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Exercises and control questions to Chapter 1: 

1.  

Pattern textural structural 

idiomorphic X  

fine grained X  

pegmatitic X  

pumiceous X  

fluidal  X 

brecchiated X  

 

2. A. "homogeneous" and "anisotropic". B. "heterogeneous" and "anisotropic". C.   

"isotropic" and "heterogeneous (see Fig. S1.1). 

 

Fig. S1.1 Pattern examples for the Exercise 2 (http://www.soloentendidos.com/principio-

cosmologico-isotropico-y-homogeneo-1390). 

 

3. (a)    erosion, reworking, and transportation of rock components, 

    (b) deposition and sedimentation of the material, and 

    (c) compaction and diagenetic processes. 

4.  (a) gravimetry, geodata, (b) seismic, acoustics of rocks, (c) magnetic field 

measurements. 

5. II: median= 95 , sorting=65; III: median= 70 , sorting=100; IV: median= 35 , 

sorting=60; V: median= 5 , sorting=40. 

6. (a) angular velocity is a vector, tensor rank 1, (b) moment of inertia is the tensor rank 

2, (c) surface is a vector, tensor rank 1, (d) density is scalar, tensor rank 0, (e) 

http://www.soloentendidos.com/principio-cosmologico-isotropico-y-homogeneo-1390
http://www.soloentendidos.com/principio-cosmologico-isotropico-y-homogeneo-1390
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piezoelectric coefficient is  the proportionality coefficient between the electric 

polarization (vector) and stress (tensor rank 2), so it is a tensor rank 3? 

7. Using the data set in Fig. 1.9 of Chapter1one plots the density distribution function of 

grain sizes shown in Fig S1.2.  

 

Fig. S1.2 Problem 7: MATLAB plots of cumulative and pdf curves of sample C. 

 

The MATLAB code is shown below: 
d=[100 63 40 30 20 10 8 6 4 3 2 1 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.09 0.08 

0.07 0.06 0.05 0.04 0.03 0.02]; 
CUM=[100 100 99.5 99 96 85 80 69 55 48 42 40 39 38 36 28 20 10 3 2.5 2 1.5 

1 0.5 0.25 0 0];% 
PDF=diff([0 CUM]) ./ diff([0 d]); 
PDF=PDF./sum(PDF); 
figure  
yyaxis left 
plot(log10(d),CUM,'*') 
ylabel('cumulative curve')  
yyaxis right 
plot(log10(d),PDF,'-o') 
ylabel('pdf curve') 
xlabel('log(d)')  
set(gca, 'XDir','reverse') 
set(gca,'FontSize',20) 
a = get(gca,'XTickLabel'); 
set(gca,'XTickLabel',a,'FontName','Times','fontsize',18) 
grid 
hold on 
M=sum(PDF.*d); S=var(PDF); 
skewns = @(x) (sum((x-mean(x)).^3)./length(x)) ./ (var(x,1).^1.5); 
kurtss = @(x) (sum((x-mean(x)).^4)./length(x)) ./ (var(x,1).^2); 
SK=skewns(PDF); KTS=kurtss(PDF); 
txt1 = strcat('mean=',num2str(M),'  variance=',num2str(S)); 
txt2=strcat('skewns=',num2str(SK),'  kurtosis=',num2str(KTS)); 
text(2,0.1,txt1,'Fontsize',16); 
text(2,0.05,txt2,'Fontsize',16) 

 

 

8. The specific surface area per grain is:  
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𝐴𝑠𝑝 [
𝑚2

𝑔
] =

𝜋𝑑2
⏞

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑜𝑓 𝑎 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑔𝑟𝑎𝑖𝑛

𝑑3∙𝜌∙(1−
𝜋

6
)⏟        

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑎 𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

=
𝜋

𝑑∙𝜌∙(1−
𝜋

6
)
=

3.14

30∙10−6∙3∙106∙0.4764
≈ 0.15

𝑚²

𝑔
 

In the case of parallel cylindrical tubes: 𝐴𝑠𝑝[
𝑚2

𝑔
] =

𝜋𝑑∙𝑙⏞

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑜𝑓 𝑎 𝑠𝑐𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙 𝑔𝑟𝑎𝑖𝑛

𝑑²∙𝑙∙𝜌∙(1−
𝜋

4
)⏟        

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑎 𝑐𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙 𝑔𝑟𝑎𝑖𝑛

=

𝜋

𝑑∙𝜌(1−
𝜋

4
)∙

=
3.144

30∙10−6∙3∙106∙0.2146
≈ 0.16

𝑚²

𝑔
. In the case of cubic cells having edge length 3d the unit cell 

volume 27d³. The density is 𝜌∗ = (1 −
𝜋∙𝑑3

6∙27𝑑3
) ∙ 𝜌 ≈ 0.981 ∙ 𝜌. The specific area per unit mass 

𝐴𝑠𝑝[
𝑚2

𝑔
] =

𝜋𝑑²⏞
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑜𝑓 𝑎 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑔𝑟𝑎𝑖𝑛

27𝑑³∙𝜌∙(1−
𝜋

6∙27
)⏟          

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑎 𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

=
𝜋

27∙𝑑∙𝜌∗
=

𝜋

27∙30∙10−6∙3∙106∙0.981
≈ 1.3 ∙ 10−3

𝑚²

𝑔
. 

 

9. The grain size analysis of a clastic sediment gives the results as follows: 

Particle size, mm Mass, g Component % 

0-0.02 1.2 Colloidal+silt+clay+fine 

sand 

≈1 

0.02-0.04 3.1 Medium size sand 64.7 

0.04-0.063 3.7 Medium size sand 

0.063-0.1 6.1 Medium size sand 

0.1.-0.2 7.4 Medium size sand 

0.2-0.4 35.6 Medium size sand 

0.4-0.63 25.2 Medium size sand 

0.63-1.0 17.1 Coarse size sand 13.6 

1.0-2.0 9.5 Fine gravel 12.8 

2.0-6.3 6.5 Fine gravel 

6.3-10 5.3 Medium gravel 4.2 

10-20 4.7 Coarse gravel 3.7 

Sum: 125.4 g   

The histogram of grain size distribution is shown in Fig. S1.3. 
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Fig. S1.3a The grain size scale in clastic sediments (adapted from Sebastian, 2009 after ISO 14688-

1).  
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Fig. S1.3b Problem 9: Histogram of grain size distribution. 

 

10. From cumulative curve of grain sizes shown in Fig. S1.4 the probability distribution 

function of grain sizes PDF(di) may be reconstructed by the method described in 

Exercise 7.  For a particular grain size interval the specific grain surface erea per unit 

mass may be calculated as: 𝐴𝑠𝑝(𝑑𝑖) ≈
6

𝜌∙𝑑𝑖
. The total grain surface area is the sum: 

𝐴𝑠𝑝
𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐴𝑠𝑝(𝑑𝑖) ∙𝑖 𝑃𝐷𝐹(𝑑𝑖).  The results is Asp=0.26 m²/g. 

 

 
Fig. S1.4 Problem 10: (upper panel) Particle size distribution of a blast furnace slag sample as 

determined by image analysis (Arvaniti et al., 2015). (lower panel) Particle size distribution function. 



Solutions to Chapter 2: 

1.   (a)   Consider 3 spheres in the layer B (Fig. S2.1 upper left panel) B1, B2 and B3. The 

apper vertex sphere of the tetrahedra  B1B2B3A1 the point A1 is in the centre of 

the hexagonal of layer A. The side length of tetrahedra is a=b=1. The height 

B1H=1/2. The angle OB1H=30°, dann OH=BH/tg30°=1/2√3. The angle 

A1B1H=60°, then A1H=√3/2. From the triangular  ∆OHA1 one obtains that 

OA1=  √2/√3. The distance between two adjacent layers  B is c=2√2/√3=1.633 

(b) In the elementary cell in the layer A there are 7 spheres (see Fig. S2.1 left lower 

panel). But only a half of the central sphere belongs to the elementary cell. From 6 

spheres forming a hexagon only 1/6th of each belongs to the cell. Totally, it makes 

1.5 spheres per layer A. In the layer B 3 spheres belong to the cell, in the next 

layer A consisting of 7 only 1.5 spheres count to the cell. Totally, per unit cell 

there are 6 spheres having the total volume:  6·π/6∙ 1³=. The volume of the unit 

cell is the product of height × area of hexagon which is formed in the layer A.  

The height is: 2√2/√3. The area of hexagon is:  6 ∙ ½ ∙√3/2∙1. Thus, the ratio of the 

spheres volume to the unit cell is: π/3√2=0.74. The porosity of hexagonal dense 

packing is given by: 1-0.74=0,26 (Gauss, 1831). 

 

 



 

Fig. S2.1 Problem 1.  

 

2. Solution: density =0.4 ∙ 2.65 + 0.5 ∙ (0.5∙2.57 +0.5∙2.59) +0.06 ∙ 2.85 +0.04 ∙ 3.05=2.64 

g/cm³. 

3. The solution is presented in Fig. S2a&b. 

 

Fig. S2.2a Problem 3: Cumulative curve of pore radius as a function of . 



 

Fig. S2.2b Problem 3: Number of particles as a function of .  

 
 
4. (a) For bulk density 𝜌𝐵 one uses the relationship:    

³cm/g,
³cm

g
B 471

413

607


 

(b) In order to calculate porosity the bulk density may be presented as the arithmetic 

mean:: 
4450

652

471652
65214711 ,

,

,,
,)(,)( SB 


 

 from 

which it follows that:  =44.5% 

(c) e = VPores /Vmineral grains  80
5550

4450

1
,

,

,

)(V

V
e 









 

(d) for the degree of saturation S: 6501
413

727

4450471
761

,SS)(
³cm

g

³cm/g,

W

³cm/g,

S

³cm/g,





  or 

S=65%, 

(e) the water content in the rocks is given by: 1980
607

607727
,w 


  or S=19.8%. 

 

5. 𝑃 = 2.65 ∙ 103 ∙ 9.81 ∙ (1 − 𝜑) = 20000𝑃𝑎, i.e.  𝜑 = 1 − 0.77 = 0.23. 

 

6.  In order to calculate the total amount of oil one has to integrate the prosity as function of 

depth z: 

 

 

 )e(²]km[A,³]km[V

)e(
A

due
A

)z(de
A

dzeAV
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H
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u
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7.   The equation may be rewritten in a dimensionless form for quartz exsolution and 

deposition on the surface of pores in a sandstone as follows: 

𝜔∙(𝜑0−𝜑𝑐)

𝑆0∙𝐴∙𝑣𝑄̅̅ ̅̅ ∙(
𝐶−𝐶𝑒𝑞

𝐶𝑒𝑞
)

∙
𝑑𝜉

𝜉𝑛∙𝑑𝑧
= −𝑒

−
𝐸

𝑅∙𝑇0∙[1+
1

𝑇0
(

𝑑𝑇
𝑑𝑧

)∙𝑧]
≈−𝑒

−
𝐸

𝑅∙𝑇0
∙[1−

1

𝑇0
∙(

𝑑𝑇

𝑑𝑧
)∙𝑧]

 , where 𝜉 is dimensionless 

variable of porosity: 𝜉=
𝜑−𝜑𝑐

𝜑0−𝜑𝑐
. Here the expansion of 1/(1 +

1

𝑇0
(

𝑑𝑇

𝑑𝑧
) ∙ 𝑧) in the Taylor series 

has been done because 
1

𝑇0
(

𝑑𝑇

𝑑𝑧
) ~ 10-1 1/km and after the integration of this differential 

equation from z=0 to z assuming the boundary conditions at z=0 =0 and T= T0 one gets: 

𝐸

𝑅∙𝑇²0
∙[(

𝑑𝑇

𝑑𝑧
)]∙𝜔∙(𝜑0−𝜑𝑐)∙𝑒

𝐸
𝑅∙𝑇0

(1−𝑛)∙𝑆0∙𝐴∙𝑣𝑄̅̅ ̅̅ ∙(
𝐶−𝐶𝑒𝑞

𝐶𝑒𝑞
)

∙ [(
𝜑−𝜑𝑐

𝜑0−𝜑𝑐
)

1−𝑛

] ≈ 1 − 𝑒
𝐸

𝑅∙𝑇0
∙[

1

𝑇0
∙(

𝑑𝑇

𝑑𝑧
)∙𝑧]

,  

and in the case when n=1 

𝐸

𝑅∙𝑇²0
∙[(

𝑑𝑇

𝑑𝑧
)]∙𝜔∙(𝜑0−𝜑𝑐)∙𝑒

𝐸
𝑅∙𝑇0

𝑆0∙𝐴∙𝑣𝑄̅̅ ̅̅ ∙(
𝐶−𝐶𝑒𝑞

𝐶𝑒𝑞
)

∙ [𝑙𝑛 (
𝜑−𝜑𝑐

𝜑0−𝜑𝑐
) ] ≈ 1 − 𝑒

𝐸

𝑅∙𝑇0
∙[

1

𝑇0
∙(

𝑑𝑇

𝑑𝑧
)∙𝑧]

. 

After the substitution of typical parameters for quartz this relationship for z in km and burial 

rate  in km/Myr is then 

(
𝜑−𝜑𝑐

𝜑0−𝜑𝑐
)

1−𝑛

≈
(1−𝑒3.6∙𝑧)∙(1−𝑛)

1.86∙104 𝜔∙(𝜑0−𝜑𝑐)
 , and for n=1 

𝑙𝑛 (
𝜑−𝜑𝑐

𝜑0−𝜑𝑐
) ≈

1−𝑒3.6∙𝑧

1.86∙104 𝜔∙(𝜑0−𝜑𝑐)
.  

The characteristic scale decrease of porosity by factor 2 corresponds to about z=3.4 km with 

the burial rate 50 km/Myr, 0=0.3 and c=0.05. 

 

8. Surface tension and capillary forces: 

a) The contact angle for water on clean quartz surface is approximately zero. What is the 

surface tension of water at 20 ° C when a column of water in a quartz capillary tube with an 

inside diameter of 0.6 mm rises to 4.96 cm high. The density of water at 20 ° C is 998.2 kg / 

m3. 

b) What is the maximum diameter of the guiding capillary in a 30 m high rock column in 

order to raise water to the upper surface of a column by capillary forces? Set the calculation 

for different wetting angles of 0°, 10°, 20°? 

a)  The surface tension force is balanced by the weight of the water column in the capillary 

tube: 2𝜋 ∙ 𝑟 ∙ 𝜎 ∙ 𝑐𝑜𝑠𝜃 = 𝜌 ∙ 𝑔 ∙ ℎ ∙ 𝜋𝑟². When the contact angle =0, then the surface tension 

of water is : 𝜎 =
𝜌∙𝑔∙ℎ∙𝑟

2
=0.073 N/m². 



b) One rearranged the previous identity and obtains: 𝑑𝑚𝑎𝑥 =  
4∙𝜎∙𝑐𝑜𝑠𝜃

𝜌∙𝑔∙ℎ
≈  10−6𝑚  𝑓𝑜𝑟 𝜃 = 0,

0.985 ∙ 10−6𝑚  𝑓𝑜𝑟 𝜃 = 100, 0.94 ∙ 10−6𝑚  𝑓𝑜𝑟 𝜃 = 200. 

 

 

 

Fig. S2.3 Problem 9:  bcc lattice. 

 

9. Per unit cell there are 2 spheres: one in the center and 8 spheres are shared between 8 

adjacent unit cells 8 ∙
1

8
= 1, the volume of two spheres =

8∙𝜋∙𝑟³

3
 If the side length of unit cell is 

a, then the largest diagonal is √3 ∙ 𝑎. This diagonal equals 2 dimeters of spheres, because 

spheres are touching each other: √3 ∙ 𝑎 = 4 ∙ 𝑟. The unit cell volume is a³=
64∙𝑟³

3√3
. The filling 

factor of bcc is: 
8∙𝜋∙𝑟³

3
∙

3√3

64∙𝑟³
=

𝜋∙√3

8
=68%.  

10. The first step is to covert the pressure into Pa: 1 Torr= 133.322 Pa, and to convert 

adsorbed volume from standard conditions to 77K and corresponding pressure using the ideal 

gas law: 

 

p [Torr]  
30 50 100 150 200 250 

V [cm3] 29.1 32 36.3 40 44 48.5 

p[Pa] 4000 6666.66667 13333.3333 20000 26666.6667 33333.3333 

V[m3] 0.00019119 0.00012614 7.1547E-05 5.256E-05 4.3362E-05 3.8237E-05 

Asp.[m²/kg] 166.484219 183.07543 207.676191 228.844288 251.728717 277.473699 

p[bar] 0.004 0.00666667 0.01333333 0.02 0.02666667 0.03333333 



∆𝛾 = --0.01391345= -13.9 mJ/m². 
 

The results of the experiment are presented in Fig. S2.4a. 

 

Fig. S2.4a Adsorbed volume vs. pressure. 

