
5

Diffusion and randomness in
transcription

5.1 Random walks and Diffusion

5.1.1 What is the timescale for homogenizing protein concentrations
in a eukaryotic cell with diameter 20μm. Assume that D = 5μm2 s−1, or
D = 0.2μm2 s−1.

Answer A protein initially at point (0,0,0) will at time t be distributed
accordingly to a Gaussian distribution with spread σ =

√
2Dt. When this

becomes comparable to the cell radius, the distribution will be homogenized.

Thus
√
2Dt = 10μm, giving t = 100μm2/2D = 10 s when using a

diffusion constant D = 5μm2 s−1.

Similarly,
√
2Dt = 10μm giving t = 100μm2/2D = 250 s when using a

diffusion constant D = 0.2μm2 s−1.

5.1.2 What time does it take to homogenize protein concentrations in a neu-
ron by use of diffusion, connecting the brain with tissues that are 1m away?
Assume that D = 5μm2 s−1.

Answer A protein initially at point (0,0,0) will, at time t, be distributed
accordingly to a Gaussian with spreads σ =

√
2Dt. When starting the

protein at one end of a neuron it similarly spreads in a Gaussian fashion
in the positive half plane. The system is homogenized when this becomes
comparable to the neuron length. Thus

√
2Dt = 1m = 106 μm, giving

t = 1012 μm2/(2 · 5μm2 s−1) = 1011 s ∼ 3000 years. Therefore transport
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in neurons must be directed; in practice this is done by molecular motors
moving by speeds of the order of μm s−1 along microtubules.

5.2 Timescales for target location in a cell

5.2.1 Follow and supplement the formal proof below for diffusion-limited tar-
get location as illustrated in Fig. 5.2. In a steady state the current J is inde-
pendent of r. Use Eq. (5.13) to argue:

ρ(r) =
J

D4πr
+ ρ(∞)

Using the concentration at infinite ρ(∞) = N/V and ρ(ε) = 0 (why are these
sensible limits?) one may obtain:

−J

D4πε
=

N

V
⇒ |J | = 4 π ε D

N

V
⇒ τon =

1

|J | =
V

4πDεN

Answer In spherical coordinates:

dρ

dt
=

1

r2
D

d

dr

(
r2
dρ

dr

)

The current across a spherical shell at radius r is:

J = −D 4π r2
dρ

dr

allowing us to express the diffusion equation:

dρ

dt
= − 1

4πr2
D

d

dr
(J)

In steady state, the current J is independent of r:

1

4πr2
D

d

dr
J = 0 ⇒ J = constant

From the above equations:

ρ(r) =
J

D4πr
+ ρ(∞)
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Using that the concentration at infinite ρ(∞) = N/V and that particles that
reach r = ε are instantly absorbed, i.e. ρ(ε) = 0, one obtains:

−J

D4πε
=

N

V
⇒ |J | = 4 π ε D

N

V
⇒ τon =

1

|J | =
V

4πDεN

which expresses the number of particles that are absorbed on the target per
time unit.

5.2.2 Derive the Smoluchowsky equation in two dimensions (use the two-
dimensional analog J = −2πrdρ/dr with ρ(∞) = N/A counting particles
per area).

Answer Again using that the current is independent of distance r from the
target:

J = −2πrD
dρ

dr
⇒

dρ

dr
= − J

2πrD
⇒

ρ(R) = −
∫ R

ε

Jdr

2πDr
= − J

2π
· log

(
R

Dε

)

where J is negative, since it is directed inwards. For a system with area A
and radius R, given by A = 2πR2, a current from the outskirts of this system
with density ρ ∼ N/A is given by:

N

πR2D
=

−J

2π
log(R/ε) ⇒

(−J) =
2π ·D · (N/A)

log(R/ε)

expressing a remarkably slow decay with the size ε of the target. Thus the
time to find the target only increases logarithmically with decreasing target
size:

τ =
log(R/ε)

2π ·D · (N/A)

5.2.3 Plot τoff as a function of binding energy ΔG, and find ΔG where τoff
equals the E. coli cell generation time (say, 1 hour).
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Figure 5.1 Off rates from a binding site as a function of the binding energy
in kcal mol−1 (kBT = 0.62).

