Exercises and control questions to Chapter 1:

1.

Pattern textural structural
idiomorphic X

fine grained X

pegmatitic X

pumiceous X

fluidal X
brecchiated X

2. A."homogeneous" and "anisotropic”. B. "heterogeneous" and "anisotropic". C.

"isotropic" and "heterogeneous (see Fig. S1.1).

A. B. C.

Fig. S1.1 Pattern examples for the Exercise 2 (http://www.soloentendidos.com/principio-
cosmologico-isotropico-y-homogeneo-1390).

(a) erosion, reworking, and transportation of rock components,

(b) deposition and sedimentation of the material, and

(c) compaction and diagenetic processes.
(a) gravimetry, geodata, (b) seismic, acoustics of rocks, (c) magnetic field
measurements.
I1: median= 95, sorting=65; I1l: median= 70, sorting=100; IV: median= 35,
sorting=60; V: median= 5, sorting=40.
(a) angular velocity is a vector, tensor rank 1, (b) moment of inertia is the tensor rank
2, (c) surface is a vector, tensor rank 1, (d) density is scalar, tensor rank 0, (e)



http://www.soloentendidos.com/principio-cosmologico-isotropico-y-homogeneo-1390
http://www.soloentendidos.com/principio-cosmologico-isotropico-y-homogeneo-1390

piezoelectric coefficient is the proportionality coefficient between the electric
polarization (vector) and stress (tensor rank 2), so it is a tensor rank 3?
7. Using the data set in Fig. 1.9 of Chapterlone plots the density distribution function of

grain sizes shown in Fig S1.2.
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Fig. S1.2 Problem 7: MATLAB plots of cumulative and pdf curves of sample C.

The MATLAB code is shown below:
d=[100 63 40 30 20 10 8 6 4 321 0.7 0.6 0.50.4 0.3 0.2 0.1 0.09 0.08
0.07 0.06 0.05 0.04 0.03 0.027];
CUM=[100 100 99.5 99 96 85 80 69 55 48 42 40 39 38 36 28 20 10 3 2.5 2 1.5
1 0.5 0.25 0 0],
PDF=diff ([0 CUM]
PDF=PDF./sum (PDF
figure
yyaxis left
plot(loglO(d),CUM, '*")
ylabel ('cumulative curve')
yyaxis right
plot (loglO(d),PDF, '-0")
ylabel ('pdf curve')
xlabel ('"log(d) ")
set(gca, 'XDir', 'reverse')
set (gca, 'FontSize', 20)
a = get(gca, 'XTickLabel");
set (gca, 'XTickLabel',a, 'FontName', '"Times"', 'fontsize',18)
grid
hold on
M=sum (PDF.*d); S=var (PDF) ;
skewns = @( (sum ( (x-mean (x)) .”3) ./length(x))
kurtss = @( (sum ( (x-mean (x)) .”4) ./length(x))
SK=skewns (PDF); KTS=kurtss (PDF) ;
txtl = strcat('mean=',num2str(M),' variance=',num2str(S));
txt2=strcat ('skewns=',num2str (SK),' kurtosis=',num2str (KTS));
text (2,0.1,txtl, '"Fontsize',16);
text (2,0.05,txt2, '"Fontsize',16)

y ./ diff ([0 dl);
)7

(var (x,1).71.5);

./
./ (var(x,1).72);

x)
x)

8. The specific surface area per grain is:
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surface of a spherical grain
——

2
d T _ 3.14 m?
Asp [?] o &p(1-5) - d.p.(l_g)_3o~10—6-3-106-0.4764 ~0.15 g

_ 97
mass of aunit cell

surface of ascylindrical grain
L 2 d-l
In the case of parallel cylindrical tubes: Ay, [~-] = T =
g d*1p(1-3)

[N S
mass of a cylindrical grain

T _ 3.144
m\.” 30-10-6-3-106-
d'P(l_Z)' 30-1076-3:106-0.2146

~ 0.16 %. In the case of cubic cells having edge length 3d the unit cell

.A3
volume 27d3. The density is p* = (1 — %) - p = 0.981 - p. The specific area per unit mass

surface of a spherical grain
—~
A [m_z] _ nd? T _ T
Spl g 27d%p-(1—z5) 27-d-p* 27-30:1076-3:106:0.981
mass of aunit cell

~13-1073%,
g

9. The grain size analysis of a clastic sediment gives the results as follows:

Particle size, mm Mass, g Component %

0-0.02 1.2 Colloidal+silt+clay+fine | =1
sand

0.02-0.04 3.1 Medium size sand 64.7

0.04-0.063 3.7 Medium size sand

0.063-0.1 6.1 Medium size sand

0.1.-0.2 7.4 Medium size sand

0.2-0.4 35.6 Medium size sand

0.4-0.63 25.2 Medium size sand

0.63-1.0 17.1 Coarse size sand 13.6

1.0-2.0 9.5 Fine gravel 12.8

2.0-6.3 6.5 Fine gravel

6.3-10 5.3 Medium gravel 4.2

10-20 4.7 Coarse gravel 3.7

Sum: 12549

The histogram of grain size distribution is shown in Fig. S1.3.
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Fig. S1.3a The grain size scale in clastic sediments (adapted from Sebastian, 2009 after ISO 14688-
1).
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10. From cumulative curve of grain sizes shown in Fig. S1.4 the probability distribution
function of grain sizes PDF(d;) may be reconstructed by the method described in
Exercise 7. For a particular grain size interval the specific grain surface erea per unit
mass may be calculated as: A, (d;) = %. The total grain surface area is the sum:
l
At =¥, Ao, (d;) - PDF(d;). The results is As=0.26 m2/g.
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Fig. S1.4 Problem 10: (upper panel) Particle size distribution of a blast furnace slag sample as
determined by image analysis (Arvaniti et al., 2015). (lower panel) Particle size distribution function.
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Solutions to Chapter 2:
1. (a) Consider 3 spheres in the layer B (Fig. S2.1 upper left panel) B1, B2 and B3. The

(b)

apper vertex sphere of the tetrahedra B1B2B3AL1 the point Al is in the centre of
the hexagonal of layer A. The side length of tetrahedra is a=b=1. The height
B1H=1/2. The angle OB1H=30°, dann OH=BH/tg30°=1/2V3. The angle
A1B1H=60°, then A1H="3/2. From the triangular AOHA1 one obtains that
OA1= V2/4/3. The distance between two adjacent layers B is c=22/v/3=1.633

In the elementary cell in the layer A there are 7 spheres (see Fig. S2.1 left lower
panel). But only a half of the central sphere belongs to the elementary cell. From 6
spheres forming a hexagon only 1/6th of each belongs to the cell. Totally, it makes
1.5 spheres per layer A. In the layer B 3 spheres belong to the cell, in the next
layer A consisting of 7 only 1.5 spheres count to the cell. Totally, per unit cell
there are 6 spheres having the total volume: 6-n/6- 13=r. The volume of the unit
cell is the product of height x area of hexagon which is formed in the layer A.
The height is: 242/73. The area of hexagon is: 6 - ¥2 -y3/2-1. Thus, the ratio of the
spheres volume to the unit cell is: 7/3V2=0.74. The porosity of hexagonal dense

packing is given by: 1-0.74=0,26 (Gauss, 1831).



hexagonal

Fig. S2.1 Problem 1.

2. Solution: density =0.4 - 2.65 + 0.5 - (0.5-2.57 +0.5-2.59) +0.06 - 2.85 +0.04 - 3.05=2.64

g/lcms,

3. The solution is presented in Fig. S2a&b.

Pore radius R

== Radius R

0.16

.!.,' ' sorting=1.1

2.5 -2 =15 =1 <0:5 4] 0.5

Fig. S2.2a Problem 3: Cumulative curve of pore radius as a function of ¢.
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Fig. S2.2b Problem 3: Number of particles as a function of ¢.

4. (a) For bulk density pg one uses the relationship:

607 g
=——~ ~147g/cm3
Pe = 113cme J

(b) In order to calculate porosity the bulk density may be presented as the arithmetic

2,65-147
=(1-0) - p. =>147=(1-¢)-265=>d="—""_~0,445

mean:: ©8 (1=4)-ps (1-¢) ¢ 2,65 from

which it follows that: $=44.5%
(C) € = Vpores /Vmineralgrains e= V-9 = 0,445 =~ (0,

V-(1-¢) 0555
(d) for the degree of saturation S: 4121213 =(1-¢)-ps+ ¢-py, -S=S =065 or
17697 om 1,479 /cm? 0,445g / cm3

S=65%,

(e) the water content in the rocks is given by: w = 27 —607 =098 or S=19.8%.

607

5.P =265-103-9.81- (1 — ¢) = 20000Pa, i.e. ¢ =1 —0.77 = 0.23.

6. In order to calculate the total amount of oil one has to integrate the prosity as function of
depth z:
H 0 0
V = A-ﬁ-j¢0-e‘“'z .dz=m.j.e—«ﬂ .d(_a.z)=m.j.eu .o|u=m.(1_e—wH )
0 a H —_— (94 a

u H

V [km?3] =0,01- A[km?] - 4, - (1—e~ "Ik



7. The equation may be rewritten in a dimensionless form for quartz exsolution and

deposition on the surface of pores in a sandstone as follows:

E

T 1 /41 . E 1 (dT
oloopd @ _ _ wrotor(Ela. w76 (@)7) where ¢ is dimensionless
Ape(E2Cea) Endz ’
So'A UQ ( Ceq )

variable of porosity: E:%. Here the expansion of 1/(1 + Tl (Z—Z) - z) in the Taylor series
0~ %c 0

has been done because Ti (Z—Z) ~ 10 1/km and after the integration of this differential
0

equation from z=0 to z assuming the boundary conditions at z=0 ¢=¢ and T= To one gets:

_E_
LR LR TR
(1—n).so.A-@-(CE::q) Po—¢c ’
and in the case when n=1
_E
wrgl@le oo™ (222 J=1 - el (a)?]
so.A%-(C;s:q) Po—@c '

After the substitution of typical parameters for quartz this relationship for z in km and burial

rate ® in km/Myr is then

and for n=1

( -0 )1"2 (1-e367%)(1-n)
Po—@c 1.86:10* w-(@o—¢c) '

_ 1_63.6-2
In ( P=¢c ) ~ - _
Po—Pc 1.86:10% w-(po—@c)

The characteristic scale decrease of porosity by factor 2 corresponds to about z=3.4 km with
the burial rate 50 km/Myr, ¢0=0.3 and ¢.=0.05.

8. Surface tension and capillary forces:

a) The contact angle for water on clean quartz surface is approximately zero. What is the
surface tension of water at 20 °© C when a column of water in a quartz capillary tube with an
inside diameter of 0.6 mm rises to 4.96 cm high. The density of water at 20 ° C is 998.2 kg /
me.

b) What is the maximum diameter of the guiding capillary in a 30 m high rock column in
order to raise water to the upper surface of a column by capillary forces? Set the calculation
for different wetting angles of 0°, 10°, 20°?

a) The surface tension force is balanced by the weight of the water column in the capillary

tube: 2w -7 -0 - cosd = p - g - h- mr?. When the contact angle 6=0, then the surface tension

of water is : ¢ = %20.073 N/mz.



b) One rearranged the previous identity and obtains: d,,q, = 4':_'%:9 ~ 107%m for 6 =0,

0.985-107°m for 8 = 10°0.94-10"°m for 6 = 20°.

Fig. S2.3 Problem 9: Dbcc lattice.

9. Per unit cell there are 2 spheres: one in the center and 8 spheres are shared between 8
adjacent unit cells 8 % = 1, the volume of two spheres :8'% If the side length of unit cell is
a, then the largest diagonal is v/3 - a. This diagonal equals 2 dimeters of spheres, because

spheres are touching each other: v/3 - a = 4 - . The unit cell volume is a3:634—g. The filling

8mwr® 3vV3 _m3
. -= =68%.
3 641 8

10. The first step is to covert the pressure into Pa: 1 Torr= 133.322 Pa, and to convert

factor of bcc is:

adsorbed volume from standard conditions to 77K and corresponding pressure using the ideal

gas law:
30 50 100 150 200 250

p [Torr]
V [cm?3] 29.1 32 36.3 40 44 48.5
p[Pa] 4000 6666.66667 13333.3333 20000 26666.6667 33333.3333
V[m?3] 0.00019119 0.00012614 7.1547E-05 5.256E-05 4.3362E-05 3.8237E-05

Asp.[m?/kg] 166.484219  183.07543 207.676191 228.844288 251.728717 277.473699
plbar] 0.004 0.00666667 0.01333333 0.02 0.02666667 0.03333333



Ay =--0.01391345=-13.9 mJ/m>.

The results of the experiment are presented in Fig. S2.4a.
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Fig. S2.4a Adsorbed volume vs. pressure.
The specific area of inner open surface per unit mass is calculated as follows: the number of

moles of adsorbed gas is u = %, the number of gas adsorbed molecules is % Ny , the
V-a- 2 V-a-
corresponding inner surface is “—4, and A, [m—] =2VaNa . L Fig. S2.4b presents the
TR kg TR m

results of specific area calculations as a function of pressure. The surface energy change Ay

of the rock sample (in mJ/m2) as the pressure increases during the experiment from 30 to 250

n(55) 2
Torr: Ay = —R-T-—=*=-13.9mJ//m".
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Fig. S2.4b Specific area Asp as a function of pressure.