The specific area of inner open surface per unit mass is calculated as follows: the number of 

moles of adsorbed gas is µ =
𝑃∙𝑉

𝑅∙𝑇
, the number of gas adsorbed molecules is 

𝑃∙𝑉

𝑅∙𝑇
∙ 𝑁𝐴 , the 

corresponding inner surface is 
𝑃∙𝑉∙𝑎∙𝑁𝐴

𝑇∙𝑅
, and  𝐴𝑠𝑝. [

𝑚2

𝑘𝑔
] =

𝑃∙𝑉∙𝑎∙𝑁𝐴

𝑇∙𝑅
∙

1

𝑚
. Fig. S2.4b presents the 

results of specific area calculations as a function of pressure. The surface energy change  

of the rock sample (in mJ/m²) as the pressure increases during the experiment from 30 to 250 

Torr: ∆𝛾 = −𝑅 ∙ 𝑇 ∙
𝑙𝑛(

250

30
)

𝑎∙𝑁𝐴
= −13.9 𝑚𝐽/𝑚². 

 

Fig. S2.4b Specific area Asp as a function of pressure. 



 

11. KCl: 𝑟𝐾 = 0.133 ∙ 10−9𝑚, 𝑟𝐶𝑙 = 0.182 ∙ 10−9𝑚, 
𝑟𝐾

𝑟𝐶𝑙
= 0.735, the coordination number is 

8, the dense packing corresponds to bcc lattice, and the atom in unit cell are touching along 

the main diagonal: 𝑎 =
2

√3
∙ (𝑟𝐾 + 𝑟𝐶𝑙) = 0.365 ∙ 10−9𝑚. There are 2 atoms per unit cell, 1 of 

K and 1 of Cl. The theoretical density of the dense packing is: 𝜌 =

(39.0983+35.453)𝑔/𝑚𝑜𝑙

(0.365∙10−9)³∙6.023∙10231/𝑚𝑜𝑙
= 2.546 ∙ 106 𝑔

𝑚³
=2.546 g/cm³. 

MgO:  𝑟𝑀𝑔 = 0.066 ∙ 10−9𝑚, 𝑟𝑂 = 0.132 ∙ 10−9𝑚, 
𝑟𝐾

𝑟𝐶𝑙
= 0.5, the coordination number is 6, 

the dense packing corresponds to fcc lattice, and the atom in unit cell are touching along the 

edge of cube: 𝑎 = 2 ∙ (𝑟𝐾 + 𝑟𝐶𝑙) = 0.396 ∙ 10−9𝑚. There are 8 atoms per unit cell (see Fig. 

S2.5), 4 of Mg and 4 of O: 8 atoms in vertexes shared between 8 adjacent unit cells =1 atom, 

12 atoms in the middle of edges shared between four adjacent unit cells =3 atoms, 6 atomes 

in the middle of faces shared between 2 adjecent unit cells =3 atoms and 1 atom in the center 

of the unit cell. The theoretical density of the dense packing is: 𝜌 =

4∙(24.312+16)𝑔/𝑚𝑜𝑙

(0.395∙10−9)³∙6.023∙10231/𝑚𝑜𝑙
= 4.313 ∙ 106 𝑔

𝑚³
=4.313 g/cm³. 

 

Fig. S2.5 Problem 11: fcc lattice. 
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Exercises and control questions to Chapter 3: 

1. The parameter of the Poisson’s distribution is the number of cracks per 5 m: 

λ=
12100

1000
∙ 5 =60.5.  

(a) The probability to get exactly 8 cracks is: 𝑒−60.5 ∙
(60.5)8

8!
≈ 1.6 ∙ 10−17 

 

(b) The cumulative probability of 0 to 10 cracks is: 𝑒−60.5 ∙
(60.5)10

10!
+. . 𝑒−60.5 ∙

(60.5)1

1!
+

𝑒−60.5 ≈ 10−15 

 

(c) 𝑒−60.5 ∙
(60.5)9

9!
+. . 𝑒−60.5 ∙

(60.5)15

15!
≈ 2.7 ∙ 1012 

 

(d) 1-(𝑒−60.5 ∙
(60.5)10

10!
+. . 𝑒−60.5 ∙

(60.5)1

1!
+ 𝑒−60.5)

⏞                            
10−15

. 

2. There are 42 fractures on average in a 10 m long borehole core. If the fraction 

between-length (l) follows an exponential distribution how would you define the 

average spacing between?  How would you estimate the number of fractures (n) per 

1m of the core? How are the exponential distribution and the Poisson distribution look 

like?  

The parameter of the exponential distribution is the number of cracks per meter, 𝜆 =

4.2 𝑚−1.  The average spacing is =
1

𝜆
= 0.24 𝑚 . The exponential cumulative 

distribution of value x is given by: 𝐹(𝑥) = ∫ 𝜆 ∙ 𝑒−𝜆‧𝑡
𝑥

0
∙ 𝑑𝑡=1-𝑒−𝜆‧𝑥. The median value 

𝑥̃ corresponds to the cumulative probability:  
1

2
=1-𝑒−𝜆‧𝑥̃ → 𝑥̃ =

ln (2)

𝜆
= 0.165.  

Fig. S3.1 illustrate the difference between the Poisson’s and exponential distributions. 

 
Fig. S3.1. Exponential and Poisson distributions. 

 

3. The Reuss average is:   

 

 

The Voigt  average is:  

 

 

4.  (a) Fig. S3.2 illustrate the application of the force acting on the surface 
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(b)  

 

 

( c)  

 

 

The angle deformation is :𝛾𝑋 + 𝛾𝑌 = 1.6 ∙ 10
−5 𝑟𝑎𝑑. The shear strain is given by: 

 

 

The twist angle between the base and the surface plane is: 𝜔𝑋𝑌 = (𝛾𝑋 − 𝛾𝑌) = 0.4 ∙

10−5 rad. 

 

 

 

 
Fig. S3.2 Problem 4. 

 

5. To the side surface of the block of rock with the edge lengths a, b, and c the force F is 

applied which is evenly distributed over the surface (Fig. E3.2). 

Given: F = 10 kN, a = 3 cm, b = 4 cm, c = 2 cm. 

How big are tangential and normal stresses to the grey, diagonal cut surface? 

Lösung:  

a. The forces parallel and orthogonal to the cut plane are: 
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kNsinFF

kNcosFF

N

t

6
5

3
10

8
5

4
10









 

b. he tangential and normal stressest o the cut plane are:: 

MPaPa
Ft

t 8108
102105

6

22






  

MPaPa
FN

N 6106
102105

6

22






  

 

 
Fig. S3.3 Problem 5. 

 

6.  a) Axial stress along z-axis is: MPa,
,d

z 679
104143

10425000
4

5

2









 .  Radial 

strain is: %,%
,

r 0150100
20

0030
 , axial strain is:

%,%
,

z 0820100
200

1640
 . The Young’s modulus is: 

GPa,
,

MPa,
E

z

z 0797
000820

679





. 

b) The Poisson’s ratio is: ν=−
𝜀𝑟

𝜀𝑧
= 0.183; GPa,

)(

E
K 376

213






  and 

GPa
)(

E
41

12






  

c) The strength of granite sample is given by: 

MPa,
),(,d

Fmax
F 4399

03302010143

12500044
262











  

 

7. In Fig. S3.4 the construction of the Mohr’s circle and the principle stress ellipse is 

illucidated. The stress vector (45°) corresponds to the point on the stress ellipse having 

two components [1 ∙cos (45°), 2∙sin(45°)]. The length of the vector is: 
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 |𝜎(45𝑜)| = √𝜎1
2 ∙ 𝑐𝑜𝑠2(45𝑜) + 𝜎2

2 ∙ 𝑠𝑖𝑛²(45𝑜) =√
502+25²

2
= 39.53 MPa, where 1 and 

2 are two given principal stresses. The vector (45°) builds the angle  with the 1 axis: 

 

                                            
 
 
 

Then, from the right triangle it follows: 
 
 

 
Fig. S3.4 Problem 7. 

 

8. (a) Analytical solution. In ordert o calculate the principal stresses one needs to find 

eigenvalues oft he matrix equation: 

  

 

 

The root oft he quadratic equation 1,2 are:  

 

 

So two principle stresses are: =65 and 2=15 MPa: 
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The new coordinate systen in which the stress matrix is diagonal are defined by the 

rotation angle of axis :  

 

 

(b) Graphic solution. One plots in Cartesian coordinate system two points: 

A(x,+) und B(y, -) and connects A and B with a straight line (red line 

in Fig. S3.5). Then, one estimates the radius of the Mohr’s circle as a half 

distance between points A and B. The ordinates of intersection points of 

the circle with the horizontal axis S1 und S2 define the principal stresses 1 

and 2. The direction of the principal stress is defined by the half angle 

between  the line AB and the x-axis  =1/2 ∙ 𝑎𝑛𝑔𝑙𝑒(AOS1) or equals the 

angle(AS2O). 

 
Fig. S3.5 Problem 8.  

 

9. (a) The division of the stress state into hydrostatic and deviatorial part can be given in 

a tensor form. How does the equation look like? Derive the hydrostatic and the 

deviatoric stress components explicitly trough principal stresses. What type of 

deformation do the hydrostatic and the deviatoric parts of stress tensor correspond to? 

(b) The invariants of the deviatoric part of stress tensor are: 

 
Express the deviatoric invariants for the uniaxial tensile test through principal stresses.  

The stress tensor invariants are the coefficients in the cubic equation which roots 

define tree principal stresses. In the matrix form this equation is: 
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|

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑥𝑦 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑧𝑧

| − 𝜆 ∙ |
1 0 0
0 1 0
0 0 1

|

⏞      
𝐼

= 0 → 𝜆3 − 𝐼1 ∙ 𝜆
2 − 𝐼2 ∙ 𝜆 − 𝐼3 = 0, where 𝐼1,2,3 

are the stress matrix invariants. The hydrostatic stress is the mean value of diagonal 

stress matrix elements:  𝜎𝑚 =
𝑡𝑟𝑎𝑐𝑒(𝜎𝑖𝑗)⏞      

𝐼1

3
. So the matrix 𝜎𝑚 ∙ 𝐼 represents hydrostatic 

part of the stress matrix. The deviatoric stress matrix is given by: |

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑥𝑦 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑧𝑧

| −

𝜎𝑚 ∙ 𝐼 = |

𝜎𝑥𝑥 − 𝜎𝑚 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑥𝑦 𝜎𝑦𝑦 − 𝜎𝑚 𝜎𝑦𝑧
𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑧𝑧 − 𝜎𝑚

| = 𝑆. If 𝜆1,2,3 are the eigenvalues of the 

stress matrix, then, the eigenvalues of the deviatoric matrix are 𝑠1,2,3 = 𝜆1,2,3 − 𝜎𝑚, or 

in terms of three principal stresses 𝜎1,2,3:  

𝑠1 =
2𝜎1 − 𝜎2 − 𝜎3

3

𝑠2 =
2𝜎2 − 𝜎1 − 𝜎3

3

𝑠3 =
2𝜎3 − 𝜎2 − 𝜎1

3

 

(b) The invariants of deviatoric stress matrix are: 

 

𝐽1 = 𝑠1 + 𝑠2+𝑠3 ≡ 0, The trace of deviatoric matrix is trivial zero, since the sum of 

three roots of deviatoric matrix eigenvalues are corrected to the mean value of the 

roots.   

𝐽2 = 𝜎𝑥𝑦
2 + 𝜎𝑥𝑧

2 + 𝜎𝑦𝑧
2 − (𝜎𝑥𝑥 − 𝜎𝑚) ∙ (𝜎𝑦𝑦 − 𝜎𝑚) − (𝜎𝑥𝑥 − 𝜎𝑚) ∙ (𝜎𝑧𝑧 − 𝜎𝑚) −

(𝜎𝑦𝑦 − 𝜎𝑚) ∙ (𝜎𝑧𝑧 − 𝜎𝑚) = 𝜎𝑥𝑦
2 + 𝜎𝑥𝑧

2 + 𝜎𝑦𝑧
2 − (𝜎𝑥𝑥 ∙ 𝜎𝑦𝑦 + 𝜎𝑥𝑥 ∙ 𝜎𝑧𝑧 + 𝜎𝑦𝑦 ∙ 𝜎𝑧𝑧) +

3𝜎𝑚
2 =−(𝑠1 ∙ 𝑠2 + 𝑠1 ∙ 𝑠2 + 𝑠2 ∙ 𝑠3), since the trace of deviatoric matrix is zero. Or 𝐽2 −

(𝑠1 ∙ 𝑠2 + 𝑠1 ∙ 𝑠2 + 𝑠2 ∙ 𝑠3) +
(𝑠1+𝑠2+𝑠3)

2

2
=
𝑠1
2+𝑠2

2+𝑠3
2

2
. The third invariant is the matrix 

determinant andfor the diagonal matrix: 𝐽3 = 𝑠1 ∙ 𝑠2 ∙ 𝑠3. 
10.        

a) The principal stresses are 210 and 100 MPa: (155 − 𝜆)² = 55² , 𝜆1 = 155 + 55 =
210, 𝜆2 = 155 − 55 = 100 . 

b) According to Tresca yield criterion is yielding starts when the maximum shear stress 

in the material equals the yielding stress limit: 𝜏𝑚𝑎𝑥 =
𝜎1−𝜎2

2
= 55 𝑀𝑃𝑎 < 𝑘𝑓. The 

material deforms elastically. 

c) According to von Mises in 2D case the yielding criterion is: √𝜎1
2 + 𝜎2

2 − 𝜎1 ∙ 𝜎2 = = 

181.9 MPa < 𝑘𝑓. The material responded also elastically. 

d) In Fig. S3.6 the difference between Tresca and von Mises yield criterion is depicted. 

Depending on the ratio between two principle stresses 𝛼 =
𝜎2

𝜎1
 the difference between 

predicted yielding criteria may be significant only at 𝛼 = 0, 1 𝑎𝑛𝑑 ∞ two criteria 

predicted the same yielding stress. 
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Fig. S3.6 Problem 10: comparison between Tresca and von Mises yielding criteria. 

 

11. Elastic modulus E=90 ∙ 109 N/m2, Poisson number ν= 0.28.  

(a) The axial stress is 𝜎𝑧 =600 N/m².  

(b) The axial strain is 𝜀𝑧 =
𝜎𝑧

𝐸
= 6.7∙ 10−7. The lateral strain is 𝜀𝑙 = −𝜈 ∙ 𝜀𝑧 = −1.86∙

10−7. Volume strain is: 𝜀𝑣 = (1 − 2𝜈) ∙
𝜎𝑧

𝐸
= 2.9∙ 10−7. 

(c) The width is changed by: 0.1∙ 𝜀𝑙 =-1.87∙ 10−8, the length is elongated by: 0.2 ∙ 𝜀𝑧=1.3∙
10−7 m. 

12. The graphical solution of the problem is shown in Fig. S3.7. 

 

 
Fig. S3.7 Problem 12. 
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𝜏 = 7.7 ∙ √𝜎𝑛 + 10 from this relationship the tensile strength is defined by 7.7 ∙

√𝜎𝑛 + 10=0 𝜏𝑡𝑒𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 10 𝑀𝑃𝑎. The cohesive strength is 𝜏𝑐𝑜ℎ𝑒𝑠𝑖𝑣𝑒 = 7.7 ∙

√0+ 10 =24.3 MPa. The uniaxial compressive strength is defined by the Mohr’s 

diameter D of a circle with centre O(
𝐷

2
, 0). From the graph it is about 108 MPa. The 

analytical solution is as follows: The equation of tangential line to the Mohr’s circle at 

point A(𝜎0, 𝜏0) having diameter D and passing through the point (0,0) is: 𝜏 =

7.7

2∙√𝜎0+10

⏞    
𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑠𝑙𝑜𝑝𝑒

∙ (𝜎𝑛 − 𝜎0) + 𝜏0⏞

7.7∙√𝜎0+10

. The line which is orthogonal to the tangent 

passing through the point A and O is: 𝜏 = − 
2∙√𝜎0+10

7.7

⏞      
𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 𝑡𝑜 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑙𝑖𝑛𝑒 𝑠𝑙𝑜𝑝𝑒

∙ (𝜎𝑛 − 𝜎0) +

7.7 ∙√𝜎𝑛 + 10. The point O(
𝐷

2
, 0) satisfied this straight line equation: 0=− 

2∙√𝜎0+10

7.7
∙

(
𝐷

2
− 𝜎) + 7.7 ∙√𝜎𝑛 + 10. From this relationship one obtains the identity: 𝐷 = 2𝜎0 +

(7.7)2. From other side, the point A(𝜎0, 𝜏0)belongs to the Mohr’s circle: 
𝐷²

4
=

(𝜎0 −
𝐷

2
)
2

+ 𝜏0
2. After plugging 𝜏0 = 7.7 ∙√𝜎0 + 10, one obtain the second identity: 

D=𝜎0 +(7.7)²∙ (1 +
10

𝜎0
). Solving two equations relative to 𝜎0 and D, one obtains: =

7.7 ∙ √10 = 𝜏𝑐𝑜ℎ𝑒𝑠𝑖𝑣𝑒 = 24.3 𝑀𝑃𝑎, and D=2 ∙ 24.3 + (7.7)2 =108 MPa.  

