11 N m2 kg−2 × 1.4 × 1.99 × 1030 kg × 10−8 × 6.31 × 1022 kg s−1

8π × 5.671 × 10−8 J m−2 K−4 s−1 × (104 m)3

)1/4

or Tpeak ≈ 1.1 × 107 K.

Exercise 1.10 (a) Using Equations 1.21 and 1.11, we find

(2 × Tpeak)
4 ( 3GMṀ

8πσ(3RS)3
=

3GMṀ

8πσ × 33 × (2GM/c2)3
=

c6Ṁ

576πG2σM2

=
c6 × M% yr−1

576πG2σ M2%

(
M

M%

)−2
(

Ṁ

M% yr−1

)

=
(2.998 × 108 m)6 × 6.31 × 1022 kg s−1

576π × (6.673 × 10−11 N m2 kg−2)2 × 5.671 × 10−8 J m−2 K−4 s−1 × (1.99 × 1030 kg)2

×
(

M

M%

)−2
(

Ṁ

M% yr−1

)
.

This gives

Tpeak ( 1.1 × 109 K

(
M

M%

)−1/2
(

Ṁ

M% yr−1

)1/4

. (1.17)

Note that the actual peak temperature is slightly different from this value because
general relativistic corrections have to be applied.
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(b) For M1 = 10M% and Ṁ = 10−7 M% yr−1, Equation 1.17 becomes

Tpeak ( 1.1 × 109 K × 10−7/4 × 10−1/2 = 6 × 106 K.

(c) For M1 = 107 M% and Ṁ = 1M% yr−1, Equation 1.17 becomes

Tpeak ( 1.1 × 109 K × 10−7/2 = 3 × 105 K.

Exercise 1.11 We have 1 eV = 1.602 × 10−19 J and T ( Eph/k. So for
Eph = 1 eV the temperature is

T ( 1 eV

1.381 × 10−23 J K−1 =
1.602 × 10−19 J

1.381 × 10−23 J K−1 = 1.160 × 104 K,

which is of order 104 K.

Exercise 1.12 (a) We make use of Equation 1.25 (rather than the rule of
thumb) to work out the typical photon energy:

Eph

eV
= 2.70 × 1.381 × 10−23 J K−1

1.602 × 10−19 J
× T = 2.3 × 10−4 K−1 × T.

For T = 3.2 × 104 K (white dwarf) this gives Eph = 7.4 eV, while for
T = 1.1 × 107 K (neutron star) we obtain Eph = 2.5 keV (these temperatures
were found in Exercise 1.9).

Also, for T = 6 × 106 K (stellar mass black hole) this gives Eph = 1.4 keV, while
for T = 3× 105 K (AGN) we obtain Eph = 69 eV (these temperatures were found
in Exercise 1.10).

(b) Photon energy and wavelength λ are related as

Eph = h
c

λ
.

With Equation 1.25 this gives

λ =
hc

2.7kT
=

6.626 × 10−34 J s × 2.998 × 108 m s−1

2.7 × 1.381 × 10−23 J K−1 × 1

T
= 5.3275 × 10−3 mK × 1

T
.

For T = 3.2 × 104 K (white dwarf) this gives λ = 1.7 × 10−7 m. For
T = 1.1 × 107 K (neutron star) we obtain λ = 4.8 × 10−10 m = 0.48 nm.
These wavelengths are much shorter than the wavelengths of visible light
(≈ 400–800 nm). The first is in the classical X-ray range, the second in the
ultraviolet range.

For the accreting stellar mass black hole we find λ = 0.9 nm (soft X-rays), while
for the AGN we obtain λ = 18 nm (near the ultraviolet/X-ray boundary).

Exercise 1.13 For hν & kT we have exp(hν/kT ) & 1 and hence
exp(hν/kT ) − 1 ( exp(hν/kT ), so that the Planck function becomes the Wien
tail (Equation 1.27).

For the case hν ) kT we introduce the quantity x = hν/kT . As x ) 1 we can
use the first-order expansion exp(x) ( 1 + x to obtain for the denominator in
Equation 1.23 exp(hν/kT ) − 1 ( hν/kT . Hence

Bν(T ) ( 2hν3

c2
× kT

hν
= 2kTν2/c2,
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confirming Equation 1.28 for the Rayleigh–Jeans tail.

Exercise 2.1 The results are given in the following table.

q f(q) f(q) Δf/f in %
Eggleton Paczyński

0.5 0.3208 0.3203 0.14
1.0 0.3789 0.3667 3.2
2.0 0.4400 0.4036 8.3

The last column denotes the difference between the f values calculated according
to Equation 2.7 (column 2) and Equation 2.8 (column 3), divided by the value in
column 2, expressed in %.

Given that Eggleton’s approximation is accurate to within 1%, it is clear that
Paczyński’s relation is at most 4% off for q < 1, and even for q = 2 it is good to
within 9%.

Exercise 2.2 (a) We solve Kepler’s law for the period,

P 2
orb = a3 4π2

GM
,

and multiply both the numerator and denominator on the right-hand side by
(RL,2/a)3. Hence

P 2
orb =

a34π2

GM

(RL,2/a)3

(RL,2/a)3
=

R3
L,2 4π2

GM

1

(RL,2/a)3
.

Inserting Paczyński’s approximation for RL,2/a gives

P 2
orb ( R3

L,2 4π2

GM

M

0.4623M2
=

4π2

0.4623 G

R3
L,2

M2
.

Taking the square root and noting that

ρ =
M2

(4π/3) × R3
L,2

(the stellar radius R2 equals the Roche-lobe radius RL,2), we have

Porb ≈
(

4π2

0.4623 G

)1/2 (
4π

3
ρ

)−1/2

=

(
3π

0.4623 G

)1/2

ρ−1/2.

So

Porb

h
=

Porb

3600 s
=

1

3600 s

(
3π

0.4623 × 6.673 × 10−11 N m2 kg−2

)1/2

×
(

ρ

103 kg m−3 × 103 kg m−3

)−1/2

and hence

Porb

h
∼= 10.5

(
ρ

103 kg m−3

)−1/2

,

as required.

(b) We used Paczyński’s approximation for RL,2/a, so Equation 2.9 is valid only
in the range of mass ratios q where this approximation is good, i.e. for q " 0.8.
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Exercise 2.3 In the previous exercise we obtained the expression

P 2
orb ( 4π2

0.4623 G

R3
L,2

M2

with R2 instead of RL,2, so

Porb ( 2π

0.4623/2 G1/2

R
3/2
2

M
1/2
2

or

Porb

h
( 2πR

3/2
%

3600 s × 0.4623/2 (GM%)1/2

(
R2

R%

)3/2 (
M2

M%

)−1/2

.

With the dimensionless constant

k2 =
2πR

3/2
%

3600 s × 0.4623/2 (GM%)1/2
≈ 8.856

this becomes

Porb

h
( k2

(
R2

R%

)3/2 (
M2

M%

)−1/2

.

Taking logs in this equation reproduces Equation 2.10, as log10 k2 = 0.9472.

