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Appendix SA4.1 Supplemental Discussion of Aggregation Bias 
 

A4.1.1 Measures of Aggregation Bias 
Total aggregation bias has been defined – for example, in Morimoto (1970) − as the difference 
between the vector of total outputs in the aggregated system and the vector obtained by 
aggregating the total outputs in the original unaggregated system. As in the last example, for 
some new vector of final demands, f, the total output vector in the unaggregated model is

( ) 1−= −x I A f . The total output vector in the aggregated model is ( ) 1* * *−
= −x I A f  and the total 

aggregation bias is defined as 

 * = −τ x Sx   (A4.1.1) 

That is, ( ) ( )1 1* *− −= − − −τ I A f S I A f , or ( ) ( )1 1* − − = − − −  
τ I A S S I A f . Using the power 

series results, 

 
( ) ( )
( ) ( )

* *2 2

* *2 2

+ + +... + + +...

+ +...

 = − 
 = − − 

τ I A A S S I A A f

A S SA A S SA f
  (A4.1.2) 

The first term in this series has been defined as the “first-order” aggregation bias (Theil, 1957); 
that is, 

 ( )*= −φ A S SA f   (A4.1.3) 

A4.1.2 Aggregation Bias Theorems 
We present two basic theorems regarding aggregation bias and, in particular, when it will vanish. 
One has to do with the nature of the A and A* matrices, that is, with the structural characteristics 
of the economy; the other has to do with the nature of the final-demand vectors, f and f *, being 
studied. The first theorem is: 

Theorem 4.1. The total aggregation bias vanishes (i.e., τ = 0) for any φ if and only if
* =A S SA . This follows from the expression for τ in (4.26) since, if * =A S SA , then 

 
( ) ( )*2 2 * * * *− = − = − =A S SA A A S SAA A SA A S A 0   

 
and similarly, for higher-order terms in the series. This theorem suggests that if two (or more) 
sectors have identical interindustry structures (i.e., equal columns in the A matrix, as we found in 
the example), then aggregation of these sectors will result in zero total aggregation bias. For 
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example, consider a three-sector economy in which sectors 1 and 3 have the same interindustry 
input structure: 

11 12 13 1

21 22 23 2

331 32 33

  
  
  

= , =
a a a x
a a a x

xa a a

   
   
   
     

A x . 

The corresponding transactions matrix is found by 
11 12 13 11 1 12 2 13 31

21 22 23 2 21 l 22 2 23 3

31 32 33 31 1 32 2 333 3

0 0
ˆ= =

    
   
   

0 0 =
0 0  

a a a a x a x a xx
a a a x a x a x a x
a a a a x a x a xx

    
    
    
        

Z Ax  

The proper aggregation matrix for combining sectors 1 and 3 is 
1 0 1

= .
0 1 0
 
 
 

S  

Hence, the aggregated transactions matrix and total outputs vector are 
1 12 2 13 3

*
21 1 22 2 23 3

31 1 32 2 3

11

3 3

1 0
1 0 1

= = 0 1
0 1 0

1 0

a x a x a x
a x a x a x
a x a x a x

′
   

     
             

Z SZS  

or 
1 31 1 3 311 1 3 12 2 32 2*

21 1 21 3 22

1

2

1+ + +
=

+
a x a x a x a x a x a x

a x a x a x 
+ 


 

Z  

and
1

1 3*
2

2
3

+1 0 1
= = =

0 1 0
.

x
x x

x
x

x

 
    
         

x Sx  Hence, the aggregated technical coefficients matrix is 

found by 
( )( ) ( )

( )

11 31 1 3 12 32 2

1 3 2 11 31 12 32* * * 1

21 2221 1 3 22 2

1 3 2

+ +
ˆ= ( ) = =

a a x x a a x
x x x a a a a

a aa x x a x
x x x

−

 + + +
 + 
 +
 

+

 
 









A Z x  

Theorem 4.1 asserts that there will be no aggregation bias when two columns are identical, that 
is, when A*S = SA. For our general example this can be shown by 

11 31 12 32 11 31 12 32 11 31*

21 22 21 22 21

+ + + + +1 0 1
= =

0 1 0
a a a a a a a a a a

a a a a a
    
    