The stress state corresponds to the largest Mohr’s circle radius 
𝐷

2
=(200-20)/2=90 MPa 

at this normal stress the maximum possible tangential stress is =7.7∙ √90 + 10 = 77 

MPa. So the stress state corresponds to failure of rock. 
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Exercises and control questions to Chapter 4: 

1. Table S4.1 

Tensile Force, kN Measured length, mm 

0 50.80 

8.9 50.82 

17.8 50.84 

26.8 50.86 

29.2 50.89 

35.7 50.94 

44.6 51.12 

51.3 51.41 

53.1 (max) 60.96 

52.6 (failure) 65.02 

 

 Fig. S4.1 Problem 1. 

 

a. Fig. S4.1 represents the data on the stress-strain curve  as function of : 

Tangential Young’s modulus: Et=210 MPa/0.0012=175 GPa; mean Young’s modulus: EM= 

190 MPa/0.001= 190 GPa; secant Young’s modulus: ES=400 MPa/0.012=33.3 GPa. 

b. zz=(60.96-50.80)/50.80=0.2; xx=yy=(12.2-12.8)/12.8=-0.047; Poisson’s 

ratio =0.234. 

c. Fron Fig. S5.1 it follows:: zz=2%=0.02, =400 MPa. 

d. strength=53.1∙10³ N/(3.14‧(12.2∙10-³)²/4)=454 GPa 
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e. failure=(65.02-50.8)/50.8=0.28 

 

2. From Fig. S4.2 it follows: K=500 MPa/0.1=5000 MPa= 5GPa; B=500 MPa; R= 300 

MPa. 

 
Fig. S4.2 Elasto-brittle model with the rest strength. Problem 2. 

 

 

3. As it follows from Fig. S4.3 from 0 to 0.03 strain the elastic spring K1 is only acting. 

Thus, the slope on the stress-strain curve defines the elastic constant K1: 

K1=500/0,03=16.7 GPa. If the stress on the element R eqials 500 MPa, then, it breaks 

and the stress exerted on the spring K2 is also 500 MPa, and two springs connected in 

sequence K2 und K1 are at the stress R= 500 MPa. The slope on the stress-strain curve is  

(1/K1+ 1/K2)
-1=(800-500)/(0.35-0.03)=0.938 GPa. From this identity, it follows that K2= 

(0.937-1-16.7-1)-1=0.994 GPa. At stress 800 GPa breaks the element B, so B=800 MPa.  

 
Fig. S4.3 Brittle model with the Saint-Venant element. Problem 3. 

 

4. When atoms are at equilibrium positions, then, the sum of attraction and repulsion forces 

is zero:. 

 

 

 

From these two equations one can eliminated consants A and B: 
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The Young’s modulus can be understand in this situation as a force gradient per unit distance 

between atoms: 

  

 

 

 

 

 

5. The strain is: =(0.455-0.452)/0.452=0.00664; the Young’s modulus is: E=1000 

MPa/0.00664=150.7 GPa. 

 

6. The Arrhenius dependence of viscosity on temperature is given by: η ∝ 𝑒
𝐸𝑎
𝑅𝑇. For the 

temperature 𝑇1=1150+273=1423K: 
𝜎𝑓𝑎𝑖𝑙𝑢𝑟𝑒

𝜂(𝑇1)
=

0.01

3.2∙106𝑎
, and for temperature 

𝑇2=1050+273=1323K: 
𝜎𝑓𝑎𝑖𝑙𝑢𝑟𝑒

𝜂(𝑇2)
=

0.01

8.5∙106𝑎
, Thus, 

𝜂(𝑇2)

𝜂(𝑇1)
=
8.5∙106𝑎

3.2∙106𝑎
 =2.656. From the Arrhenius 

equation it follows: 
𝜂(𝑇2)

𝜂(𝑇1)
= 𝑒

𝐸𝑎
𝑅
∙(
1

𝑇2
−
1

𝑇1
)
, or 

𝐸𝑎

𝑅
=
𝑙𝑛(

𝜂(𝑇2)

𝜂(𝑇1)
)

(
1

𝑇2
−
1

𝑇1
)
=

0.9769

4.9445∙10−4
= 19757. At 

𝑇3=1050+273=1393K the viscosity 
𝜂(𝑇3)

𝜂(𝑇1)
= 𝑒18757∙(

1

1393
−

1

1423
)
=1.3485. At 1393K the 

break may be achieved in 4.3 ∙ 106𝑎. From 0.9% to 1% of strain the elapsed time is 0.43∙

106𝑎. 

 
7.  (a) In deformed state the coordinate of points in Fig. S4.4 are: A’(2,0.5) ∙ 10−3 𝑚𝑚, 

B’(1+5∙ 10−3 ,2.5∙ 10−3 ), C’(1+10∙ 10−3 , 1 +5.5∙ 10−3 ) and D’(7∙ 10−3 , 1 +  3.5∙ 10−3 ) . 

(b) The components of strain tensor are: 𝜀𝑖𝑗 = |

𝜕𝑢1

𝜕𝑥1

1

2
(
𝜕𝑢1

𝜕𝑥2
+
𝜕𝑢2

𝜕𝑥1
)

1

2
(
𝜕𝑢1

𝜕𝑥2
+
𝜕𝑢2

𝜕𝑥1
)

𝜕𝑢2

𝜕𝑥2

| = |
3 3.5
3.5 3

| ∙

10−3  for all points the same.  

(c) Angle deformation is (
𝜕𝑢1

𝜕𝑥2
+
𝜕𝑢2

𝜕𝑥1
) =7∙ 10−3 . The angle DAB 90° is deformed by c. 0.4° in 

D’A’B’. 
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Fig. S4.4 Problem 7. 

 

8.    (a) The length of cuboid diagonal OA is chanced by ∆𝑑 = √(𝑎 + ∆𝑎)2 + (𝑏 + ∆𝑏)2 + (𝑐 + ∆𝑐)²-

√𝑎2 + 𝑏2 + 𝑐² ≈ 4 ∙ 10−3 𝑚. The shape of the cuboid in the deformed state (see Fig. 

S4.5) implies that  there is a linear spatial distortion of cuboid sides, and because 

orthogonal sides remain orthogonal  even after deformation, the shear distortions in the 

cuboid are zero. The components of strain tensor are: 𝜀𝑖𝑗 = |
|

∆𝑎

𝑎
0 0

0
∆𝑏

𝑏
0

0 0
∆𝑐

𝑐

|
| 

= |
2 0 0
0 1.67 0
0 0 −0.5

| ∙ 10−3 .  

(b) The volumetric strain is the sum of the diagonal elements: 𝜀𝑉 = 3.17 ∙ 10
−3 . The 

diagonal in the non-deformed state is characterized by three cosines: 𝑐𝑜𝑠𝛼 =
1

√14
, 𝑐𝑜𝑠𝛽 =

3

√14
, 

𝑐𝑜𝑠𝛾 =
2

√14
. The strain along the direction 𝑛⃗ =

1

√14
(
1
3
2
) is given by: 𝜀𝑑

′ = 𝜀11 ∙  𝑐𝑜𝑠²𝛼+𝜀22 ∙

 𝑐𝑜𝑠2𝛽 + 𝜀33 ∙  𝑐𝑜𝑠
2𝛾 =

2∙1+1.67∙9−0.5∙4

14
∙ 10−3 ≈ 1.07 ∙ 10−3.  

(c) The mean normal strain is the arithmetic mean of diagonal strain tensor 

elements: 𝜀𝑚 =
2+1.67−0.5

3
∙ 10−3 = 1.06 ∙ 10−3  

 
Fig. S4.5 Problem 8. 

 

9. Formulate the equations and graphically explain the behavior and subsequent relief of 

Maxwell and Perzyna bodies shown in Fig. E4.5, under the constant tension stress 0 

acting during the time period t1. 

(a) Maxwell body: one denotes the viscosity of dashpot by h and the elastic modulus of 

spring as K (see Fig. S4.6A). Then the stress on the both elements is the same 𝜎 =

𝜎𝐷 = 𝜎𝑆 = 𝜂‧
𝑑𝜀

𝑑𝑡
= 𝐾 ∙ 𝜀, because they connected in series, and the total strain is the 
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sum of strains of dashpot and spring, 𝜀 = 𝜀𝐷 + 𝜀𝑆 =
𝜎

𝜂
∙ 𝑡 +

𝜎

𝐾
 . If a Maxwell body is 

suddenly subjected to a stress σ0, then the elastic element would suddenly deform by 
𝜎0

𝐾
 , and the viscous element would deform with a constant rate, 

𝜎0

𝜂
 (see Fig. S4.6 C). 

If at some time t1 one releases the stress to 0, then the deformation of the elastic 

spring releases by back deformation  
𝜎0

𝐾
 , and the deformation of the viscous element 

would not change and stays at the level of 
𝜎0

𝜂
∙ 𝑡1. 

(b) Perzyna body: the difference with the Maxwell fluid body is the Saint-Venant 

element connected in parallel with the viscous dashpot (see Fig. Fig. S4.6B). For 

Perzyna body, the rate of viscous strain is a function of the initial yield stress y and 

viscosity. The sliding element represents a constant yielding stress when the elastic 

limit is exceeded irrespective of the strain. Depending of the level of applied stress 

0 the reaction of the body to a sudden applied  or released stress 𝜎0 is as follows: at 

|𝜎0|<y  𝜀 =
𝜎0

𝐾
, and at 0>y  𝜀 =

𝜎0

𝐾
+
(𝜎0−𝜎𝑦)

𝜂
∙ 𝑡.  

 

 

 

 
Fig. S4.6 Problem 9. A. Maxwell body. B. Perzyna body. 

 

10. Three components of principle strains are the eigenvalues of the matrix:  
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|−
0.15 − 𝜆 −0.05 0.05
0.05 0.20 − 𝜆 0.03
0.05 0.03 −0.35 − 𝜆

| = 0, the solution is:  𝜀1,2,3 = (
−0.3571
0.1262
0.2309

). The 

maximum shear strain is given by 𝜏𝑚𝑎𝑥 =
max(𝜀𝑖)−min (𝜀𝑖)

2
=
0.2309+0.3571

2
= 0.294. The strain in 

the direction 𝑛⃗ =(
1

2
,- 
1

2
, −

1

√2
) is given by: 𝜀𝑛

′ = 𝜀11 ∙  𝑐𝑜𝑠²𝛼
⏞  

1

2∙2

+𝜀12 ∙  𝑐𝑜𝑠𝛼 ∙ 𝑐𝑜𝑠𝛽⏞      

−
1

2√2

+ 𝜀13 ∙  𝑐𝑜𝑠𝛼 ∙ 𝑐𝑜𝑠𝛾⏞      

−
1

2√2

 

+𝜀21 ∙ 𝑐𝑜𝑠𝛼 ∙ 𝑐𝑜𝑠𝛽⏞      

−
1

2√2

+ 𝜀22 ∙  𝑐𝑜𝑠
2𝛽⏞  

1

2∙2

+ 𝜀23 ∙  𝑐𝑜𝑠𝛽 ∙ 𝑐𝑜𝑠𝛾⏞        

−
1

2√2

+𝜀31 ∙  𝑐𝑜𝑠𝛼 ∙ 𝑐𝑜𝑠𝛾⏞      

−
1

2√2

 + 𝜀32 ∙  𝑐𝑜𝑠𝛽 ∙ 𝑐𝑜𝑠𝛾⏞        

−
1

2√2

+

𝜀33 ∙  𝑐𝑜𝑠
2𝛾⏞    

1

2

= -0.169. The Poisson’s ratio is 0.5, since the volume strain is 0. 
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Exercises and control questions to Chapter 5: 

1. The Darcy's law may only be applied to very small velocities v, where the kinetic 

energy of flow can be neglected and the energy losses are only of a hydraulic nature. 

Similar to classical fluid dynamics, the Reynolds number Re serves as a measure of 

flow slowness: 𝑣𝑚𝑎𝑥 =
𝑅𝑒𝑚𝑎𝑥∙𝜂

𝜌𝑤𝑎𝑡𝑒𝑟∙𝑑𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦
. The maximum Reynolds number is Re=10. 

The effective diameter of intergranular capillary for cubic packing may be estimated as 

follows: per elementary cubic cell having volume d³, there is a sphere of volume ∙d³/6. 

The difference of two volumes is the pore space volume. One considers a cylinder 

which possesses the volume equal the pore space volume and the length d. Then, the 

effective cros section area of the cylinder is given by: 

𝜋 ∙ 𝑑𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦
2

4
=
𝑑3 −

𝜋 ∙ 𝑑³
6

𝑑
= (1 −

𝜋

6
) ∙ 𝑑2 → 𝑑𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 = 2𝑑 ∙

√
1 −

𝜋
6

𝜋
≈ 0.78 ∙ 𝑑

= 0.039 𝑐𝑚 

For the hexagonal packing the volume of the elementary cell is  3√2∙d³, the volume of 6 

spheres  per cell is d³ and the length of elementary cell is 2√2/√3∙d (see Exercise 1 to 

Chapter 2): 

𝜋 ∙ 𝑑𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦
2

4
=
3√2 ∙ d³ − 𝜋 ∙ 𝑑³

2√2/√3 ∙ 𝑑
=
√3

2
(3 −

𝜋

√2
) ∙ 𝑑2 → 𝑑𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦

= 𝑑 ∙
√
2√3 ∙ (3 −

𝜋

√2
)

𝜋
≈ 0.926 ∙ 𝑑 = 0.046 𝑐𝑚 

𝑣𝑚𝑎𝑥 =
10 ∙ 1.14 ∙ 10−3

103 ∙ 𝑑
= 0.029⏞  
𝑐𝑢𝑏𝑖𝑐 𝑝𝑎𝑐𝑘𝑖𝑛𝑔

÷ 0.0246⏞    
ℎ𝑒𝑥𝑎𝑔𝑜𝑛𝑎𝑙 𝑝𝑎𝑐𝑘𝑖𝑛𝑔

 𝑚/𝑠𝑒𝑐 

 

2. 
 

 
2

2

3

    1  

      
dBk

c

c 








, where B=15 and c=0.035.  

Dmmk

Dmmk

36000²1036)²10240(
) 32,0035,01 (

) 035,032,0 (
15

4000²104)²1080(
) 32,0035,01 (

) 035,032,0 (
15

96

2

3

96

2

3

















 

If ≈c , then 
 

 
2

2

3

   1 

      
dBk c 





 and n=3. 

3. In a cylindrical vessel having diameter Dr = 30 cm , there are free shaken layers of 

spherical quartz sand particles and water. The quartz sand particles have a volume of 

V = 108 dm³. The volume VB of the vessel is 180 dm³. Laminar water flows through 

the bottom layer. Determine the diameter Dk of the quartz sand particles, if the 



225 

 

velocity of the water level decrease in the vessel is U = 5 cm/s. Viscosity of water η = 

1.14∙10-3 Pa sec. 

The porosity of particle suspension is given by: 𝜑 =
180−108

180
=0.4. 

 
Fig. S5.1 Problem 3. 

Physical velocity of water in porous space of suspension is: 𝑣 =
𝑈

𝜑
= 12.5 𝑐𝑚/𝑠 . The 

Darcy’s law can be written in the form as follows:   

 

 

 

 

 

One considers a cubic (a) and hexagonal (b) dense packings of quartz particles: 

(a) 𝑘 =
𝜋

32
∙ 𝑅2 =

𝜋

128
∙ 𝐷𝑐𝑢𝑏𝑖𝑐

2   

(b) 𝑘 =
𝜋

16√3
∙ 𝑅2 =

𝜋

64√3
∙ 𝐷ℎ𝑒𝑥𝑎𝑔𝑜𝑛𝑎𝑙

2  

Then, for cubic dense packing:  

 

𝐷𝑐𝑖𝑏𝑖𝑐 = √
5 ∙ 10−9 ∙ 128

𝜋
≈ 0.45 𝑚𝑚 

 

And for hexagonal dense packing: 

 

𝐷ℎ𝑒𝑥𝑎𝑔𝑜𝑛𝑎𝑙 = √
5 ∙ 10−9 ∙ 16√3

𝜋
≈ 0.21 𝑚𝑚 

 

4. One may rewrite the relationship in the form: ln(𝛽) + 0.5 ∙ ln(𝜅) ∝  −𝑛 ∙ ln (𝜑). The 

data from Table S5.1 are fitted to n=3.3 with the correlation coefficient R²=0.816. 