Exercise 2.4 Consider two point masses M1 and M2 on circular orbits around
the common centre of mass, with separation a. The masses M1 and M2 execute
circular orbits with radii a1 and a2, respectively, and angular speed ω about the
common centre of mass. The total orbital angular momentum in the system
is then J = M1a

2
1ω + M2a

2
2ω. From a = a1 + a2 and a1M1 = a2M2 we

find a1 = (M2/M)a and a2 = (M1/M)a. Using Kepler’s law we have
ω2 = 4π2/P 2 = GM/a3, so

J = M1

(
M2

M

)2

a2 (GM)1/2

a3/2
+ M2

(
M1

M

)2

a2 (GM)1/2

a3/2
=

M1M2(Ga)1/2

M3/2
(M2 + M1)

= M1M2

(
Ga

M

)1/2

,

which reproduces Equation 2.17.

Exercise 2.5 Paczyński’s approximation for the Roche-lobe radius is

RL,2 ≈ 0.462

(
M2

M

)1/3

a. (Eqn 2.8)

Taking the logarithmic derivative gives

ṘL,2

RL,2
=

1

3

Ṁ2

M2
− 1

3

Ṁ

M
+

ȧ

a
=

1

3

Ṁ2

M2
+

ȧ

a
, (2.18)

as Ṁ = 0 for conservative mass transfer. To find the logarithmic derivative of a,
we solve the expression for the orbital angular momentum (Equation 2.17) for a,

a =
J2M

GM2
1 M2

2

,
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and take its logarithmic derivative:

ȧ

a
= 2

J̇

J
+

Ṁ

M
− 2

Ṁ1

M1
− 2

Ṁ2

M2
= 2

J̇

J
+ 2

Ṁ2

M1
− 2

Ṁ2

M2
(2.19)

(Ṁ = 0, Ṁ1 = −Ṁ2). Substituting from Equation 2.19 into Equation 2.18 gives

ṘL,2

RL,2
=

(
1
3 − 2

) Ṁ2

M2
+ 2

M2

M1

Ṁ2

M2
+ 2

J̇

J
.

Collecting terms gives

ṘL,2

RL,2
= 2

J̇

J
+

(
2q − 5

3

) Ṁ2

M2
.

Comparing this with Equation 2.18 shows that ζL = 2q − 5/3.

Exercise 2.6 The table below gives a representative radius of the 5M% star
at the beginning of the corresponding mass transfer case. The orbital period
Porb was calculated using Equation 2.10. The mass ratio is just larger than 1,
so it is still acceptable to use Paczyński’s approximation (Equation 2.8), and
Equation 2.10 does indeed use this approximation.

Case log10 R/R% R/R% Porb

A 0.5 3 22.3 h
B 1.0 10 5.2 d
C 2.0 100 165 d

If both stars formed at the same time, and this is the first time the system
experiences mass transfer, then a mass ratio q < 1 is unphysical because the more
massive binary component evolves faster and fills its Roche lobe first. So at
the start of a case A, B or C mass transfer, the mass ratio is > 1. (There are
exceptions, however, such as systems where very strong wind losses have reduced
the mass of the primary so much that, at the point of first contact with its Roche
lobe, it is less massive than the less evolved secondary star.)

Exercise 2.7 For the Sun we have

tKH =
6.673 × 10−11 N m2 kg−2 × (1.99 × 1030 kg)2

6.96 × 108 m × 3.83 × 1026 J s−1 = 9.91 × 1014 s = 3.1 × 107 yr.

With R ∝ M and L ∝ M4, we also have

tKH ∝ M2

RL
∝ M2

MM4
∝ M−3,

so

tKH ( 3.1 × 107 yr

(
M2

M%

)−3

.

Therefore the Kelvin–Helmholtz time for a 0.5M% main-sequence star is about
2.5 × 108 yr, while for a 5M% main-sequence star it is about 2.5 × 105 yr.

Exercise 2.8 The mass transfer rate is

Ṁ2

M2
=

2J̇sys/J − (Ṙ2/R2)nuc

ζ − ζL
. (Eqn 2.22)
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By assumption we have ζ − ζL = 0 − ζL ( 1, J̇sys/J = 0, (Ṙ2/R2) = 1/tth, and
therefore −Ṁ2 = M2/tth. The thermal time tth is just the Kelvin–Helmholtz time,

tKH ( 3.1 × 107 yr

(
M2

M%

)−3

(see Exercise 2.7). So, Equation 2.22 becomes

−Ṁ2(case B) ( 3 × 10−8 M% yr−1 ×
(

M2

M%

)4

. (2.20)

(Hence the case B transfer rate is 2 × 1010/3.1 × 107 ≈ 6 × 102 times larger than
the case A rate; see Worked Example 2.2.) For M2 = 0.5M%, 1M%, 5M% this is
2 × 10−9, 3 × 10−8, 2 × 10−5 M% yr−1, respectively.

Exercise 2.9 For conservative mass transfer and ζ = 1, Equation 2.22 becomes

−Ṁ2

M2
=

−J̇GR/J

4/3 − M2/M1
.

According to Equation 2.11 we also have M2/M% ( Porb/8.8 h = 0.23. Hence
Equation 2.25 becomes

J̇GR

J
= −1.27 × 10−8 yr−1 × 1 × 0.23

1.231/3
× 2−8/3 = −4.29 × 10−10 yr−1,

so putting this value into Equation 2.22

−Ṁ2

0.23M%
=

4.29 × 10−10 yr−1

4/3 − 0.23/1
.

This gives −Ṁ2 = 8.9 × 10−11 M% yr−1.

Exercise 2.10 Assuming conservative mass transfer, the stability criterion
requires q " 1, or M2 < M1 = 1.4M%. The longest orbital period is
realized for the most massive donor that still allows stable mass transfer, so
Porb ( 8.8 h × 1.4 = 12 h (Equation 2.11). A note of caution: the actual radius of
a 1.4M% main-sequence star can be up to a factor of 2 larger than what was
assumed in Equation 2.11, so the period could be up to 21.5 ≈ 3 times longer than
the value that we have just calculated.

Exercise 2.11 The orbital speed v of the companion is given by Equation 2.1,
but applied to the star with mass M1 instead of M2. As by assumption M2 ) M1,
we can set M1/(M1 + M2) ( 1, so

v =

(
GM1

a

)1/2

,

where a is the orbital separation of the circular pre-supernova orbit. The escape
speed of the companion from the binary is

vesc =

(
2GM1

a

)1/2

. (Eqn 1.10)

Immediately after a prompt supernova explosion, the orbital speed of the
companion is still v as calculated above, but the escape speed has changed. The
binary will remain bound if v is smaller than the new escape speed, i.e.(

GM1

a

)1/2

<

(
2G(M1 − ΔM)

a

)1/2

.
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Here ΔM is the mass ejected in the supernova explosion, so the primary has
a post-supernova mass M1 − ΔM . Therefore M1 < 2(M1 − ΔM) or
ΔM < M1/2.

Exercise 3.1 A rather famous differentially rotating body is the Sun. This can
be seen when groups of sunspots move across the disc of the Sun. Sunspots at
higher latitudes lag behind sunspots that are closer to the equatorial region. Hence
the angular velocity in equatorial regions is larger than in polar regions.