    
A S  

and 
11 12 13

11 31 12 32 11 31
21 22 23

21 22 21
31 32 33

+ + +1 0 1
=

0 1 0
,

a a a
a a a a a a

a a a
a a a

a a a

 
    
         

SA  
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which are the same.  
The second theorem on aggregation bias is the following: 
Theorem 4.2. If some sectors are not aggregated and the new final demands occur only in 

unaggregated sectors, the first-order aggregation bias will vanish. 
For a general three-sector economy, the unaggregated and aggregated technical coefficients 

matrices, A and *A , respectively, are 
1311 12

12 13111 2 3

1 2 3*2321 22

22 23 32 331 2 3 21 31

1 2 331 32 33

1 2 3

= and

zz z
z zzx x x

x x xzz z
z z z zx x x z z

x x xz z z
x x x

 
  +    +   =   + + ++     +  
 

A A  

The unaggregated sector is sector 1 (in both the aggregated and unaggregated models). 
Consider final-demand vectors for which only the unaggregated elements are nonzero: 

1
1*= 0 and

0
0

f
f

 
   =       

f f Sf = . This theorem asserts that the first-order aggregation bias, 

( ) *= −φ A S SA f is zero for final demands such as those given as f and f* above. For the 

example: 
1311 12

1311 121 2 3

1 2 32321 22

21 31 22 32 23 331 2 3

1 2 331 32 33

1 2 3

1 0 0
=

0 1 1

zz z
zz zx x x

x x xzz z
z z z z z zx x x

x x xz z z
x x x

 
          =    + + +         
 

SA  

and 
12 13 12 1311

1 2 3 2 3

21 31 22 23 32 33 22 23 32 33

1 2 3 2 3

= .

z z z zz
x x x x x

z z z z z z z z z z
x x x x x

+ + 
 + + 
 + + + + + + +
 + + 

*A S  

Hence, the first-order bias, φ, as defined earlier, is ( )* = −φ A S SA f  = 

12 13 12 13 1312
1

2 3 2 2 3 3

22 23 32 33 22 32 22 23 32 33 23 33

2 3 2 2 3 3

0
0

0
0

00

z z z z zz
fx x x x x x

z z z z z z z z z z z z
x x x x x x

    + +
− −      + +         =        + + + + + + + +     − −      + +      
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Thus, if one is studying the effect of new final demand only for sector 1’s output in an n-sector 
model, any and all combinations of sectors 2 through n into fewer sectors will generate no first-
order aggregation bias. Although these theorems are stated in terms of sectoral aggregation, they 
also have implications for spatial aggregation in interregional models. In general, the conditions 
of Theorem 4.1 are almost certain not to be met as one combines regions in an interregional 
input–output model, but the conditions of Theorem 4.2 will be met in many cases. Additional 
general theorems on sectoral aggregation bias based on statistical properties are discussed in 
Gibbons, Wolsky and Tolley (1982).  

A4.1.3 Spatial Aggregation Bias  
Aggregation bias in interregional and multiregional input–output models, or spatial aggregation, 
is a very straightforward extension of sectoral aggregation. Most simply it can be thought of as 
aggregating regions each with the same level of sectoral detail to a reduced number of the 
regions considered, although including regions at different sectoral aggregations would, of 
course, also be possible. 
 To illustrate spatial aggregation of MRIO models, consider three regions, 1,2 and 3k =
with transactions matrices for each two-sector region defined by 

1 2 320 70 20 10 90 40 ,   , and 50 50 70 70 50 80
     = = =          

Z Z Z , with corresponding total outputs vectors 

defined by 1 2 3340 250 325, ,  and 350 300 400
     = = =          

x x x . Since ˆk k k=A Z x defines the MRIO matix of 

regional technical coefficients, we can write: 

1

2

3

.059 .2 0 0 0 0

.147 .143 0 0 0 00 0
0 0 .08 .033 0 00 0 0 0 .28 .233 0 0

0 0 0 0 0 0 .277 .1
0 0 0 0 .154 .2

 
 

   
   = =   
    

 
 

A
A A

A
 . 