Table S5.1 Permeability κ and non-Darcy parameter   for some porous rocks 

Parameter κ, 10−15 m2 β, 108 m−1 φ, porosity Reference 

Dakota sandstone 3.5 157.9 0.14 Zeng & Grigg, 2006 

Indiana limestone 21.6 36 0.15 Zeng & Grigg, 2006 

29

3

32

105
872,910

1014,1105
m
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kU 
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Berea sandstone 196 2.9 0.18 Zeng & Grigg, 2006 

Linyi sandstone 2.4 825.5 0.10 Choi &Song, 2019 

Bandera sandstone 31.6 9.6 0.19 Choi &Song, 2019 

Buff Berea sandstone 290.8 4.3 0.22 Choi &Song, 2019 

Boise sandstone 1091 4.15 0.27 Choi &Song, 2019 

Glass beads: 595–707 μm 2.8∙ 104 0.033 0.37 Macini et al., 2011 

Natural sand: 500–595 μm 3.35∙104 0.034 0.45 Macini et al., 2011 

 

5. One denote by q is the volumetric flow velocity in the slit per channel width. Then, the 

mean flow velocity is given by: 𝑣𝑚 =
𝑞

2𝑤
. The first derivative of the solution is: 

𝑑𝑣(𝑦)

𝑑𝑦
=
𝜅

𝜂
∙ (−

𝑑𝑃

𝑑𝑥
) ∙

(

 
 
 
 

−
𝐷𝑎

√
𝜂′

𝜂

∙
1

𝑤
∙

sinh

(

 
 𝐷𝑎

√𝜂
′

𝜂

∙
𝑦

𝑤

)

 
 

cosh

(

 
 𝐷𝑎

√𝜂
′

𝜂)

 
 

)

 
 
 
 

. The second derivative is: 
𝑑²𝑣(𝑦)

𝑑𝑦²
= 
𝜅

𝜂
∙

(−
𝑑𝑃

𝑑𝑥
) ∙

(

 
 
 
 

−
𝐷𝑎²

𝜂′

𝜂

∙
1

𝑤²
∙

cosh

(

 
 𝐷𝑎

√𝜂
′

𝜂

∙
𝑦

𝑤

)

 
 

cosh

(

 
 𝐷𝑎

√𝜂
′

𝜂)

 
 

)

 
 
 
 

. Then,  
𝜂

𝜅
∙ 𝑣(𝑦) − 𝜂′ ∙

𝑑2𝑣(𝑦)

𝑑𝑦2
= (−

𝑑𝑃

𝑑𝑥
) ∙

[
 
 
 
 
 
 

1 −

cosh

(

 
 𝐷𝑎

√𝜂
′

𝜂

∙
𝑦

𝑤

)

 
 

cosh

(

 
 𝐷𝑎

√𝜂
′

𝜂)

 
 

]
 
 
 
 
 
 

− 
𝜅

𝜂
(−

𝑑𝑃

𝑑𝑥
) ∙

(

 
 
 
 

−
𝑤²

𝜅
∙
𝜂

𝑤²
∙

cosh

(

 
 𝐷𝑎

√𝜂
′

𝜂

∙
𝑦

𝑤

)

 
 

cosh

(

 
 𝐷𝑎

√𝜂
′

𝜂)

 
 

)

 
 
 
 

=(−
𝑑𝑃

𝑑𝑥
). The boundary 

conditions are satisfied due to:  𝑣(±𝑤) =
𝜅

𝜂
∙ (−

𝑑𝑃

𝑑𝑥
) ∙

[
 
 
 
 
 
 

1 −

cosh

(

 
 𝐷𝑎

√𝜂
′

𝜂

∙
±𝑤

𝑤

)

 
 

cosh

(

 
 𝐷𝑎

√𝜂
′

𝜂)

 
 

]
 
 
 
 
 
 

≡ 0.  The 

dimensionless pressure gradient is: 
∫ 𝑑𝑦
𝑤
−𝑤

2𝑤
∙

⏞  
≡1

𝜅

𝜂
∙ (−

𝑑𝑃

𝑑𝑥
) =

1

2𝑤
∫ 𝑣(𝑦) ∙ 𝑑𝑦
𝑤

−𝑤
−

𝜅∙𝜂′

2𝑤∙𝜂
∙

∫
𝑑²𝑣(𝑦)

𝑑𝑦²
∙ 𝑑𝑦

𝑤

−𝑤
=(

𝑞

2𝑤
−
𝜅

𝜂
(−

𝑑𝑃

𝑑𝑥
)
𝜅∙𝜂′

𝜂
∙
1

2𝑤
∙ [
𝑑𝑣(𝑤)

𝑑𝑦
−
𝑑𝑣(−𝑤)

𝑑𝑦
])=𝑣𝑚 −

𝜅

𝜂²
∙ 𝜂′ ∙ (−

𝑑𝑃

𝑑𝑥
) ∙

(−
1

√
𝜂′

𝜂

∙
1

𝑤∙√𝑘
∙ tanh(

𝐷𝑎

√
𝜂′

𝜂

)). Thus, : 
𝜅

𝜂
(−

𝑑𝑃

𝑑𝑥
) ∙ (1 −

√𝜅

𝑤
‧√
𝜂′

𝜂
∙ tanh(

𝐷𝑎

√
𝜂′

𝜂

))=𝑣𝑚, or  
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𝑤²

𝑣𝑚∙𝜂
∙ (−

𝑑𝑃

𝑑𝑥
) =

𝐷𝑎²

(

 
 
1 −

1

𝐷𝑎
‧√
𝜂′

𝜂
 ∙tanh

(

 
 𝐷𝑎

√𝜂
′

𝜂)

 
 

)

 
 

. At 𝜅 → ∞, Da≈ 0, then 
𝑤²

𝑣𝑚∙𝜂
∙ (−

𝑑𝑃

𝑑𝑥
) ≈ 3 ∙

𝜂′

𝜂
 

the viscous flow limit is reached. At 𝐷𝑎 → ∞, 𝜅 ≈ 0, then, 
𝑤²

𝑣𝑚∙𝜂
∙ (−

𝑑𝑃

𝑑𝑥
) ≈ 𝐷𝑎², and 

the Darcy flow limit is reached. 

 

6. One uses the Hagen-Poiseille law in the form as follows: 

𝑞 =
10

60 ∙ 60⏟    
1 ℎ𝑜𝑢𝑟

𝑚3/𝑠𝑒𝑐 =
𝜋

8 ∙ 𝜌 ∙ 𝜈⏟
𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦

∙
∆𝑃

𝐿
∙ (
𝐷

2
)
4

 

 

 
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
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. From this identity it follows: 
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
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
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
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7. (a) Consider the Darcy’s law in the form (see Fig. S5.2): 
L

h
K

A

Q
q f


 . Then,  𝑞 =

3⏞

𝐾𝑓

60∙60∙24⏟      
1 𝑑𝑎𝑦

∙
∆ℎ⏞

𝑤𝑎𝑡𝑒𝑟 𝑡𝑎𝑏𝑙𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐿⏟
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑓𝑙𝑜𝑤

 =5.8∙ 10−8 𝑚/𝑠𝑒𝑐. The volumetric water flow rate per unit 

width is:  𝑉 = 𝑞 ∙ 1𝑚 ∙ 10𝑚 ∙ 2⏟
𝑖𝑛 𝑡𝑤𝑜 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠

= 1.16 ∙ 10−6 𝑚3/𝑠𝑒𝑐. 

(b) Alternatively, the Darcy’s law may be written in the form:



L

hgk

L

Pk
q

hg















. From 

this identity the permeability is given by: DmqL
hg

k 4,3²105,3 12 


 




. 

 

 
Fig. S5.2 Problem 7. 

 

8. A well with a diameter of 0.25 m has a 30 m long section below the groundwater level. The 

material of the aquifer has a grain size of d = 2.0 mm (hydraulically effective grain diameter). 
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Groundwater is pumped out of the well at a rate of 0.3 m3/s. Is the Darcy law in the near field 

and at a distance 10 m of the well applicable? 

Note: For each cylindrical cross-section of a radius r according to the continuity law and the 

Darcy law the following applies: 𝑄 = 𝑞 ∙ 𝐴 = 2𝜋𝑟 ∙ 𝑙 ∙ 𝑘𝑓 ∙
𝑑ℎ

𝑑𝑟
→

𝑄

2𝜋𝑙∙𝑘𝑓

𝑑𝑟

𝑟
 = dh, and after 

integration from r0, the inner radius of a bore-well to the distant point R one obtains the 

Dupuit-Theme formula: 𝑄 = 2𝜋 ∙ 𝑙 ∙ 𝑘𝑓 ∙
∆ℎ

𝑙𝑛(
𝑅

𝑟0
)
=2𝜋 ∙ 𝑙 ∙

∙𝜅

𝜂
∙

∆𝑃

𝑙𝑛(
𝑅

𝑟0
)
 for a radial flow rate around a 

bore-well. 

Consider a steady radial flow in unconfined aquifer (see Fig. S5.3). The aquifer is unconfined 

and underlain by a horizontal confining layer. The well is pumped at a constant rate. The 

Dupuit-Theme formula is valid. The Darcy’s law and the radial flow in the unconfined aquifer 

can be described as: 𝑄 = 2𝜋 ∙ 𝑅 ∙ ℎ(𝑅) ∙ 𝑘𝑓 ∙
𝑑ℎ

𝑑𝑅
. Q is the constant pumping rate. After 

integration, one obtains: ∫ 2ℎ ∙ 𝑑ℎ
ℎ

ℎ−(ℎ0−𝐿)
= 

𝑄

𝜋𝑘𝑓
∙ ∫

𝑑𝑅

𝑅

𝑅

𝑟0
 → (ℎ + ℎ0 − 𝐿) ∙ 𝐿 =

𝑄

𝜋𝑘𝑓
∙ 𝑙𝑛 (

𝑅

𝑟0
). 

The gradient a a function of radial distance is: (
𝑑ℎ

𝑑𝑅
) =

𝑄

𝜋𝐿∙𝑘𝑓
∙
𝑟0

𝑅
.  

 
Fig. S5.3 Problem 8. 

 

Thus, the ratio of the Darcy flow velocity at the distance 10 m from the bore-hole and at the 

wall is the ratio of pressure gradients: 
𝑞10

𝑞0.125
=
0.125

10
. The Darcy velocity at the distance 10 m is given by: 𝑞10 =

𝑄

2𝜋𝐿∙𝑅
= 1.59 ∙

10−4 𝑚/𝑠𝑒𝑐. The Reynolds number is: 𝑅𝑒 =
1.59∙10−4

1.8∙10−6
∙ 2 ∙ 10−3 ≈ 0.18 < 1 

 

9. In the cylindrical sedimentary oil-bearing rock layer of thickness 10 m and radius 1 km 

located at a depth 2 km. The rock possesses the permeability 0.5 D and porosity 0.2. There is 

a bore-hole with the diameter 10 cm and a depth of 2 km is located in the centre of the layer. 

Oil viscosity is 1 Ps s, and its density is 0.87 g/cm³, absolute oil reservoir pressure 20 MPa. It 

is necessary to determine whether the well can fountain when it is opened, and what is its the 

production rate, if at a bottom the bore-hole the pressure is 19 MPa. 

𝑄 = 2𝜋 ∙ 𝑙 ∙ 𝑘𝑓 ∙
∆ℎ

𝑙𝑛(
𝑅

𝑟0
)
=2𝜋 ∙ 𝑙 ∙

∙𝜅

𝜂
∙

∆𝑃

𝑙𝑛(
𝑅

𝑟0
)
= 2𝜋 ∙ 10 ∙ 0.5 ∙

10−12

1
∙

106

ln(
1000

0.05
)
= 3.17 ∙ 10−6

𝑚3

𝑠𝑒𝑐
.  

The hydrostatic pressure at the bottom of the oil column is 𝑃𝑜𝑖𝑙 = 0.87 ∙ 10
3 ∙ 9.81 ∙ 2 ∙ 103 =

17.1 𝑀𝑃𝑎 𝑃𝑙𝑖𝑡ℎ𝑜𝑠𝑡𝑎𝑡𝑖𝑐 = 2.2 ∙ 10
3 ∙ 9.81 ∙ 2 ∙ 103 = 43.2 𝑀𝑃𝑎 .The pressure losses by the 

flow of oil in the borehole is: ∆𝑃𝑙𝑜𝑠𝑠 =
8∙𝜂∙𝑙∙𝑄

𝜋∙𝑟4
≈ 0. The buoyancy is 26.1 MPa and it is larger 

than the actual pressure at the bottom of the borehole 19 MPa.  
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10.  

 

 
Fig. E5.4 Problem 10.  

 

a) Calculation of the volumetric flow rate Q: 

𝑄 = 𝑣𝑓 ∙ 𝐴𝑡𝑜𝑡𝑎𝑙 = 0.00045
𝑚

𝑠
∙ 0.05𝑚 ∙ 0.06 𝑚 = 81 𝑚𝑙/𝑚𝑖𝑛 

b) Calculation of the mean physical velocity vm flow rate: 

The effective cross section area of flow is:  

∑𝐴𝑖 = 𝐴𝑡𝑜𝑡𝑎𝑙 ∙ 𝑝 = 0.05𝑚 ∙ 0.06 𝑚 ∙ 0.1

𝑖

= 3 ∙ 10−4 𝑚² 

The mean physical flow velocity is: 𝑣𝑚 = 𝑣𝑓 ∙
𝐴𝑡𝑜𝑡𝑎𝑙

∑ 𝐴𝑖𝑖
=
𝑣𝑓

𝑝
= 0.0045 𝑚/𝑠𝑒𝑐 

The Darcy flow velocity vf is based on the entire cross-section of the soil sample and not just 

on the flow cross-section of the pore channels. The mean physical flow rate in pores is 

average flow rate by through cross-section area ΣAi. The Darcy's filter velocity vf is lower 

than the physical flow velocity vm in pore channels. 

 

c) Verification of the Darcy’s law applicability: 

𝑅𝑒 =
𝑣𝑓 ∙ 𝑑50

𝜈
=
0.00045 ∙ 0.001

10−6
= 0.45 < 1 

 

Calculation of the hydraulic conductivity coefficient kf for the experimental setup A in 

Fig. S.5.3: 

𝑘𝑓 =
𝑄

𝐴𝑡𝑜𝑡𝑎𝑙∙
∆ℎ

∆𝐿

= 𝑣𝑓 ∙
∆𝐿

∆ℎ
 =0.00045 ∙

0.04

0.1
=1.8∙ 10−4 𝑚/𝑠 

 

d) Calculation of the hydraulic conductivity coefficient kf. äq for the experimental setup B in 

Fig. S.5.4:  the setup consists of 2 parallel soil layers. From the continuity of the Darcy’s 

filter velocity it follows: 
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Exercises and control questions to Chapter 6: 

 

1. According to the Gassmann’s equation : 

)KK(

K

KK

K

KK

K

FluidS

Fluid

SuS

u







 
 

A. In the case when the rock is saturated with gas: 

𝐾𝑢

36−𝐾𝑢
=

12

36−12
+

0.133

0.18∙(36−0.133)
, then, it follows: Ku=12.32 GPa 

B. In the case when the rock is saturated with water: 

𝐾𝑢

36−𝐾𝑢
=

12

36−12
+

2.2

0.18∙(36−2.2)
, then, it follows: Ku=16.66 GPa.  

2. Calculate the pore compression modulus as a function of burial depth using the data of 

porosity of sandstones and shales from Fig. E6.1 (replotted from Krumbein & Sloss, 

1953). One denotes by 𝐾𝑝
𝑃 = −𝑣𝑝 ∙ (

𝜕𝑃

𝜕𝑣𝑝
)

𝑝

 the pressure derivatic eof pore volume at 

constant pore pressure p, and 𝐾𝑝
𝑝

= 𝑣𝑝 ∙ (
𝜕𝑝

𝜕𝑣𝑝
)

𝑃

 the pore pressure derivative of pore 

volume at constant confining pressure P. the total relative change of the  pore volume is 

the sum: −
𝑑𝑣𝑝

𝑣𝑝
=

𝑑𝑃

𝐾𝑝
𝑃 −

𝑑𝑝

𝐾𝑝
𝑝 . By analogy one may introduce the bulk volume derivatives: 

𝑉𝑏 = 𝑉𝑚 + 𝑣𝑝, where 𝑉𝑚 is the volume of the rock matrix. By analogy one ma write the 

total relative change of bulk volume as follows: −
𝑑𝑉𝑏

𝑉𝑏
=

𝑑𝑃

𝐾𝑏
𝑃 −

𝑑𝑝

𝐾𝑏
𝑝. 𝑑𝑉𝑏 − 𝑑𝑣𝑝 = 𝑑𝑉𝑚, or  

1

𝐾𝑝
𝑃 −

1

𝐾𝑝
𝑝 =

1

𝐾𝑚
 =

1

𝐾𝑏
𝑃 −

1

𝐾
𝑏
𝑝. If the matrix material is incompressible, then, 𝐾𝑝

𝑃 ≈ 𝐾𝑝
𝑝
, and 

𝐾𝑏
𝑃 ≈ 𝐾𝑏

𝑝
. Due to the definition of porosity:  𝜙 =

𝑣𝑝

𝑉𝑏
, it follows: ∙ 𝜙 ∙ 𝐾𝑏

𝑝 = 𝐾𝑝
𝑃, i.e. 