An indirect example of differential rotation can be seen when sprinters in separate
lanes follow the curve of a stadium (e.g. in a 400 m heat). Even if the athletes in
the inner and outer lanes run at the same speed, if they start at the same point, the
one in the inner lane will be ahead of the one in the outer lane as the inner lane is
closer to the centre of the circle that defines the bend. The angular velocity of the
inner sprinter is larger than that of the outer sprinter, so the group of sprinters
‘rotates’ differentially. (Of course, to compensate for this, the lanes are staggered
so that the sprinter in the inner lane starts further back than the one in the outer
lane.)

Exercise 3.2 The product rule gives

∂(rω)

∂r
= r

∂ω

∂r
+ ω

∂r

∂r
= r

∂ω

∂r
+ ω,

and this is non-zero (i.e. equal to ω) even in the absence of shear. But viscous
stresses exist only in the presence of shearing motion. If ω = constant, there is no
shear, hence no stress, so we must have σs = 0 in this case. Therefore only the
first term, r ∂ω/∂r, can contribute to the shear stress σs.

Exercise 3.3 Equation 3.8 reads

Gvis = 2πr νvis Σr2 ∂ω

∂r
.

The unit of the right-hand side is

m × (m × m s−1) × (kg m−2) × m2 × (s−1 m−1).

Collecting terms, this is m5−3 s−2 kg = m2 s−2 kg.

With torque = force × distance, the corresponding unit is

N × m = (kg m s−2) × m = kg m2 s−2,

as above.

Exercise 3.4 In the case of Keplerian motion the angular speed is
(Equation 3.3)

ω =

(
GM

r3

)1/2

.

So the radius derivative is

dω

dr
= (GM)1/2

(
−3

2r−5/2
)

.

Inserting this into Equation 3.11 gives

D(r) = 1
2νvis Σr2GM

(−3
2

)2
r−5.
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Hence

D(r) = 9
8νvis Σ

GM

r3
,

as required.

Exercise 3.5 Equation 3.17 describes the conservation of angular momentum
in the disc:

r
∂

∂t
(Σr2ω) +

∂

∂r
(rvrΣr2ω) =

1

2π

∂Gvis

∂r
.

The two terms on the left-hand side describe the angular momentum balance
when ∂Gvis/∂r = 0, i.e. in the absence of the so-called source term on the
right-hand side. In this case the angular momentum J of a disc ring between
radii r and r + Δr changes only if there is an imbalance between the angular
momentum that flows into the ring via the mass that flows into the ring, and the
angular momentum leaving the ring via the mass flowing out of the ring. We find
the flow rate of angular momentum at radius r by multiplying the mass flow rate
dM/dt with the specific angular momentum that this mass has. The specific
angular momentum is just r2ω, and dM/dt is given by Equation 3.15 as

Ṁ(r, t) = −2πrvrΣ.

So the local flow rate of angular momentum is just

J̇ = −2πrvrΣr2ω.

To work out the net change ΔJ in the angular momentum J of the disc ring due
to this mass flow in a small time interval Δt, we take the difference between the
local flow rates at r + Δr and r, and multiply it by Δt. This can be written as

ΔJ =
[
J̇(r + Δr, t) − J̇(r, t)

]
× Δt ≈ Δr

∂J̇

∂r
× Δt.

Hence

ΔJ

Δt
= Δr

∂J̇

∂r
= −Δr

∂(2πrvrΣr2ω)

∂r
.

This becomes

ΔJ

Δt
= −2π Δr

∂(vrrΣr2ω)

∂r
. (3.21)

On the other hand, the total angular momentum J in the disc ring is

J = mass in the ring × specific angular momentum = 2πr Δr × Σ × r2ω.

Hence the time derivative of J can be written as

∂J

∂t
= −2πr Δr

∂

∂t
(Σr2ω). (3.22)

Note that r and Δr are not affected by the partial derivative with respect to t, as
by definition this has to be taken for fixed r. For small time intervals Δt, the
expression ΔJ/Δt in Equation 3.21 becomes the derivative ∂J/∂t. Equating the
right-hand side of Equation 3.22 with the right-hand side of Equation 3.21, and
dividing by 2π Δr, finally reproduces the first two terms in Equation 3.17.
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Exercise 3.6 Equation 3.27 describes the luminosity of a disc ring with inner
radius r1 and outer radius r2:

L(r1, r2) =
3GMṀ

2

{
1

r1

[
1 − 2

3

(
R1

r1

)1/2
]
− 1

r2

[
1 − 2

3

(
R1

r2

)1/2
]}

.

We obtain the luminosity of the whole disc if we set r1 equal to the radius of the
accreting object (or inner rim of the accretion disc, if this is different), and r2 to
infinity. This is appropriate for an idealized, infinitely extended disc. A real disc
in, for example, a binary system is limited by the size of the Roche lobe of the
accreting star. But even in that case the choice r2 = ∞ is usually a rather good
approximation, as r2 & r1. So, with r1 = R1 and r2 = ∞ we have

Ldisc = L(R1,∞) =
3GMṀ

2

{
1

R1

[
1 − 2

3

]
− 1

∞

[
1 − 2

3

(
R1

∞
)1/2

]}
.

Clearly the second term in curly brackets is identical to 0 (division by ∞). So

Ldisc =
3GMṀ

2

{
1

3R1
− 0

}
=

GMṀ

2R1
.

Exercise 3.7 (a) Introducing T∗ into Equation 3.28 gives

T 4
eff(r) = T 4

∗

(
R1

r

)3
[
1 −

(
R1

r

)1/2
]

or

T 4
eff(r)

T 4∗
=

(
R1

r

)3
[
1 −

(
R1

r

)1/2
]

.

(b) Hence with y = (Teff/T∗)4 and x = r/R1 we have

y(x) = x−3(1 − x−1/2) = x−3 − x−3.5.

(c) The maximum value of y is reached at a point x0 where dy/dx = 0. As

dy

dx
= −3x−4 − (−3.5)x−4.5,

we have at the maximum

0 = −3x−4
0 − (−3.5)x−4.5

0 .

Solving for x0, this becomes

3x−4
0 = 3.5x−4.5

0 or x
1/2
0 = 3.5/3,

hence x0 = (7/6)2.

(d) The function (Teff/T∗)4 attains a maximum value at the same radius as Teff

itself does. This radius is r0 = R1x0. Hence

r0 = R1 ×
(

7
6

)2
= 49

36R1,

as requested.
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(e) Inserting the value for x0 in the expression for y gives

y(x0) = x−3
0 − x−3.5

0 =
(

6
7

)6 − (
6
7

)7
=

(
6
7

)6 (
1 − 6

7

)
=

(
6
7

)6 × 1
7 .

The maximum temperature Teff = y(x0)
1/4T∗ is therefore

Teff =
(6/7)3/2

71/4
T∗ ( 0.488T∗.

Exercise 3.8 The prime observational quantity is the energy flux through
the surface area (Equation 3.11). In a steady-state disc this is independent of
viscosity (Equation 3.24) because in a steady state, the viscosity must adjust itself
to obey the equilibrium condition for the surface density and mass accretion
rate expressed in Equation 3.23. So no matter what mechanism is causing the
viscosity, the value of νvis Σ is always the same.

As a further consequence the surface temperature of a steady-state disc, which is
in principle accessible via the emitted spectrum, is also independent of the
viscosity (Equation 3.28).

