Corrections (4/25/2018) Asteroids: Astronomical and Geological Bodies QB651.B86 2017

Page xiii:

2nd paragraph: However, scientists and the general public generally ...

Page xix:

1st full paragraph: RIS4E should be RIS⁴E

Page 6:

 2^{nd} full paragraph: The emissivity (ϵ) ... [space between emissivity and (ϵ)]

Page 7:

1st full paragraph: The exceptions are dark near- Earth asteroids, ...

Page 9:

Last paragraph: However, as the size of the lens increases ..

Page 10:

 1^{st} paragraph: ... to the same point. Reflecting telescopes ... 2^{nd} paragraph: However, unless corrected for, ...

Page 12:

1st full paragraph: A fixing agent is then used to removed ... Last paragraph: ... using a series of positively charged electrodes ...

Page 15:

Last paragraph: ... which results in less distorted images.

Page 19:

 2^{nd} paragraph, 3^{rd} to last line: ... is the reference magnitude,

Page 21:

1st full paragraph: However, when observing astronomical objects, ...

Page 22:

3rd to last paragraph: However, because asteroids orbit so far from the Sun, ...

Page 23:

Period after Equation 1.22.

Page 25: Period after Equation 1.25.

Period after Equation 1.27.

Page 26:

Period after Equation 1.28. Period after Equation 1.29.

Page 28:

Question 7 : +17

Page 30. Period after Equation 2.2

Page 34:

Period after Equation 2.7.

Page 36: 1st paragraph: ... contrary to the depiction ...

Page 39:

1st full paragraph: Kirkwood gaps can be used to used to break up 2^{nd} full paragraph: ... (5:2 resonance) ... 2^{nd} full paragraph: ... (2:1 resonance) ...

Page 45:

Figure 2.5 caption: The body has prograde rotation. ButHowever, due to thermal inertia, ...

Page 47:

 2^{nd} full paragraph: ... to slow down- (e.g., Emery et al., 2015).

Page 50:

1st full paragraph: However, after Uranus' ...

Page 51:

1st paragraph: However, for an unknown ... 2^{nd} paragraph: However, his ~20 observations of ...

Page 52:

 3^{rd} paragraph: ... about possible names for ...

Page 54:

1st paragraph: However, as more fainter ...

Page 60:

Table 2.8:trans-Neptunian not-in a 2:3 resonancemythological names associated with the underworld

Table 2.8:

trans-Neptunian not in a 2:3 resonance mythological names associated with creation 2^{nd} full paragraph: ... object [(617) Patroclus] ... [space between object and [(617)]

Page 64:

Question 1) a) An asteroid has a semi- major axis of 3.2 AU?. Question 3) ... with Jupiter?.

Page 68:

1st full paragraph: Meteorites are identified as either falls ofor finds. Last paragraph: An iron dagger blade found ... Last paragraph: ... tomb was found-determined to be ...

Page 69:

1st paragraph: ... (~161 km) away. A ... (add space between away. and A)

Page 72:

1st paragraph: Many different minerals appear differently when viewed using polarized and polarized light (Nesse, 2012).

Page 74:

1st paragraph: However, because of this Antiquities Act, a ...

Page 75:

1st paragraph: ... approximately ~5000 known minerals ...

Page 78:

 3^{rd} paragraph: ... saponite [Ca_{0.1}.... (space between saponite and [)

Page 79: 1st paragraph:

1st paragraph: ... more resistant to the etching the than kamacite ...

Page 80:

2nd full paragraph: ... and sylvite (KCl), but ... Last paragraph: Carboxylic acids and (Martins, 2011) ...

Page 81:

 1^{st} paragraph: ... (e.g., ElisaElsila et al., 2005). 2^{nd} to last paragraph: ... using more elaborate models have the roughly the ...

Page 83:

1st paragraph: AOAs are fine-grained irregularly-shaped ...

Page 85:

1st full paragraph: ... for forming chondrules are is through rapid ...

Page 86:

Last paragraph: The term "subgroup"...

Page 88:

Last paragraph: An isotopic standard is also measured with known isotopic ratios ...

Page 90:

Last paragraph: ... before our Sun formed and isare durable ...

Page 92:

1st full paragraph: ... to fall to Earth;; hence, they ...

Page 104:

2nd to last paragraph: The name "ataxite" ... 2nd to last paragraph: The name "octahedrites" ...

Page 108:

3rd paragraph: ... near Coloma, California- were ...

Page 111:

2nd full paragraph: Radiogenic isotopes are those that are produced during ...

Page 115:

1st full paragraph: ... in these minerals since it because Rb can replace ...

Page 116:

2nd full paragraph: Zircons also contain high-relatively high concentrations ...

Page 118:

Figure 3.19 caption: ... (MWSD) is a measured of the ...

Page 119:

 2^{nd} paragraph: ... is the total decay constant, and ${}^{40}Ar_0$ is the ... 2^{nd} paragraph: The isochon equation is

Page 120:

1st full paragraph: (in order of easiest to hardest to reset by shock heating due to impact)

Page 122:

Figure 3.20 caption: ... (MWSD) is a measured of the ...