Answer As stated in the main text, for a target ε = 5nm:

τoff ∼ (10−3 m3)

4π · 5μm2 · 0.005μm · 6 · 1023 exp
(
−ΔG

kBT

)

∼ 5 · 10−9s exp

(
−ΔG

kBT

)

where the prefactor accordingly corresponds to one escape attempt every
5 ns. See Fig. 5.1.

5.2.4 Simulate a random walker on a lattice, confined to a box represented
by integer positions between −5 and 5 (included), in all six directions: i.e.
the particle at (x,y,z) can move one step in any one of six directions, except
when this move brings it outside the box. Compare the time to find point
(0,0,0), with the time to find any point in the cube [−1 : 1]3 and also to
find the (0,0,0) point in [−2 : 2]2. First use an initial position at the border
and investigate all three system sizes. Then simulate the largest system when
starting at (0,0,0).

Answer Define a walk in terms of three co-ordinates, x(i), y(i) and z(i),
where i counts the steps of the walk. Each step changes one of the co-ordinates
by either +1 or −1. Changes that bring walks outside the prescribed box are
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Figure 5.2 Random walker released to the right of a box, and stepping until
it locate a target at position (0,0,0). In this particular [−5 : 5]3 case the walk
took 5684 steps to locate the target. Average over 100 walks gave a search
time of 6629 steps.

not acceptable. Check whether walk is at position (0,0,0), and if so then abort
the walk and record the number of steps i it took to reach this position. An
illustration is given in Fig. 5.2.

Sampling 1000 walks from a starting position at (L, 0, 0) until they reach
(0,0,0) gives:
Average search time for L = 1 is 〈t〉 = 132 (volume V = 27) 〈t〉/V = 4.88).
Average search time for L = 2 is 〈t〉 = 619 (volume V = 125, 〈t〉/V = 4.95).
Average search time for L = 5 is 〈t〉 = 6629 (volume V = 1331, 〈t〉/V = 5).
Average search time for L = 10 is 〈t〉 = 47086 (volume V = 9261, 〈t〉/
V = 5.08).

We then investigate the search time starting from (0,0,0) and searching for
(0,0,0). For L = 5, this gives 〈t〉 = 6343, a number that is remarkably close
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to that one starting far away. The chance of geting lost when starting from
the target is large anyway.

5.2.5 Argue that the escape rate to a distance R away from a one-dimensional
DNA strand before recapturing scales as: r ∝ 2πDl

ln(R/b)
, where b is the diameter

of the DNA, l is the length of the DNA and where one assumes that the
touching distance = b always leads to absorption (this is the diffusion-limited
case, reaction is instant when possible).

Answer This problem amounts to an escape problem in two-dimensions
(perpendicular to the DNA), (see Question 5.2.2). In steady state the rate
of gain and loss should be equal, and thus the rate of loss of particles at
distance R is:

dρ

dt
=

2π ·D · ρ · 
log(R/b)

where  is the length of the DNA. From this the escape rate per particle is
calculated from ((1/ρ) · dρ/dt).

5.2.6 DNA mismatch repair generally repairs about 99% of single nucleotide
mismatches after DNA replication. It involves the protein MutS which dimer-
izes around the mismatch and thereafter, in E. coli, diffuses along the DNA
until a hemi-methylated GATC site is located. This “half-methylated” site
serves as a detector for new DNA (which ultimately becomes fully methy-
lated). Estimate the minimum diffusion constant that one MutS needs to
have in order to reach a GATC site within a characteristic time interval of
2 minutes (the time it takes the protein Dam to methylate the GATC site).
Allow for a maximum of 1% failure rate and assume that it starts at a po-
sition that is 128 base pairs from a GATC site. Hint: with a characteristic
time window of 2 min there will be 1% probability that the GATC site is
methylated within 1 s.