−𝑣𝑝 ∙ (
𝜕𝑃

𝜕𝑣𝑝
)

𝑝

= 𝜙 ∙ 𝑉𝑏 ∙ (
𝜕𝑝

𝜕𝑉𝑏
)

𝑃
= −𝜙 ∙ (

𝜕𝑝

𝜕𝜙
)

𝑃
, since for incompressible matrix 𝜕𝑣𝑝 = 𝜕𝑉𝑏, 

and 
𝜕𝑣𝑝

𝑉𝑏
=

𝜕𝑉𝑏

𝑉𝑏
= 𝑑𝜙. Finally, 𝑣𝑝 ∙ (

𝜕𝑃

𝜕𝑣𝑝
)

𝑝

=  𝜙 ∙ (
𝜕𝑝

𝜕𝜙
)

𝑃
. 

From Fig. S. 6.1: for sandstone in the pressure interval from 500 to 1500 m: P= 26.5 

MPa,  dϕ≈ 0.05 𝜙 = 0.35, then, 𝐾𝑝 ≈ 185.5 𝑀𝑃𝑎, for shales dϕ≈ 0.12 𝜙 = 0.15, then, 

𝐾𝑝 ≈ 33 𝑀𝑃𝑎   
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Fig. S6.1 Porosity as a function of burial depth (Problem 2). 

 

 

3. The vertical axis in Fig. S6.2 is 
𝜕𝑣𝑝

𝑣𝑝
, the horozontasl axis is the overburden pressure 

P. at P=30 MPa: 𝐾𝑝 = −
𝑣𝑝∙𝑑(𝑃−𝑝)

𝑑𝑣𝑝
=  

30

0.02
= 1.5 𝐺𝑃𝑎. 𝐾 = −

𝑣𝑝∙𝑑(𝑃−𝑝)

𝜙∙𝑑𝑣𝑝
=

7.14 𝐺𝑃𝑎 

 

Fig. E6.2 Illustration to Exercise 3.  

 

4. According to the Gassmann equation:  
𝐾𝑠𝑎𝑡

𝐾0−𝐾𝑠𝑎𝑡
=

𝐾𝑑𝑟𝑦

𝐾0−𝐾𝑑𝑟𝑦
+

𝐾𝑓

𝜑∙(𝐾0−𝐾𝑓)
.  

The value of Ksat, K0 and Kdry at =0.15 taken from Fig. S.6.3 provide the relationship: 

25

36−25
=

23

36−23
+

𝐾𝑤𝑎𝑡𝑒𝑟

0.15∙(36−𝐾𝑤𝑎𝑡𝑒𝑟)
. From this identity it follows:  Kwterr=2.5 GPa 

In the case of oil: 
23.5

36−23.5
=

23

36−23
+

𝐾𝑜𝑖𝑙

0.15∙(36−𝐾𝑜𝑖𝑙)
, and Koil=0.6 GPa. 
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Fig. E6.3 Data curves to Exercise 4 (replotted from Mavko et al., 1998).  

 

5. Determine the sonic velocity after the Reuss averaging in the suspension, which consists 

of calcite particles, air, and water. Saturation Sr with water is 50%. The properties of 

calcite, water and air are given below: 

Kcalcite = 75 GPa and the density calcite = 2.71 g / cm³, Kwater = 2.2 GPa and the density 

water = 1 g / cm³, Kair = 0 , 000131 GPa and the density air = 0.00119 g/cm³. The 

porosity of the suspension is  = 0.4. 

The Reuss average is given by the relationship: 

𝐾̃𝑅𝑒𝑢𝑠𝑠=(
(1−𝑆)∙𝜙

𝐾𝑎𝑖𝑟
+

𝑠∙𝜙

𝐾𝑤𝑎𝑡𝑒𝑟
+

1−𝜙

𝐾𝑐𝑎𝑙𝑐𝑖𝑡𝑒
)

−1

= (
0.5∙0.4

0.131
+

0.5∙0.4

2.2
+

0.6

75
)

−1

= 0.615 𝐺𝑃𝑎 

 

The density of calcite suspension is the arithmetic average: 

𝜌 = (1 − 𝑆) ∙ 𝜙 ∙ 𝜌𝑎𝑖𝑟 + 𝑠 ∙ 𝜙 ∙ 𝜌𝑤𝑎𝑡𝑒𝑟 + (1 − 𝜙) ∙ 𝜌𝑐𝑎𝑙𝑐𝑖𝑡𝑒 = 0.4 ∙ 0.5 ∙ 1 + 0.6 ∙

2.71 =1.826 g/cm³.  

The sound velocity is given by:  

Die Schall-Geschwindigkeit der Suspension ist gleich: 

𝑉 = √
𝐾̃𝑅𝑒𝑢𝑠𝑠

𝜌
 =√

0.615∙109

1.826∙103
= 580 𝑚/𝑠 

6. If a material contains liquid under a hydrostatic pressure pf, this pressure will 

counteracts evenly all the principal stresses of the applied load. The normal stress on 

any surface is reduced by the pressure pf. In rocks this corresponds to the reduction of 

the ambient pressure which is the average of the diagonal elements in stress matrix. 

Point on the Mohr circle, how does a change in the mean normal stress (
𝜎1 + 𝜎2+𝜎3

3
) 

offset?  

Draw the original Mohr’s circle with radius 𝜎1 −  𝜎2having the centrum at 
𝜎1 + 𝜎2

2
 . By 

applying pore pressure pf the center of circle is shifted along the abscissa by the value pf 
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without changing its radius. The increase in the fluid pressure reduces the effective 

stresses and shifts the stress state closer to the Mohr envelope (see Fig. S6.4). 

 
Fig. S6.4 Problem 6. 

The values of all normal stresses are reduced by the value of the mean stress which is in 

the case of pore pressure increased by pf. The values of all shear stresses remain the 

same, which shows that they are independent of the hydrostatic components. If the 

liquid pressure is increased enough, the circle moves until it touches the Mohr's 

envelope as a tangent, and then failure occurs. 

 

7.  𝑆𝑠 = 𝜌 ∙ 𝑔 ∙ (
𝜑

𝐾𝑓
+

1

𝐾
) = 1000 ∙ 9.81 ∙ (

0.25

1.96∙109 +
1

0.1∙109) = 10−4 1/𝑚 

Storage coefficient: S=10-3 (dimensionless) 

 

8.  Reduction in reservoir volume may considered primarily as a uniaxial compaction 

(Geertsma, 1957). Using the relations for porous rock: 𝑣 = 𝑣𝑝 + 𝑣𝑠,  𝑣𝑝 ≈ 𝜑 ∙ 𝑣 and 

𝑑𝑣𝑝 ≈ 𝑑𝑣, where is the porosity of sample, express the pressure derivative of porosity 
𝑑𝜑

𝑑𝑃
  through K and Ks: 

A. For a hydrostatic compaction. 

B. For a uniaxial vertical compaction in a rock having Poisson ratio . The uniaxial pore 

compression modulus may be defined as:  
1

𝐾𝑢𝑛𝑖
= −𝑣 ∙

𝑑(𝜎̅−𝑝)

𝑑𝑣
=-𝑧 ∙

𝑑(𝜎̅−𝑝)

𝑑𝑧
, where 𝜎 =

𝜎𝑥+𝜎𝑦+𝜎𝑧

3
, where 𝜎𝑥, 𝜎𝑦  and 𝜎𝑧 are lateral and vertical components of stress. If the 

Poisson ratio  is given, then for the uniaxial deformation case: 𝜀𝑥 = 𝜀𝑦 = 0, and 𝜎𝑥 =

𝜎𝑦 =
𝜈

1−𝜈
∙ 𝜎𝑧, then  𝜎 =

1+𝜈

3(1−𝜈)
∙ 𝜎𝑧.   

 

Denote the hydrostatic pressure as:  P= 𝑃𝑑 + 𝑝, where Pd is the differential pressure and 

p is the pore pressure. From the given relationships it follows, since 𝑣𝑝 ≈ 𝜑 ∙ 𝑣 and 

𝑣𝑝 ≈ 𝑑𝑣 , then, 
𝛿𝜑

𝜑
=

𝛿𝑣

𝑣
−

𝛿𝑣𝑝

𝑣𝑝
= (1 −

1

𝜑
) ∙

𝛿𝑣

𝑣
=

(1−𝜑)

𝜑
∙ [−

𝛿𝑣

𝑣
]. In another sense, −

𝛿𝑣

𝑣
=

𝛿𝑃𝑑

𝐾
+

𝛿𝑝

𝐾𝑠
 =

𝛿𝑃

𝐾
-

𝛼

𝐾
∙ 𝛿𝑝 =

1

𝐾
∙ (𝛿𝑃 − 𝛼 ∙ 𝛿𝑝), where =1-

𝐾

𝐾𝑠
 where 

𝐾

𝐾𝑠
 in the case of a single 

solid state component of the rock matrix is the ratio of bulk modulus of porous rock to 

the mineral grain bulk modulus.   



269 

 

 In the case A, when the pressure is pure hydrostatic, 𝑖. 𝑒.  𝛿𝑝 = 0, :  (
𝛿𝜑

𝛿𝑃
)

0
=

(1−𝜑)

𝐾
. If 

the compressibility of mineral grains 
1

𝐾𝑠
 is not negligible, then, 𝛿𝜑 = [

(1−𝜑)

𝐾
−

1

𝐾𝑠
] ∙

𝛿(𝑃 − 𝑝).  

In the case B,  𝛿𝑝 = 𝛿𝑃, the additional factor 𝑃 =
1+𝜈

3(1−𝜈)
∙ 𝜎𝑧 should be taken into 

account: (
𝛿𝜑

𝛿𝑃
)

 𝜎̅
=

1+𝜈

3(1−𝜈)
∙

(1−𝜑)

𝐾𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙
∙ (1 − 𝛼). 

 

9. 𝐾𝑓𝑙𝑢𝑖𝑑 = (
0.5

2.2
+

0.5

1
)

−1

= 1.375 𝐺𝑃𝑎. The Reuss average bulk modulus: 𝐾𝑅 =

(
0.25

1.375
+

0.75

37
)

−1

= 4.95 𝐺𝑃𝑎. From the Gassmann’s equation it follows: 
𝐾𝑠𝑎𝑡

37−𝐾𝑠𝑎𝑡
=

15

37−15
+

4.95

37−4.95
=0.8363. 𝐾𝑠𝑎𝑡 = 16 85 𝐺𝑃𝑎 The density is: 2.65∙ 0.75 + 0.5 ∙

0.25 ∙ 1 + 0.5 ∙ 0.25 ∙ 0.91 = 2.23 𝑔(𝑐𝑚³  

 

10. Example calculations for Hynesville sandstone at pu=17.6 MPa: 

𝐾𝑓𝑙𝑢𝑖𝑑 = (
0.1254

2.15
+

0.7937

0.5
+

0.0809

1
)

−1

= 0.58 𝐺𝑃𝑎 

The Gassmann’s equation is: 

 
12.1

𝐾𝑠−12.1
=

7.97

𝐾𝑠−7.97
+

0.58

0.0819∙(𝐾𝑠−0.58)
  . It can be solved by the iteration procedure: 

Ks0=45; c=12.1;a=7.97;b=0.58;fi=0.0819; Ks2=10; 
while abs(Ks0-Ks2)>1e-6 
Ks1=c*(1+(a/(Ks0-a)+b/fi/(Ks0-b))^-1); 
Ks2=Ks0; Ks0=Ks1; 
end 
Ks0 

The solution is Ks=41.8 GPa.. So 𝛼 = 1 −
𝐾𝑑𝑟𝑛

𝐾𝑠
= 1 −

7.97

41.8
≈ 0.81 

 

Table S6.1 Data to Exercise 10. 

 

Lithology/Sample    Haynesville     Mid Bossier 

Effective Porosity  (% )   8.19      4.51 

Wasser saturation (%)   12.54      26.84 

Gas saturation  (% )    79.37      69.71 

Oil saturation (% )    8.09      3.45 

 

Sample Haynesville   

pu, MPa drained K, GPa undrained, K GPa 

17.6 7.97 12.1 

51.7 11.49 14.99 

113.8 16.22 19.42 

155.1 18.39 21.21 

186.2 21.55 23.78 

224.1 22.98 26.01 

   
Sample Mid Bossier   
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183 21.55 25.54 

220.6 24.62 27.58 

262 26.52 32.07 

317.2 27 38.3 

 



Solutions to Chapter 7: 

Exercises and control questions to Chapter 7: 

1.  

The sound velocity is given by:: 

After the Reuss averaging:  

 

KSusp=1.22 GPa, VSusp=840 m/sec 

After the Voigt averaging: 

VSusp=5.11 km/sec 

The iterative arithmetic-harmonic mean of K is: Ka-h-mean=7.43 GPa VSusp=2.07 km/sec 

 

 

2.   

a. f=1/T=0.25 Hz, =c∙T=14 km 

b.  

Fig. S.7.1 Problem 2b. 

3. y(t, x) = ymax cos (∙t + k∙x + ).  
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4. The ratio of shear to bulk moduli  µ/K may be expressed through -Poisson’s ratio as 

follows: 

 

 

 

 

 

The elastic wave velocity in a porous rock can be estimated from the relationship:  

1

1
11
























f

m

m

b

mfb V

V

V

V

VVV
, where Φ is the porosity, Vf is the longitudinal 

wave velocity in fluid phase, Vm is the elastic velocity in the rock matrix.  

For P-waves the propagation velocity is:  

 

 

 

For S-waves assuming that the shear wave in solid matrix converts in longitudinal waves in 

fluid phase:  

 

 

 

5.  The wave length should be 5 m, and f=c/f=3800/5=760 Hz. 

 

 

 

 
Fig. S7.2 Exercise 6.  

 

6. Calculate the reflection and transmission coefficients of the normally incident seismic 

waves to the boundary between two layers of sandstones (Fig. E7.1) having porosities 
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1=0.1 and 2=0.3, and water saturations S1=0.5 and S2=1. The density of quartz is 

2650 kg/m³, the density of water is 1000 kg/m³, the quasi-isotropic polycrystalline 

elastic constants obtained by Voigt–Reuss–Hill averaging of the bulk modulus of 

quartz is 38 GPa, of the shear modulus of quartz is 47 GPa, bulk modulus of water is 

2.29 GPa.  In order to estimate the effective moduli in sandstones use the method of 

Kunster&Toksöz (1974). 

 

For the upper layer with sandstone 1: 

Density 𝜌1 = 2.65 ∙ (1 − 0.1) + 1 ∙ 0.1 ∙ 0.5 = 2.435 𝑔/𝑐𝑚³ 

For the lower layer with sandstone 2: 

Density 𝜌2 = 2.65 ∙ (1 − 0.3) + 1 ∙ 0.3 = 2.155 𝑔/𝑐𝑚³ 

In order to calculate the effective bulk and shear moduli one may use the method of 

Kunster&Toksöz (1974): 

One introduces the elastic parameter for the quartz matrix: 𝜁𝑞 = 
𝜇𝑞

6
∙

9𝐾𝑞+8𝜇𝑞

𝐾𝑞+2𝜇𝑞
=

42.6 𝐺𝑃𝑎.  

In the upper layer, where the inclusions are with water and air two dimensionless 

coefficients for each phase, water (w) and air (a) are used: 

𝑃1
𝑞𝑤

=
𝐾𝑞+

4

3
∙𝜇𝑞

𝐾𝑤+
4

3
∙𝜇𝑞

= 1.534 ; 𝑄1
𝑞𝑤

=
𝜁𝑞+𝜇𝑞

𝜁𝑞+ 0⏟
𝜇𝑤

= 2.1; 𝑃1
𝑞𝑎

=
𝐾𝑞+

4

3
∙𝜇𝑞

0⏟
𝐾𝑎

+
4

3
∙𝜇𝑞

=1.61; 𝑄1
𝑞𝑎

=
𝜁𝑞+𝜇𝑞

𝜁𝑞+ 0⏟
𝜇𝑎

= 2.1. 

In the lower layer there is only one type of inclusions filled with water: 

𝑃2
𝑞𝑤

=
𝐾𝑞+

4

3
∙𝜇𝑞

𝐾𝑤+
4

3
∙𝜇𝑞

= 1.534 ; 𝑄2
𝑞𝑤

=
𝜁𝑞+𝜇𝑞

𝜁𝑞+ 0⏟
𝜇𝑤

= 2.1.  