Exercise 3.9 We have
H

r
( cs

vK
(Eqn 3.35)

so we need to estimate the sound speed and the Keplerian speed at ro. From
Equation 3.32 with T = 104 K we have cs ( 104 m s−1, while from Equation 1.5
we obtain

vK =

(
GM

r

)1/2

=

(
6.673 × 10−11 N m2 kg−2 × 1.99 × 1030 kg

0.5 × 6.96 × 108 m

)1/2

= 6.18 × 105 m s−1.

So we have

tan δ =
H

r
( 104

6.18 × 105
= 0.016, (3.23)

so δ ( 0.92◦. The disc is indeed rather flat!

Exercise 4.1 From Equations 4.7 and 3.6 we find

tth ( c2
s

νvis GM/r3
=

c2
s

αcsHGM/r3
=

csr
3

αHGM
.

Noting Equation 3.35, we also have H/r = cs/vK, hence

tth ( csr
2

αGM

r

H
=

csr
2

αGM

vK

cs
=

r2

αGM

(
GM

r

)1/2

=
1

α

(
r3

GM

)1/2

=
1

α

1

ωK
=

1

α
tdyn,

as required. We have used the identity for the Keplerian angular speed,
ωK = (GM/r3)1/2.

Exercise 4.2 As νvis = constant, we can move it to the front, and Equation 4.1
becomes

∂Σ

∂t
=

3νvis

r

∂

∂r

{
r1/2 ∂

∂r
(Σr1/2)

}
.
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Using the product rule on the inner derivative gives

∂Σ

∂t
=

3νvis

r

∂

∂r

{
r1/2

[
Σ

∂

∂r
(r1/2) +

∂Σ

∂r
r1/2

]}
=

3νvis

r

∂

∂r

{
r1/2

[
Σ

1

2r1/2
+

∂Σ

∂r
r1/2

]}
.

Factoring in r1/2 gives

∂Σ

∂t
=

3νvis

r

∂

∂r

{
Σ

2
+

∂Σ

∂r
r

}
.

Using the sum rule, this becomes

∂Σ

∂t
=

3νvis

r

{
∂

∂r

(
Σ

2

)
+

∂

∂r

(
∂Σ

∂r
r

)}
.

Now using the product rule again gives

∂Σ

∂t
=

3νvis

r

{
1

2

∂Σ

∂r
+

∂2Σ

∂r2
r +

∂Σ

∂r

}
=

3νvis

r

{
3

2

∂Σ

∂r
+

∂2Σ

∂r2
r

}
.

Thus we finally obtain Equation 4.12:

∂Σ

∂t
=

9νvis

2r

∂Σ

∂r
+ 3νvis

∂2Σ

∂r2
.

Exercise 4.3 The viscous time tvis = r2
c/νvis is an appropriate estimate for the

time it takes the torus at the circularization radius to spread into a disc-like
structure. With νvis = αHcs and H ( cs/ωK (Equation 3.34) we obtain

νvis = α
c2
s

(GM/r3
c )

1/2
,

so

tvis ( r2
c

αc2
s

× (
GM/r3

c

)1/2
=

(GMrc)
1/2

αc2
s

.

Then using Equation 3.32 for the sound speed, we have

tvis (
(
6.673 × 10−11 N m2 kg−2 × 0.6 × 1.99 × 1030 kg × 0.2 × 6.96 × 108 m

)1/2

0.3 × (104 m s−1)2

= 3.5 × 106 s.

This is about 40 days, i.e. a little over a month.

Exercise 4.4 A stability analysis studies the reaction of a physical system
(e.g. an accretion disc) to perturbations. Initially the system is assumed to be in
equilibrium. Then a perturbation is applied to the system, and the reaction of the
system is calculated. The stability analysis is said to be linear if the initial
perturbations are sufficiently small, so that the resulting change of other quantities
can be described by the first (linear) term in the corresponding Taylor expansion
with respect to the perturbing quantity. The stability analysis is local if the
reaction of the system is studied only in the immediate vicinity of a given point in
the system. Therefore the reaction at this point is assumed to be determined by its
immediate vicinity only, not by events far away from this point.
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Exercise 4.5 With Kramers’ opacity κR ∝ ρT−3.5, the denominator of
Equation 3.41 scales as

κRρH ∝ ρ2T−3.5H,

so that with ρ = Σ/H ,

κRρH ∝ Σ2 1

H2
T−3.5H ∝ Σ2H−1T−3.5 ∝ Σ2T−4,

where for the last step we have used H ∝ T 1/2 (Equation 3.36). With this,

F (H) ∝ T 4

Σ2T−4
∝ T 8Σ−2,

as required.

Exercise 4.6 (a) For r & R1 the temperature profile of a steady-state disc is

T 4
eff(r) =

3GM1Ṁ

8πσr3
(Eqn 3.28)

(with M1 as the mass of the central accretor, the white dwarf). Setting r = rD,
Teff(rD) = TH and solving for Ṁ gives

Ṁ =
8πσT 4

Hr3
D

3GM1
.

To determine rD we note that

RL,1 ( 0.462

(
M1

M1 + M2

)1/3

a (Eqn 2.8)

can be used here as 1/q = M1/M2 ( 1 (but note that in general, short-period CVs
would have 1/q & 1 in which case Equation 2.8 is not a good approximation).
Therefore

r3
D = (0.5RL,1)

3 ( 0.2313 M1

M
a3.

With Kepler’s law a3 = G(M1 + M2)P
2
orb/4π

2, this becomes

r3
D ( 0.2313 GM1

4π2
P 2

orb.

Inserting into the above expression for Ṁ , we have

Ṁ =
0.2313 × 8πσ × T 4

HGM1

3 × 4π2GM1
P 2

orb

or

Ṁ =
0.2313 × 2σ × T 4

H

3π
P 2

orb.

This is a lower limit for the mass transfer rate if the disc is meant to be stable.
Note that it scales as Ṁ ∝ P 2

orb.

(b) We have

Ṁ

M% yr−1
=

0.2313 × 2 × 5.671 × 10−8 J m−2 K−4 s−1 × (6 × 103 K)4 × (3600 s)2

3π × 6.31 × 1022 kg s−1

(
Porb

h

)2

= 4 × 10−11

(
Porb

h

)2

,
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so Ṁ ( 4 × 10−10 M% yr−1 at Porb = 3 h. In nova-like systems with periods
longer than 3 h, the observationally estimated mass accretion rate is a few times
10−9 M% yr−1, while for shorter periods the rate is thought to be as low as a few
times 10−11 M% yr−1 — and the vast majority of short-period cataclysmic
variables (Porb " 2 h) are indeed dwarf novae.

Exercise 5.1 Cataclysmic variables are ideal laboratories for the study of
accretion phenomena for the following reasons:

• The mass donor is faint and does not swamp the optical and ultraviolet radiation
emitted by the accretion flow itself.

• The irradiation of the accretion disc by the hot accreting white dwarf is negligible.

• The size of the orbit is compact enough so that orbital changes can be observed
within hours — a convenient timescale for human observers.

• Eclipses and radial velocity studies allow one to map the accretion flow.

• Major brightness variations of the disc due to thermal and viscous evolution occur
on a convenient timescale of weeks to months.

Exercise 5.2 (a) The accretion luminosity is given by Equation 1.3:

Lacc =
GMṀ

R
.