Answer To reach a distance l = 128 within t = 120 s, the diffusion constant
should be at least:

D =
l2

2 · t =
1282bp2

240s
∼ 70 bp2/s−1 = 6nm2 s−1

However, the 99% fidelity before the GATC sites are methylated, implies that
it only fails in 1% of the cases. With an average of 2 minutes to methylate,
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Figure 5.3 Random walker released at position 0 at time t = 0 and reaching
position x = 128 after 1.5 seconds. The diffusion constant D = 5000 bp2 s−1

simulated by steps of −1 bp or +1 bp every τ = 1/(2D) = 0.0001 s. Simulat-
ing 5000 such walks we only fail reach hemi-methylated GATC sites in 1.1%
of the simulations. The lower panel shows an example where the GATC sites
become methylated before the MutS reaches any of them.

the methylation rate is r = 1/(120 s). Thus, within 1.2 s, 1% of the GATC
sites are fully methylated. If position 128 is the only GATC site available,
the MutS has to reach this site within this 1.2 s. Accordingly the minimal D
becomes:

D =
l2

2 · t =
1282bp2

2 s
∼ 8000 bp2 s−1 = 700 nm2 s−1 = 0.0007μm2 s−1

5.2.7 Simulate the problem in question 5.2.3, starting a random walk at
position x = 0 and let it walk until it first passes position +128 or position
−128. Use the simulation to deduce the diffusion constant when one assumes
a 99% chance of reaching ±128 before they are invisible, when methylation
of each of these positions occurs at a rate of 0.01s−1.

Answer This requires a basic simulation as described in Fig. 5.3, where a
walker is released at position x = 0, at time t = 0, and subsequently walks one
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step to left or right any timestep τ = 1/(2D), thereby simulating a random
walk corresponding to a diffusion constant of D. The two hemi-methylated
sites each have a chance of 0.01τ to become methylated at each timestep.
When both sites are methylated, the error at position 0 cannot be repaired
and the simulation is aborted. Simulations with D < 5000 bp2 s−1 give more
than 1% errors, whereas simulations with higher D give less than 1% errors.

5.3 Traffic on DNA

5.3.1 Reconsider Eq. (5.26), taking into account that RNAP needs time Ωl/v
to leave the promoter before a new RNAP can bind to it. Let l = 35 bp be the
length of an elongating RNAP and v ∼ 40 bp s−1 the velocity of the RNAP.
At what promoter firing strength does this correction become more than a
factor of two?

Answer The steady-state occupancy of the promoter when including that
a RNAP that has started to transcribe still occlude the promoter for a time
interval Δt = l/v is:

keθ = kon ·
(
1− θ − ke

l

v
· θ
)

⇒

θ =
kon

ke + kon + ke · konl/v
→

Ω = keθ =
konke

ke + kon + ke · konl/v
where θ is occlusion associated with bound RNAP and ke

l
v
θ is occlusion

associated, with RNAP that are initiated during the time l/v. A factor two
correction occurs when:

ke · konl/v = ke + kon ⇒ l/v =
1

ke
+

1

kon

thus to have a factor of two correction, the basic time for binding to the
promoter, plus the time to leave an open complex should be about l/v =
35/40 = 0.85 s. In this case the full time between elongation initiations 1/Ω
would then be 1.7 s.

5.3.2 Show that I = 1+ (ΩA/Ω) ·α/(1+α)2, where α = kon/ke is the aspect
ratio of the promoter. Which value of α gives maximal interference? Discuss
why interference decreases for both very small and very large α.
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Answer The promoter activity without and with opposing promoter:

Ω(without PA) = ΩS =
konke

ke + kon
and Ω(withPA) =

konke
ke + kon + ΩA

⇒

Ω(without PA)

Ω(with PA)
=

ke + kon + ΩA

ke + kon
= 1 +

ΩA

ke + kon

= 1 +
ΩA

ΩS

konke
(ke + kon)2

= 1 +
ΩA

ΩS

konke
(ke + kon)2

= 1 +
ΩA

ΩS

α

(1 + α)2

where in last equality we divide nominator and denominator by k2
onk

2
e and use

the dimensionless aspect ratio α = kon/ke. Thus, the interference increases
with increasing strength between the aggressive promoter, as well as with the
symmetry of the sensitive promoter.