For the upper layer the effective bulk and shear moduli according to Kuster&Toksöz 

averaging are: 

(𝐾1
∗ − 𝐾𝑞) ∙

𝐾𝑞+
4

3
∙𝜇𝑞

𝐾1
∗+

4

3
∙𝜇𝑞

 = 𝜙1 ∙ 𝑆1 ∙ (𝐾𝑤 − 𝐾𝑞) ∙ 𝑃1
𝑞𝑤 + 𝜙1 ∙ (1 − 𝑆1) ∙ ( 0⏟

𝐾𝑎

− 𝐾𝑞) ∙ 𝑃1
𝑞𝑎

= -

5.8 GPa, → 𝐾1
∗ = 32.52 𝐺𝑃𝑎 

(𝜇1
∗ − 𝜇𝑞) ∙

𝜇𝑞+𝜁𝑞

𝜇1
∗ +𝜁𝑞

 = 𝜙1 ∙ 𝑆1 ∙ ( 0⏟
𝜇𝑤

− 𝜇𝑞) ∙ 𝑄1
𝑞𝑤 + 𝜙1 ∙ (1 − 𝑆1) ∙ ( 0⏟

𝜇𝑎

− 𝜇𝑞) ∙ 𝑄1
𝑞𝑎

= -

9.87𝐺𝑃𝑎 → 𝜇1
∗ = 38.11 𝐺𝑃𝑎 

In the lower layer  

(𝐾2
∗ − 𝐾𝑞) ∙

𝐾𝑞+
4

3
∙𝜇𝑞

𝐾2
∗+

4

3
∙𝜇𝑞

 = 𝜙2 ∙ (𝐾𝑤 − 𝐾𝑞) ∙ 𝑃2
𝑞𝑤

= -16.4 GPa, → 𝐾2
∗ = 23.9 𝐺𝑃𝑎 

(𝜇2
∗ − 𝜇𝑞) ∙

𝜇𝑞+𝜁𝑞

𝜇2
∗ +𝜁𝑞

 = 𝜙2 ∙ ( 0⏟
𝜇𝑤

− 𝜇𝑞) ∙ 𝑄2
𝑞𝑤

= -29.6 GPa → 𝜇2
∗ = 24.76 𝐺𝑃𝑎 

The P- and S-wave velocities in the upper and lower layers are as follows: 

𝑉𝑝,1 = √
𝐾1

∗+
4

3
∙∙𝜇1

∗

𝜌1
= 5.85 𝑘𝑚/𝑠  , and 𝑉𝑠,1 = √

𝜇1
∗

𝜌1
=  3.96 km; 

𝑉𝑝,2 = √
𝐾2

∗+
4

3
∙∙𝜇2

∗

𝜌2
= 5.14 𝑘𝑚/𝑠  , and 𝑉𝑠,1 = √

𝜇2
∗

𝜌2
=  3.39 km. 

The normal reflection and transmission coefficients for P-wave are: 

𝑅𝑝 =
𝜌2∙𝑉𝑝,2−𝜌1∙𝑉𝑝,1

𝜌1∙𝑉𝑝,1+𝜌2∙𝑉𝑝,2
 = -0.125, 𝑇𝑝 = 2 ∙

𝜌1∙𝑉𝑝,1

𝜌1∙𝑉𝑝,1+𝜌2∙𝑉𝑝,2
 =1.125,  



and for S-waves are: 𝑅𝑠 =
𝜌2∙𝑉𝑠,2−𝜌1∙𝑉𝑠,1

𝜌1∙𝑉𝑠,1+𝜌2∙𝑉𝑠,2
 = -0.138 , 𝑇𝑝 = 2 ∙

𝜌1∙𝑉𝑠,1

𝜌1∙𝑉𝑠,1+𝜌2∙𝑉𝑠,2
 =1.138.  

(Note: the sign minus in the reflection coefficient is due to the fact that the particle 

displacement amplitude is measured relative to the direction of the wave propagation). 

 

7. a) The relationship between shear and bulk moduli is as follows:  𝜇 = 𝐾 ∙
3∙(1−2𝜈)

2∙(1+𝜈)
≈ 0.52, 

then, 𝑉𝑝 = √
𝐾+

4

3
∙0.52∙𝐾

𝜌
 ≈ 1.3 ∙ √

𝐾

𝜌
. Front her side  

 

 

Resolving relative to K one obtains:  

 

(b) The sound velocity in water is:   

 

The traveling time of the sound wave in water:is:   

 

 

 

8. From the expression of P- and S-waves it follows: 

  

 

 

 

For sediments: VP/VS=1.84, fort he Earth’s crust: VP/VS=1.71. Then, for sediments: 

K/µ=2.06, für die Erdkruste K/µ =1.61. The Poisson’s ratio for sediments: =0.29, and for 

the Earth’s crust =0.24. 

 

9. If one denotes the displacement of a mass m in the horizontal or vertical directions by 

u, then the displacements of masses locating at the diagonals of square lattice are √2 ∙
𝑢. The absolute velocity of each mass in the M*N lattice is then |𝑢̇|.  The total kinetic 

energy of the lattice is given by: 𝐸𝐾 =
𝑚

2
∙ 𝑢̇2 ∙ 𝑀 ∙ 𝑁. The potential energy of the 

lattice consists of the M‧N springs with stiffness K1 having deformations 2∙u in the 

horizontal direction plus 2‧M‧N diagonal springs with stiffness K2 having 

deformations: √2 ∙ 𝑢. The potential energy is: 𝐸𝑝 = 2 ∙ (𝐾1 + 𝐾2) ∙ 𝑢2 ∙ 𝑀 ∙ 𝑁, and the 

total energy is 𝐸𝐾 + 𝐸𝑝 = (
𝑚

2
∙ 𝑢̇2 + 2 ∙ (𝐾1 + 𝐾2) ∙ 𝑢2) ∙ 𝑀 ∙ 𝑁. A simple mass µ 

hanging on a spring K possesses the total energy:  E= (
µ

2
∙ 𝑢̇2 +

1

2
∙ 𝐾 ∙ 𝑢2) and the 

frequency of free oscillations: 𝜔 = √
𝐾

µ
. By analogy with this simple case one may 
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write for the longitudinal mode of square lattice oscillations:  𝜔𝐿 = 2√
𝐾1+𝐾2

𝑚
. For the 

transverse mode of oscillations the number of deformed diagonal springs is 2M*N 

and each of them shortened or elongated by: √2 ∙ 𝑢. The total kinetic energy of 

moving masses plus potential energy of elastic springs is:  𝐸𝐾 + 𝐸𝑝 = (
𝑚

2
∙ 𝑢̇2 +

1

2
𝐾2 ∙

(√2 ∙ 𝑢)² ∙ 2𝑀 ∙ 𝑁. Therefore, for the frequency of the transverse mode of lattice 

oscillations one obtains 𝜔𝐿 = 2√
𝐾2

𝑚
  (Michály and Martin, 2008). 

 

Fig. S7.2 Exercise 9. (a) The compression-dilation mode of lattice vibrations. (b) The transversal 

mode of lattice vibrations. (c) In the case of transversal mode vibrations there is no deformation of 

springs in directions indicated by dashed arrows, but there is compression of a spring in the direction 

of dashed-dotted spring, and extention of a spring in the direction of dotted arrow. 

 

 

10. Solution is presented in Table below: 

Q=1000 

X, km 

Frequency in Hz  0.1 1 10 

1 0.99993717 0.99937188 0.99373651 

10 0.99937188 0.99373651 0.93910137 

100 0.99373651 0.93910137 0.53348813 

1000 0.93910137 0.53348813 0.00186744 

 

    

    



 

Q=100 

X, km 

Frequency in Hz  0.1 1 10 

1 0.999371887 0.993736591 0.939102105 

10 0.993736591 0.939102105 0.533492281 

100 0.939102105 0.533492281 0.001867589 

1000 0.533492281 0.001867589 0 

 
    

 

Q=10 

X, km 

Frequency in Hz  0.1 1 10 

1 0.99374432 0.93917517 0.53390752 

10 0.93917517 0.53390752 0.00188218 

100 0.53390752 0.00188218 0 

1000 0.00188218 0 0 
 

   

    

    

    

Q=1 

X, km 

Frequency in Hz  0.1 1 10 

1 0.94703997 0.58034077 0.00433342 

10 0.58034077 0.00433342 0 

100 0.00433342 0 0 

1000 0 0 0 
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Exercises and control questions to Chapter 8: 

1. According to the Archie’s law the effective electric conductivity may be expressed 

through porosity and degree of saturation as follows: 𝜎𝑒𝑓𝑓 =
𝜎𝑓𝑙𝑢𝑖𝑑

𝜑𝑚∙𝑆𝑤
𝑛. Assuming that the 

fluid electric conductivity is on pressure independent, after differentiation one obtains: 

𝜕𝜎𝑒𝑓𝑓

𝜕𝑃
= 𝜎𝑓𝑙𝑢𝑖𝑑 ∙ 𝜑

𝑚 ∙ 𝑆𝑤
𝑛 ∙ [𝑚 ∙

𝜕𝑙𝑛𝜑

𝜕𝑃
+ 𝑛 ∙

𝜕𝑙𝑛𝑆𝑤

𝜕𝑃
], or 

𝜕ln⁡(𝜎𝑒𝑓𝑓)

𝜕𝑃
=
𝜕ln⁡(𝜑𝑚∙𝑆𝑤

𝑛)

𝜕𝑃
. (a) When the 

total volume of fluid is constant: 𝜑 ∙ 𝑆𝑤 = 𝑐𝑜𝑛𝑠𝑡, then, 
𝜕ln⁡(𝜎𝑒𝑓𝑓)

𝜕𝑃
=

𝜕ln⁡(𝜑𝑚−𝑛)

𝜕𝑃
⁡=⁡
𝜕ln⁡(𝑆𝑤

𝑛−𝑚)

𝜕𝑃
. (b) When Sw ~1, then, 

𝜕ln⁡(𝜎𝑒𝑓𝑓)

𝜕𝑃
=
𝜕ln⁡(𝜑𝑚)

𝜕𝑃
.  

2. One has to plot the dependence of R vs. T: 

 

Fig. S8.1 Problem 2. 

The thermal coefficient of electric resistance is ≈3.9456/933.4=423∙10-3 K-1 

The specific resistance is:  

 

3. (a) Without rock slab inside the capacitor:  

for the parallel plate capacitor: 

 

The induced electric charge, when the voltage U0 is applied, is:  

 

(b) When the rock slab is 

inside the capacitor:  
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The induced electric charge when the voltage U0 is applied, is:  

 

 

 

Fig. S8.2 Problem 3. 

 

 

Fig. S8.3 Problem 4. 

 

 

4. Reuss –average is:  

Voigt- average is: 

 

5. (a) According to the Coulomb law the electric field E of a point charge Q is given by 

the relationship:  

This surface density of electric charges corresponds to the number n per square meter: 

𝑛 =
8.85∙10−10

1.6022∙10−19
= 5,52 ∙ 109, where 1.6022∙ 10−19𝐶 is the electric charge of electron. 

(b) The electric field close to the Earth’s surface (height d << RE radius of the Earth). The 

electric potential in a parallel plate capacitor having thickness 1.6 m is given by the 

relationship: 𝜑 = 𝐸 ∙ 𝑑 = 100 ∙ 1.6 = 160𝑉⁡(!) 
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      (c)  If the human body is ideally conductive, then, the whole body is under the same 

electric potential f from bottom to the top.  

(d) If between two points at the distance d  there is a potential difference , the energy per 

square meter is the work W per surface A to move the electrical charge Q in the field E 

by distance d is given by: 

𝑊

𝐴

⏞
𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐⁡𝑠𝑢𝑟𝑓𝑎𝑐𝑒⁡𝑒𝑛𝑒𝑟𝑔𝑦

=
𝑄

𝐴

⏞
𝑠𝑢𝑟𝑓𝑎𝑐𝑒⁡𝑐ℎ𝑎𝑟𝑔𝑒⁡𝑑𝑒𝑛𝑠𝑖𝑡𝑦

∙ 𝜑 = 𝜀0 ∙ 𝐸 ∙ 𝐸 ∙ 𝑑 = 8.85 ∙ 10
−12 ∙ 104 ∙

100 = 8.85 ∙ 10−6⁡𝐽𝑜𝑢𝑙. This is a negligible amount of energy 

 

6. The parameters of the Arrhenius equation used for the lelectrical conductivity 

calculations as a function of temperature are presented in Table below: 

Table S8.1 Problem 6 

Mineral Vol.% Pre-exponential 

factor 0, S/m 

Activation enthalpy H, eV 

Olivine 60 490 1,62 

Orthopyroxene 25 5248 1,80 

Klinopyroxene 15 1778 1,87 

The electrical conductivity of individual minerals at 1200°C according to the given in Table 

S8.1 parameters are as follows: 

m/Sm/S,e)C( ,

,

Ol

431473106178

621

101410414901200
5 






 , 

m/Sm/S,e)C( ,

,

Opx

431473106178

81

1036106352481200
5 






 ,  (Maximale Wert) 

m/S,e)C( ,

,

Cpx

41473106178

871

101717781200
5 






 , (Minimale Wert). 

Solution 1: 
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7. The Voigt average is: 𝜀𝑉 = 0.65 ∙ 4⏟    
𝑠𝑜𝑖𝑙⁡𝑚𝑎𝑡𝑟𝑖𝑥

+ 0.35 ∙ 0.45 ∙ 81⏟          
𝑠𝑜𝑖𝑙⁡𝑤𝑎𝑡𝑒𝑟

+ 0.35 ∙ 0.55 ∙ 1⏟        
𝑠𝑜𝑖𝑙⁡𝑎𝑖𝑟

= 15.55 

 

The Reuss average is: 𝜀𝑅 = ( 0.65/4⏟    
𝑠𝑜𝑖𝑙⁡𝑚𝑎𝑡𝑟𝑖𝑥

+ 0.35 ∙ 0.45/81⏟        
𝑠𝑜𝑖𝑙⁡𝑤𝑎𝑡𝑒𝑟

+ 0.35 ∙ 0.55/1⏟        
𝑠𝑜𝑖𝑙⁡𝑎𝑖𝑟

)

−1

= 2.8 

The Hill mean value is: 𝜀𝐻 =
𝜀𝑉+𝜀𝑅

2
= 9.18. 
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8. The electric charge Q on the surface of a hole metal sphere generates the electric field 

which will be corrugated by the field of electric charges in the surrounding space, for 

example, by the surface charges on the Earth. That is why the voltage potential U is 

traditionally measured relative to the potential of the Earth’s surface. If the electrical 

charges close to the metal sphere are rearranged, the electric charge distribution of the 

sphere is also changed as well as the electric potential U of the sphere. If the metal 

sphere is located far away from all conductive surfaces, then the spherical capacity is 

given by the relationship: r

r

Q

Q

U

Q
C 



 0

0

4

4





. If the metal hole sphere is 

located concentric inside another metal sphere, which is grounded, then from the 

second sphere flows away exactly the same amount of electric charge that has been 

stored in the first sphere. This phenomena is called the Influence, which results in the 

absence of electric field outside of two spheres and the presence of electric field only 

between two metal surfaces. The second metal sphere is called shielding, and with this 

one can achieve two things: the inside electric field does not interact or corrugate the 

electric field in the outer space, and the space of inner electric field is limited by two 

metal surface that results in the increase of capacity.  The capacity of two concentric 

metal spheres or simply spherical capacitor is given by: 
1

1020

1

4

1

4

1111





















rrQ

U

Q

U

CCC

InnenAussen

InnenAussen 
 or 

21

21
04

rr

rr
C




  . If one fills the inner space between two concentric metal spheres 

with dielectric material, then the capacity will be increase by factor r

21

21
04

rr

rr
C




  . Plugging in this expression the temperature dependence of the 

dielectric constant and the dependence of temperature with the depth z, one obtains for 

the capacity of the Earth’s mantle: 𝐶 = 4𝜋𝜀0 ∙ (8.12 + 6.4 ∙ 10
−3 ∙ [3500 ∙

𝑧

√1+𝑧2
−

300]) ∙ 7638, where 𝑧 =
𝑑(𝑘𝑚)+125

1500
. The mean temperature of the Earth’s mantle is 

KCT 18001500  . Then, the whole mantle capacity is:

F,),,(,C

,

015010
2898

34746372
150010461281085484

3

7217

312 


 

    

 

9. At the Earth's surface the electric field strength is on average E(R) = 130 V/m. 

Consider a spherical symmetrical charge distribution with the total charge Q at the 

origin. The charge density ρ = ρ0 exp (-r/R)∙R²/r² should decrease exponentially up to 

the Earth’s surface at r = R. Calculate the total charge Q of the Earth and the charge 

density ρ0. Estimate the electric field E(r) and the electrostatic potential  (r) of this 

charge distribution in the far field (i.e. for distances r >> R). Radius of the Earth R = 

6.372 106 m, ε0 ≈8.8654∙10-12 A∙s/V∙m, and inside the Earth r = 18, outside the earth 

r = 1. 
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Inside the Earth the electric potential (r) as a function of the Earth’s radius is given by:

r

eR
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drr
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. The electric field strength E 

inside the Earth is given by the relationship: 
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. At the Earths surface R=r 

the electric field strength satisfies the identity
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. The total electric charge of the Earth is 
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Far away from the Earth’s surface r>>R the electric potential varies as a function of distance 

r: 
r
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10.  (a) If the electric charge of the Earth is Q, then the electric field strength on the Earth‘s 

surface is: 

 C/m²101,15130108,8654E
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At the height h=10 km above the Earth’s surface in vacuum (in the absence of space 

atmospheric charges) the electric field strength is: 
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 (b) Due to the influence of space atmospheric charges of density  the electric charge Q of 

the Earth must be corrected by the electric charge of the spherical shell of thickness h 

(shielding effect): 
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11. The rescaling of the triangular lattice are shown in Fig. S8.4. Instead of three 

positions in the original lattice a single site position in super lattice is generated. 