We set Ṁ = 10−9 M% yr−1, M = 1M% and R = 8.7 × 106 m. Then

Lacc = (6.673 × 10−11 N m2 kg−2) × (1.99 × 1030 kg) × 10−9 × 1.99 × 1030 kg

× (365.25 × 24 × 3600 s)−1/(8.7 × 106 m)

= 9.6 × 1026 N m s−1

≈ 1027 J s−1.

The solar luminosity is L% ≈ 4 × 1026 J s−1. Hence, using the definition for
astronomical magnitudes, for the difference between the absolute magnitude MCV

of the CV and the absolute magnitude MSun (not to be confused with the solar
mass!) we have

MCV − MSun = −2.5 log10

(
Lacc

L%

)
.

Hence

MCV − 4.83 = −2.5 log10

(
1027

4 × 1026

)
,

which gives

MCV = 4.83 − 2.5 log10(2.5) = 3.84.

Using the distance modulus (with zero extinction)

m = MCV − 5 + 5 log10(d/pc),

we find the apparent magnitude of the CV when it is located at a distance
d = 1000 pc:

m = 3.84 − 5 + 5 log10(1000) = 3.84 − 5 + 15.
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Hence m = 13.84.

(b) With a transfer rate Ṁ = 10−9 M% yr−1, this CV is one of the brighter
ones anyway, and still its apparent magnitude, at a distance of 1000 pc, is only
about 14. (Note: In reality a bolometric correction should also be applied as the
calculation here leads to the bolometric magnitude not the visual magnitude. This
correction of about 2 magnitudes would make the CV even fainter than calculated
in the V band.) This CV would only just be observable with a 12-inch telescope.
Larger telescopes and deeper surveys of the sky would of course easily detect
such a system, and also much fainter CVs, but the problem then is to distinguish
the CVs in the survey field from the much more numerous ordinary stars.

Exercise 5.3 For the compact binary disc, the inner disc radius is close to the
compact star’s radius, i.e. rin ( 10−2R%, which is 109 m for a white dwarf and
104 m for a neutron star. For the supermassive black hole accretor, we assume that
the inner disc radius is close to the last stable circular orbit, i.e.

rin ( 3
2GM

c2
≈ 6 × 7 × 10−11 N kg−2 m2 × 108 × 2 × 1030 kg

(3 × 108 m s−1)2
≈ 1012 m.

The outer radius for the discs in binaries is a fraction of the Roche-lobe radius of
the accretor, i.e. of order the orbital separation. For short-period systems this is
" 1R% ( 109 m. For AGN, this is perhaps # 10−2 pc ( 1014 m.

Hence we have rout/rin ( 102 for cataclysmic variables and AGN, and
rout/rin ( 105 for LMXBs.

Exercise 5.4 The surface pattern arises from lines that connect points in the
disc with constant magnitude of the radial velocity, i.e. constant magnitude of the
y-component of the orbital velocity v.

Consider now two points, A and B, in the accretion disc that are mirror-symmetric
with respect to the y-axis. If point A has coordinates (x0, y0), then point B must
have coordinates (−x0, y0). The symmetry with respect to the y-axis arises
because vy at A has the same magnitude but opposite sign to vy at B. Therefore
the only difference between a point ‘to the left’ (B) and ‘to the right’ (A) of the
y-axis is that the plasma to the left is approaching, while the plasma to the right is
receding from the observer (if the orbital motion is anticlockwise).

The situation is similar if we consider two points, A and C, in the accretion disc
that are mirror-symmetric with respect to the x-axis. As point A has coordinates
(x0, y0), point C must have coordinates (x0,−y0). The symmetry with respect to
the x-axis arises because vy at A has the same magnitude and sign as vy at C! The
velocities at A and C differ only in the sign of the x-component of v.

Exercise 5.5 (a) (i) Disc plasma at a distance r from the accretor with mass M
has the Keplerian speed vK = (GM/r)1/2 (Equation 1.5). For an edge-on system
(i = 90◦), the line-of sight velocity v‖ varies with azimuth φ as v‖ = vK cos φ. So
the lines of constant line-of-sight velocity in Figure 5.3 are defined by the relation

cos φ

r1/2
=

v‖
(GM)1/2

.

(ii) Converting the polar coordinates (r, φ) into Cartesian coordinates (x, y) (see
Figure S5.1), we have cos φ = x/r and r2 = x2 + y2, so

v‖
(GM)1/2

=
x

r3/2
=

x

(x2 + y2)3/4
.
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Solving for y,

x2 + y2 =

(
x × (GM)1/2

v‖

)4/3

= x4/3 ×
(

GM

v2
‖

)2/3

or

y =

x4/3 ×
(

GM

v2
‖

)2/3

− x2

1/2

.

Figure S5.1 Cartesian and polar coordinates for Exercise 5.5.

(b) From the last equation we see that y(x0) = 0 if x
4/3
0 × (GM/v2

‖)
2/3 = x2

0, or

x
2/3
0 = (GM/v2

‖)
2/3, hence x0 = GM/v2

‖ .

(c) Alternatively, for y = 0 we always have x = r. Therefore v‖ = vK(r), i.e. the
line-of-sight velocity is just the Kepler speed as the disc plasma moves straight
towards (or directly away from) the observer. This gives r = GM/vK(r)2, which
is equivalent to the expression for x0 that we have just found.

Exercise 5.6 (a) The Keplerian speed at distance r from the white dwarf with
mass M is (Equation 1.5)

vK =

(
GM

r

)1/2

.

For M = 0.8M% (1M% = 1.99 × 1030 kg) and R = Rout = 3.0 × 108 m, we
therefore have the velocity

vK, out =

(
6.67 × 10−11 N m2 kg−2 × 0.8 × 1.99 × 1030 kg

3.0 × 108 m

)1/2

= 5.95 × 105 m s−1 = 595 km s−1.

For the inner edge of the accretion disc we set R = Rin = 7 × 106 m (comparable
to the white dwarf radius). As

vK, in = vK, out

(
Rout

Rin

)1/2

,
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we have

vK, in = 5.95 × 105 m s−1 ×
(

3.0 × 108

7.0 × 106

)1/2

= 3.90 × 106 m s−1 = 3900 km s−1.

(b) The Doppler shift is given by Equation 5.1

Δλ

λem
=

v‖
c

.

Hence at the outer edge of the disc the Doppler shift is

Δλout =
5.95 × 105

3.0 × 108
× 656 nm = 1.3 nm,

while at the inner edge of the disc the Doppler shift is

Δλin =
3.90 × 106

3.0 × 108
× 656 nm = 8.5 nm.

Exercise 5.7 The hot spot appears brightest when it faces the observer, i.e.
immediately before phase 0 (in Figure 5.4 this is at phase 0.875). The binary is at
phase 0 when the secondary star is closest to the observer. At the opposite phase,
close to phase 0.5, the hot spot is facing away from the observer. Hardly any
light from the spot reaches the observer as the disc is in the way. This variable
contribution from the hot spot gives rise to an orbital ‘hump’ in the optical light
curve. The hump is most pronounced when the system is seen nearly edge-on. If
we see the system face-on, there is no such hump. In this case the hot spot always
contributes roughly the same (small) amount to the total light.