Now, assume the trade flows among the three regions of the two industrical commodities,

, 1 and 2i j = , are given by 1

9 16 10
5 6 8
4 10 18

 
=  
  

Z  and 2

19 2 19
11 11 7
20 10 6

 
=  
  

Z . The matrix of trade 

coefficients, defined in Chapter 3 by 
ab

ab i
i b

i

zc
T

= ; for ab
iz , the flow of commodity i between regions 

a and b; and b
iT , the total shipments of commodity i from all regions into region b (the column 

sums of kZ ), is found as 

11 12 13

21 22 23

31 32 33

.5 0 .5 0 .278 0
0 .38 0 .087 0 .594ˆ ˆ ˆ

.278 0 .188 0 .222 0ˆ ˆ ˆ
0 .22 0 .478 0 .219

ˆ ˆ ˆ .222 0 .313 0 .5 0
0 .4 0 .435 0 .188

 
 

   
   = =   
    

 
 

c c c
C c c c

c c c
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For aggregation from three to two regions, the aggregated commodity flows can be computed by 

constructing a spatial aggregation matrix, R. As an example,
1 0 0

=
0 1 1
 
 
 

R  will be used to 

aggregate sectors 2 and 3 in the three-region model to the second region of the two-region 
model—R is distinct from the sectoral aggregation matrix, S, defined earlier. The aggregated 
(2 2)× interregional flow matrices, *

iZ , are found by *
i i= ′Z RZ R  for industries i = 1 and 2, i.e.,

*
1 1

9 26
9 42
 

′ =  
 

=Z RZ R and *
2 2

19 21
31 34
 

′ = 


= 


Z RZ R and it follows that the matrix of trade 

coefficients for the aggegated two-sector model, *C , becomes 

*

.5 0 .382 0
0 .38 0 .382
.5 0 .618 0
0 .62 0 .618

 
 

=  
 
  

C  

Similarly, we compute the aggregated regional transactions matrices as 
1* 1 2* 2 320 70 110 50 and  50 50 120 150

   = = = + =      
Z Z Z Z Z as well as the aggregated regional total 

outputs vectors as 1* 1 2* 2 3340 575 and  350 700
   = = = + =      

x x x x x so that 1* 1* 1*ˆ=A Z x and 

2* 2* 2*ˆ=A Z x or
1*

*
2*

.059 .2 0 0

.147 .143 0 0
0 0 .191 .071
0 0 .209 .214

 
  

= =   
   

  

A 0A
0 A

. The reader can verify that we 

could equivalently compute *A by first creating
1*

*
2*

  ′= =  
Z 0Z SZS0 Z and

1**
2*

 
 
  

= =xx Sxx  for

1

2

3

0 0
0 0
0 0

 
 =
 
 

Z
Z Z

Z
; 1 2 3 =  

'
x x x x and

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 1

 
 

=  
 
  

S . *A is then found as * * *ˆ=A Z x . 

This formulation will be useful next in computing measures of bias.  
 Finally, in computing the total aggregation bias, we presume a projected unaggregated final 

demand vector of [ ] 100 100 100 100 100 100′ =f . The corresponding aggregated vector of 

final demands would then be [ ]* 100 100 200 200′ ′= =f Sf  and, for these final demands, 

we compute and x and *x as the following:  

( ) [ ]1
   – 142.9 155.4 126.5 150.8 140.9 155.3

−
= = 'x fI C A C  

( ) [ ]* ** *1 *– 147.8 161.5 263.3 299.8
−

== 'x fI C A C 

  
It follows that total aggregation bias, as defined earlier, is computed as the sum of absolute 
differences of Sx and *x or, expressed as a percentage of the value of total outputs of the 
unaggregated economy, is 
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21.4100 100 2.46%
871.8

∗ −   = =     

Sx x i
Sxi

 



. 

As a general matter it appears that spatial aggregation in both IRIO and MRIO models 
produce only modest aggregation bias. Hence, for questions pertaining to one or more specific 
regions, it appears that an MRIO (or IRIO) model in which those regions are distinct, while the 
rest of the economy is spatially aggregated into the “remaining” region, can often prove to be 
entirely adequate. The subjects of spatial aggregation applied to IRIO and MRIO models are 
discussed in more detail in Miller and Blair (1981) and Blair and Miller (1983), respectively. 
Examples of spatial aggregation for the three-region Japanese interregional and the US 
multiregional input–output models are included for the interested reader below. 