5.3.3 Consider occlusion, the fact that an entering RNAP from pA prevents
an RNAP bind to pS for a time given by l + r = 35 + 75 bp (see Fig. 5.6).
(r = 75 bp is the length an RNAP needs to bind to a promoter.) What is
the interference factor I if one includes this occlusion effect? Calculate I for
Ω = kon/2 = ke/2 = 0.01 s−1, ΩA = 0.1 s−1 and v = 40bp s−1. What is the
interference if both promoters are four times stronger?

Answer The steady-state balance between the RNAP leaving the promoter
and the RNAP entering the promoter reads:

(ke + ΩA)θ = kon · (1− θ) · exp
(
−L

v
· ΩA

)

where the last two factors count respectively the probability that there is
no RNAP bound to the PS, and the probability that there is no RNAP
from PA that moves across the promoter. The exponential is derived by the
assumption that each time interval dt has a probability exp(−ΩAdt) not
initiating an RNAP from PA. By multiplying all probabilities, we implicitly
assume that all RNAP initiations are independent:(

ke + ΩA + kon exp

(
−L

v
· ΩA

))
θ = kon · exp(−

L

v
· ΩA) ⇒

θ =
kon · exp(−L

v
· ΩA)

ke ++ΩA + kon exp(−L
v
· ΩA)

⇒

Ω(with PA) =
kekon · exp(−L

v
· ΩA)

ke + ΩA + kon exp(−L
v
· ΩA)
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which should be compared to the activity without an interfering promoter

Ω(without PA) = ΩS =
konke

ke + kon

The interference factor:

Ω(without P)

Ω(with pA)
=

konke
ke + kon

·
ke + ΩA + kon exp(−L

v
· ΩA)

kekon · exp(−L
v
· ΩA)

= exp

(
L

v
· ΩA

)
·
(
1 +

ΩA

ke + kon
−

kon(1− exp(−L
v
· ΩA))

ke + kon

)

= exp

(
L

v
· ΩA

)
·
(
1 +

ΩA

ΩS

α

(1 + α)2
−

kon(1− exp(−L
v
· ΩA))

ke + kon

)

∼ exp

(
L

v
· ΩA

)
·
(
1 +

ΩA

ΩS

α

(1 + α)2
−

αL
v
· ΩA

1 + α

)

where the last two expressions use α = kon/ke (the detailed derivation
for the ΩA/ΩS term is given in an earlier question). One notices that the
interference due to occlusion becomes especially large when ΩA ∼ v/L >
(40 bp s−1)/105 bp ∼ 0.4 s−1. Thus a promoter that initiates RNAP every
2.5 s occludes PS by about a factor of 1/e in addition to the interference
associated with the “sitting duck” collisions.

For a concrete example:

Ω(without PA)

Ω(with PA)
∼ exp

(
105 bp

40 bp s−1
· 0.1s−1

)
·
(
1 +

0.1

0.01

1

(1 + 1)2
−

105
40

· 0.1
1 + 1

)

= e0.26 ·
(
1 + 10 · 1

4
− 0.26

2

)
= e0.26 · (3.5− 0.13) = 4.4

In case both promoters are four times faster,

Ω(without PA)

Ω(with PA)
∼ exp

(
105bp

40 bp s−1
· 0.4 s−1

)
·
(
1 +

0.1

0.01

1

(1 + 1)2
−

105
40

· 0.4
1 + 1

)

= e1.04 ·
(
1 + 10 · 1

4
− 1.04

2

)
= e1.04 · (3.5− 0.52) = 8.4
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5.3.4 Assume that RNAP from pS (see Fig. 5.6) has to travel a distance
L−40 before it has escaped possible collision with RNAP from pA. How does
I change with increasing N?

Answer The moving RNAP can collide with RNAP from PA that is ini-
tiated at any time from (N − 40)/v before it starts elongating itself, to a
time (N − 40)/v after it started (the time where it passed pA). Thus it is
vulnerable to opposing RNAP during a time window Δt = 2(N − 40)/v,
where v = 40 bp s−1. The probability that pA does not fire during this time
is:

P (no collision) = exp(−ΩA ·Δt)

if one assume that all initiates is independent of each other. Thus the inter-
ference factor:

Ω(without pA)

Ω(with pA)
=

1

P (no− collision)
· (occlusion) · (sitting duck)