11. KCl: 7y = 0.133 - 107 °m, 7, = 0.182 - 107 m, :—K = 0.735, the coordination number is
Cl

8, the dense packing corresponds to bcc lattice, and the atom in unit cell are touching along

the main diagonal: a = % (rx +1¢) = 0.365 - 10~2m. There are 2 atoms per unit cell, 1 of

K and 1 of Cl. The theoretical density of the dense packing is: p =

(39.0983+35.453)g/mol
(0.365-1079)3-6.023-10231/mol

= 2.546 - 106 % =2.546 glcm?.
MgO: 7y, = 0.066-107"m, 1, = 0.132 - 10~°m, :—Kl = 0.5, the coordination number is 6,
C

the dense packing corresponds to fcc lattice, and the atom in unit cell are touching along the
edge of cube: a = 2 - (rx + 1¢;) = 0.396 - 10~2m. There are 8 atoms per unit cell (see Fig.
S2.5), 4 of Mg and 4 of O: 8 atoms in vertexes shared between 8 adjacent unit cells =1 atom,
12 atoms in the middle of edges shared between four adjacent unit cells =3 atoms, 6 atomes
in the middle of faces shared between 2 adjecent unit cells =3 atoms and 1 atom in the center

of the unit cell. The theoretical density of the dense packing is: p =

4-(24.312+16)g/mol

= 4.313-10° mi =4.313 glcm?.

(0.395:1079)%:6.023-10231/mol

Fig. S2.5 Problem 11: fcc lattice.



Exercises and control questions to Chapter 3:

1. The parameter A of the Poisson’s distribution is the number of cracks per 5 m:
12100

A=——-5 =60.5.

1000
8
(a) The probability to get exactly 8 cracks is: e ~6%-° % ~1.6-107%

—605, (6051 | 605, (60.5)

. +
10! 1!

(b) The cumulative probability of 0 to 10 cracks is: e
e—60.5 ~ 10—15

9 15
(c) =605 . L0 4 o605 . LOD " 5 7. 1012
9! 15!

10~1°

10 1
(d) 1_(6—60.5 .%4_“6—60.5 .@ + 6—60.5)_
2. There are 42 fractures on average in a 10 m long borehole core. If the fraction

between-length (I) follows an exponential distribution how would you define the
average spacing between? How would you estimate the number of fractures (n) per
1m of the core? How are the exponential distribution and the Poisson distribution look
like?

The parameter A of the exponential distribution is the number of cracks per meter, A =
4.2 m~1. The average spacing is = % = 0.24 m . The exponential cumulative

distribution of value x is given by: F(x) = fox/l e~ 4t . dt=1-e~**. The median value
X corresponds to the cumulative probability: % =l-e** 5 % = @: 0.165.

Fig. S3.1 illustrate the difference between the Poisson’s and exponential distributions.
The Poisson Distribution

exp(A)

In

2
A

0

Fig. S3.1. Exponential and Poisson distributions.

|y
S

3. The Reuss average is:
02 01 02 025 0,25
R = + + + +
964 636 749 785 1288
The Voigt average is:

E, =(96,4-0,2+63,6-01+749-0,24785-0,25+128,8-0,25)-10° [N / m?] =92,4-10°[ N / m?]

-1
] -10°[N/ m2] =87,4-10°[ N / m?]

4. (a) Fig. S3.2 illustrate the application of the force acting on the surface
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F.cosy 10°%-cos(45°)
O-ZZ = =
A 0,001 m?]
. - F-siny-sinp 10%-0,707-0,5
Y A 0,001
= F-siny-cosep 10%-0,707-0,87
X A 0,001

(b) A|Z=JK.G_IEZ=2,8-10-7m

=707100Pa

= 353500Pa

=612300Pa

£, = G—EZ =0,0009%

C
(¢ g, = DX o 6123009 —10"rad
2u 2-30-10
L =T o 39900 46,10 rad
2u  2-30-10

The angle deformation is :yy + yy = 1.6 - 1075 rad. The shear strain is given by:

£ =X _08.10  rad
2

The twist angle between the base and the surface plane is: wyy = (¥yx —yy) = 0.4 -
1075 rad.

Fig. $3.2 Problem 4.

5. To the side surface of the block of rock with the edge lengths a, b, and c the force F is
applied which is evenly distributed over the surface (Fig. E3.2).
Given: F=10kN,a=3cm,b=4cm,c=2cm.
How big are tangential and normal stresses to the grey, diagonal cut surface?

L6sung:
a. The forces parallel and orthogonal to the cut plane are:
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F, =F cosa =10~g =8kN
. 3
Fy =F-sina :10-§ = 6kN
b. he tangential and normal stressest o the cut plane are::

i =8-10°Pa =8MPa

O' =
' 5.1072.2.10°2
F
oy = — — =6-10°Pa = 6MPa
5.1072-2-10
?
; |

Fig. S3.3 Problem 5.

25000 -4 10°

~ 79 6MPa. Radial

6. a) Axial stress along z-axis is: o, = T R ~
7| 314-4.10

0,003

strain is: g, = ——0 100% = —0,015% , axial strain is:
€, = +_02't?)4 -100% = +0,082% . The Young’s modulus is:
_ % _POMPa_ o 76pa.
g, 0,00082
b) The Poisson’s ratio is: v=—i—: =0.183; K= m =76,3GPa and
U= _E =41GPa
2-(1+v)
¢) The strength of granite sample is given by:
_4-F 4.125000

max __

ad?  314-107°(20-0033)2

op = ~399 4AMPa

7. In Fig. S3.4 the construction of the Mohr’s circle and the principle stress ellipse is
illucidated. The stress vector o(45°) corresponds to the point on the stress ellipse having
two components [o1 -c0s (45°), 2-sin(45°)]. The length of the vector is:
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502+252

|0 (45°)| = /of - cos?(45°) + o - sin?(45°) = = 39.53 MPa, where o1 and

o2are two given principal stresses. The vector o(45°) bUI|dS the angle B with the o1 axis:

o, sm( 45°)_
tan(#)= o, -cos((45°) 0

B =2656°
Then, from the right triangle it follows:

o (45°) = o:(45°) - cos(45° — ) = 37,5MPa
7(45°) = o(45°) - sin(45° — B) =12,5MPa

1(45%)

Fig. S3.4 Problem 7.

8. (a) Analytical solution. In ordert o calculate the principal stresses one needs to find
eigenvalues oft he matrix equation:

60—4 15 ‘

det =
15 20—-4

The root oft he quadratic equation A are:

A*—80-1+975=0
A, =40%25

So two principle stresses are: 61=65 and c2=15 MPa: o* = ‘65 0 ‘
0 15

89



90

The new coordinate systen in which the stress matrix is diagonal are defined by the

rotation angle of axis 6:

0= larcta 2 =0,5- arctan(ﬁ) =18,44°
2 o,—0, 40

(b) Graphic solution. One plots in Cartesian coordinate system two points:
A(ox,+1) und B(oy, -t) and connects A and B with a straight line (red line
in Fig. S3.5). Then, one estimates the radius of the Mohr’s circle as a half
distance between points A and B. The ordinates of intersection points of
the circle with the horizontal axis S1: und Sz define the principal stresses o1
and o2. The direction of the principal stress is defined by the half angle
between the line AB and the x-axis =1/2 - angle(AOS:) or equals the
angle(AS20).

30 1

—Mohr's circle
20 A
ey A
S
10 4
2 T
& y 50 Sy
S o T T
l-; 10 30 40 50 60 70
.10 -
6Y
B
-20 4
9,
Ut
-30 4
6, MPa

Fig. S3.5 Problem 8.

9. (a) The division of the stress state into hydrostatic and deviatorial part can be given in
a tensor form. How does the equation look like? Derive the hydrostatic and the
deviatoric stress components explicitly trough principal stresses. What type of
deformation do the hydrostatic and the deviatoric parts of stress tensor correspond to?

(b) The invariants of the deviatoric part of stress tensor are:

J, =5, +5, +55,

J, =5y -85, F 5 -5y, F55, -5,

J:_, =.’5.11 -.'5.22 -.'5\_;\_;

Express the deviatoric invariants for the uniaxial tensile test through principal stresses.

The stress tensor invariants are the coefficients in the cubic equation which roots
define tree principal stresses. In the matrix form this equation is:
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10.
a)
b)

c)

d)

I

Oxx Oxy Oxz 1 0 O
O-xy O-yy O-yZ -1 0 1 0= 0 %).3_11').2_12'1_13 = O,Where 11’2‘3
Oxz Oyz Oz 0 0 1

are the stress matrix invariants. The hydrostatic stress is the mean value of diagonal
Ih
. trace(oj; . .
stress matrix elements: o, = % So the matrix o, - I represents hydrostatic
Oxx ny Oxz

part of the stress matrix. The deviatoric stress matrix is given by: [Oxy Oyy Oyz

Oxz Oyz Ozz

Oxx — Om Oxy Oxz
Om 1 = Oxy Oyy — Om Oyz = §. If 1, , 5 are the eigenvalues of the
Oxz Oyz Ozz — Om

stress matrix, then, the eigenvalues of the deviatoric matrix are s; ;3 = 45,3 — g, OF

in terms of three principal stresses oy ; 3:

20-1_0-2_0-3
S =——m———

3
20, — 0y — 03
52:—3
20-3_0-2_0-1
SBT3

(b) The invariants of deviatoric stress matrix are:

J1 = s1 + s,+s3 = 0, The trace of deviatoric matrix is trivial zero, since the sum of
three roots of deviatoric matrix eigenvalues are corrected to the mean value of the
roots.
2= O-Q?y + O_J?z + O-jgz - (Uxx - O-m) ’ (O-yy - O-m) - (Uxx - O-m) ' (Uzz - O-m) -
— 2 2 2

(ayy — am) (022 — Om) = 04y + 0z + 057 — (axx *Oyy t Oxy " Ozz + Oy - O'ZZ) +
302=—(s; " S, + 515, + s, * 53), since the trace of deviatoric matrix is zero. Or J, —

+5,+53)2 2452 +5% R . . .
(5153 + 5153 + 55 - 53) +2 S; Sa) _ St 522 >3 The third invariant is the matrix

determinant andfor the diagonal matrix: J; = s; - 5, * s3.

The principal stresses are 210 and 100 MPa: (155 — 1)? = 55%,1; = 155 + 55 =
210,4, = 155 - 55 =100.

According to Tresca yield criterion is yielding starts when the maximum shear stress
in the material equals the yielding stress limit: 7,4, = 2=22 = 55 MPa < k;. The
material deforms elastically.

According to von Mises in 2D case the yielding criterion is: \/012 +02—0,"0,==
181.9 MPa < k. The material responded also elastically.

In Fig. S3.6 the difference between Tresca and von Mises yield criterion is depicted.
Depending on the ratio between two principle stresses a = ? the difference between

1
predicted yielding criteria may be significant only at @ = 0, 1 and oo two criteria
predicted the same yielding stress.



von Mises yield criterion

Fig. S3.6 Problem 10: comparison between Tresca and von Mises yielding criteria.

11. Elastic modulus E=90 - 10° N/m?, Poisson number v= 0.28.
(a) The axial stress is g, =600 N/m2.
(b) The axial strain is €, = % =6.7-1077. The lateral strainis & = —v - &, = —1.86
1077. Volume strain is: &, = (1 — 2v) -2 = 2.9-107".
(© The7vvidth is changed by: 0.1- £, =-1.87- 1078, the length is elongated by: 0.2 - £,=1.3-
1077 m.
12. The graphical solution of the problem is shown in Fig. S3.7.

tangential vs. normal stress

80

70

60

e teﬁ%ile Strength 20 30 40 50 6 70 80
Fig. S3.7 Problem 12,
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t = 7.7 - \[a, + 10 from this relationship the tensile strength is defined by 7.7 -
JOu +10=0 Tyesite sterengen = 10 MPa. The cohesive strength is T opesive = 7.7 -
VO + 10 =24.3 MPa. The uniaxial compressive strength is defined by the Mohr’s
diameter D of a circle with centre O(g, 0). From the graph it is about 108 MPa. The
analytical solution is as follows: The equation of tangential line to the Mohr’s circle at
point A(ay, T) having diameter D and passing through the point (0,0) is: T =
tangent slope 7.7_\/m

77 (6, —09) + Ty .Theline which is orthogonal to the tangent

2-/op+10
orthogonal to tangent line slope
——t—
passing through the point Aand O is: 7 = — 2'“‘7"’;10 (0, —0gp) +
. D . - . . . . 2: +10
7.7 - /o, + 10. The point O(;, 0) satisfied this straight line equation: 0=— % .

(g — a) + 7.7 - /o, + 10. From this relationship one obtains the identity: D = 20, +
(7.7)%. From other side, the point A(agy, 7)belongs to the Mohr’s circle: D: =

(ao — 2)2 + 7. After plugging 7, = 7.7 - \/o, + 10, one obtain the second identity:
D=agy, +(7.7)> (1 + i—z). Solving two equations relative to o, and D, one obtains: =
7.7 - V10 = Toppesive = 24.3 MPa, and D=2 - 24.3 + (7.7)% =108 MPa.

The stress state corresponds to the largest Mohr’s circle radius 22(200-20)/ 2=90 MPa

at this normal stress the maximum possible tangential stress is =7.7-v90 + 10 = 77
MPa. So the stress state corresponds to failure of rock.



Exercises and control questions to Chapter 4:

1. Table S4.1
Tensile Force, kN | Measured length, mm
0 50.80
8.9 50.82
17.8 50.84
26.8 50.86
29.2 50.89
35.7 50.94
44.6 51.12
51.3 51.41
53.1 (max) 60.96
52.6 (failure) 65.02
stress-strain
500
400 |, I
300
200
100
0 Y
-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
stress-strain <0.2
450
400
350 Et
300
250
200
150

100
50
0

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 .
Fig. S4.1 Problem 1.

a. Fig. S4.1 represents the data on the stress-strain curve c as function of &:
Tangential Young’s modulus: E=210 MPa/0.0012=175 GPa; mean Young’s modulus: Em=
190 MPa/0.001= 190 GPa; secant Young’s modulus: Es=400 MPa/0.012=33.3 GPa.
b. &,;=(60.96-50.80)/50.80=0.2; exx=eyy=(12.2-12.8)/12.8=-0.047; Poisson’s
ratio v=0.234.
c. Fron Fig. S5.1 it follows:: €,,=2%=0.02, =400 MPa.

d. Ostrength=53.1-10° N/(3.14-(12.2-10%)%/4)=454 GPa
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e. &hilure=(65.02-50.8)/50.8=0.28

2. From Fig. S4.2 it follows: K=500 MPa/0.1=5000 MPa= 5GPa; B=500 MPa; R= 300
MPa.
R

K —

VY I

500 MPa

300 MPa | -1

. —>
0.1 &
Fig. S4.2 Elasto-brittle model with the rest strength. Problem 2.