Exercise 5.8 The ‘shadow’ in the figure indicates those regions on the
accretion disc from where the Earth (i.e. the telescope that collects photons
emitted from the disc) cannot be seen because it is obscured by the donor star.
The shadow is long if the inclination is high. In a system seen edge-on
(inclination 90◦), the shadow formally has an infinite length, while in a system
seen face-on (inclination 0◦), there is no shadow.

Exercise 5.9 The Keplerian speed for accretion disc material is given by
Equation 1.5: vK = (GM/r)1/2 , i.e. the speed increases with decreasing r. In a
velocity map, the surface brightness of the accretion disc is plotted as a function
of the x- and y-components of the velocity v of the emitting material. Hence the
rapidly moving material from the inner regions of the accretion disc will appear at
large values of vx and vy, while the slowly moving material from the outer regions
of the accretion disc will appear at small values of vx and vy.

Exercise 5.10 (a) The shift between the continuum and line flux is about
40 days.

(b) The emission line light curve needs to be shifted about 40 days earlier in
order to correlate with the continuum light curve. The emission line light curve
therefore lags about 40 days after the continuum light curve.

(c) This indicates that in this case, the emission line flux could be caused by
reprocessing or reflection of the continuum flux after an interval of about 40 days.
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This may represent the light travel time from the site of emission of the continuum
to the site of emission of the emission line light.

Exercise 6.1 The energy of the photon is given by

E = hν =
hc

λ
.

Hence the frequency ν for a 1 keV photon is given by

ν =
E

h
=

103 eV × 1.602 × 10−19 J eV−1

6.626 × 10−34 J s
= 2.4 × 1017 Hz.

Also,

λ =
hc

E
=

(6.626 × 10−34 J s) × (2.998 × 108 m s−1)

103 eV × 1.602 × 10−19 J eV−1

= 1.2 × 10−9 m = 1.2 nm.

Exercise 6.2 (a) Using Equation 6.9, the Eddington limit becomes

LEdd =
4π × 6.673 × 10−11 N m2 kg−2 × 1.673 × 10−27 kg × 2.998 × 108 m s−1

6.652 × 10−29 m2
× M

= 6.322 × (1.99 × 1030) ×
(

M

M%

)
W

= 1.26 × 1031

(
M

M%

)
W.

(b) In this case, M = 1.4M%, and LEdd = 1.8 × 1031 W.

(c) For a 10M% black hole, LEdd = 1.3 × 1032 W.

Exercise 6.3 (a) First we need to calculate the cross-section at 1 keV:

σ(E) = (c0 + c1 × E + c2 × E2)E−3 × 10−24 cm2,

where E is measured in keV. Hence

σ(1 keV) =
(
120.6 + (169.3 × 1) + (−47.7 × 12)

) × 1−3 × 10−24 cm−2,

giving σ(1 keV) = 2.42 × 10−22 cm−2.

The fraction of radiation transmitted through the absorber, ftrans(E), is given by
Equation 6.15. For NH = 1.5 × 1022 atom cm−2,

ftrans(1 keV) = exp
[−(1.5 × 1022) × (2.42 × 10−22)

]
= 0.0265.

The fraction of energy absorbed (fabs) is 1−ftrans, i.e. fabs ( 97%.

(b) For 5 keV photons,

σ(5 keV) =
(
433 − (2.4 × 5) + (0.75 × 52)

) × 5−3 × 10−24 cm−2,

hence σ(5 keV) = 3.5 × 10−24 cm2. Therefore

fabs = 1 − exp
[−(1.5 × 1022) × (3.5 × 10−24)

]
= 5%.

Exercise 6.4 (a) The lowest frequency is given by

fmin =
1

N ΔT
= 1

4 Hz.
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The highest frequency is given by

fmax =
1

2ΔT
= 1

2 Hz.

There are N/2 frequencies in the PDS, i.e. 2.

(b) Equation 6.19 tells us that the power for frequency k, P (fk), is given by

P (fk) = C

 N∑
j=1

Ij cos(2πfktj)

2

+

 N∑
j=1

Ij sin(2πfktj)

2 ,

where C is a constant, k = 1, 2, j = 1, 2, 3, 4.

First, we shall tackle k = 1, where fk = 1
4 :

P (1
4) = C

 4∑
j=1

Ij cos(2π × 1
4 × tj)

2

+

 4∑
j=1

Ij sin(2π × 1
4 × tj)

2 .

Summing the cosine terms:

4∑
j=1

Ij cos(2π × 1
4 × tj) = (3 × 0) + (1 ×−1) + (3 × 0) + (1 × 1) = 0.

Now summing the sine terms:

4∑
j=1

Ij sin(2π × 1
4 × tj) = (3 × 1) + (1 × 0) + (3 ×−1) + (1 × 0) = 0.

Since both the sine and cosine terms are zero, P (1
4) = 0.

Now we shall tackle k = 2, where fk = 1
2 :

P (1
2) = C

 4∑
j=1

Ij cos(2π × 1
2 × tj)

2

+

 4∑
j=1

Ij sin(2π × 1
2 × tj)

2 .

Summing the cosine terms:

4∑
j=1

Ij cos(2π × 1
2 × tj) = (3 ×−1) + (1 × 1) + (3 ×−1) + (1 × 1) = −4.

Summing the sine terms:

4∑
j=1

Ij sin(2π × 1
2 × tj) = (3 × 0) + (1 × 0) + (3 × 0) + (1 × 0) = 0.

Hence

P (1
2) = C

[
(−4)2 + (0)

]2
= C × 16.

This tells us that the light curve is produced by a cosine with frequency 1
2 .

Exercise 6.5 (a) The detected flux F is given by

F =
L

4πd2
, (Eqn 6.20)
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so

L = F × 4πd2.

The distance d is estimated to be 8 kpc, i.e. 8000 × 3.086 × 1016 m. Hence

L = (4.5 × 10−11 W m−2) × 4π × (8000 × 3.086 × 1016 m)2

= 3.4 × 1031 W.

This luminosity is higher than expected for a 1.4M% neutron star accreting
hydrogen, by about a factor of 2 (see Exercise 6.2), but is in line with observations
of LMXBs in globular clusters.

(b) The X-ray peak of a radius-expanding burst corresponds to the photosphere
shrinking down to normal size, so the black body radius gives us the radius of the
neutron star, RNS. For black body radiation,

L = 4πR2
NS σT 4.

First, we need to work out the temperature corresponding to kT = 2.1 keV:

T =
2.1 × 1000 × (1.602 × 10−19) J

1.381 × 1023 J K−1 = 2.4 × 107 K.

We then obtain RNS using the Stefan–Boltzmann law:

RNS =

(
3.4 × 1031 W

4 × π × 5.671 × 10−8 W m−2 K−4 × (2.4 × 107 K)4

)1/2

≈ 1.2 × 104 m = 12 km.

Exercise 6.6 We estimate the donor mass from the approximate relation

Porb ( 8.8 h
M2

M%
. (Eqn 2.11)

This gives

M2

M%
( Porb

8.8 h
=

4.4

8.8
= 0.5.

So M2 = 0.5M%. With R2/R% ( M2/M%, the radius of the donor star is
0.5 R%, and as the donor is Roche-lobe filling, this is also equal to the Roche-lobe
radius, RL,2 ≈ 3.5 × 108 m.