The site occupancy in the original lattice is marked as solid black circle. The site 

occupancy in super lattice is shown as a solid grey circle. Empty sites are marked 

as X. By p one denotes the probability of an occupied site in the original lattice 

and by p’ is the probability of the occupied site in the super lattice. The probability 

that in the original lattice all three sites are occupied is p³. The probability that two 
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sites are occupied and one is empty is p²‧(1-p), but there are 3 possible 

arrangements of this configuration. So the total probability that in the super lattice 

the site is occupies is given by the equation: 𝑝′ = 𝑝3 + 3 ∙ 𝑝² ∙ (1 − 𝑝). The fixed 

points, i.e. the roots of the equation when p’=p, are (0, 0.5 and 1). The non-trivial 

solution is: 𝑝𝑐 = 0.5, this is the lattice percolation threshold for the site occupancy.  

In the original lattice the distance between two neighbor rows of sites is 1 (see 

insert in Fig. S8.4). The distance between points is: 
2

√3
. In the super lattice the 

distance between neighbor points is 2. This means that the scaling parameter 

b=√3. One denotes by 𝑅(𝑝) = 𝑝3 + 3 ∙ 𝑝² ∙ (1 − 𝑝), then 
𝑑𝑅(𝑝)

𝑑𝑝
= 6 ∙ 𝑝 − 6 ∙ 𝑝² 

According to the definition of the critical exponent: =⁡
𝑙𝑛𝑏

𝑙𝑛(
𝑑𝑅(𝑝)

𝑑𝑝
)
𝑝=0.5

=
𝑙𝑛(√3)

ln⁡(1.5)
=1.355. 

 
 

Fig. S8.4 The triangular resistor network: filled circles are the original lattice (the cell is denoted by the 

solid line triangle), grey circles are the new lattice (dashed line triangle), open circles represent the 

next step of scaling (dashed-dotted line triangle). The scaling factor b is calculated as a ratio of 

distances between the nearest-neighbors in two lattices (ratio of sides of open and filled circle 

triangles) (adapted from Stauffer, 1979).  
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Exercises and control questions to Chapter 9: 

1. One denotes the width of parallel capacitor plates as a.  

 

Fig. S9.1 Problem 1. 

 

The electrostatic energy of the empty parallel plate capacitor is:  2

0

1

2

1
U

d

a*L
Wel   , 

where a ist he width and L is the height of capacitor plates.  When the liquid rises in the 

space between the metallic plates the capacity changes and consists of two parallel 

connected  capacitors: C=C1+C2, wher C1 is the empty part and C2 is with liquid filled part 

of capacitor C. So the electrostatic energy of capacitor is given by:: 
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  . The increment of capacitor energy between the 

empty and partially filled with liquid states is:  
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  . This energy increment may be considered as 

a change of the potential energy of system and must equal to the increase of liquid 

potential and kinetic energies. The increase of liquid potential energy due to rise by height 

h in the space between capacitor plates is: 
Volumen

pot dahghmghW  
2

1

2

1
. From the 

condition that the new equilibrium state of the system must correspond to the minimum of 

the potential energy increment means that : minWW potel  , from which the 

relationship follows: 

 
2

2

022

0
2

1
0

2

1
1

2

1

dg

U)(
hdahgU

d

ah

dh

d r
r





















 . The difference 
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between the liquid potential energy and the electrostatic energy of capacitor when liquid 

raised to the height h is:  

 

 

 

 

 

 

This is the half of electrostatic capacitor energy increment, if one plugged h in ∆𝑊𝑒𝑙 the 

other half equals the lost kinetic energy of fluid flow. Liquid raised to the height h with 

certain flow velocity and due to viscosity the kinetic energy converted in thermal losses. 

Thus, the temperature of liquid increased by T:  

In takes d=10µm, εr=81 (water), U=100 V, Cp=4.19 kJ/kg/°K, =1000 kg/m³, then 

T≈0.004° (!). 

 

2. (a) The equivalent circuit of the complex capacitor is shown in Fig: S9.2:. 

 

Fig. S9.2 Problem 2. 
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The total capacity of three condensators is the harmonic sum: 

pFFx

bt

h

bt

h

bt

h

CCC
C

4,301004,3
3,10

105,1

6,5

103

5,4

104
106010901085,8

111

11

1
333
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1

30

3

20

2
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1

1

321





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

 



















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
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















(b) If the applied voltage is Uo=10 kV then on metal plated of capacitors will be induced 

the same electric charge Q: 
332211 UCUCUCUCQ  . The strength of 

electric field in each capacitor is given by the relationships 

./1093,0;/1034;/1056;;; 3

3

3

2

3

1
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0
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11
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
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









 

 

3. The equivalent electric circuit, which consists of 5 capacitors,  is shown in Fig. 

S9.3.   

 

Fig. S9.3 Problem 3. 

 

Each capacitor may be calculated from ist geometry: 
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The total capacity oft he equivalent circuit is given by:  
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pFC
CCC

CC 97,9
111

5

1

432

1 













. 

 

 

 

 

4. (a) The total radiation power L coming from the Sun at a distance r equals the 

radiant power density (s) times the surface area of the sphere 4r²: 

WrsL 262 1093,34   . 

(b) The radiation power of the Sun per unit of its surface area is the intensity of 

electro-magnetic radiation at solar surface Iel : 
27

2
/1038,6

4
mW

R

L
I

S

el 


. The 

electro-magnetic waves propagate with the speed of light c. As it can be seen in 

Fig. S9.4a) per surface area A over the time t the Sun emitted the energy W: 𝑊 =

𝑉𝑜𝑙𝑢𝑚𝑒 × 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑉 ∙ 𝑤𝑒𝑙 = 𝐴 ∙ 𝑐 ∙ ∆𝑡 ∙ 𝑤𝑒𝑙, where 𝑤𝑒𝑙 is the emitted 

energy density.  The mean energy density of electro-magnetic waves is given by: 

2

0

2

0
2

1

2

1
HEwel   . By its definition the intensity of electro-magnetic waves 

on the Sun surface is the emitted energy per area A and per time Dt:  W=A∙t∙Ie ,  

or
2

0

2

0
2

1

2

1
HcEc

tA

wtAc
I el

el  



  where  0=8.85x10-12 F/m and 

0=1.257x10-6 V∙s/A∙m. The mean radiation intensity Iel  on the Sun surface defines 

the strength of electric and magnetic fields. Resolving these two relationships 

relative to E and H, one obtains: ;/1019,2
1031085,8

1038,62  5

812

7

mVE 






 

A/m 582
10310257,1

1038,62
86

7








H .  

 



459 

 

 

Fig. S9.4 (a) Problem 4. (b) Problem 9. 

 

 

5.  (a) microFarad
h

A
C  167,0

900

1017
1085,8

6
12

0 


   

(b) VEhU 86

maxmax 10910900  . 

 The maximum charge is: CoulombUCQ 5,110910167,0 86

maxmax    

(c) Maximum electric current: A
t

Q
I 1500

10

5,1
3

max

max 





.  

(d) Maximum electric power: WUIW 128

maxmax 1035,11091500   

 

6. If one assumes that the earth is a conductive sphere having the radius RE and the surface 

density of electric charges E, then, for  r=RE :

2
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1 106,23001085,8
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




. 

The electric charges in the atmosphere QA compensate partially the surface charges QE. The 

volume density of electric charges in the atmosphere at the height H is:  
HR

Q

E

A

A



24

 . 

Then, it follows
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7. (a) The equation of electric field E indicates that the wave is propagating in 

the direction of x-axis.  

(b) The mathematical expression of the plane wave is:  xktEE  cos0
. The 

comparison of the given expression with the plane wave equation results in: 

Wave amplitude: E0=30 V/m; 

 Frequency: Hzf 810
2





;  

Wavelength: m
k

 3
2




 . 

8. Phasors are the complex amplitudes of waves, i.e. phason is the complex 

number factor 𝐴̂ which stands by a harmonic function 𝑒𝑖∙𝜔∙𝑡. 

(a) Since cos ( t a∙x)=
𝑒𝑖∙( t 𝑎∙x)+𝑒−𝑖∙( t 𝑎∙x)

2
, the phasons are 𝐴̂ =Eo∙ 𝑒−𝑏∙𝑦+𝑖∙𝑎∙𝑥

 

and 𝐴̂ =Eo∙ 𝑒−𝑏∙𝑦−𝑖∙𝑎∙𝑥
. 

(b) Since cos (t)∙ cos (𝑎 ∙x)=
1

2
∙ [cos ( t − 𝑎 ∙ x) − cos ( t 𝑎 ∙ x)], and  

sin (∙t) sin (𝑎 ∙x)= 
1

2
∙ [cos ( t − 𝑎 ∙ x) + cos ( t 𝑎 ∙ x)], then, E (x, t) = 

Eo∙ cos ( t -a∙x). The phasons are 𝐴̂ =Eo∙ 𝑒±𝑖∙𝑎∙𝑥
. 

9. A homogeneous plane wave with the electric field hits perpendicular to a dielectric 

half-space z> 0 with the dielectric constant r (see Fig. E9.4). 

a) Which components of the electric and magnetic field must be continuous at the 

interface? 

b) Calculate the phasors of the reflected wave Er and the transmitted wave Et! 

c) Determine the EM-power transmitted into the half space z> 0 per unit area!

 

Fig. S9.4 Problem 9. 

 

One writes for a plane wave the equation: 𝐸⃗ (𝑥, 𝑦, 𝑧, 𝑡) = 𝐸̂ ∙ 𝑒𝑖∙(𝜔∙𝑡−𝑘⃗ ∙𝑟 ) , and in the case depicted in 

Fig. S9.4  𝑘⃗ = (0 ,0,  𝑘𝑧) and 𝐸̂ = (𝐸̂𝑥 , 0, 0). One assumes that the plane wave is propagating in a 
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medium without losses, for which the wave vector 𝑘⃗  may be expressed a follows: 𝑘 = 𝜔 ∙

√𝜀0 ∙ 𝜀𝑟 ∙ 𝜇0 =
2𝜋


∙ √𝜀𝑟. For the y-component of magnetic field H, according the Maxwell equations 

one may write: 𝐻𝑦 =
𝑖

𝜔∙𝜇0
∙
𝜕𝐸̂𝑥

𝜕𝑧
. After differentiation one obtains the identity:  𝐻𝑦 =

𝑘𝑧

𝜔∙𝜇0
∙ 𝐸̂𝑥.  

(a) The normal components of the displacement vector  𝐷⃗⃗  and magnetic induction vector 

𝐵⃗  at the interface should be continuous as well as the tangential components of vectors 

𝐸⃗  und 𝐻⃗⃗ .  

(b) This means that at interface z=0 the boundary conditions are as follows: 

T
r

R

TR

E)EE(

EEE








0

0
0

0

0

0







 , where E0 is the electric field amplitude of the incident wave  

ER and ET are the electric field components of reflected and transmitted waves, respectively.  

From these two relationships the reflection and transmission coefficients are as follows: 

1

2

1

1

0

0















E

E

E

E

T

R

.  

(c) According to the definition of the Poynting vector 𝑆 : 

𝑆 = 𝐸⃗ × 𝐻⃗⃗ , which is parallel to 𝑘⃗ . The averaged value of  𝑆  over one period of field vector 

oscillation results in: 〈𝑆 〉 =
1

2
∙ 𝑐 ∙ 𝜀0 ∙ 𝜀𝑟 ∙ 𝐸̂𝑥

2. The transmitted energy is the normal component 

of vector 𝑆  can be expressed through ET as follows: 

   2
2

02

002

2

121

4

42

1












Ec
nEk

c
S z


 

 

 

10. Plugging 𝐸 = 𝐸0 ∙ 𝑒−𝜗∙𝑥, in the Maxwell equation for the electric field: 

∇2 𝜕𝐸

𝜕𝑡
= (𝑖 ∙ 𝜔 ∙ 𝜎 ∙ 𝜇 − 𝜔2 ∙ 𝜀 ∙ 𝜇) ∙

𝜕𝐸

𝜕𝑡
 , one obtains the identity 𝜗2 = 𝑖 ∙ 𝜔 ∙

𝜎 ∙ 𝜇 − 𝜔2 ∙ 𝜀 ∙ 𝜇.  One denotes Re[𝜗]= 𝑎, 𝐼𝑚[𝜗} = 𝑏, then, the identity 

may be rewritten: 𝜗2 = (𝑎 + 𝑖 ∙ 𝑏)² = 𝑖 ∙ 𝜔 ∙ 𝜎 ∙ 𝜇 − 𝜔2 ∙ 𝜀 ∙ 𝜇, which 

results in two relationships for real and imaginary components of 𝜗.  

𝑎² − 𝑏2 = −𝜔2 ∙ 𝜀 ∙ 𝜇, and 2 ∙ 𝑎 ∙ 𝑏 =  𝜔 ∙ 𝜎 ∙ 𝜇. After solving these two 

equations relative to a, one gets the biquadratic equation: 𝑎4 + 𝜔2 ∙ 𝜀 ∙ 𝜇 ∙

𝑎2 −
𝜔2∙𝜎2∙𝜇2

4
. The positive root of this equation is given by: 𝑎2 =

𝜔2∙𝜀∙𝜇

2
∙
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(√1 +
𝜎2

𝜔2∙𝜀2
− 1). This general solution indicates the linear relationship 

between  𝜗 and frequency .  For very conductive rocks: 
𝜎

𝜔∙𝜀
≫ 1,  𝜗 =

√
𝜔∙𝜇∙𝜎

2
. For non-conductive rocks at high frequencies: 

𝜎

𝜔∙𝜀
≪ 1 the square 

root may be expanded in the Taylor series, and, then, 𝜗 =
𝜎

2
√

𝜇

𝜀
.  

 

 

Fig. S9.5 Problem 11. 

a. The maximum of the magnetic field induction is: B0=E0/c=6.67 µT.  

b. At the indicated point the magnetic field induction is one fourth of the maximum 

value: B(z1)=E(z1)/c=1.67 µT. The direction of the EM-wave propagation vector 

𝑘 ⃗⃗⃗   builds with the vectors 𝐵⃗  and 𝐸 ⃗⃗  ⃗ the right-handed coordinate system. After the right 

hand rule B(z1) is directed to the positive x-axis.  

c. If the coordinate system oriented in such a way that at z=0 the induction vector is at 

maximum, then, the wave equation for 𝐵⃗  vector may be presented as a cosine 

function: 𝑩⃗⃗ (z) = B0∙cos(k∙z). The wave number k is calculated from the given 

frequency: ν=10 MHz and EM-wave velocity c,   k=2πν/c. The point z1 corresponds to 

the distance from the maximum of 𝐵⃗ : z1 = c/(2π∙ν)∙arccos(B(z1)/B0)=6,3 m. 
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Exercises and control questions to Chapter 10: 

1.  

 

Fig. S10.1 Problem 1.  

 

Consider the length element dr of the bar. There is a Lorenz force acting on the 

electrical charge q:  ]BV[qFL


 . The direction of the Lorenz force (red arrow in 

Fig. S10.1) is orthogonal tot he directions of charge movement V and the magnetic 

field induction vector B. This force acts on negative and positive charges in two 

opposite directions and the electric field E builds up along the length element dr: 

dr

dU
qEqFe  , where dU is the voltage difference between two ends of the 

length element dr. In steady-state these two forces are in balance, and one obtains the 

differential equation in respect to the voltage U: 
dr

dU
qBrfq  2 . After 

integration this identity by r from 0 to L it follows: 

mV,,,LBfUdrrBfdU 91104250601432
52    
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Fig. S10.2 Problem 2. 