3. As it follows from Fig. S4.3 from 0 to 0.03 strain the elastic spring K1 is only acting.
Thus, the slope on the stress-strain curve defines the elastic constant K:
K1=500/0,03=16.7 GPa. If the stress on the element R eqials 500 MPa, then, it breaks
and the stress exerted on the spring Kz is also 500 MPa, and two springs connected in
sequence K2 und K1 are at the stress R= 500 MPa. The slope on the stress-strain curve is
(1/K1+ 1/K2)1=(800-500)/(0.35-0.03)=0.938 GPa. From this identity, it follows that K,=
(0.9371-16.71)1=0.994 GPa. At stress 800 GPa breaks the element B, so B=800 MPa.

Oa
K
“ 800 MPa |.ccemeecuns
B
500 MPa
RIl K, :
0.03 035°¢

Fig. S4.3 Brittle model with the Saint-Venant element. Problem 3.

4. When atoms are at equilibrium positions, then, the sum of attraction and repulsion forces
IS zero:.

b-AeBip o (W) LmAm
(A dr - I r

From these two equations one can eliminated consants A and B:
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U, m n _ n-m-U, 1 1

(n-m) T(n-m)-r,

BNal [CHEE

The Young’s modulus can be understand in this situation as a force gradient per unit distance

between atoms:

146

_ U, m-n
r-r) n—m

(9
dr r=r

n2 m+2 3
) ( r ) B ro
ro r=r,

The strain is: €=(0.455-0.452)/0.452=0.00664; the Young’s modulus is: E=1000
MPa/0.00664=150.7 GPa.

Eq
The Arrhenius dependence of viscosity on temperature is given by: n « err. For the

0.01
3.2:106a’

temperature T,=1150+273=1423K: Ofailure_

and for temperature
1(Ty) P

. . 6
T,=1050+273=1323K; ZLaiure__ 901 [ 1T2) 85107 _) a5 From the Arrhenius
n(T,) 8.5-10%a 1n(Ty) 3.2'10%a
Ea. i_i ?7(7'2)
equation it follows: 202 = eT(Tz Tl), orfe = S”(Tf)): 09769  —19757. At
n(Ty) R (T__T_) 49445104
2 1

1

1
T,=1050+273=1393K the viscosity % _ 18757 (s am3)=1.3485. At 1393K the
1
break may be achieved in 4.3 - 106a. From 0.9% to 1% of strain the elapsed time is 0.43-

10%a.

7. (a) In deformed state the coordinate of points in Fig. S4.4 are: A’(2,0.5) - 1073 mm,
B’(1+5-1073,2.5:1073), C’(1+10- 1073,1 455 1073 ) and D’(7- 1073,1 + 3.5-1073).

fu (0 o)
. 3 ax, | 9
(b) The components of strain tensor are: &;j = |, 5.,° 1 ou, 2 xfauz = | 335 3é5| -
Gt o) % '

1073 for all points the same.
(c) Angle deformation is (% +

axZ
D’A’B’.

auy

Py ) =7-1073. The angle DAB 90° is deformed by c. 0.4° in
1



A B
Fig. S4.4 Problem 7.

8. (a) The length of cuboid diagonal OA is chanced by Ad = /(a + Aa)? + (b + Ab)? + (¢ + Ac)?-

9.

Va2 + b2 + ¢ = 4+ 1073 m. The shape of the cuboid in the deformed state (see Fig.
S4.5) implies that there is a linear spatial distortion of cuboid sides, and because
orthogonal sides remain orthogonal even after deformation, the shear distortions in the

22 o ol
a
cuboid are zero. The components of strain tensor are: ¢;; = | 0 %b 0
0 o0 X
c
2 0 0
=0 1.67 0 |-1073.
0 0 —-0.5
(b) The volumetric strain is the sum of the diagonal elements: &, = 3.17 - 1073. The
3

diagonal in the non-deformed state is characterized by three cosines: cosa = T cosf = T

1
2 . . N 1 . ,
cosy = 7= The strain along the direction n = ﬁ<3) is given by: & = &, * cos®a+eyy -
COSZ’B + &35 Coszy = W -1073 ~ 1.07 - 1073,
(c) The mean normal strain is the arithmetic mean of diagonal strain tensor

elements: &,, = =210 =1.06-10"3

Fig. S4.5 Problen/1 8./

Formulate the equations and graphically explain the behavior and subsequent relief of
Maxwell and Perzyna bodies shown in Fig. E4.5, under the constant tension stress oo

acting during the time period ts.
(@) Maxwell body: one denotes the viscosity of dashpot by h and the elastic modulus of

spring as K (see Fig. S4.6A). Then the stress on the both elements is the same ¢ =
Op = 05 = 77'% = K - €, because they connected in series, and the total strain is the
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sum of strains of dashpot and spring, € = ¢ + &5 = % ¢+~ If a Maxwell body is

suddenly subjected to a stress oo, then the elastic element would suddenly deform by
% , and the viscous element would deform with a constant rate, % (see Fig. S4.6 C).

If at some time t; one releases the stress to 0, then the deformation of the elastic
spring releases by back deformation % , and the deformation of the viscous element

would not change and stays at the level of % " t;.

(b) Perzyna body: the difference with the Maxwell fluid body is the Saint-Venant
element connected in parallel with the viscous dashpot (see Fig. Fig. S4.6B). For
Perzyna body, the rate of viscous strain is a function of the initial yield stress oy and
viscosity. The sliding element represents a constant yielding stress when the elastic
limit is exceeded irrespective of the strain. Depending of the level of applied stress
oo the reaction of the body to a sudden applied or released stress gy, is as follows: at

Og—0-
lop|<oy € = %and atco>oy € = %+M-t.

A
K
n
t, t
v
C
A C
€
o,/K
—
| tlem) L L. : t,(o,—o,)M
a,/K o/K 0,<G
*~— >t — Y.

t, t,
Fig. S4.6 Problem 9. A. Maxwell body. B. Perzyna body.

10. Three components of principle strains are the eigenvalues of the matrix:
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0.15—-1 —0.05 0.05 —-0.3571
— 0.05 0.20— 24 0.03 = 0, the solutionis: & ,3 = 0.1262 |. The

0.05 0.03 -035-1 0.2309

. L max(g;)—min(g;)_0.23094+0.3571
maximum shear strain is given by ., = > =

= 0.294. The strain in

1

—_— - 1
11 1 —— 2 I
S, . P,
the direction n:(E,- > ﬁ) is given by: &), = &1 * cos®a+e;,+ cosa - cosf + &3+ Cosa - cosy
_r 1 _ 1 _1
2v2 22 2v2 Tz 2v2

—_——IY —_— —_—PT N —_—PYT
+&51 " COSA * COSP + €55 COS%B + €55 cOSP * cOSy+es, - COSA* COSY + €35+ cosP - cosy +
1

2

—_ . . . . . .
£33+ cos?y=-0.169. The Poisson’s ratio is 0.5, since the volume strain is 0.
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1.

Exercises and control questions to Chapter 5:

224

2.

The Darcy's law may only be applied to very small velocities v, where the kinetic
energy of flow can be neglected and the energy losses are only of a hydraulic nature.
Similar to classical fluid dynamics, the Reynolds number Re serves as a measure of

flow slowness: Vg, = pwa:_’zzguary. The maximum Reynolds number is Re=10.
The effective diameter of intergranular capillary for cubic packing may be estimated as
follows: per elementary cubic cell having volume d3, there is a sphere of volume 7d3/6.
The difference of two volumes is the pore space volume. One considers a cylinder
which possesses the volume equal the pore space volume and the length d. Then, the

effective cros section area of the cylinder is given by:

- d? s_mod T 1-%
. . 3 6
chl-pl ary = P = (1 — g) ' d2 - dcapillary = 2d - - ~ (0.78-d
= 0.039cm

For the hexagonal packing the volume of the elementary cell is 3v2-d3, the volume of 6
spheres per cell is nd? and the length of elementary cell is 2N2/7/3-d (see Exercise 1 to
Chapter 2):

T d2g; 3W2-d*—-n-d® 3
capillary _ \/ T \/_ (3 — l) -d? - dcapillary

4 22i3-d 2\C 2
2V3- (3 - %)
=d- - ~ 0926-d = 0.046 cm
cubic packing hexagonal packing

10-1.14-1073 — ——
Vmax = 10° 4 = 0.029 = 0.0246 m/sec

3
k=B- ( (1¢; P ¢)) 5 -d?, where B=15 and ¢=0.035.
+¢, —

(0,32-0,035)?
(1+0,035-0,32)°
(0,32 -0,035)°
(1+0,035 -0,32)°

- ~ ( ¢_¢c ) )
If =, then k ~ B —(1) 5

In a cylindrical vessel having diameter Dy = 30 cm , there are free shaken layers of
spherical quartz sand particles and water. The quartz sand particles have a volume of
V =108 dm3. The volume Vg of the vessel is 180 dms3. Laminar water flows through
the bottom layer. Determine the diameter D of the quartz sand particles, if the

k =15x % (80-10"°m)2 = 4-10"°m2 = 4000 D

k=15x x (240 -10"°m)2 = 36 -10°m2 = 36000 D

-d? and n=3.



velocity of the water level decrease in the vessel is U = 5 cm/s. Viscosity of water ) =
1.14-10° Pa sec.
The porosity of particle suspension is given by: ¢ = 180-109

180

0.4.

Fig. S5.1 Problem 3.
Physical velocity of water in porous space of suspension is: v = % =125cm/s . The

Darcy’s law can be written in the form as follows:

)
-2 -3
U -k h ke U-p 510 : 11410 5.10°m?
U Ap-g 10°-9,872
One considers a cubic (a) and hexagonal (b) dense packings of quartz particles:
(@ k == R? =L'Dczubic
32 128

T s
(b) k = 16v3 R* = 64v3 Di%exagonal

Then, for cubic dense packing:

5-10-9- 128
Deivic = |————— = 045 mm

And for hexagonal dense packing:

5-1072-16V3
Dhexagonal = \/ T =~ 0.21mm

4. One may rewrite the relationship in the form: In(8) + 0.5 - In(k) < —n - In(¢). The
data from Table S5.1 are fitted to n=3.3 with the correlation coefficient R2=0.816.

Table S5.1 Permeability k and non-Darcy parameter £ for some porous rocks

Parameter x, 10715 m? 5,108 m™ @, porosity Reference
Dakota sandstone 35 157.9 0.14 Zeng & Grigg, 2006
Indiana limestone 21.6 36 0.15 Zeng & Grigg, 2006
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Berea sandstone 196 2.9 0.18 Zeng & Grigg, 2006

Linyi sandstone 2.4 825.5 0.10 Choi &Song, 2019
Bandera sandstone 31.6 9.6 0.19 Choi &Song, 2019
Buff Berea sandstone 290.8 4.3 0.22 Choi &Song, 2019
Boise sandstone 1091 4.15 0.27 Choi &Song, 2019
Glass beads: 595-707 pm 2.8-10* 0.033 0.37 Macini et al., 2011
Natural sand: 500-595 um | 3.35-10* 0.034 0.45 Macini et al., 2011

5. One denote by q is the volumetric flow velocity in the slit per channel width. Then, the
mean flow velocity is given by: v, = %. The first derivative of the solution is:

dimensionless pressure gradient is:

[ 552 a(-3(- )L

——.—— tanh| = | |. Thus, :
-
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. The second derivative is:

, dPv() _
dy?

cosh( ol +Wy
\f

M.E. (_—) =EI— v(y) -
£ e

(y) _k,

dP) ]
dx

apP
- E)' The boundary

=0. The
K-n’_
y—m
AN
U ( dx)
D
— | |Fvp,, Or




~

. At k - oo, Dax O,then%- (—d—P) ~ 3
[ 7 afoe]

/.
dx n
\ Da~ 71 77’

n

the viscous flow limit is reached. At Da — co, i ~ 0, then, —— - (—
the Darcy flow limit is reached.

ary _ 2
— dx) ~ Da“, and
6. One uses the Hagen-Poiseille law in the form as follows:
I (U n AP <D>4
1=5060m /5 =5 oy L \2
1 hour dynammscosity
4

q= 10 m3/sec=—" -A—P(E) . From this identity it follows:

60 - 60 8pv L 2

—

1Stunde Viskositat

H,__J
Radius

\p_4:801L-16 _10-8-09-10°-40-10°° 10°-16
D* 60-60-3,14-625-10°°

=2,06MPa = 20,5Atm

7. (a) Consider the Darcy’s law in the form (see Fig. S5.2): q =

Ah
9:Kf -—.Then, q =
L
Kf water table dif ference
7 in
60-60-24 L
1day

=5.8- 108 m/sec. The volumetric water flow rate per unit
distance owaater flow
widthis: V=q-1m-10m-

2 = 1.16 - 107 m3/sec.
in two opposite directions
p-g-Ah
k AP Kk pgah
(b) Alternatively, the Darcy’s law may be written in the form: q =—- T PR Erom
n n
this identity the permeability is given by: k = 1

L-q=35-10"m2=34D.
p-g-Ah

300 m
_\ river

ground water level

0.5m
K=3 m/day

10m

impermeable boundary
Fig. S5.2 Problem 7.