Since the LMXB exhibits X-ray bursts, it must contain a neutron star primary, so
we may assume a mass of M1 = 1.4M%. Therefore the mass ratio of the system
is q = M2/M1 ≈ 0.5/1.4 = 0.36.

We find the neutron star’s Roche-lobe radius by noting that

RL,1

RL,2
=

f1(1/q)

f2(q)
,

where f(q) is given by Eggleton’s approximation

f(q) ( 0.49q2/3

0.6q2/3 + loge(1 + q1/3)
. (Eqn 2.7)

For q = 0.36 we have 1/q = 2.8 and so f(2.8)/f(0.36) ≈ 1.6. The Roche-lobe
radius of the neutron star is therefore RL,1 ( 1.6 × RL,2 = 5.6 × 108 m.
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To estimate the size of the corona, we rearrange Equation 6.21 to get

DADC =
2πRdisc ΔTing

Porb
.

Rdisc is estimated to be 30–50% of the Roche-lobe radius. So the smallest corona
size is obtained by taking Rdisc = 0.3 × RL,1. Then

DADC =
2π × 0.3 × (5.6 × 108) m × 2000 s

4.4 × 3600 s
= 1.3 × 108 m.

For Rdisc = 0.5 × RL,1, the corona is larger by a factor 0.5/0.3 = 1.7. Hence the
corona has a diameter of ∼130 000–230 000 km.

Exercise 6.7 We have the relation H/r = tan δ (see Figures 6.22 and 6.23).
Hence δ = tan−1(0.2) = 11.3◦.

Exercise 6.8 We have to calculate the radius in the disc where the orbital
frequency equals the QPO frequency f . The angular speed ω at distance r from
the accretor with mass M is

ω =

(
GM

r3

)1/2

. (Eqn 3.3)

Rearranging this to solve for r yields

r =

(
GM

ω2

)1/3

.

Since ω = 2πf ,

r =

[
(6.673 × 10−11 N m2 kg−2) × (1.4 × 1.99 × 1030 kg)

(2 × π × 6.0 s−1)2

]1/3

.

Hence r = 5.2 × 105 m, or ∼520 km. This is only about 30 times the neutron star
radius.

Exercise 6.9 Observations of Galactic LMXBs with known neutron star
primaries suggest that transitions from the low state to the high state occur at
0.1LEdd or less. For a neutron star with a mass of 2.1M%,

LEdd ( 1.26 × 1031 × 2.1M%
1M%

= 2.7 × 1031 W.

Since the transition occurs at ∼0.1LEdd or less, we do not expect to see neutron
star LMXBs exhibit the low state at 0.01–1000 keV luminosities higher than
∼2.7 × 1030 W.

Exercise 6.10 (a) The Eddington luminosity is given by

LEdd = 1.26 × 1031

(
M

M%

)
W, (Eqn 6.10)

while the accretion luminosity for a Schwarschild black hole can be written as
Lacc = ηacc c2Ṁ (Equation 1.9), with ηacc = 0.057 (see Subsection 1.2.1).
Equating these luminosities and solving for Ṁ gives

ṀEdd =
1.26 × 1031 W

0.057 × c2

(
M

M%

)
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or

ṀEdd = 3.9 × 10−8 M% yr−1

(
M

M%

)
. (6.24)

(b) Inserting Equation 6.24 into Equation 1.17 (in the solution to Exercise 1.10)
gives

Tpeak = 1.5 × 107 K

(
M

M%

)−1/4

. (6.25)

(c) For a 100M% black hole accreting at the Eddington limit, this is
Tpeak ( 5 × 106 K, a factor of 2–4 lower than the observed value.

Exercise 6.11 (a) If the source is unbeamed, its luminosity would be

L = F × 4πd2

= (3.5 × 10−15 W) × 4π × (3.26 × 106 pc × 3.059 × 1016 m pc−1)2.

So L = 4.5 × 1032 W.

(b) From Equation 6.10,

LEdd = 1.26 × 1031

(
10M%
M%

)
= 1.26 × 1032 W.

The source therefore exceeds its Eddington luminosity unless it is beamed by at
least the minimum beaming factor

bmin =
4.5 × 1032 W
1.26 × 1032 W

= 3.6.

(c) From Equation 6.25, bmin is also defined as bmin = 4π/ΔΩ. Hence

Ω =
4π

bmin
=

4 × 3.141

3.6
= 3.5 sr.

This is a fraction 3.5/4π = 28% of the whole sphere. If the beaming factor is
larger than bmin, then ΔΩ decreases, hence this is a maximum solid angle.

Exercise 7.1 (a) At a mass loss rate of 10−5 M% yr−1, the Wolf–Rayet star
will lose ΔM = Ṁ Δtwind ( 10−5 × 0.1 × 5 × 106 M% = 5M%, which is a
large fraction of its initial mass!

(b) At a mass loss rate of 10−14 M% yr−1, the Sun will lose just 10−4 M% over its
lifetime, which is a tiny fraction of its mass.

Exercise 7.2 Taking 6000 Å as a typical optical wavelength, the application of
Equation 5.1 suggests a speed of c/150 or 2000 km s−1. The component along the
line of sight coincides with the actual velocity as the outflow is spherically
symmetric (a wind).

Exercise 7.3 In 27 days from 3rd April to 30th April, the two jets appear in
the sky to have moved apart by about 700 milliarcsec, which corresponds to
0.2 × 0.7 ly = 0.14 ly. Thus the speed at which the two bright spots appear to
move apart is v = (0.14 ly)/(27 days). We may express this directly in terms of
the speed of light by noting that a light-year is the distance that light travels in
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1 year. Thus v = (0.14 × 365c)/27 ( 1.9c. The left bright spot has moved
further from the centre than the right spot. It is roughly at twice the distance from
the cross than the right spot. Thus the left spot has moved from the centre at about
1.3c, and the right at about 0.6c. The left spot appears to be moving at a speed
faster than light!

Exercise 7.4 Solving Equation 7.1 for V/c gives

V

c
=

(
1 − 1

γ2

)1/2

.

Using the first-order expansion (1 + x)1/2 ( 1 + x/2 (x ) 1) with x = −1/γ2,
this becomes

V

c
( 1 − 1

2γ2
,

as required.

Exercise 7.5 (a) Equation 7.13 gives the maximum value of α for observing a
star that is at right angles to the ecliptic (θ = π/2). Thus αmax = v/c. Converting
the angle to radians, we get α = 21π/(180 × 60 × 60) rad = 1.0 × 10−4 rad. So
v/c ≈ 10−4 and v ≈ 30 km s−1.

(b) The Earth’s rotation period is P⊕ = 24 h. The rotational velocity of a point at
the surface of the Earth’s equator (of radius R⊕) is

v = 2πR⊕/P⊕ = 2π × 6.38 × 106/(24 × 60 × 60) m s−1 ≈ 464 m s−1.

We may use this in Equation 7.13 to calculate αmax. Alternatively, we may exploit
the result of part (a): the ratio of the two speeds is equal to the ratio of the
aberration angles in the two situations. Thus α⊕,max/21

′′ = 464/30 000, giving
α⊕,max ≈ 0.32′′.