Page 124:

Last paragraph: ... the water-ice content ...

Page 125:

2nd paragraph: If core formation takes place ...

Page 128:

1st full paragraph: Drift due to the Yarkovsky effect drift is much ... Last paragraph: However, when a meteorite lands on Earth, ...

Page 130:

2nd full paragraph: -Over 80 meteorites have been identified as being from Mars. (Paired samples are counted as one meteorite.)

Page 131:

Question 3: Why are iron meteorites the commonestmost common type ...

Page 132:

Question 8: ... beginning of the Solar System's history?

Page 133:

4th paragraph: However, for a reflectance spectrum measured out ...

Page 134:

Figure 4.2 caption: Note the thermal tail longward of 2 μ m. 1st paragraph: However, for telescopes on the surface of the Earth, ...

Page 135:

 2^{nd} full paragraph: Charge-transfer transitions are due to the movement of electrons from one ion to another, which transfers charge.

Page 136:

 2^{nd} full paragraph: The most prominent absorption bands in the visible and near-infrared are primarily due to transitions due to transition metals in different minerals.

Last paragraph: However, in a crystal structure, ...

Page 139:

1st full paragraph: by a material (e.g., Clark, 1999) according to Beer's law where

Page 141:

1st paragraph: However, as expected, the ...

Page 143:

1st paragraph: This reflectance term is the pretty much the ... 1st full paragraph: However, for simplicity, ...

Page 145:

Last full paragraph: ... as Fe^{2+} substitutes for Mg^{2+} .

Page 149:

1st paragraph: ... and an absorption band at ~1.9– 2.0 μ m ... 1st full paragraph: ... transition in in phyllosilicates.

Page 156:

1st full paragraph: Originally, micrometeorite impacts were proposed to produce these nanophase iron particles.

Page 157:

1st full paragraph: ... formulas for determinedetermining the pyroxene chemistry ...

Page 161:

Example 4.3: Last equation should be $ol/(ol+px)(\pm 0.03) = (0.242 \times 0.80) + 0.728 = 0.92.$ (4.39) Last sentence of Example 4.3: ... ol/ (ol + px) ratio will be 0.92 ± 0.03 .

Page 163:

1st full paragraph: ... over a wide range of wavelengths have been ...

Page 165:

 1^{st} full paragraph: L- types had spectra with a very strong UV feature-and, a flat reflectance past 0.75 µm, and appear to ...

Page 166:

Last paragraph: The commonestmost common asteroids in the ...

Page 170:

1st paragraph: ... that asteroid-sized impacts on ... 1st paragraph: ... H-chondrite Portales Valley meteorite ...

Page 171:

1st paragraph: The commonestmost common asteroids in the outer main belt ...

Page 176:

Last paragraph: ... Cybele has a semi-major axis ...

Page 178:

2nd full paragraph: However, since Jupiter Trojan D-types ...

Page 180:

1st full paragraph: The Band II for an R- type is narrower than a Q- type's band ...

Page 182:

1st paragraph: ... which has also been also seen in the spectra of HEDs ...

Page 184:

Question 5) ... spectrum of a phyllosilicateCM chondrite change ...

Page 185:

 1^{st} paragraph: Only a relatively few asteroids ... 2^{nd} paragraph: The common st common and direct way to ...

Page 188:

 1^{st} paragraph: ... the temperature is assumed to be 0 Kelvin and that there is no thermal emission on the night side.

Page 189:

Equation 5.15 should be:

$$T_{ss} = \sqrt[4]{\frac{[1-(0.393)(0.20)](1366)}{(0.756)(0.9)(5.67 \times 10^{-8})(2.5)^2}} K = 269 K.$$
(5.15)

Page 190:

1st paragraph: ... slowly, is observed at a small phase angle, ...

Page 191:

Last full paragraph: Diameters calculated from IRAS data varied from diameters calculated from occultations hadwith a root-mean-square (RMS) fractional difference ...

Page 192:

1st paragraph: ... (meaning "light" in Japanese) ...

Page 195:

Table 5.2: (243) Ida2.8620.04560.0364Equation 5.25 should be:

$$na_{p} = \left(\frac{74.1^{o}}{yr}\right) \left(\frac{2\pi}{360^{o}}\right) \left(\frac{yr}{31540000\,s}\right) (2.869\,AU)$$

$$\left(\frac{14960000000\,m}{AU}\right) = 17590\,m/s.$$
(5.25)

Page 199:

 2^{nd} full paragraph: ... slopes of Koronis members tends to increase ... Last paragraph: The Eos family is a large outer main-belt family composed primarily of K-types.

Page 200:

 2^{nd} full paragraph: ... and foundsaw that this age ...

Page 201:

1st full paragraph: However, if the period does not repeat, ...

Page 203:

Last paragraph: SoTherefore, any change in the magnitude ...

Page 204:

Period after Equation 5.31.

Page 205:

Last paragraph: ... was dubbed a "Slivan state" ...