8. A well with a diameter of 0.25 m has a 30 m long section below the groundwater level. The
material of the aquifer has a grain size of d = 2.0 mm (hydraulically effective grain diameter).
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Groundwater is pumped out of the well at a rate of 0.3 m3/s. Is the Darcy law in the near field
and at a distance 10 m of the well applicable?
Note: For each cylindrical cross-section of a radius r according to the continuity law and the

Darcy law the following applies: Q = g+ A = 2nr - L - k¢ -% Zn?kf— = dh, and after

integration from ro, the inner radius of a bore-well to the distant point R one obtains the

Dupuit-Theme formula: Q = 2w - [ - kf - A(h ):Zn -1 -f-l?—i) for a radial flow rate around a
(&

To To

bore-well.

Consider a steady radial flow in unconfined aquifer (see Fig. S5.3). The aquifer is unconfined
and underlain by a horizontal confining layer. The well is pumped at a constant rate. The
Dupuit-Theme formula is valid. The Darcy’s law and the radial flow in the unconfined aquifer

can be described as: Q = 2w - R - h(R) - kf -@ Q is the constant pumping rate. After

. . . . rh _ Q RAR _
integration, one obtains: [, he(hg—1) 2 dh = f - (h+hy—L)-L==—"1In (ro)
The gradient a a function of radial distance is: (dZ) = % . %.

ky

Q A

original water table

drawn down curve

( -

2r,

-

Fig. S5.3 Problem 8.

Thus, the ratio of the Darcy flow velocity at the distance 10 m from the bore-hole and at the
wall is the ratio of pressure gradients:

10— 2125 g Darcy velocity at the distance 10 m is given by: g9 = —2_-159.
qo.125 10 B 21mL'R
10~* m/sec. The Reynolds number is: Re = 1158?1100_6 +2-1073=0.18< 1

9. In the cylindrical sedimentary oil-bearing rock layer of thickness 10 m and radius 1 km
located at a depth 2 km. The rock possesses the permeability 0.5 D and porosity 0.2. There is
a bore-hole with the diameter 10 cm and a depth of 2 km is located in the centre of the layer.
Oil viscosity is 1 Ps s, and its density is 0.87 g/cm?3, absolute oil reservoir pressure 20 MPa. It
is necessary to determine whether the well can fountain when it is opened, and what is its the
production rate, if at a bottom the bore-hole the pressure is 19 MPa.

AP 1072 106

Q=2m-1k —m=2m-1-%. 2 =27.10-05- S A
R ) D)

The hydrostatic pressure at the bottom of the oil column is P,;; = 0.87 - 103-9.81-2-103 =

17.1 MPa Pynostatic = 2.2 103 -9.81- 2+ 103 = 43.2 MPa .The pressure losses by the

flow of oil in the borehole is: AP, = Sl Q ~ 0. The buoyancy is 26.1 MPa and it is larger
than the actual pressure at the bottom of the borehole 19 MPa.

3
=3.17-10"62
sec
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10.

.4\....
A

A

A

A. B.
Fig. E5.4 Problem 10.

a) Calculation of the volumetric flow rate Q
Q = Vs Atotar = 0. 00045— 0.05m - 0.06 m = 81 ml/min

b) Calculation of the mean physical veIOC|ty vm flow rate:
The effective cross section area of flow is:

ZAL- = Avorar P = 0.05m-0.06m-0.1 = 3-10~* m?

The mean physical flow velocity is: vy, = vy - AZ“’;“’ - =0 0045 m/sec
| At A
The Darcy flow velocity vt is based on the entire cross-section of the soil sample and not just
on the flow cross-section of the pore channels. The mean physical flow rate in pores is
average flow rate by through cross-section area XAi. The Darcy's filter velocity vtis lower

than the physical flow velocity vm in pore channels.

c) Verification of the Darcy’s law applicability:

Re = = =04 1
e " 10-¢ 0.45 <
Calculation of the hydraulic conductivity coefficient ks for the experimental setup A in
Fig. S.5.3:
by = — 55 = vy - £ =0.00045 - T==1.8- 10 m/s
Atotal 37 AL

d) Calculation of the hydraulic conductivity coefficient k. aq for the experimental setup B in
Fig. S.5.4: the setup consists of 2 parallel soil layers. From the continuity of the Darcy’s
filter velocity it follows:

Vf:kfl.ﬂ:k”.ﬂ:k”.w
AL T AL T AL
Ah e - 0,Im
29 pp = AL _ 0.0Im_ _ 4 5048m

k. k., 1810° 3.10°m/sek
AL AL 003m  001m




V,,=V,, = kfl-ﬂzl,&lo“m/sek-M:Z,SS-lO5m/sek
2T TR AL 0,03m
AL
K =y Ao 5 88.10%m/sek. 2OMMTO08M g 155 10 m/sek
- Ah 0,1m
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Exercises and control questions to Chapter 6:

1. According to the Gassmann’s equation :

K K KFluid

u

= +
Ks_Ku KS_K ¢'(KS_KFluid)

A. In the case when the rock is saturated with gas:

Ku _ 12 0133 whon it follows: Ku=12.32 GPa
36—Ky 36—12 0.18'(36—0.133)

B. In the case when the rock is saturated with water:

K 12 22 , then, it follows: Ky=16.66 GPa.
36—Ky 36—12 0.18-(36—2.2)

2. Calculate the pore compression modulus as a function of burial depth using the data of

porosity of sandstones and shales from Fig. E6.1 (replotted from Krumbein & Sloss,

1953). One denotes by K = —v, - (:713) the pressure derivatic eof pore volume at
P/p

constant pore pressure p, and K,ﬁ’ =v,- (:7”) the pore pressure derivative of pore
p/p

volume at constant confining pressure P. the total relative change of the pore volume is

dv dapP d . . .
the sum: — v—” =7~ K—pp . By analogy one may introduce the bulk volume derivatives:
p 14 p

Vp = Vin + vp, Where V,,, is the volume of the rock matrix. By analogy one ma write the

. av apP da
total relative change of bulk volume as follows: —V—b =7~ K—f,. av, — dv, = dVp, or
b b b

1 1 1 1 1 . . .. .
— — = = — = — — —. If the matrix material is incompressible, then, Kf ~ K?, and
Kb 1(1[’,7 Km Kp Kb p p

K} ~ KY. Due to the definition of porosity: ¢ = ;—’; it follows: - ¢ - K} = K[, i.e.

. a_P — . . a_p = — - a_p I i i 1 —
—vp (avp)p_¢ Vs (Wb)p ¢ (a¢)P,5|ncefor|ncompre55|ble matrix dv, = dVp,

avp _ 6& _ H . a_P = . a_p
andV—b— = d¢. Finally, v, (avp)p =¢ (6¢)p'

From Fig. S. 6.1: for sandstone in the pressure interval from 500 to 1500 m: AP=26.5

MPa, d¢= 0.05 ¢ = 0.35, then, K, ~ 185.5 MPaq, for shales d¢~ 0.12 ¢ = 0.15, then,
K, ~ 33 MPa
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0 500 1000 1500

Burial depth, hm
Fig. S6.1 Porosity as a function of burial depth (Problem 2).

. - .8 .
3. The vertical axis in Fig. S6.2 is % the horozontasl axis is the overburden pressure

D
vp-d(P—p) 30 vy,-d(P—p)
P.atP=30 MPa: K, = —-2~—" = =~ = 15GPa. K = — 2 =
dvy 0.02 ¢-dvy
7.14 GPa
0.03
o
o
©
&
overburden P
ﬂpressure P ° 0.02
Q x
£ :
c Z
) :
2 001 |/
-l{. jacketed e /
sample :

10 20 30 40 50
Overburden ressure P, MPa

Fig. E6.2 Illustration to Exercise 3.

4.  According to the Gassmann equation:
Ksat — Kary Ky
Ko—Ksat  Ko—Kary  @:(Ko=Kf)'

The value of Ksat, Ko and Kary at $=0.15 taken from Fig. S.6.3 provide the relationship:

25 — 23 + Kwater
36—25 36—23 0.15-(36—Kwater)'

From this identity it follows: Kwerr=2.5 GPa

235 23 + Koi
36—-23.5 36-23  0.15:(36—K,;)’

In the case of oil: and K,ii=0.6 GPa.
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Fig. E6.3 Data curves to Exercise 4 (replotted from Mavko et al., 1998).

5.
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Determine the sonic velocity after the Reuss averaging in the suspension, which consists
of calcite particles, air, and water. Saturation S, with water is 50%. The properties of
calcite, water and air are given below:
Kecarcite = 75 GPa and the density pearcite = 2.71 g / cm3, Kwater = 2.2 GPa and the density
pwater = 1 g/ cm3, Kair = 0, 000131 GPa and the density pair = 0.00119 g/cm?3. The
porosity of the suspension is ¢ = 0.4.

The Reuss average is given by the relationship:

)= (
The density of calcite suspension is the arithmetic average:

p = (1_5)'¢'pair+S'¢'pwater+(1_¢)'pcalcite =04-05-1+06"
2.71 =1.826 g/cms.

-1
n %) — 0.615 GPa
75

a-9¢

Kair

s'¢

Kwater

1-¢

Kcaicite

0.5:0.4
0.131

0.5:0.4

EReuss:(
2.2

+ +

The sound velocity is given by:
Die Schall-Geschwindigkeit der Suspension ist gleich:

- =]

If a material contains liquid under a hydrostatic pressure ps, this pressure will
counteracts evenly all the principal stresses of the applied load. The normal stress on
any surface is reduced by the pressure ps. In rocks this corresponds to the reduction of
the ambient pressure which is the average of the diagonal elements in stress matrix.

Point on the Mohr circle, how does a change in the mean normal stress (@)
offset?

Draw the original Mohr’s circle with radius o; — o,having the centrum at % . By
applying pore pressure ps the center of circle is shifted along the abscissa by the value ps

KReuss 0.615-10°

1.826:103

> =580m/s
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without changing its radius. The increase in the fluid pressure reduces the effective

stresses and shifts the stress state closer to the Mohr envelope (see Fig. S6.4).
A

T Jure critgrion

Fig. S6.4 Problem 6.

The values of all normal stresses are reduced by the value of the mean stress which is in
the case of pore pressure increased by pf. The values of all shear stresses remain the
same, which shows that they are independent of the hydrostatic components. If the
liquid pressure is increased enough, the circle moves until it touches the Mohr's
envelope as a tangent, and then failure occurs.

— e (L4 1) = . (925 1 \_ 10-4
Se=p-g (Kf+1<>—1000 981 (oo + ——) = 10 1/m

Storage coefficient: S=107 (dimensionless)

Reduction in reservoir volume may considered primarily as a uniaxial compaction
(Geertsma, 1957). Using the relations for porous rock: v = v, + v;, v, = ¢ - v and

dv, =~ dv, where ¢ is the porosity of sample, express the pressure derivative of porosity

2o through K and Ks:
ap

A. For a hydrostatic compaction.
B. For a uniaxial vertical compaction in a rock having Poisson ratio v. The uniaxial pore

. . 1 d(c— d(o—- —
compression modulus may be defined as: = —p- 2P ;. 2OD) \here G =

uni dv
Oxt0oy+0y

P where oy, g, and o, are lateral and vertical components of stress. If the

Poisson ratio v is given, then for the uniaxial deformation case: €, = &, = 0, and g, =
1+v

3(1-v) "0z

Oy

v —
—E-oz,then o=
Denote the hydrostatic pressure as: P= P; + p, where Pq is the differential pressure and
p is the pore pressure. From the given relationships it follows, since v, ~ ¢ - v and

) _

v, ~ dv , then, 22 = & _ % _ (1 —1) 2 Goe), [—5—”]. In another sense, — 2 =

@ v Vp ) v (0] v v

0Pa 4 O 0P 2, p = 1.(6P-a- dp), where o=1-= where £ in the case of a single
K Ks K K K Ks Ks

solid state component of the rock matrix is the ratio of bulk modulus of porous rock to

the mineral grain bulk modulus.



In the case A, when the pressure is pure hydrostatic, i.e. ép = 0, : (6—(”)
0

_ (-9)
5Py N

K
the compressibility of mineral grains Ki is not negligible, then, §¢ = [(11_{—"’) — Ki] :
S(P —p).

In the case B, ép = 6P, the additional factor P = 31+v

1-v)
. 5¢;) _ v -9
account: (_&o T30 Kummo (1-a).