Exercise 7.6 The transformation equation for x is Equation 7.7

x = γ(x′ + V t′),

while for t it is Equation 7.10: t = γ(t′ + V x′/c2). Hence we have

dx = γ(dx′ + V dt′) and dt = γ

(
dt′ +

V dx′

c2

)
.

So we obtain for the velocity

vx =
dx

dt
=

dx′ + V dt′

dt′ + (V/c2) dx′ =
dx′/dt′ + V

1 + (V/c2)(dx′/dt′)
=

v′x + V

1 + V v′x/c2
.

(The corresponding transformations for vy and vz can be obtained in a similar
way.)

Exercise 7.7 (a) vap attains a maximum for dvapp/dθ = 0. From
Equation 7.24, we get

dvap

dθ
=

V cos θ

1 − (V/c) cos θ
− V sin θ

(1 − (V/c) cos θ)2
V

c
sin θ,

and applying the condition for a maximum

0 =

(
1 − V

c
cos θmax

)
V cos θmax − V 2

c
sin2 θmax.
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Manipulating this further gives

cos θmax−V

c
cos2 θmax−V

c
sin2 θmax = 0 or cos θmax−V

c
(cos2 θmax+sin2 θmax) = 0,

thus

cos θmax =
V

c
and so θmax = cos−1(V/c).

(b) From cos θmax = (V/c), we get

sin θmax =
√

1 − (V/c)2 =
1

γ
.

Equation 7.24 thus gives

vap =
V sin θmax

1 − (V/c) cos θmax
=

V

γ[1 − (V 2/c2)]
=

V γ2

γ
= γ V.

Exercise 7.8 (a) For θ = π/2, Equation 7.28 gives D = 1/γ.

(b) For θ = 0, Equation 7.28 becomes D = [γ(1 − V/c)]−1.

From the definition of γ (Equation 7.1), we have

γ2 = [(1 + V/c)(1 − V/c)]−1 .

So γ(1 − V/c) = [γ(1 + V/c)]−1.

Thus D = γ(1 + V/c), which for highly relativistic speeds becomes D ( 2γ.

(c) For a source moving at right angles to the observer, the received frequency is
redshifted: νrec = ν′

em/γ.

For a source moving towards the observer, the received frequency is blueshifted:
νrec ( 2γν ′

em.

Exercise 7.9 For the given values of the parameters, γ1 = 1, m1 ( m2/γ2,
γb = γ2/2 and Eth ( γ2m1c

2/4, Equation 7.39 gives

ε =
γ2m1c

2/4

(m1 + γ2m2)c2
=

γ2/4

1/γ2 + γ2
=

1

4

(
γ2

1/γ2 + γ2

)
.

As γ2 & 1, we therefore have ε ≈ 1
4 = 25%.

Exercise 7.10 If the electrons execute a circular motion with speed v and
radius r, we have |v × B| = vB⊥, so

evB⊥ =
mev

2

r
. (7.26)

Hence the circular speed is v = eB⊥r/me. The frequency is given by
νcy = v/(2πr), so

νcy =
eB⊥r

me2πr
=

eB⊥
2πme

. (7.27)

Exercise 7.11 A comparison between the power emitted by a single electron by
each mechanism (Equations 7.53 and 7.59) shows that Psy/Pic = UB/Urad. So it
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is the relative intensity of the respective underlying fields that determines which
component dominates.

Exercise 8.1 Solving Equation 7.49 for E, we get E = 4πd2S. The distance
has to be converted to m, using 1 pc = 3 × 1016 m.

(a) For a Galactic halo source,

d ≈ 50 kpc = 50 × 103 pc × 3 × 1016 m pc−1 = 1.5 × 1021 m

and

E ≈ 4π × (1.5 × 1021 m)2 × 10−9 J m−2 ≈ 3 × 1034 J.

(b) Similarly, for the cosmological source,

d ≈ 9 × 1025 m ≈ 1026 m

and

E ≈ 4π × (1026 m)2 × 10−9 J m−2 ≈ 1044 J.

We have

M% c2 ≈ 2 × 1030 kg × (2.998 × 108 m s−1)2 ≈ 2 × 1047 J.

The energy implied for a Galactic halo source is about 10 times higher than for an
X-ray burst, and much less compared to a supernova or the mass energy of a solar
mass. The energy in a source at a cosmological distance is comparable to the
energy in a supernova, and 1/1000 of the mass energy available in 1 solar mass.

Exercise 8.2 The shorter timescale, Δtvar ( 1 ms, provides the more stringent
constraint, Δr " cΔtvar ≈ 300 km. This suggests a compact stellar object
(neutron star or black hole).

Exercise 8.3 We need to estimate nγ for use in Equation 8.3. From
Equation 7.50, nγ ( Lγ/(4π(Δr)2chν), and using Δr = cΔtvar, we get
τγγ ( σTLγ/(4πc2Δtvar hν). Substituting values in and converting MeV to SI
units by 1 eV = 1.602 × 10−19 J, we obtain

τγγ ≈ 0.665 × 10−28 m−2 × 1044 J s−1

4π × (2.998 × 108 m s−1)2 × 10 × 10−3 s × 0.5 × 106 eV × 1.602 × 10−19 J eV−1

≈ 7 × 1012.

Exercise 8.4 The source reached the apparent size Rdef in 4 weeks’ time.
4 weeks corresponds to Δt = 4 × 7 × 24 × 602 s = 2.4 × 106 s. An estimate of
the speed V of expansion is obtained from Rdef ( V Δt, thus

V ≈ 1015 m
2.4 × 106 s

≈ 4.13 × 108 m s−1 =
4.13 × 108

3 × 108
c ≈ 1.4c,

an apparent superluminal expansion as in AGN jets and microquasars.

Exercise 8.5 Using Equation 7.36 we obtain

rdis ( 2γ2cΔtvar = 2 × 3002 × (2.998 × 108 m s−1) × (10 × 10−3 s) = 5.4 × 1011 m ≈ 5 × 1011 m.

Exercise 8.6 (a) 1 cm = 10−2 m. Therefore 1 cm3 = 10−6 m3, which gives
1 cm−3 = 106 m−3.
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(b) Substituting values in Equation 8.12, we obtain

rdec ≈
(

3

4π × 1.67 × 10−27 kg × (2.998 × 108 m s−1)

)1/3

×
(

1044 J
106 m−3 × 3002

)1/3

≈ 1.2 × 1014 m,

which is about 0.004 pc or 800 AU.

Exercise 8.7 We may use the result of Exercise 8.6, rdec ≈ 1.2 × 1014 m, in
Equation 8.14:

tdec ≈ 1.2 × 1014 m
(2 × 3002) × (2.998 × 108 m s−1)

≈ 2 s.

Exercise 8.8 For ΘJ = 10◦ ≈ 0.17 rad, the subtended solid angle of one jet is
ΔΩ = 2π(1 − cos(ΘJ/2)) (Equation 7.20). For two jets the solid angle is

ΔΩ = 4π(1 − cos 5◦) = 4.8 × 10−2.

(a) The required energy is 4π/ΔΩ ≈ 260 times less than estimated in
Exercise 8.1.

(b) As the emission is confined to a narrow jet, on average only 1 out of a few
hundred GRBs will be detected by an observer on Earth. Hence the required
source rate is a few hundred times higher than estimated in Worked Example 8.2,
where it was assumed that GRBs emit isotropically.

278