= exp(2ΩA · (N − 40)/v) · (occlusion) · (sitting duck)

5.3.5 Implement a stochastic model for promoter interference on a computer,
including only the collision effect. Thus, each promoter starts one RNAP at
each of their respective initiation rates, and each RNAP moves one step at a
time towards the right, or left respectively. RNAP are assumed to fall off when
colliding. Use a promoter strength of pA = 0.1 s−1 and pS = 0.05 s−1 and
an RNAP speed of 40 bp s−1. Calculate the promoter activity for distances
L = 100 bp, 1000 bp and 2000 bp. Compare with the analytical predictions
from the previous question. Hint: Use dt = 0.01 s as the time unit, and let
each promoter initiate a new RNAP with probability dt · pA, or dt · pS. At
each time step move the RNAPs in their specified direction with probability
v ·dt = 0.4. One may speed up the simulation by implementing steps of 10 bp,
thus using time steps dt = 0.1 and accordingly adjusted promoter initiation
probabilities per time step.

Answer The main complication in the model is taking into account that
there may be multiple RNAPs from each promoter on the DNA at any given
time. This may be accomplished by having an array of RNAPs from PA and
another array of RNAPs from PS. The array specifies the position of the
RNAP between 1 and the system size N . When a new RNAP is introduced
it is inserted in the first empty position in the corresponding array. When
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PA = 0.1s-1, reduced by a factor of 0.82
PS = 0.05s-1, reduced by a factor of 0.67

PA = 0.1s-1, reduced by a factor of 0.52
PS = 0.05s-1, reduced by a factor of 0.02
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Figure 5.4 Stochastic simulation of traffic of RNAP between two opposing
promoters at distances 140, 1040 and N = 2040 (the front ends of starting
RNAPs are 20 bp ahead of the promoter start site. The promoters are a
factor of two different in strength, and are modeled as a random stochastic
initiation with probability p · dt per time step dt = 0.01s. At each timestep
each RNAP moves 1 bp forward with probability v ·dt = 0.4 as we simulate a
velocity v = 40 bp/s. When two elongating RNAP collide, both are assumed
to be removed from the DNA.

a RNAP moves outside the interval [1, N ] the corresponding position in the
array is emptied. All RNAP are updated at each time step, and each attempts
a move with probability v ·dt. When an RNAP is moved to a position where
there is another RNAP from same promoter, the move is not performed (one
may keep a short-term memory of new attempted positions of all RNAP
to test collisions and avoid any where RNAPs overtake each other). When
RNAPs from opposing promoter occupy the same position or move past each
other, both are removed.

The result of the simulation is shown in Fig. 5.4. The predicted interfer-
ence effect becomes (here listing 1/I):
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N = 100 :
PA

PA0

= 0.82 whereas e−2·(100/40)·0.05 = 0.78

PS

PS0

= 0.67 whereas e−2·(100/40)·0.1 = 0.61

N = 1000 :
PA

PA0

= 0.52 whereas e−2·(1000/40)·0.05 = 0.082

PS

PS0

= 0.022 whereas e−2·(1000/40)·0.1 = 0.0067

N = 2000 :
PA

PA0

= 0.56 whereas e−2·(2000/40)·0.05 = 0.0067

PS

PS0

= 0.002 whereas e−2·(2000/40)·0.1 = 0.000045

In all cases the numerical simulations predict less interference than the ana-
lytical equation, reflecting a shielding effect where the first successful RNAP
paves the way for subsequent RNAPs from the same promoter.

5.4 Bursty transcription initiation

5.4.1 Make a computer program to select random numbers from a Poisson
disribution with average 3. Test it against the real distribution. Hint: calculate
cumulative distribution, and select random numbers between [0; 1] to select
numbers from the cumulative distribution.

Answers The Poisson distribution with mean 3 reads:

p(k) =
3k

k!
· e−3

The corresponding cumulative distribution is:

P (n) =
n∑

k=0

3k

k!
· e−3

Select a random number r ∈ [0, 1] and find the lowest n where:

P (n) > r

The correspondingly selected k is then k = n. Results for 1000 random
numbers are shown in Fig. 5.5.
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Figure 5.5 Stochastic simulation of Poisson distribution, compared with
actual distribution.