- g, should be taken into

-1
9. Kria = (g + 01—5) = 1.375 GPa. The Reuss average bulk modulus: K =

025 075\ 1 , L . Ksar
(— + —) = 4.95 GPa. From the Gassmann’s equation it follows: —%— =
1.375 37 37—Ksat

15 4.95

715 T 55295 —0-8363. Ksor = 16 85 GPa The density is: 2.65-0.75 + 0.5 -

0.25-1+0.5-0.25-0.91 = 2.23 g(cm®

10. Example calculations for Hynesville sandstone at p,=17.6 MPa:

. (0.1254 | 0.7937 0.0809>‘1 osacp
fid =\ 7515 05 1 =0 a

The Gassmann’s equation is:

121 797 0.58
Ks—12.1  Kg—7.97 = 0.0819-(Ks—0.58)

. It can be solved by the iteration procedure:

Ks0=45; c¢=12.1;a=7.97;b=0.58;£fi=0.0819; Ks2=10;
while abs (Ks0-Ks2)>le-6

Ksl=c* (1+(a/ (KsO0-a)+b/fi/ (Ks0-b))"*-1);

Ks2=Ks0; Ks0=Ksl;

end
KsO
The solution is Ks=41.8 GPa.. S0 « = 1 — K;—:" =1- % ~ 0.81
Table S6.1 Data to Exercise 10.
Lithology/Sample Haynesville Mid Bossier
Effective Porosity (%) 8.19 451
Wasser saturation (%) 12.54 26.84
Gas saturation (%) 79.37 69.71
Oil saturation (%) 8.09 3.45
Sample Haynesville
pu, MPa drained K, GPa | undrained, K GPa
17.6 7.97 12.1
51.7 11.49 14.99
113.8 16.22 19.42
155.1 18.39 21.21
186.2 21.55 23.78
224.1 22.98 26.01

‘ Sample Mid Bossier
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183 21.55 25.54
220.6 24.62 27.58
262 26.52 32.07
317.2 27 38.3
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Solutions to Chapter 7:
Exercises and control questions to Chapter 7:

1. K
V — Susp
The sound velocity is given by:: P Puss

P =(1=8) P+ #* S Buasser+ 9+ (1= S )+ pruy =0,6-2,71404-05-1+0,4-0,5-0,00119=

=1,73-10%kg / m3

After the Reuss averaging: 1 1-¢ N S-¢ +(1—S)-¢_%+ 01

Kep K K
Ksusp=1.22 GPa, Vsusp=840 m/sec

After the Voigt averaging:

Kalzit

01,01
Wasser K Luft 75 2 ;2 0 7131

=0,82

Koup = (1= )+ Kya+ 8+ S+ Kygsser + # (1= S) - K1y =0,6-7540,4-0,5-2,2+0,4-0,5-0,131 =

=45,23GPa
Vsusp=5.11 km/sec

The iterative arithmetic-harmonic mean of K is: Ka-h-mean=7.43 GPa Vsusp=2.07 km/sec

2.
T=2—”=4sec
(0}
a. f=1/T=0.25 Hz, A=c-T=14 km
1.5
| /X XN/
0.5
\ \/ /\/\ \/ / o
0 T T T T T 1 t=6 sec
VAV AR VAV A
-0.5
1 _M
b. -1.5

Fig. S.7.1 Problem 2b.
3. Y(t, X) = Ymax COS (@ + kx + ).




Q—lOm/sec}L c- 2——2m y(0,25;0,8)=2-10"%. cos(lO;; 0,25-0,8- 7r+E Va
k 10} 180
=2-

y, =2-10°-cos(2,5-7—0,8-7+0,39- 7)=-1,95-10>m

4. The ratio of shear to bulk moduli /K may be expressed through v-Poisson’s ratio as

follows:
e E K= E :>/1 3(1-2v) ~052
2:-(1+v) 3-(1-2v) 2(1+v)
\V
\/_S=\/K 4‘;3 - 3’52 =055=>V,=5,2.0,55=2,88km/ sec
talo-p 1+5:052

The elastic wave velocity in a porous rock can be estimated from the relationship:

-1
1.9 e 1-o = Vo \ﬁ.q) +1-® | , where @ is the porosity, Vit is the longitudinal
V V V., V., (V,

wave velocity in fluid phase, Vi is the elastic velocity in the rock matrix.

For P-waves the propagation velocity is:

5,2 B
Vo, =5,2- (—3 02+1- 02) = 3,25km/ sec

For S-waves assuming that the shear wave in solid matrix converts in longitudinal waves in

fluid phase: 288 -1
Vg, =2,88- (ﬁ 0,2+1-0 2] =2,32km/ sec

5. The wave length should be 5 m, and f=c/4, f=3800/5=760 Hz.

Fig. S7.2 Exercise 6.

6. Calculate the reflection and transmission coefficients of the normally incident seismic
waves to the boundary between two layers of sandstones (Fig. E7.1) having porosities



$1=0.1 and ¢»=0.3, and water saturations S1=0.5 and S»>=1. The density of quartz is
2650 kg/m3, the density of water is 1000 kg/m3, the quasi-isotropic polycrystalline
elastic constants obtained by Voigt-Reuss—Hill averaging of the bulk modulus of
quartz is 38 GPa, of the shear modulus of quartz is 47 GPa, bulk modulus of water is
2.29 GPa. In order to estimate the effective moduli in sandstones use the method of
Kunster&Toksoz (1974).

For the upper layer with sandstone 1:

Density p; = 2.65-(1—0.1)+1-0.1-0.5 = 2.435 g/cm?

For the lower layer with sandstone 2:

Density p, = 2.65- (1 —0.3) +1-0.3 = 2.155 g/cm?

In order to calculate the effective bulk and shear moduli one may use the method of
Kunster&Toks6z (1974):

One introduces the elastic parameter for the quartz matrix: ¢, =

42.6 GPa.
In the upper layer, where the inclusions are with water and air two dimensionless
coefficients for each phase, water (w) and air (a) are used:

4-
K+
Kq+ = 1.534; Q™= q":‘ij = 2.1; PRa="5 R 6y gastitha _ o g
wt3Hg {q o 0 +3'Hq q+8
Hw K La

In the lower layer there is only one type of inclusions filled with water:

uq 9Kq+8uq
6 Kgt2ug

P

K 4
pv="UEM g 534 av=tithe _ g,

I(’W+3 lq dq*+ 0
For the upper layer the effective bulk and shear moduli according to Kuster&Toksoz
averaging are:
Kg+
(Kl*_ q) ‘17+ =¢;-S;- (K q).quW_l_d)l.(l_Sl).(g_Kq>.P1qa:-
s H Ka
5.8 GPa, - K; = 32.52 GPa
. +4q _
(ul—uq)-z‘g+£—¢1 -51-(9 —m,)- fW+¢1-(1—51)-<9 —uq> 1o=-

Uw Ha
9.87GPa — u} = 38.11 GPa

In the lower Iayer

(K3 —Kg) -~ K* = ¢, (Kw — Kq) - P'=-16.4 GPa, > K; = 23.9 GPa

* {
(w5 —pg) - ﬁq+€q—¢2 <9—uq>- IW=-29.6 GPa > uj = 24.76 GPa
Uw

The P- and S-wave velocities in the upper and lower layers are as follows:

Vo = /“% = 5.85km/s ,and Vy, = JZ: — 3.96 km:

K+t .
Vo = =22 =514 km/s ,and V,, = \/”—7 = 3.39 km.
’ P2 ’ P2

The normal reflection and transmission coefficients for P-wave are:

= L a b - 0195, T, = 2- — PP =1125,

p P1Vp1+p2Vp2 P1Vp1t+p2Vp2



.V — .V .V
and for S-waves are: R, = 2252 P15l = 0138 7 = 2. Pl =1 138,
P1Vs1+P2Vsz2 P1Vs1+p2Vsz2

(Note: the sign minus in the reflection coefficient is due to the fact that the particle
displacement amplitude is measured relative to the direction of the wave propagation).

3-(1-2v)
2:(1+v)

40 5.
then, 1, = | <2082 1.3-[5. Frontherside \ —2300_; o710/
P p P 300

p

2
Resolving relative to K one obtains: K = P[ﬁ) =104,3GPa

9
(b) The sound velocity in wateris: V. ... = /% =1517m/s=152km/s

7. a) The relationship between shear and bulk moduli is as follows: yu =K - ~ 0.52,

o . . 2300 .
The traveling time of the sound wave in water:is: t= 1o 25,27min

8. From the expression of P- and S-Wazves it follows:

Vp
M
_1\Vs)

For sediments: Vp/Vs=1.84, fort he Earth’s crust: Vp/Vs=1.71. Then, for sediments:
K/u=2.06, fiir die Erdkruste K/p =1.61. The Poisson’s ratio for sediments: v=0.29, and for

the Earth’s crust v=0.24.

9. If one denotes the displacement of a mass m in the horizontal or vertical directions by

u, then the displacements of masses locating at the diagonals of square lattice are v/2 -
u. The absolute velocity of each mass in the M*N lattice is then |it|. The total kinetic

energy of the lattice is given by: Ey = % -2 - M - N. The potential energy of the

lattice consists of the M-N springs with stiffness Ky having deformations 2-u in the
horizontal direction plus 2-M-N diagonal springs with stiffness K> having

deformations: v/2 - u. The potential energy is: E,=2-(Ki+K;)- u?+M - N, and the
total energy is Ex + E,, = (% u?+2- (K, +K,) u®)-M-N. Asimple mass

hanging on a spring K possesses the total energy: E= (g U+ % - K - u?) and the

frequency of free oscillations: w = \/% By analogy with this simple case one may



write for the longitudinal mode of square lattice oscillations: w;, = 2 /Kl;Kz For the

transverse mode of oscillations the number of deformed diagonal springs is 2M*N
and each of them shortened or elongated by: v/2 - u. The total kinetic energy of
moving masses plus potential energy of elastic springs is: Ex + E, = (% Ul + %Kz .
(v2-u)?-2M - N. Therefore, for the frequency of the transverse mode of lattice

oscillations one obtains w; = 2\/7 (Michaly and Martin, 2008).

’%l‘

.‘_‘ u u uu

H F" -

o AAA‘ HAA
ket

i

Fig. S7.2 Exercise 9. (a) The compression-dilation mode of lattice vibrations. (b) The transversal
mode of lattice vibrations. (c) In the case of transversal mode vibrations there is ho deformation of
springs in directions indicated by dashed arrows, but there is compression of a spring in the direction
of dashed-dotted spring, and extention of a spring in the direction of dotted arrow.

10. Solution is presented in Table below:

Q=1000 Frequency inHz 0.1 |1 10

X, Km

1 0.99993717 0.99937188 0.99373651
10 0.99937188 0.99373651 0.93910137
100 0.99373651 0.93910137 0.53348813
1000 0.93910137 0.53348813 0.00186744




Q=100 | Frequency in Hz 0.1 1 10
X, km
1 0.999371887 0.993736591 0.939102105
10 0.993736591 0.939102105 0.533492281
100 0.939102105 0.533492281 0.001867589
1000 0.533492281 0.001867589 0
Q=10 | FrequencyinHz 0.1 1 10
X, km
1 0.99374432 0.93917517 0.53390752
10 0.93917517 0.53390752 0.00188218
100 0.53390752 0.00188218 0
1000 0.00188218 0 0
Q=1 Frequency in Hz 0.1 1 10
X, km
1 0.94703997 0.58034077 0.00433342
10 0.58034077 0.00433342 0
100 0.00433342 0 0
1000 0 0 0




Exercises and control questions to Chapter 8:

1. According to the Archie’s law the effective electric conductivity may be expressed

fluld

through porosity and degree of saturation as follows: g.r = Assumlng that the

fluid electric conductivity is on pressure independent, after differentiation one obtains:

doerf dlng _dlnSy, Oln(gerr) _ Oln(p™-SW)
op  Oftuid’ Q" Sw [m T ] oF %5 P - (a) When the
- dln(o,
total volume of fluid is constant: ¢ - S,, = const, then, % =
dln(e™ ™) _ dln(Sw 6ln(<pm)

n-my _ aln(aeff)
7 7 . (b) When Sy ~1, then, > T

2. One has to plot the dependence of R vs. T:

Resistance vs. Temperature
1400 ¢

1200 ¢+ /
1000 ¥

800 +
R =3.9456'T +933.4
600 T
400 t

200 t

(]

0 20 40 60 80 100 120

Fig. S8.1 Problem 2.
The thermal coefficient of electric resistance is 04~3.9456/933.4=423-10° K1
The specific resistance is: p= 1000- 7z - (0,01)2

= 3,140hm-m
01
3. (a) Without rock slab inside the capacitor:
for the parallel plate capacitor: C,=¢, .1.EA
The induced electric charge, when the voltage Uo is applied, is:  Q, = Eo'g—Uo
(b) When the rock slab is A\ AN -1 e A
_ 0

inside the capacitor: C.= [(80 L d— b] +[80 “&r 'E] ] -

365



The induced electric charge when the voltage Uo is applied, is: & -A-U,

| - X

Fig. S8.2 Problem 3.

T

|
A K B
Fig. S8.3 Problem 4.
4. R is: 1 —%+%:>g =795
. Reuss —average Is: e 7 " 10 Reuss '
Voigt- average is: Evog =0,6-7+04-10=82

5. (a) According to the Coulomb law the electric field E of a point charge Q is given by

the relationship:

1 Q_1 Q _ Q

—12 C2 N -10 C
E= . 7 2 =80.E=8’85.10 —'100—=8,85‘1O -
Arg, r° g, 4nr Anr N - m? C m?2

This surface density of electric charges corresponds to the number n per square meter:

2

_ 88510710
T 1.6022-10719

(b) The electric field close to the Earth’s surface (height d << Rg radius of the Earth). The

= 5,52-10°, where 1.6022- 10~1°C is the electric charge of electron.

electric potential in a parallel plate capacitor having thickness 1.6 m is given by the
relationship: ¢ = E -d = 100 - 1.6 = 160V (!)

366



(c) If the human body is ideally conductive, then, the whole body is under the same

electric potential f from bottom to the top.

(d) If between two points at the distance d there is a potential difference o, the energy per

square meter is the work W per surface A to move the electrical charge Q in the field E
by distance d is given by:

specific surface energy surface charge density

= = 2 9 =gy E-E-d=885-10"12-10*

100 = 8.85 - 107¢ Joul. This is a negligible amount of energy

. The parameters of the Arrhenius equation used for the lelectrical conductivity

calculations as a function of temperature are presented in Table below:

Table S8.1 Problem 6

Mineral #, Vol.% | Pre-exponential Activation enthalpy 4H, eV
factor oo, S/m

Olivine 60 490 1,62

Orthopyroxene 25 5248 1,80

Klinopyroxene 15 1778 1,87

The electrical conductivity of individual minerals at 1200°C according to the given in Table
S8.1 parameters are as follows:

1,62

0,(1200°C ) = 490 - ¢ BI04 214,108 / m=14-10*S / m,

18

Top(1200°C ) = 5248 .@ 86101473 _36.10°S /m=36-10"S/m, (Maximale Wert)

187

p(1200°C ) =1778 - B6171071473 _ 71.107S / m, (Minimale Wert).