2. The rectangular coil rotates along the axis parallel to L. The surface area of the 

rectangular loop is A=L∙x=L∙ 𝑊 ∙ cos⁡(𝜔 ∙ 𝑡), where x is the projection of W on the axis 

normal to L, and w is the rotational frequency.  The magnetic flux  passing through 

one coil loop is given by: = ∬ 𝐵⃗ ∙ 𝑑𝐴 
𝐴

 . The magnetic field in the Frankfurt area is B≈

49.8⁡µ𝑇 The induced electric voltage is: 𝑈𝑖𝑛𝑑 = ∮ 𝐸⃗ ∙ 𝑑𝑟 = −
𝑑

𝑑𝑡𝐶
∬ 𝐵⃗ ∙ 𝑑𝐴 

𝐴
, or per one 

loop of wire: 𝑈𝑙𝑜𝑜𝑝 = −
𝑑

𝑑𝑡
(𝐴 ∙ 𝐵⃗ ) = −

𝑑

𝑑𝑡
(𝐿 ∙ 𝑊 ∙ 𝑐𝑜𝑠(𝜔 ∙ 𝑡) ∙ 𝐵⃗ )=𝐿 ∙ 𝑊 ∙ 𝜔 ∙ 𝑠𝑖𝑛(𝜔 ∙ 𝑡) ∙

𝐵⃗ . The peak voltage in the coil of n loops is 𝑈𝑝𝑒𝑎𝑘 = 𝑛 ∙ 𝐿 ∙ 𝑊 ∙ 𝜔 ∙ 𝐵⃗ , and resolving in 

respect to one obtains𝜔 =
𝑈𝑝𝑒𝑎𝑘

𝑛∙𝐿∙𝑊∙𝐵
=

38∙10−3

280∙0.112∙0.078∙49.8∙10−6 = 312⁡𝑟𝑎𝑑/𝑠𝑒𝑐 

  

3. The energy density of magnetic field having  strength H is: 2

0
2

1
HMagn    

The kinetic energy density is: 2

6
102

1
V

NmH
Kin 





 , where mH=1.66∙10-27 kg is the 

mass of proton, V is the mean velocity and N is the concentration of protons.  In 

thermal equilibrium: kin=Mag. Resolving the identity in respect to H one obtains the 

relationship:.  
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4. If an observer moves from the latitude of Mainz 0 to the latitude of Frankfurt 0+, 

then, the two components of the Earth’s magnetic field, i.e.  ∝sin(0+) and 

∝cos(0+):may be expanded in the Taylor series: 
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The small increments in magnetic field components are: 
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difference in latitude between Main and Frankfurt is: 
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5. The specific saturation magnetization of Ni is given by: MS = N∙µNi , where N is the 

number of Ni atoms per unit volume, and  µNi is the magnetic dipole moment of a 

single Ni-atom. 
Ni

A
m

NN


 , where Na is the Avogadro number: 

B

NiA

NiS
Ni ,²mA,

,,

,

N

mM



 56010155
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715810470 24

623

3
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
   

6. The molar magnetic susceptibility m according to the definition is as follows: 

mol/³m,
,

,
m

VmM
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6

7
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1027

 





  

7. Assuming that in rock the atoms possess only +µB and -µB magnetic dipole moments, 

then one introduces the variable<. 
kT

B
x B 


. The magnetization of rock material is: 
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If one assumes from magnetic induction B independent magnetic susceptibility , then 

Tesla,
,M
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In ordert to get 96,4% of saturation magnatization at T=293K, one has to plug in the 

identity for M: Tesla
,
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8. Consider a magnetic sample in a form of cylinder of length l with the cross section 

area A hanging in magnetic field with the vertical gradient:  dB/dx. In the gradient 

magnetic field there is a vertical force Fx acting at the element volume dV in x-axis 

direction:
dx

dB
dVMdF;

dx

dU
F xx    

Plugging dV=A∙dx into this identity, one obtains:

dx

dB
BdxA

dx

dB
MdxAdF

dV

x 
0


 . The total force Fx can be calculated by 

integration over the length of specimen from x1 to x2 (see Fig. S10.3): 
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




, where B1 and B2 is the magnetic field at points x1 

and x2, respectively. For a sufficiently long sample x2 will be far outside the centre of 

magnetic field, so B2 <<B1, and finally, one obtains the identity: 
2

02

1
BAF  


. The 

balance is measuring the weight difference between zero magnetic field and B, ∆𝑚 ∙ 𝑔. 

Paramagnetic samples (>0) the additional vertical force acts downward of x-axis, i.e. the 

sample is forced into the magnetic field and ∆𝑚 ∙ 𝑔 > 0. For diamagnetic samples the 

additional force acts upward and the sample is pushed out of the magnetic field. For a 

constant gradient magnetic field one may write:: 

N,
,dx

dB
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
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
, which corresponds to c. 0.08g 

of the weight increment. 
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Fig. S10.3 Problem 8. 

 

9. The temperature at depth z is given by: 3020 *)km(zC)z(T  . So, a magnetite 

crystal reaches the Curie temperature at depth Z: km,Z 718
30

20580



 , for a  

pyrrhotite crystal: km,Z 210
30

20325



 .  

 

10. The magnetic field of the earth is to a large degree the dipole field. So with the depth 

the magnetic field varies as 𝐻⃗⃗ 𝐸𝑎𝑟𝑡ℎ(𝑑) ∝
1

(𝑅−𝑑)3
 , where R is the radius of the Earth. 

For the basalt cube located at the depth d the magnetic field is: 𝐻⃗⃗ 𝐸𝑎𝑟𝑡ℎ(𝑑) = 𝐻⃗⃗ 𝐸𝑎𝑟𝑡ℎ,0 ∙
𝑅³

(𝑅−𝑑)3
≈ 𝐻⃗⃗ 𝐸𝑎𝑟𝑡ℎ,0 ∙ (1 + 3 ∙

𝑑

𝑅
) . When d=5 m the effect is of depth is negligible. The 

magnetic dipole moment is: 𝑚⃗⃗ = 𝑀⃗⃗ ∙ 𝑉, and the basalt cube magnetization is given by: 

𝑀⃗⃗ = 𝜒𝑚𝑎𝑔 ∙ 𝐻⃗⃗ 𝐸𝑎𝑟𝑡ℎ,0, The cube volume is V=l³, plugging in 𝑚⃗⃗ : 𝑚⃗⃗ = 𝜒𝑚 ∙ 𝑉 ∙

𝐻⃗⃗ 𝐸𝑎𝑟𝑡ℎ = 0.03 ∙ 125 ∙ 𝐻⃗⃗ 𝐸𝑎𝑟𝑡ℎ=3.75∙ 𝐻⃗⃗ 𝐸𝑎𝑟𝑡ℎ,0. At the North magnetic pole 𝐻⃗⃗ 𝐸𝑎𝑟𝑡ℎ,0 ≈

65µ𝑇, then  𝑚⃗⃗ ≈ 2.4 ∙ 10−4⁡A·ּm2/kg. The magnetic dipole moment of basalt cube 

contributes to the additional magnetic field on the surface: 𝐻⃗⃗ 𝐵 = 𝑚⃗⃗ ∙
1

2𝜋∙𝑑3
≈ 0.005 ∙

𝐻⃗⃗ 𝐸𝑎𝑟𝑡ℎ,0. The total field on the surface is 𝐻⃗⃗ 𝐵 + 𝐻⃗⃗ 𝐸𝑎𝑟𝑡ℎ,0 = 1.005 ∙ 65µ𝑇. 

11. For the saturation magnetization one may write the identity: 𝑀𝑆 =
𝑁

𝑉
∙ 𝜇𝐵 . The factor 

𝑁

𝑉
  

is given by:  . Plugging this into MS one obtains: 

 . The saturation magnetization of iron in the magnetic field B is: 

  . For the magnetic moment of iron µ in the 

magnetic field B one may write:  . The factor 
𝑁

𝑉
=

8.5 ∙ 1028⁡𝑚−3  here is the same. The ratio between the magnetic moment of iron atom 

µ and the Bohr’s magneton µB is:   .  
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Solutions to Chapter 11: 

1.  

 

 
Fig. S11 .1 Problem 1. 

Solution in the case  A: If the heat flux is in the direction normal to mineral interfaces, the, the 

heat flux passing through each phase is the same: 
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25,01
 


 =1,48 W/m/K 

Solution in the case B: If the heat flux is in the direction parallel tot he mineral interfaces, 

then, the temperature gradient ist he same in each layer of mineral phases, because the 

temperature difference and the length of each phase are the same: 

........ 2211221121 





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 

L

T

L

T
QQ

L

T
Q  

=0,2∙2,3+0,3∙0,63+0,3∙7,1+0,2∙3,3=3,44 W/m/K. 

 

2. One denotes the total surface area of the black body by A. The absorbed radiation power is given 

by: ASQa  , where S =1.3608 ± 0.0005  kW/m² is the solar constant . The emitted radiation 

power is: 42 TAQe  , where  =5,67∙10-8 W/m²/K4 is the Stefan-Boltzmann constant. The 

factor 2 is due to face and rear surfaces A. In thermal equilibrium two radiation powers are in 

balance:  K
S

TTAAS 332
1067,52

1380

2
2 4

8
4

4 





  

 

3. The Lorenz constant L is calculated and listed in Table below:  
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Minerals K [W/K∙cm] , [∙cm] L, W∙/K²

Diamond 23.2 1016 7.7∙1014 

Quartz 7.0 1015 2.3∙1013 

Forsterite 5.15 107 1.7∙105 

Dolomite 3.5 1010 1.2∙108 

Diopside 5.76 1012 1.9∙1010 

Hornblende 2.54 1014 8.5∙1011 

Graphite 4.5 10-3 1.5∙10-5 

 

 

4. The heat flux trough the rock specimen is given by: 

C
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Fig. S11.2 Problem 4. 

 

 

 

5.  (a) The heat exchange between basaltic rock specimen and water is given by the equation: : 

KkgJCmCCm pwasserpBasalt //144
5,72

5,21019,4
)205,22(1019,4)5,2295(

3
3 




The molar heat capacity may be expressed via mean atomic weight of basalt:  

)*/(92,81062144 3 KmolJACC rpn  
 

The Dulong-Petit law states, that the molar heat capacity of a monoatomic solid is the 

universal constant equals 3 times universal gas constant R:  Cn = 3 * R = 3 * 8,3 J/(mol*K) = 

24,9 J/(mol*K). 
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(b) When the thermal elongation of the basaltic specimen is given, then the needed 

temperature increase may be calculated as follows: 







7,60
105,53

01,0
301,0

5
TT . 

 

6.  

Magnesite       Calcite  

   [001] = 6,55 mm2/s    [001] = 2,02 mm2/s 

 [100] = 2,36 mm2/s     [100] = 1,82 mm2/s 

    [010] = 2,39 mm2/s    [010] = 1,85 mm2/s 

The average value of  in three crystallographic axis directions  [001], [010], and [100] is 

determined from the equations as follows:  

 for magnesite: 
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and for calcite: 
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7. The heat flux equation provides: 

 

 
 

8. The heat flux of magma chamber having volume V by cooling from the temperature 

T0=1100°C to Tm are 𝑄1 = 𝜌 ∙ 𝑉 ∙ 𝐶𝑝 ∙ (1100 − 𝑇𝑚). The heat flux over 1 year through the 

surface area A in the case (a) is 𝑄2 = 𝑡 ∙ 𝛬 ∙ 𝐴 ∙ (
1100+𝑇𝑚

2
− 300). In the case (b) 𝑄2 = 𝑡 ∙ 𝛬 ∙

𝐴 ∙ (
1100+𝑇𝑚

2
−

500+100

2
). The heat losses and the total heat over 1 year time should be equal: 

𝑄1 = 𝑄2. From this identity the temperature Tm can be calculated: Tm=821°C 
 

9. On the surface of a granite spherical body there is a constant heat flux q = 50 mW/m². Calculate the 

radius of sphere considering the heat production in granite rocks A = 6∙ 10−6 W/m³ and the granite 

density 2.65 g/cm³. 

The specific heat production in granite per unit volume due to radioactive nuclides is: 

A[W/m³]≈1,03·10-9 [W/kg]·2,65∙10³[kg/m³]= 2,73∙10-6 W/m³. The total heat production A* 

per second in the granite sphere of radius R is given by: A*=A·4/3R³. 

Through the outer surface of the sphere per one second there are heat losses: Q=q∙4R². In 

balance: Q=A*, or R=3∙q/A=150·10-3/2,73∙10-6=40.214,5 m≈40,2 km 

KmW
T

LQ
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Q 
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10. In order to solve this problem, one considers a general case, when fluid with the 

temperature T flows in a long channel, the walls of which are set at constant temperature T0 

(see Fig. S11.3). The solution of the problem is to determine how the temperature of the fluid 

varies with the flow distance x in the channel, T (x), when by x = 0 the inlet temperature is  T1 

and by x = L the outlet fluid temperature is  T2. An expected variation of temperature T(x) 

along the channel is shown in the upper part of Fig. S11.3. When the fluid is cooled due to 

heat exchange with channel walls (T0< T), then, the heat flux from the channel wall of length 

dx is given by:   dxTTDhdxDq 
0


.

,  where D is the cylindrical channel 

diameter. The heat, which has been brought in the channel element of length dx is: 


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V

p

². 
 , where m is the mass of fluid in the channel 

element of length x,   is the fluid density, V is the mean velocity of fluid flow, Cp is the heat 

capacity. At small Nusselt-numbers the heat losses of fluid and heat flux through the wall 

should be equal. In the integral form it corresponds to the identity: 







x

p

T

T

dx
DCV

h

TT

dT

0
0

4

1 
, after integration, and taking into account that at x = 0, 

T(0) = T1, it follows:  
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. This is the temperature 

variation of fluid along the channel. The outlet temperature T2 at x = L is given by: 
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Fig. S11.3 Problem 10. 
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Solutions of problems to Chapter 12: 

1. The age of the rock may be calculated using the equation 12.7 

 

From the graphic on Fig. 12.15 one can determine a slope of the straight line 

 

. Then the age is as follows  

2. The solution of this problems is  based on the tabular constants of heat production of the 

three main radioactive elements on rocks U (235 and 238), Th (232) and K (40):   

3. By plotting the disintegration chain reaction of 238U on a graph p-n 

(number of protons vs number of neutrons we get the chain as follows  

  

Fig. S12.1 To the graphical solution of problem 3. 
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4.  The half-life time t1/2 refers to the lifetime of a decay product  for U238

92  through the 

relationship: years
t

t
9

9

2
1

2
1

10496
6930

1054

2
2 


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,

,

)ln(
)ln(    

5. Two disintegration equations for uranium isotopes are given by: 
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We are looking for time t, at which the proportion between two isotopes is given by: 
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. Assuming that the abundancies of two isotopes at the beginning 
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6. After the time t from starting N(0) nuclides of U238

92  there are still remaining N (t) nuclei: 
teNtN  )0()( 238238
 . The proportion P of non-decaying nuclei is 
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P t  . P can also be regarded as a 

probability of a non-disintegrated nucleus.  

7. Per 200 g of living bones per 1 minute there are 1300020015  Min A )( decays. After 

the first half-life, only half of the nuclei remained: 2
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The total age of the animal bones equals to years  tnt 5656165730912
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8. The half-life period of Ra226

88  is given as follows 
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9. The disintegration constant of Na24

11 is 
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2
1

sec103,1
60608,14

693,0)2ln( 



t

 . A 

probability or percentage of disintegrated nuclei is calculated below 
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percentage of disintegration the decay time is calculated as follows: P=90%: t=49,2 hours 

P=99%: t=98,4 hours P=99,9%: t=147,6 hours.  

10. The percentage P of non-decayed after 100 years 14C nuclei in % is given by:  
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11. For the disintegration of 40K nuclides, the decay equation is applied: teNtN KK  )0()(
4040

, 

where  is the decay constant of 40K, 
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  (year-1). For the decay rate of 40Ar nuclides 

the differential equilibrium equation is applied: 
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, with an unknown constant of integration. 

At the moment t=0 there were no 40Ar nuclei 00
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)(N Ar . From this initial condition, 

the constant of integration may be determined:
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equation for the decay of 40K nuclides we get: te)t(N)(N KK  4040
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12. A. The decay constant  is given through the half-life time as follows: 
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  or 1,65∙10-17 sec-1.   

B. In one kilogram of rock there is 0.2∙10-3 gram of 40K. In 40 gram of 40K there is 6.022 1023 atoms of 

the isotope. The number of 40K nuclei in one kilo of rock is: 
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C. The activity of the rock sample is equal to the decay rate of 40K at the moment. So, the activity 

equals to:  Bq N
dt

dN K 50
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13. If the ratio of a daughter isotope to the parent isotope is given, then we may write the 

relationship of two isotopes at any time presuming that at t=0 there was no daughter isotope 

presented: 1
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of the rock may be estimated as follows: 
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