5.4.2 Consider a simplified production of proteins, where each mRNA on
average gives one protein, and where one mRNA is produced every 10 min-
utes, whereas the decay time for proteins is 30 minutes. First assume that
there is always exactly one protein per mRNA. Second assume that the mRNA
lifetime is exponentially distributed, and that proteins are produced at random
intervals as long as the mRNA survives.

Answer Average number of proteins would be 〈m〉 = 3 (production rate
divided by decay rate). To simulate the first process, at each timestep of
dt = 1 we produce an mRNA m → m + 1 with probability prod · dt = dt.
Each mRNA is instantly converted to exactly one protein. At each time step
we remove any of the current proteins with probability decay · dt/3. The
result is shown in the left-hand panels of Fig. 5.6, where it is also seen that
the resulting distribution is close to a Poisson distribution with average = 3.

The second simulation takes into account the varying proteins produced
from the mRNA. To simulate this we select an mRNA lifetime tm from an
exponential exp(−tm). This is done by selecting a random number r ∈ [0, 1]
and assigning a lifetime tm = − log(r). Given a selected tm, we start pro-
duction of individual proteins at subsequent times t, separated by exponen-
tially distributed time intervals Δt (also from a distribution exp(−Δt). When
accumulated time t =

∑
i Δti for these production events exceeds tm, the

protein burst is terminated (proteins cannot be produced after the mRNA
is degraded). Notice that we assume that mRNA is short-lived compared
to the protein lifetime, and accordingly finishes its total protein production
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Simulations with one protein per MRNA, and an average of three proteins
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Figure 5.6 Stochastic simulation of production and decay of mRNA,
comparing the steady-state distribution with a Poisson distribution with
average 3.

without changing anything else in the system. The right-hand panel of
Fig. 4.2 shows the resulting distribution. Notice that this distribution is sub-
stantially broader than the distribution in the left-hand panel (Fano factor
of 2 instead of Fano factor of 1).

5.4.3 Repeat as in 5.4.2, but now with 10 proteins produced simultaneously
at each event (as it would be if we looked at proteins). In addition compare
with situations where each mRNA gives an exponentially distributed “‘burst”
of proteins.

Answer The simulations is as in the previous questions, except that one
produces 10 proteins per production event, i.e. p → p+10. Results are shown
in Fig. 5.7. In the right-hand panel we show corresponding behavior when

c© K. Sneppen



48

50

0

Time

N
u

m
b

e
r 

o
f 

p
ro

te
in

s

0 50 100 150 200

Simulation with 10 proteins per mRNA, and 30 proteins on average:

Always make exactly 10 proteins per mRNA: Simulation where number

of proteins n selected from

exp(-n/10):

0.05

0

Number of proteins

P
ro

b
a
b

il
it

y

P
ro

b
a
b

il
it

y

0 20 40 60 80 100

Simulation
Poission m = 30

Fano = 1

Fano = 5

Number of proteins

0
0

0.05

30 60 90

Simulation
Poisson m = 30
Poisson m = 3

Fano = 10.3

Select m
from Poisson

with <m> = 3,

set p = 10*m

Figure 5.7 Stochastic simulation of production and decay of proteins where
they are produced in bursts of size 10. The Fano factor of the final distribution
is 5. The final distribution is compared to the steady-state distribution a with
Poisson distribution with average 30, and a Fano factor of 1. The Right-hand
panel takes into account the exponential distribution of protein for a given
mRNA, and has a Fano factor ∼ 10.

protein bursts are exponentially distributed with mean 10. The red curve is
produced as in Question 5.4.2, just using subsequent time intervals between
protein productions to be 1/10 of the mRNA lifetime. The gray curve is
simply produced by setting protein bursts p → p − 10 · ln(r) with r ∈ [0, 1]
uniformly selected.

5.4.4 Show that the large N , small p limit of a binomial distribution is a
Poisson distribution. Hint:

p(n) =
N !

(N − n)!n!
· pn · (1− p)N−n

and use (1− λ
N
)−n ∼ e−nλ/N ∼ 1, (1− λ

N
)N ≈ e−λ and N !