Solution 1:
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¢ol ¢Opx

A = - -+ - — =
(O-OI _O-Cpx) ' + (3'O-Cpx) ' (O-Opx - GCpx) ' + (3 O-Cpx) '
06 0,25 »
_ ~62.107S/
f420°—71107) +(3-70107)" (3610 —72110) + (37110~ )" "

— ¢OI ¢Cpx _
A2 (O_OI - O-OpX)il + (3 ) GODX)il ’ (O_Cpx - O_ODX)il + (3 ’ O_ODX)il
_ 06 N 015 ~-225.10"S/m

1

(14-10*-36-10*)" +(3-36-10*)" (71-10*-36-10"*)" +(3-36-10°* )

. . . . . ‘4 . . 74
O-H87 =Gmin—|— 3 o-mm Al =7’1.10—4 + 3 7,1 10_4 6,2 10 - z15,8 .10745/m
3-0,,—A 3.71:10-62-10
87107
. . . . _4 . —_— . _4
ot :amax+—3 Tmax* R _ 35904 1 3-30 1074 (=225-10 74) ~17,4 -10*S/m
3-0,,,—A 3-36-10 —(-225-10)
-18,6107*
Solution 2:
H- 1

o = —2-0¢y =
XCpx + Xo| + XOpx
3 O cox Og +2- O cox Oopx T 2- O cox

_|(o15 0§ 025
371 14+2.71 36+2-71

30,0

-1
) ~2-711-10*S/m=~158-10"*S/m

1
HS+ __ _
o = —2:05p =

XCpx + Xo| + xOpx
Ocp + 2- O opx O +2- O opx 3 O opx

_( o5 06 02
71+2-36 14+2-36 3-36

89.4

-1
j -2-36[-10*S/m=~174-10*S/m

7. The Voigt average is: &y = 0.65-4 +0.35-0.45-81 + 0.35-0.55-1 = 15.55

soil matrix soil water soil air

-1
The Reuss average is: ez = ( 0.65/4 +0.35-0.45/81 + 0.35- 0.55/1) = 2.8

soil matrix soil water soil air
. . ey+e
The Hill mean value is: g = % =9.18.
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8. The electric charge Q on the surface of a hole metal sphere generates the electric field

which will be corrugated by the field of electric charges in the surrounding space, for
example, by the surface charges on the Earth. That is why the voltage potential U is
traditionally measured relative to the potential of the Earth’s surface. If the electrical
charges close to the metal sphere are rearranged, the electric charge distribution of the
sphere is also changed as well as the electric potential U of the sphere. If the metal
sphere is located far away from all conductive surfaces, then the spherical capacity is

given by the relationship: C = % = % =4rmeg, - r. If the metal hole sphere is
Ame, -1

located concentric inside another metal sphere, which is grounded, then from the
second sphere flows away exactly the same amount of electric charge that has been
stored in the first sphere. This phenomena is called the Influence, which results in the
absence of electric field outside of two spheres and the presence of electric field only
between two metal surfaces. The second metal sphere is called shielding, and with this
one can achieve two things: the inside electric field does not interact or corrugate the
electric field in the outer space, and the space of inner electric field is limited by two
metal surface that results in the increase of capacity. The capacity of two concentric
metal spheres or simply spherical capacitor is given by:

1 l 1 UAussen U Innen N 1 1 N
—= + =|- + = - or
C CAussen CInnen Q Q 47[‘%r 47[6‘0r

C =4rzg - ——= . If one fills the inner space between two concentric metal spheres
n-—r,

with dielectrlc material then the capacity will be increase by factor &

C=drnge - —= — . Plugging in this expression the temperature dependence of the

1 2
dielectric constant and the dependence of temperature with the depth z, one obtains for

the capacity of the Earth’s mantle: C = 4me, - (8.12 +6.4-1073- [3500 o —

Vi1+2z2
300]) - 7638, where z = %. The mean temperature of the Earth’s mantle is

T =~1500°C ~1800K . Then, the whole mantle capacity is:
C=4r-8,854-10"%-(8,12+6,4-10°° -1500)-%938474-103 =0,015F

17,72

. At the Earth's surface the electric field strength is on average E(R) = 130 V/m.

Consider a spherical symmetrical charge distribution with the total charge Q at the
origin. The charge density p = po exp (-r/R)-R?/r? should decrease exponentially up to
the Earth’s surface at r = R. Calculate the total charge Q of the Earth and the charge
density po. Estimate the electric field E(r) and the electrostatic potential @ (r) of this
charge distribution in the far field (i.e. for distances r >> R). Radius of the Earth R =
6.372 10 m, g0 ~8.8654-10%? A-s/V-m, and inside the Earth & = 18, outside the earth
er=1.



Inside the Earth the electric potential @&(r) as a function of the Earth’s radius is given by:

L5 -R%.e R
‘[7'00 RZ © " am?.dr \ _r
1 9 r _p"R 1-eR
Arg, r & & r
inside the Earth is given by the relationship:

d(r)= . The electric field strength E

. R3 _r
E(r)=_grad(c1>(r))=_d(p(r)= Po-R 1-|1-L|.e ® |. At the Earths surface R=r
dar  g-¢-r’ R

the electric field strength satisfies the identity

130= 2R p, = 0 ;30 =1,81-107"°C / m? . The total electric charge of the Earth is
&
R 0, - RZ. e‘%
the integral: Q = IOT Aar?.dr=4x-p, RS- (1— e‘1)= 3,7-10°C.
0

Far away from the Earth’s surface r>>R the electric potential varies as a function of distance

. p3 _ a1 .R3.(1-¢"
R” 1-e and the electric field strength as: E(r)=p0 R (12 © )-
g, r g r

10. (a) If the electric charge of the Earth is Q, then the electric field strength on the Earth‘s

r @(r)=*£o

surface is:

Q :g:>azgo-El:8,8654-10'12-13021,15-10'9C/m2

" 4me,-R?2 g

At the height h=10 km above the Earth’s surface in vacuum (in the absence of space
atmospheric charges) the electric field strength is:

E Q 7.a-

* " 4ze, (R+h2 ¢

0

h, o
2—)~—
i

2

~0,003
(b) Due to the influence of space atmospheric charges of density p the electric charge Q of
the Earth must be corrected by the electric charge of the spherical shell of thickness h

(shielding effect):
2.h. . —4). 107
E_E 47R?-h-p zE_,o h—>p=(130 4)-8,8654-10

* T 4z (R+h/22 ¢ 10-10°

0

=112-10"C/m3

11. The rescaling of the triangular lattice are shown in Fig. S8.4. Instead of three
positions in the original lattice a single site position in super lattice is generated.
The site occupancy in the original lattice is marked as solid black circle. The site
occupancy in super lattice is shown as a solid grey circle. Empty sites are marked
as X. By p one denotes the probability of an occupied site in the original lattice
and by p’ is the probability of the occupied site in the super lattice. The probability
that in the original lattice all three sites are occupied is p3. The probability that two
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sites are occupied and one is empty is p*(1-p), but there are 3 possible
arrangements of this configuration. So the total probability that in the super lattice
the site is occupies is given by the equation: p’ = p3 + 3 - p*- (1 — p). The fixed
points, i.e. the roots of the equation when p’=p, are (0, 0.5 and 1). The non-trivial
solution is: p. = 0.5, this is the lattice percolation threshold for the site occupancy.

In the original lattice the distance between two neighbor rows of sites is 1 (see

insert in Fig. S8.4). The distance between points is: %

distance between neighbor points is 2. This means that the scaling parameter

In the super lattice the

b=+/3. One denotes by R(p) = p* + 3 - p?- (1 — p), then =& dR(p) =6:p—6-p?

According to the definition of the critical exponent: t = de(’;f n03) g 355,
n ( " )p s In(1.5)
ad
.. X
® ® 0 O %
o® 0@ ® =¢
= ® o000 @ ®
e 99 ® & 0 @ @
O « 5o o oooo'oooo .X=-
. . ‘8 @ . eo-'e® ® .
........”.. ;(X=X

..........’....

ooooooooo’ooooo
oooooooo .ol*o\oooo
oooooooo,__ *i’o'ooo

(R}

.—.—.—H—.....H—.—.—'.....

Fig. S8.4 The triangular resistor network: filled circles are the original lattice (the cell is denoted by the
solid line triangle), grey circles are the new lattice (dashed line triangle), open circles represent the
next step of scaling (dashed-dotted line triangle). The scaling factor b is calculated as a ratio of
distances between the nearest-neighbors in two lattices (ratio of sides of open and filled circle
triangles) (adapted from Stauffer, 1979).
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Exercises and control questions to Chapter 9:

1. One denotes the width of parallel capacitor plates as a.

- e

455

Fig. S9.1 Problem 1.

*
The electrostatic energy of the empty parallel plate capacitor is: W, = %6‘0 -%

where a ist he width and L is the height of capacitor plates. When the liquid rises in the

.U?

space between the metallic plates the capacity changes and consists of two parallel
connected capacitors: C=C1+Cp, wher C; is the empty part and C; is with liquid filled part
of capacitor C. So the electrostatic energy of capacitor is given by::

We|2=£80_ (L—h)-a+8r.h-a
d d

]U 2. The increment of capacitor energy between the

empty and partially filled with quuid states is:
AW, =W? —W} =%-go (&, - ) 1"8 U2, This energy increment may be considered as

a change of the potential energy of system and must equal to the increase of liquid
potential and kinetic energies. The increase of liquid potential energy due to rise by height

. . . 1 1
h'in the space between capacitor plates is: AW Eh mg_—h p-g-h-a-d.Fromthe

Volumen

condition that the new equilibrium state of the system must correspond to the minimum of

the potential energy increment means that : AW,, —AW__, = min, from which the

pot
relationship follows:

g (g -1)-U°

5 FEn The difference
. p. g .

%Ggo.( 1) uz—E g-hz-a-d]=0—>h=



between the liquid potential energy and the electrostatic energy of capacitor when liquid
raised to the height h is:
£o-(&-1)U?
2pgd?
1 ﬁ -a
A(\Nel _Wpot ) =-&: (gr _l)— )
2 d
_1 &-(s-1)"-U"-a
8 p-g-d’
This is the half of electrostatic capacitor energy increment, if one plugged h in AW,; the

other half equals the lost kinetic energy of fluid flow. Liquid raised to the height h with
certain flow velocity and due to viscosity the kinetic energy converted in thermal losses.
Thus, the temperature of liquid increased by AT:

_1 g-(e,-1)-U*-a_1 &-(5-1)-U*-a-h _1 &-(5-1)-U°

m -C,-AT 5 = AT 5
pand 8 p-g-d 4 d 4 p-C,.d
In takes d=10um, &=81 (water), U=100 V, C,=4.19 kJ/kg/°K, p=1000 kg/m3, then
AT=0.004° (1).

2. (a) The equivalent circuit of the complex capacitor is shown in Fig: S9.2:.

metal plate
quartz h,
orthoclase h, Ys
biotite I,
metal plate l
G (o C,

Fig. S9.2 Problem 2.
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The total capacity of three condensators is the harmonic sum:

-1 -1

C= i+i+i M + h, + hy =
C, C, C, g6t gye,bt g e,bt

4-10° 3.10° 15.10°°
+ +

4,5 5,6 10,3

1
=8,85-10"%-.90-10 *x60-10° ( ] =304-10F =30,4pF

(b) If the applied voltage is Uo=10 kV then on metal plated of capacitors will be induced
the same electric charge Q: Q=C-U =C, -U, =C, -U, =C, -U,. The strength of
electric field in each capacitor is given by the relationships

E, :%;E2 =ﬁ;E3 =&;—> E,=56-10°V/m;E, =34-10°V /m;E, =0,93-10°V /m.
hl 'Cl h2 'Cz hs 'Cs

3. The equivalent electric circuit, which consists of 5 capacitors, is shown in Fig.
S9.3.

metal plate Y

h, inclusion of
~ orthopyroxene o
Y C D ——

olivine

metal plate

Fig. S9.3 Problem 3.

Each capacitor may be calculated from ist geometry:

bt oo, bt
(h+h,+h) 7 (b +h, +hy)

b, -t b, -t
szgoglzh—: 2 =08y ; =5,08pF

1 3
b, -t

=3,73pF

C; =¢4¢,

= 240,72 pF

2

The total capacity oft he equivalent circuit is given by:
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-1
C=C1+(i+i+ij +C, =997 pF.

2 CS C4

4. (a) The total radiation power L coming from the Sun at a distance r equals the
radiant power density (s) times the surface area of the sphere 4 z-r:
L=s-4mr*=393-10°W .

(b) The radiation power of the Sun per unit of its surface area is the intensity of

L

electro-magnetic radiation at solar surface lei : I, = Y =6,38-10"W /m?. The

S

electro-magnetic waves propagate with the speed of light c. As it can be seen in
Fig. S9.4a) per surface area A over the time At the Sun emitted the energy W: W =
Volume X energy density =V -w, = A-c - At - w,;, Where w,,; is the emitted
energy density. The mean energy density of electro-magnetic waves is given by:

W, = % g,E? = % 1,H? . By its definition the intensity of electro-magnetic waves

on the Sun surface is the emitted energy per area A and per time Dt: W=A4-At'le ,
_AcAt-w, 1

==cg,E? =%c,u0H ? where £=8.85x10"2 F/m and

orl,
AAt 2

10=1.257x10® V-s/4-m. The mean radiation intensity le on the Sun surface defines

the strength of electric and magnetic fields. Resolving these two relationships

2-6,38-107

— - =219-10°V /m;
8,85-107-3-10

relative to E and H, one obtains: E :\/

=582 A/m.

| 2638107
1,257 -10°° -3-10°



v

c At

o A
€ps Ky o&rHo

Fig. S9.4 (a) Problem 4. (b) Problem 9.