In recent years with considerably expanded computational capacity increasingly available, 
very large MRIO models, including global models, have been widely applied (discussed in more 
detail in Chapters 3 and 13). Lenzen (2019) and others have considered methods for optimizing 
aggregation of such very large models and concluded that while clustering sectors with similar 
characteristics was frequently identified as the method associated with the lowest general error 
level, especially where considerable aggregation is necessary, for large MRIO systems such 
methods remain computationally challenging. Lenzen found Structural Path Analysis (SPA), 
discussed in Chapter 8, to be the most intuitively appealing and provides “a straightforward 
approach to realise groupings that account for the specific purpose of a specific study (Lenzen, 
2019, p. 19). Other researchers over the years have explored a wide range of approaches for 
minimizing error in aggregation of input-output tables, such as Fisher (1969), and Neudecker 
(1970), Blin and Cohen (1977), Roy, Batton and Lesse (1982), Cabrer, Contreras and Miravete 
(1991), Oksanen and Williams (1992), Olsen (1993 and 2001), Andrew, Peters and Lennox 
(2009) and, as noted above, Lenzen (2019). 
A4.1.4 Examples of Spatial Aggregation in IRIO and MRIO Models 
We consider two examples of spatial aggregation for two multiple region input–output models: 
(1) a three-region interregional (IRIO) model for Japan and (2) the US multi-regional (MRIO) 
model and using the basic measures of aggregation bias introduced in Section 4.8.2. 
A4.1.4.1 Spatial Aggregation of IRIO Models 
Spatial aggregation of IRIO models is in many respects identical to sectoral aggregation. As an 
example for the IRIO case, we consider a highly aggregated, three-region, five-sector version of 
the Japanese IRIO model defined in Table A4.1.1. In the following we consider the case of 
aggregating this model to two regions, the first being region 1 (Central), unaggregated, of the 
three-region model. The second aggregated model region is to be composed by combining 
regions 2 (North) and 3 (South) of the three-region model. Hence, using the notation of Chapter 
3 for IRIO transactions and denoting the regions of the aggregated model by a (Central) and b 
(North plus South), the new transactions matrix is found by (for i, j = 1, 2, ... , 5 in all cases) 

11 12 13 21 31 22 23 32 33= , = + , = + , = + + +aa ab ba bb
ij ij ij ij ij ij ij ij ij ij ij ij ijz z z z z z z z z z z z z . Similarly, total outputs are 

1 2 3= and = + .a b
i i i i ix x x x x  
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Table A4.1.1 Input Coefficients for the Five-Sector, Three-Region Interregional Input–Output Table for Japan (1965)  
 

  
Central North South Total  

Output* 1 3 3 4 5 1 3 3 4 5 1 3 3 4 5 
Central                            

1 Agriculture 0.053 0.000 0.009 0.011 0.009 0.001 0.000 0.007 0.000 0.001 0.001 0.000 0.001 0.000 0.000      1,307  
2 Mining 0.000 0.001 0.001 0.001 0.002 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000        123  
3 Const. & Manuf. 0.428 0.723 0.250 0.240 0.180 0.012 0.004 0.052 0.001 0.013 0.017 0.005 0.044 0.000 0.014    16,400  
4 Transportation 0.000 0.001 0.010 0.090 0.012 0.000 0.000 0.002 0.015 0.001 0.000 0.000 0.001 0.007 0.001      1,342  
5 Other 0.012 0.029 0.042 0.117 0.125 0.000 0.001 0.015 0.001 0.010 0.000 0.000 0.007 0.001 0.014      8,591  

North                                 
1 Agriculture 0.004 0.000 0.000 0.000 0.000 0.089 0.001 0.017 0.039 0.021 0.002 0.000 0.000 0.000 0.000      1,308  
2 Mining 0.000 0.000 0.000 0.000 0.000 0.002 0.005 0.002 0.007 0.011 0.000 0.000 0.000 0.000 0.000        201  
3 Const. & Manuf. 0.068 0.041 0.020 0.000 0.002 0.362 0.521 0.160 0.233 0.129 0.034 0.028 0.012 0.000 0.001      4,167  
4 Transportation 0.000 0.002 0.000 0.014 0.000 0.000 0.008 0.010 0.025 0.011 0.000 0.000 0.000 0.023 0.000        394  
5 Other 0.003 0.034 0.001 0.000 0.001 0.010 0.033 0.027 0.095 0.103 0.002 0.008 0.000 0.000 0.001      2,759  