(N−n)!Nn ∼ 1.1

1To derive the last of these approximations one may employ Stirling’s equation
(N ! = (N/e)N ) for (N − n)! = ((N − n)/e)N−n
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Answer Using Stirling’s equation:

N !

(N − n)!Nn
=

(N/e)N

((N − n)/e)N−n ·Nn

= e−n · NN−n

(N − n)N−n

= e−n · 1

(1− n/N)N−n
= e−n · en·(N−n)/N = e−n2/N ∼ 1

when n <<
√
N . Then use λ = pN in the accordingly modified bimodial

distribution to obtain

p(n) = e−n2/N · λ
n

n!
· e−λ · e+λn/N ∼ λn

n!
· e−λ

5.4.5 Simulate a single promoter with α = 0.1 and overall firing activity of
one elongation initiation every 20 s. Assume an mRNA decay rate of 0.01 s−1

(100 s lifetime). Plot mRNA as a function of time, and calculate the Fano fac-
tor for the number of mRNA. Repeat the simulation for α = 1 and calculate
the Fano factor. Why is the Fano factor smaller than 1? Finally, repeat the
simulation for an mRNA decay rate of 0.001 s−1 and α = 0.1, and convince
yourself that the Fano factor remains around 1.

Answer The promoter is simulated in terms of two states, either free or
occupied. The on-rate for binding to the promoter is:

kon = Ω(1 + α) whereas ke = ke/α (5.1)

where Ω = 0.05 s−1 is total initiation rate of promoter. For α = 0.1, then
kon = 0.05 · 1.1 = 0.055 and ke = 0.055/0.1 = 0.55 s−1. For α = 1, then
kon = 0.05 · 2 = 0.1 and ke = 0.1/1 = 0.1 s−1. The simulation can be per-
formed in discrete timesteps, dt = 1 s. At each timestep one tests whether
the promoter is occupied or not. For α = 0.1, the code reads: if occupied, an
mRNA is produced with probability kedt = 0.55 and if so the promoter is
left unoccupied and the mRNA count m → m + 1; if un-occupied, the pro-
moter becomes occupied with probability kondt = 0.055. At each timestep
each mRNA is removed by probability decay · dt: m → m − 1 for each m
(where decay = 0.01). Results are shown in Fig. 5.8.

5.4.6 Repeat the simulation above, with decay time 100 s, kon = 0.00505 s−1

and ke = 0.505 s−1, but now allow the elongating RNAP to recruit a new
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Figure 5.8 Stochastic simulation of production and decay of mRNA from
promoters with a total elongation initiation rate of 0.05 s (one mRNA every
20 seconds). For the promoter α = kon/ke = 0.1 On two the left panels the
mRNA lifetime is 100 s, on the right-most the mRNA lifetime is 1000 s.

RNAP to the open complex with 90% probability. Thus the average promoter
activity remains close to that in the previous question, but the fluctuations
become larger. Calculate the Fano factor for the number of mRNA produced.

Answer Each time an RNAP binds to the promoter there are on average 10
mRNA produced. Therefore an unbound promoter must be about Ω0 = 0.005;
To model this overall reduction one may assume that kon = 0.00505 s−1 and
ke = 0.505 s−1, implying that it takes about 200 s for an unbound promoter
to recruit a new RNAP. The simulation proceeds in time steps dt where
at each step one checks the promoter: if occupied, an mRNA is produced
with probability kedt = 0.505 and if so the promoter is left unoccupied with
probability 0.1 (=1− 0.9) and the mRNA count m → m+ 1. If unoccupied,
the promoter becomes occupied with probability kondt = 0.00505. At each
timestep each mRNA is removed with probability decay · dt: m → m− 1 for
each m (where decay = 0.01). Results are shown in Fig. 5.9.

5.4.7 Consider the promoter from 5.4.5, but now also consider that RNAP
binds competitively with a repressor that has an on rate of 1 s−1 and an off
rate of 0.05 s−1. Vary α and discuss why repression varies. Calculate the Fano
factor for the number of mRNA in each case.