4 17-10°

5. (a) C=¢, % =8,85-10 = 0,167 microFarad

(byu, =h-E,_ =900-10°=9-10°V .
The maximum charge is: Q,,, =C-U,,, =0,167-107° -9.10° =1,5Coulomb

Qumx 15

— = =1500 A.
At

10°
(d) Maximum electric power: W =1__ -U__ =1500-9-10° =1,35-10"W

(c) Maximum electric current: I, =

6. If one assumes that the earth is a conductive sphere having the radius Re and the surface
density of electric charges peg, then, for r=Re :

=2 Pe o E, =885-107.300 = 2,610~ S2UIOMD
4rey -Re & m

The electric charges in the atmosphere Qa compensate partially the surface charges Qe. The

volume density of electric charges in the atmosphere at the height His: p, = —QZA :
47Rc -H
Then, it follows
— -4/RZ - H ‘H E.—E
2=QE—QA2=El_pA £ =El_PA —>,0A=80( 1 2)=1’6200ulgmb
4dre, - RE 4dre, - RE & H m
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7. () The equation of electric field E indicates that the wave is propagating in
the direction of x-axis.

(b) The mathematical expression of the plane wave is: E = E, cos(w-t —k - x). The
comparison of the given expression with the plane wave equation results in:
Wave amplitude: Eo=30 V/m;

Frequency: f =-2 =10°Hz:
2

2z

Wavelength: 1= " =3m.

8. Phasors are the complex amplitudes of waves, i.e. phason is the complex

number factor A which stands by a harmonic function e*®t,

ei-(w- t+ a-x)+e—i-(m< t+ax)

(a) Since cos (ot +a-x)= , the phasons are A =E, e =Py +iax

2
and A =E, e b y-tax

(b) Since cos (w-1)- cos (a -x):%- [cos (o-t— a-x) —cos (o t+a-x)],and
sin (o-t) -sin (a 'X)Z%' [cos (o t— a-x) + cos (- t+a-x)], then, E (X, t) =
Eo' cos (o- t - a-x). The phasons are A =E, et@*
9. A homogeneous plane wave with the electric field hits perpendicular to a dielectric

half-space z> 0 with the dielectric constant & (see Fig. E9.4).

a) Which components of the electric and magnetic field must be continuous at the
interface?

b) Calculate the phasors of the reflected wave E; and the transmitted wave E¢!

c¢) Determine the EM-power transmitted into the half space z> 0 per unit area!

AX

> Z

8Ogr, }"’0

My
SN

Fig. S9.4 Problem 9.

One writes for a plane wave the equation: E(x, y,z,t) = E- ei'(‘”'t‘w) , and in the case depicted in

Fig. S9.4 k= (0,0, k,) and E = (E,, 0,0). One assumes that the plane wave is propagating in a
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medium without losses, for which the wave vector k may be expressed a follows: k = w -
JEo & Uy = 27” - \/&,. For the y-component of magnetic field H, according the Maxwell equations
kg

W fo

i

one may write: H,, = -%. After differentiation one obtains the identity: H, =

wfo
(@) The normal components of the displacement vector D and magnetic induction vector
B at the interface should be continuous as well as the tangential components of vectors
Eund d.
(b) This means that at interface z=0 the boundary conditions are as follows:
E,-Eg=E;
& (E,+E, )= £ &, E, , Where Eo is the electric field amplitude of the incident wave

Ko Ho

Er and Er are the electric field components of reflected and transmitted waves, respectively.

From these two relationships the reflection and transmission coefficients are as follows:

By _Je-1
Eo \/E +1
E_ 2
Eo \/; +1
(c) According to the definition of the Poynting vector S:
S = E x H, which is parallel to k. The averaged value of S over one period of field vector
oscillation results in: (S) = % c- & & - E2. The transmitted energy is the normal component
of vector S can be expressed through Er as follows:
2 2
sol. ¢ 4 o B
2 Az (\/E+1)Z 27‘(\/E+1)2

10. Plugging E = E, - e~?*, in the Maxwell equation for the electric field:

0E

at=(i-w-a-u—wz-e-y)-i—f,oneobtainstheidentityﬁz=i-a)-

VZ
01— w?e-u. Onedenotes Re[9]= a, Im[9} = b, then, the identity
may be rewritten: 92 = (a+i-b)*=i-w- 0o u— w? - e-pu, which
results in two relationships for real and imaginary components of 9.
a*—b?=—-w?-c-p,and2-a-b = w - o - pu. After solving these two
equations relative to a, one gets the biquadratic equation: a* + w? - - u -

s w2o?pu? wZ'E'M_

a“c —

. The positive root of this equation is given by: a? =
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w2

< 1+ o s — 1). This general solution indicates the linear relationship
between ¥ and frequency ®. For very conductive rocks: i > 1, 9=

/—w";'a. For non-conductive rocks at high frequencies: i « 1 the square

root may be expanded in the Taylor series, and, then, 9 = %\/%

Fig. S9.5 Problem 11.

a. The maximum of the magnetic field induction is: Bo=Eo/c=6.67 uT.
b. At the indicated point the magnetic field induction is one fourth of the maximum

value: B(z1)=E(z1)/c=1.67 uT. The direction of the EM-wave propagation vector
k builds with the vectors B and E_ the right-handed coordinate system. After the right

hand rule B(z1) is directed to the positive x-axis.
c. If the coordinate system oriented in such a way that at z=0 the induction vector is at

maximum, then, the wave equation for B vector may be presented as a cosine

function: ﬁ(z) = Bo-cos(k-z). The wave number k is calculated from the given

frequency: v=10 MHz and EM-wave velocity ¢, k=2zv/c. The point z; corresponds to

the distance from the maximum of B: z1 = ¢/(2m-v)-arccos(B(z1)/Bo)=6,3 m.
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Exercises and control questions to Chapter 10:

519

Fl=a-[Vx5]

Fig. S10.1 Problem 1.

Consider the length element dr of the bar. There is a Lorenz force acting on the

electrical charge g: F, =q- [V x B] . The direction of the Lorenz force (red arrow in

Fig. S10.1) is orthogonal tot he directions of charge movement V and the magnetic
field induction vector B. This force acts on negative and positive charges in two

opposite directions and the electric field E builds up along the length element dr:
F.=9-E=q- (:lj—t: where dU is the voltage difference between two ends of the
length element dr. In steady-state these two forces are in balance, and one obtains the
differential equation in respect to the voltage U: q-2#f -r-B=q- (jj—li After

integration this identity by r from 0 to L it follows:

dU =2 -B-r-dr=>U =xf -B-L*=3,14-60-0,25-4-10° =1,9mV



2.

3.

520

Fig. S10.2 Problem 2.
The rectangular coil rotates along the axis parallel to L. The surface area of the
rectangular loop is A=L-x=L- W - cos(w - t), where x is the projection of W on the axis

normal to L, and w is the rotational frequency. The magnetic flux ® passing through

one coil loop is given by: = ffA B-dA . The magnetic field in the Frankfurt area is B~

49.8 uT The induced electric voltage is: Unq = §. E - d7t = —%HA B - d4, or per one

loop of wire: Uypep = —%(A . §) = —%(L W -cos(w-t)- §):L W-w-sin(w-t)-

B.The peak voltage in the coil of nloops is Upeq =n- LW w - B, and resolving in

Upeak __ 381073

respect to o one obtains: w = = —
n-L-W-B 280:0.112:0.078-49.8-:10~6

= 312 rad/sec.

The energy density of magnetic field having strength H is: py,,,,= %,uo ~pu-H?

The kinetic energy density is: p;, = % mlHOLGN
mass of proton, V is the mean velocity and N is the concentration of protons. In

thermal equilibrium: pkin=pwmag. Resolving the identity in respect to H one obtains the
relationship:.

-V 2, where mp=1.66-10"%" kg is the

H_

27
- mH_'\_IG_V=\/ 1061071 140 x36.10°A/m
1510 1,2566-10° - 10




4. If an observer moves from the latitude of Mainz ¢o to the latitude of Frankfurt go+A¢,
then, the two components of the Earth’s magnetic field, i.e. «sin(#+A4¢) and

xcos(go+A¢@):may be expanded in the Taylor series:

_M-cos(¢,+A4) _ M Cwing Ap L A2
H, = R? = R3[COS¢° sing, - A¢ > cos g, - Ag +}
H, = M 'Siné?" tA9)_ ZRI\? [sinq)0 +COS @, -A¢—%- sing, - A@” + ]

The small increments in magnetic field components are:
AH, = —%{singﬁo -A¢—%-cos¢0 -Ag* + }

AH, = ZR—M|:COS¢0 -Ag— % sing, - A@® + } . The relative increments are:

3

AH, _ | sing, -A¢—1-A¢2+ ..... und A7 _ C95¢° -A¢—£-A¢2+ ..... . The
H, cos ¢, 2 H sing, 2

v

difference in latitude between Main and Frankfurt is:

10 N 54,14
360-60 360-60-60

Ap=105414"= Zn[ ~3,17-10 °rad . Taking into account that

tan ¢, ~ 1.19, then, AH, =— sing, -Ag.|~-0,38%; AH, _ CF’S¢0 -A@. |~ +0,27%
Hy COS ¢, H sing,

v

5. The specific saturation magnetization of Ni is given by: Ms = N-uni , where N is the

number of Ni atoms per unit volume, and i is the magnetic dipole moment of a

single Ni-atom. N =N, -L, where Na is the Avogadro number:

Ni

3
_Mg-my, _ 470 1023 58,71 51510 A-m? ~ 0,56,
N, -p, 6,022-10%.89-10

N

6. The molar magnetic susceptibility ym according to the definition is as follows:

ﬁ =—1.75-10""m? / mol

X =2 Vp =g ==72:10"
P
7. Assuming that in rock the atoms possess only +pg and -ps magnetic dipole moments,
1B

then one introduces the variable<. XZ? . The magnetization of rock material is:
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X _@~X —— — . . 23. . 6
M — e e_ N ~N-g, = N, p"uB=6,022 10°.2,6-10 19.27.102 = 242kA/ m
e¥+e™ m 60
. 2 . . . . . _24. . —6
4= N - pp" 1, _ Mg - g - 14 _ 242-103.9,27 1(_)23 1,257-10 ~7.10(S1).
kT kT 1,38-107°°.293

If one assumes from magnetic induction B independent magnetic susceptibility y, then

H o BcMs _1,257-10°

— 10" -242-10° = 4,35Tesla
Z .

B=u,

In ordert to get 96,4% of saturation magnatization at T=293K, one has to plug in the

ps-B_ o _2k-T _2:1,38-10™.293

identity for M: x=2="2—=1B ——— =87Tesla
k-T Mg 9,27-10

8. Consider a magnetic sample in a form of cylinder of length | with the cross section
area A hanging in magnetic field with the vertical gradient: dB/dx. In the gradient
magnetic field there is a vertical force Fy acting at the element volume dV in x-axis

du dB

direction: F, =—;dF, =M -dV -—
dx dx

Plugging dV=A4-dx into this identity, one obtains:
dF, = A.dx-M 9B _ A-dx-Z-. B-Ol—B . The total force Fx can be calculated by
dx % MK dx

integration over the length of specimen from x: to x2 (see Fig. S10.3):

X,
F-AZ _[B-dB _A Z(Bf - Bzz), where B; and B; is the magnetic field at points x1
Hy %, Hy

and x2, respectively. For a sufficiently long sample x2 will be far outside the centre of
magnetic field, so B2 <<B1, and finally, one obtains the identity: F = ZL A-y-B% The
Ko
balance is measuring the weight difference between zero magnetic field and B, Am - g.
Paramagnetic samples (x>0) the additional vertical force acts downward of x-axis, i.e. the
sample is forced into the magnetic field and Am - g > 0. For diamagnetic samples the
additional force acts upward and the sample is pushed out of the magnetic field. For a
constant gradient magnetic field one may write::

-5
Fav2p.9B_1ps 10

dx 157,10 +100= 0,8-10N , which corresponds to c. 0.08g
Ko , .

of the weight increment.
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to balance

,,,,,,,,,,,,,, >

‘ / magnetic field

Fig. S10.3 Problem 8.

9.

10.

11.

523

The temperature at depth z is given by: T(z)=20°C +z(km)* 30. So, a magnetite
crystal reaches the Curie temperature at depth Z: Z = % ~18,7km, fora

pyrrhotite crystal: Z = % ~10,2km.

The magnetic field of the earth is to a large degree the dipole field. So with the depth

the magnetic field varies as ﬁEarth (d) x @ , Where R is the radius of the Earth.

For the basalt cube located at the depth d the magnetic field is: Hgapen (d) = Hpareno -

% ~ ﬁEarm,O - (1 +3 %) . When d=5 m the effect is of depth is negligible. The

magnetic dipole moment is: m = M -V, and the basalt cube magnetization is given by:
M = Ymag * Heareno, The cube volume is V=I, plugging in m: i1 = yp, - V -
Hgaren = 0.03 + 125 * Hyaren=3.75 Hgaren o- At the North magnetic pole Hpgyen o =
65uT, then m =~ 2.4-10~* A-m¥kg. The magnetic dipole moment of basalt cube

1

=~ 0.005-

2md
Hgaren0- The total field on the surface is Hg + Hggpen o = 1.005 - 65uT.
For the saturation magnetization one may write the identity: Mg = % “ug . The factor%

. N— M _g5.10%L o :
isgivenby: V.7 mma T T m* . Plugging this into Ms one obtains:

contributes to the additional magnetic field on the surface: ﬁB =m-

— 5A . N . . .
Ms=17,9-10 m . The saturation magnetization of iron in the magnetic field B is:

_ B _ 21T _ 4 7. 106A
Ms = pHo T po L7-10°5G . For the magnetic moment of iron p in the
_ Ms.v _ —23T-A
magnetic field B one may write: # =~ = L 96 - 10 m . The factor% =

8.5-10%8 m=3 here is the same. The ratio between the magnetic moment of iron atom

£ ~2 12
u and the Bohr’s magneton g Is:  H& S



Solutions to Chapter 11:

1.
A. B.
A
é ; 15% vol. Calcite
o A
i 35Y% | pore
% VO|° i 10% vol. \yater
heat O pon;e 30% . heat X
fl water y o, fl 45° I.! cla
ux 25% 10% e o ux 5% vo ; y
vol.| vol. <~ >quartz %
.77 clay 30% vol.| quartz
v

Fig. S11 .1 Problem 1.
Solution in the case A: If the heat flux is in the direction normal to mineral interfaces, the, the

heat flux passing through each phase is the same:

i/ e
AT, + AT, +... AT, A AT, A . . .
AT _AL +AT +.. AL A% + 22 2 | Since the heat flux is the same passing
L L Ax, L AXx,

. . AT AT

through is constant and equals Q, one may write: Q = —/1£ =4 —rt=-1, - —2=.lt
L AX, AX,
follows that: 9=2~g01 +g'¢2 +...:>£:i~g01 +i-(02 + o
A4 A, A A A,

1 = 0.25 + 0,30 + 0.25 + 0,20 =0,674= 1= L A=1,48 W/m/K
A 33 063 71 2,3 0,674

Solution in the case B: If the heat flux is in the direction parallel tot he mineral interfaces,
then, the temperature gradient ist he same in each layer of mineral phases, because the
temperature difference and the length of each phase are the same:

AT AT AT
Q=/1‘T:Q1 +Q 4= 4 'T+¢2 A 'T+---:>ﬁ:(01 @, Ay +.