Page 206:

First full paragraph: Radar can be used determining to determine shapes and spin state, finding moons, doing astrometry, and estimatingestimate metal contents. Last paragraph: Since the radar waves travel at ...

Page 208:

 1^{st} full paragraph: ... are shifted towards shorter wavelengths (blueshifted) and if part of the body is moving away from you, the radio waves are shifted towards longer wavelengths.

Page 209:

1st full paragraph: ... Pluto (Charon, Nix, Hydra, Kerberos, HydraStyx).

Page 210:

 1^{st} paragraph: ... of asteroids, which can affect the positions of ... 2^{nd} full paragraph: The second most precise technique issues the orbit of thea moon ...

Page 211:

Period after Equation 5.34.

Page 212:

 2^{nd} paragraph: ... different taxonomic classes varied varies with heliocentric distance. 3^{rd} paragraph: However, to plot the "true" distribution ...

Page 213:

 1^{st} full paragraph: ... which tend to have the highest albedos, have the largest diameters, and/or are the closest to Earth.

1st full paragraph: ... that that-S-complex objects ...

Page 215:

Last paragraph: Saturn is also migrating too.

Last paragraph: The Grand Tack was proposed to solve the "Mars problem" where computer simulations in forming planets at Mars-like distances from the Sun that are too massive compared to Mars produces too massive planets (e.g., Raymond et al., 2009). Last paragraph: ... while the Nice model occurs 500 Ma later.

Page 216:

Question 1) One body is the parent body of the aubrites while the other is the parent body of the CM chondrites?

Page 224:

Last paragraph: Shoemaker-Levy 9 passed within the Jupiter's Roche limit, ...

Page 225:

 1^{st} paragraph: ... break apart, of Jupiter. 2^{nd} full paragraph: Alan Hale and Thomas Bopp (1949-2018) discovered ...

Page 226:

4th paragraph: ... and an aluminum foil ...

Page 228:

 2^{nd} paragraph: ... in the plume in included H₂O, ...

Page 233:

1st paragraph: ... Edgeworth had proposed that in 1943 a large number ... 1st paragraph: ... Solar System that sometimes travel ...

Page 240:

1st full paragraph: However, other regions on Pluto ...

Page 244:

Last full paragraph: However, because the mass of Vanth ...

Page 246:

3rd full paragraph: ... however, in the near-infrared ...

Page 248:

 1^{st} full paragraph: ... sky to be determined.

Page 249 :

1st paragraph: ... temperatures atof ~70 K ...

Page 251:

2nd paragraph : and an aphelion distance greater ... 2nd paragraph: ... 1.3 AU. Amors can ... (space between 1.3 AU. and Amors) 3rd paragraph: "Apohele" is the Hawaiian word for "orbit" ...

Page 252:

1st paragraph: ... due, presumably, to thermally ...
1st full paragraph: However, in the 1990s, David Morrison ...
2nd full paragraph: ... and they-were joined by Carolyn Shoemaker ...
3rd full paragraph: ... Kitt Peak, Arizona, which was founded in 1980 ...

Page 253:

2nd paragraph: As of today, LINEAR hadhas discovered

Page 255:

1st paragraph: Therefore, for the same size object, an ... Last paragraph: ... three stages of crater formation (Melosh, 1989; French, 1998). They are : the contact/ compression stage, ...

Page 261:

 1^{st} paragraph: there is are always more smaller craters than ... 4^{th} full paragraph: ... or have reached equilibrium.

Page 262:

1st paragraph: The equation is not valid for ages greater than ... 1st full paragraph: However, the impacting flux on the Moon may ...

Page 270:

1st full paragraph: However, if the probability of the impact is ...

Page 271:

 1^{st} full paragraph: Aa nuclear standoff explosion also poses ... Question 3) What will be the kinetic energy of a C-complex asteroid with an H magnitude of 16.0 and an impact velocity of 17 km/s?

Page 273:

 2^{nd} paragraph: ... as it flies by the bodyit.

 2^{nd} paragraph: A sample return mission returns samples of the surface collects fragments of the body to bring back to Earth.

Page 277:

1st paragraph: ... the discoverer of Jupiter's moons ... 1st paragraph: ... geological bodies due to the observed surface features.

Page 280:

Last paragraph: ... are named after people who were part of the ...

Page 283:

1st paragraph: ... seismic waves from being easily transmitted, ... Last paragraph: Eros hadhas a density ...

Page 285:

Last full paragraph: ... flux. However, the XGRS was not able to detect ...

Page 289:

Last full paragraph: ... from 0.750.85 to 2.1 μ m ...

Page 290:

3rd paragraph: The only exception is the large, flat region, which is called <u>Muse-CMUSES-C</u> Regio ...

Last paragraph: ... however, for craters less than 100 meters, ...

Page 291:

2nd full paragraph: However, during these two encounters, ...

3rd full paragraph: ... interpreted as indicating that found that the body became a rubble pile ...

Page 292 :

Last full paragraph: ... the "all-seeing eye" ...

Page 320: ElisaElsila, J. E., ...

Page 362: meteor shower, 107, 107