Answer The simulation can be performed in discrete time steps, dt = 1 s.
At each time step one tests whether the promoter is occupied or not with
state = −1 for occupied by transcription factor, state 0 for free, and state
+1 for promoter occupied by RNAP. The code reads: if occupied by RNAP,
an mRNA is produced with probability kedt and if so the promoter is left
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Figure 5.9 Stochastic simulation of production and decay of mRNA from
intermittent promoter, with kon = 0.00505 s−1 , ke = 0.505 s−1 and with the
rule that a elongating RNAP recruits a new RNAP ready for elongation with
probability 0.9. The mRNA lifetime is 100 s, giving an average of 4.5 mRNA
in the system with a Fano factor of F = 7.
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Figure 5.10 Stochastic simulation of production and decay of mRNA from a
promoter that can also be occluded by a transcription factor. The on rate for
the transcription factor is ron = 1 s−1 , whereas the of rate is roff = 0.05 s−1,
giving a maximal repression capacity of 20. However this repression is only
obtained for a very low kon for the RNAP (α = 0.1 case).

unoccupied and the mRNA count m → m + 1; if unoccupied, the promoter
becomes occupied by either RNAP or transcription factor with probability
(kon+ ron)dt. Subsequently one of the actual states of the promoter is chosen
with a probability given by the relative weights of the two on rates. If the
promoter is occupied by transcription factor, this factor is removed with
probability roffdt. At each timestep, each mRNA is removed with probability
decay · dt: m → m− 1 for each m. Results are shown in Fig. 5.10.
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Figure 5.11 Stochastic simulation of production and decay of mRNA from a
promoter that can also be occluded by a transcription factor. The on rate
for the transcription factor is ron = 1/ s−1 , whereas the of rate is roff =
0.01 s−1, giving a maximal repression capacity of 100. The red dots show
promoter status, with −1 being occluded by transcription factor, whereas 0
is unoccupied and 1 is occupied by RNAP.

5.4.8 Consider the promoter from 5.4.5 and 5.4.7, but now also consider
that RNAP binds competitively with a repressor that has an on rate of 1 s−1

and an off rate of 0.01 s−1. Set α = 10 and plot the dynamics on mRNA and
promoter status. The lifetime of mRNA can again be assumed to be 100 s.

Answer See Fig. 5.11.

5.5.1 For a single promoter producing one mRNA (m), which encodes for
one protein (P ) the final protein concentration will have a distribution with
width σP described by [223, 228]:

σ2
P

〈P 〉2 =
γP · γm
Ω · ω +

γP · γm
ω · (γP + γm)

where 〈P 〉 is the average protein level, γP and γm are degradation rates of
mRNA and its encoded protein, and Ω and ω are transcription and translation
initiation rates, respectively. Reformulate this equation in terms of average
proteins per message etc.

Answer Ω
γm

is the rate of mRNA production multiplied by the lifetime of

mRNA (1/γm). Thus the ratio is the average number of mRNAs present in
the cell.
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ω
γP

is the protein production rate per mRNA multiplied by the protein life
time, giving the number of proteins in the cell for each existing mRNA in
the cell.
Ω
γm

· ω
γP

is thus the number of proteins in the cell = 〈P〉.
γm
Ω

is 1 divided by number of mRNA in the cell.

γm
γp + γm

= tprotein/(tprotein + tmRNA)

is the relative lifetime of proteins to the sum of protein and mRNA life
times. Thus for very short mRNA lifetimes, this factor is ∼ 1, whereas for
long mRNA lifetimes and short protein lifetimes the last factor is ∼ 0. As an
overall result, the protein level is distributed by:

Variance

〈P〉2 =
1

〈P〉 +
1

〈mRNA〉 ·
tprotein

tprotein + tmRNA

an equation that expresses the variance of P in terms of a sum that rep-
resents the two contributions to the variance. Here, the latter, 1/〈mRNA〉,
will typically be the bigges contribution, because each mRNA makes many
proteins and thus 〈mRNA〉 << 〈P〉.

In the special case where proteins have shorter or comparable lifetimes
to mRNA, it is not all proteins from a given mRNA that contribute to the
proteins present in the cell. In fact only a fraction γm

γp+γm
of the proteins

produced from a given mRNA will be present at a given time. This is the
reason for the reduction factor

tprotein
tprotein+tmRNA

.
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