2=0,2-2,3+0,3-0,63+0,3-7,1+0,2-3,3=3,44 W/m/K.

2. One denotes the total surface area of the black body by A. The absorbed radiation power is given
by: Qa =S - A, where S=1.3608 + 0.0005 kW/m? is the solar constant . The emitted radiation

power is: Q, =2A-oT*, where 6=5,67-10"% W/m2/K* is the Stefan-Boltzmann constant. The
factor 2 is due to face and rear surfaces A. In thermal equilibrium two radiation powers are in

balance: S-A=2A-oT* =T :4‘/i = ﬂB =332K
20 2-567-10

3. The Lorenz constant L is calculated and listed in Table below:
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Minerals K [W/K-cm] p, [Q-cm] L, W-Q/K?
Diamond 23.2 10%6 7.7-10%
Quartz 7.0 10° 2.3-10%
Forsterite 5.15 107 1.7-10°
Dolomite 35 10% 1.2-108
Diopside 5.76 10%2 1.9-10%°
Hornblende 2.54 10% 8.5-101!
Graphite 45 107 1.5-107

4. The heat flux trough the rock specimen is given by:

3-01

S L

Q__,0-T)_ .

_L-Q_

heat reservoir 1
T,

Cross sectional area S

'75.1 50.10°-24

25°C

heat supply

Fig. S11.2 Problem 4.

heat reservoir 2
7 T2=0°C

5. (a) The heat exchange between basaltic rock specimen and water is given by the equation: :

m

Basalt *

C, -(95°-225°C)=m

wasser

419-10° - (225-20)=C,

_419-10°-25

72,5

The molar heat capacity may be expressed via mean atomic weight of basalt:

C,=C,-A =144-62-10" =8,92] /(mol *K)

=144 [ kg/ K

The Dulong-Petit law states, that the molar heat capacity of a monoatomic solid is the

universal constant equals 3 times universal gas constant R: C,, =3 * R =3 * 8,3 J/(mol*K) =

24,9 J/(mol*K).
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(b) When the thermal elongation of the basaltic specimen is given, then the needed
temperature increase may be calculated as follows:
0,01

0,01=3a-AT => AT =—— =60,7°.
3.55-.10°°
6.
Magnesite Calcite
x [001] = 6,55 mm?/s x [001] =2,02 mm?/s
x [100] =2,36 mm?/s x [100] =1,82 mm?/s
x [010] =2,39 mm?/s x [010] =1,85 mm?/s

The average value of k in three crystallographic axis directions [001], [010], and [100] is
determined from the equations as follows:
for magnesite:

Kyoi =1~6,55+£-2,36 +£-2,39 =3,77-10°mz2/s
Voigt 3 3 3

-1
~Reuss: l ! +l' L +£' L :3,02'1076m2/5
3 6555 3 23 3 239

EHiII - % . (EVoigt + EReuss): 314 : 1076 m2/s
and for calcite:

Kyoi =E~2,02 +1~l,82 +£-1,85=1,90 -107°m2/s
Voigt 3 3 3

-1
~Reuss: 1 L +1' L +£' L :1,89'1076”]2/5
3 202 3182 3 185

Ky = % : (EVoigt + EReuss):l’g -10°m2/s

7. The heat flux equation provides:

0. 9T, Q'L _40107.5.10°
dx AT 200

8. The heat flux of magma chamber having volume V by cooling from the temperature
To=1100°Cto Tmare Q; = p -V - C, - (1100 — T3,). The heat flux over 1 year through the

1100+ m _ 300). In the case (b) Q, =t-A-
1100+Ty, 500+100
a-( )

— . The heat losses and the total heat over 1 year time should be equal:
Q1 = Q,. From this identity the temperature Tm can be calculated: Tn=821°C

=1W /m/°K

surface area Aiinthecase (a)isQ, =t-A-A- (

9. On the surface of a granite spherical body there is a constant heat flux g = 50 m\W/mz2. Calculate the
radius of sphere considering the heat production in granite rocks A = 6- 10~ W/m? and the granite
density 2.65 g/cmé.

The specific heat production in granite per unit volume due to radioactive nuclides is:
A[W/m?]=1,03-10° [W/kg]-2,65-10°[kg/m?]= 2,73-10° W/m3. The total heat production A*
per second in the granite sphere of radius R is given by: A*=A-4/3 7R3,

Through the outer surface of the sphere per one second there are heat losses: Q=¢-47R2. In
balance: Q=A*, or R=3-g/4=150-107%/2,73-10°=40.214,5 m~40,2 km

573



10. In order to solve this problem, one considers a general case, when fluid with the
temperature T flows in a long channel, the walls of which are set at constant temperature To
(see Fig. S11.3). The solution of the problem is to determine how the temperature of the fluid
varies with the flow distance x in the channel, T (x), when by x = 0 the inlet temperature is T1
and by x = L the outlet fluid temperature is T>. An expected variation of temperature T(x)
along the channel is shown in the upper part of Fig. S11.3. When the fluid is cooled due to
heat exchange with channel walls (To< T), then, the heat flux from the channel wall of length

dx is given by: q aD-dx =h-zD- (T —TO)- dX, where D is the cylindrical channel

diameter. The heat, which has been brought in the channel element of length dx is:
V
<0

D2 dx =
m- C, -dT =p- T +C_ - dT , where m is the mass of fluid in the channel
element of length x, p is the fluid density, V is the mean velocity of fluid flow, Cj is the heat
capacity. At small Nusselt-numbers the heat losses of fluid and heat flux through the wall
should be equal. In the integral form it corresponds to the identity:
TdT X 4h _ _ o
— = dX , after integration, and taking into account that at x = 0,

TlTO—T o,O'V'Cp
T(0) = T1, it follows:

_[ ( —TOXT =In =T . This is the temperature
pVC D E T-T

1 0

variation of fluid along the channel. The outlet temperature T2 at x = L is given by:
4hL 401000

Tz :TO +(T1 _TO)-e_pvch =0600+400-e 26501.8000,02 — 756°C

0, inlet

L, outlet

Fig. S11.3 Problem 10.
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Solutions of problems to Chapter 12:

1. The age of the rock may be calculated using the equation 12.7

(o) ()
( Rb/ SGSr)t

From the graphic on Fig. 12.15 one can determine a slope of the straight line

(s ) ()
86 - 86
ST) . S7) =0 __ 0.717—0.707
87Rb T 041
/8651‘
t

In(2) _ 141-10-114 _ In(1+24.39-107%)_
T1 t, Tal10-11 1.71 Ga
/2 . Then the age is as follows :

=041

-In

>

=24.39- 1073

A=

2. The solution of this problems is based on the tabular constants of heat production of the
three main radioactive elements on rocks U (235 and 238), Th (232) and K (40):

A= (A§35U - Ca35,, + Adzgy, - Cazey + Ad32,, - Ca32py + Aboy - C40K)=
=(56-107-0.7-1072 - 4+ 107®) from 235, + (9.6 - 107°:99.3 - 1072+ 4 - 107°) 1151 238, +
+(2.6-107%- 20 - 107) frgmm 232y, + (2.8-107°-0.01 - 1072 - 4+ 1072) f1.0m 40, =
=1.03-10"°Watt/kg
3. By plotting the disintegration chain reaction of 22U afBaocaaafBaBfa on agraph p-n
(number of protons vs number of neutrons we get the chain as follows

a B B a o a a a B B a B B a
238 234 234 234 230 226 222 218 214 214 p; 214 210 210p; 210 206
U= “55Th= “51Pr= “5;U= “5Th= “ggRa= “geRn= “5iPo = “g5Pb = *35Bi= “giPo= “53Pb = “g3Bi= “5,Po= “g5Pb

922 e
o1 @ [T
. 238y 5206ph+8ai-particles+6 B -particles

89 Q

88

87
86
85
84
83
82

Number of protons Z

81
Number of protons N

80

124 125 126 127 128 129 130 131132 133 134135 136 137138 139 140141 142 143144 145 146

Fig. S12.1 To the graphical solution of problem 3.
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The half-life time ty2refers to the lifetime of a decay product zfor 29328U through the

t 1y
relationship: ty =In(2)-r>7r= Yo 4,5-10

= =6,49-10° years
2 In(2) 0,693

N g5(t) = N,ge(0) - €72
N 235(t) =N 235(0) et
We are looking for time t, at which the proportion between two isotopes is given by:
N,q(t) 99,28
N,e(t) 0,72
were about the same N,,5(0) = N,;.(0), one gets:

e _In(137,89) 4,93
137,89 = P e =>t= A A = 1 2

T

Two disintegration equations for uranium isotopes are given by:

=137,89 . Assuming that the abundancies of two isotopes at the beginning

=5,93-10° years

235 tzggv%

After the time t from starting N(0) nuclides of 29328U there are still remaining N (t) nuclei:
N,.5(t) = N,.5(0) -e** . The proportion P of non-decaying nuclei is
In@)
3 N ,36(t) —l_e M —1_ 674,5-109‘4'2'l ’
N35(0)

probability of a non-disintegrated nucleus.

= 0,476 . P canalso be regarded as a

Per 200 g of living bones per 1 minute there are A = (15-200) = 3000 Min™decays. After

N (t}/) 1 _At
the first half-life, only half of the nuclei remained: TOZ) = E —e /2 .The decay rate

A(t) = % =-1-N(0)- e ** changes after n half-lives as follows

A(0) B 1 B 1 _on '
=7 T TTam = £ . After n half-lives, the decay rate has dropped to a
2

3000 o, (75,4
400 In(2)

The total age of the animal bones equalsto t =N - t}/ =2,91-5730=16656,5 years

value that is a factor 1/2" lower. Which means that (2)” =

The half-life period of 28286 Ra js given as follows

¢ =2, ,_In(2)_ 0,693 ~1,36-10"Sec*
% A t}/ 1620-365-24-60-60
In(2 0,693 _ _
The disintegration constant of iNajs A= t(y) = 14.8-60-60 =13-10"sec™ . A
2

probability or percentage of disintegrated nuclei is calculated below



inl1 P%
P% "\ 100%
_j —e M =t=——> — "7 Forthegiven

100%
percentage of disintegration the decay time is calculated as follows: P=90%: t=49,2 hours
P=99%: t=98,4 hours P=99,9%: t=147,6 hours.

P% = (1—-e7')-100% = (1—

10. The percentage P of non-decayed after 100 years *C nuclei in % is given by:
InE)

P% = (L—-¢')-100% = (1— g 573 °j-1oo =1,73%

11. For the disintegration of “°K nuclides, the decay equation is applied: N**(t) =N“%(0)-e**,

_In(2) (year™). For the decay rate of “°Ar nuclides

1,29 -10°

the differential equilibrium equation is applied:

AN “O = A, N“%(t) = 011- A -N**(t) =011 1- N“*(0)- e ** - After integrating this equation,
dt 2 NAOK(t)

you get: N*%(t)=const—011-N*%*(0)-e™*", with an unknown constant of integration.

where 2 is the decay constant of K, 4 =

At the moment t=0 there were no *°Ar nuclei N *°*(0) = 0 . From this initial condition,
the constant of integration may be determined:
N“(t)=011-N**(0)—011-N**(0)-e* =011-N**(0)-{1—e*'). From the first
equation for the decay of “°K nuclides we get: N*%*(0)=N*%*(t)-e*". After the
replacement in equation N(t) for “Ar, we get: N“%(t)=011-N*%(t)- (e“ —1), or the

. . . “© Ar . .
desired numerical ratio N results from the relationship as follows:
N«

In@)1,7610°

40,,
N =01 ~1)=o011. [e 12910 —1] —0,11-0,000946 =1,04-10" ~0,01%

12.  A. The decay constant A is given through the half-life time as follows:

2212 _5 4910 years™ or 1,650 sec™.
T

%

B. In one kilogram of rock there is 0.2-:10 gram of “°K. In 40 gram of “°K there is 6.022 10% atoms of
the isotope. The number of “°K nuclei in one kilo of rock is:

N 82100 6000 10~ 310"
40

C. The activity of the rock sample is equal to the decay rate of *°K at the moment. So, the activity

dN 40K
equals to: E =A-N " =50 Bq

13. If the ratio of a daughter isotope to the parent isotope is given, then we may write the
relationship of two isotopes at any time presuming that at t=0 there was no daughter isotope

b —at
presented: N" _ N"(0)-(1-e™) — g** _1- From this relationship it follows that the age
N U N U . efl-l
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of the rock may be estimated as follows:

T
t :/11In(15+1) - 2 In16=4.7.038-10" years = 2,815 Gy
n
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