South                      
1 Agriculture 0.002 0.000 0.002 0.000 0.000 0.002 0.000 0.006 0.000 0.000 0.072 0.000 0.011 0.016 0.010      2,131  
2 Mining 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.004 0.001 0.002 0.004        267  
3 Const. & Manuf. 0.036 0.021 0.082 0.000 0.013 0.012 0.012 0.056 0.000 0.007 0.473 0.719 0.303 0.264 0.196    22,053  
4 Transportation 0.000 0.000 0.001 0.024 0.000 0.000 0.000 0.001 0.022 0.000 0.000 0.003 0.009 0.068 0.012      1,546  
5 Other 0.001 0.005 0.006 0.000 0.003 0.000 0.001 0.009 0.000 0.003 0.012 0.050 0.037 0.112 0.110      9,968  

*Total Output is measure in billions of Japanese Yen. 
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Note, as noted earlier, that we can easily accomplish this spatial aggregation by constructing 

an aggregation matrix, S, as we did in the case of sectoral aggregation: 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0= 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 

S  

We can use S to create * * ',= =x Sx Z SZS  where *x  is the 10 × 1 aggregated vector of final 
demands (the unaggregated vector, x, is 15 × 1); *Z  is the aggregated 10 × 10 interindustry 
transactions matrix (the unaggregated transactions matrix, Z, is 15 × 15). 

We can subsequently compute the new aggregated total outputs vector as
[ ]'* 1307 123 16400 1342 8591 3440 468 26220 1940 12727  = =x Sx . The new 

aggregated matrix of IRIO input coefficients is 
  

( ) 1* *

.053 0 .009 .011 .009 .001 0 .002 0 0
0 .001 .001 .001 .002 0 0    0 0 0

.428 .723 .25 .24 .18 .015 .005 .045 0 .014
0 .001 .01 .09 .012 0 0 .001 .009 .001

.012 .029 .042 .117 .125 0 0 .008 .001 .013

.006 0 .002 0 0 .08 0 .013 .021 .012
0 0 0 0 0 .001 .00

ˆ
−

= =A Z x

4 .001 .003 .006
.104 .062 .102 0 .015 .456 .655 .299 .258 .184

0 .002 .001 .038 0 0 .005 .009 .082 .012
.004 .039 .007 0 .004 .012 .048 .037 .109 .110

 
 
 
 
 
 
 
 
 
 
 
 
 

 

The corresponding Leontief inverse is 
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( ) 1

1.063 .012 .015 .019 .014 .004 .004 .005 .002 .002
.001 1.002 .001 .002 .003 0 .001 .001 0 0
.639 1.016 1.380 .413 .299 .075 .081 .101 .041 .050
.008 .013 .016 1.107 .019 .002 .002 .003 .012 .002
.050 .088 .071 .170 1.161 .012 .016 .021 .011* −− =I A .023
.013 .008 .007 .004 .002 1.099 .018 .023 .033 .021
.001 .001 .001 0 0 .003 1.007 .003 .005 .007
.267 .267 .217 .092 .076 .754 1.050 1.480 .477 .335
.005 .009 .006 .049 .003 .009 .018 .017 1.098 .018
.021 .064 .020 .015 .010 .049 .105 .065 .155 1.140

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Let us now compute the aggregation bias introduced by grouping regions 2 and 3. Consider the 
following vector of final demands for the unaggregated (three-region, five-sector) model of

[ ]100 100 100 ′f =  . The corresponding aggregated (two-region, five-sector) version is  
 

[ ]* 100 100 100 100 100 200 200 200 200 200 ′f =  

We can compute ( ) ( ) 11* * * ** and
−−

= − = −x I A x I Af f

    where A is the original unaggregated 

technical coefficients matrix. In order to compare *x and x , we must aggregate x , which can be 
accomplished with the sectoral aggregation matrix, S, given earlier, that is, Sx . Table A4.1.2 
gives the vectors Sx , ∗x and the differences between the corresponding elements. The sum of 
absolute differences between Sx and *x for the unaggregated region a (Central) as a percentage of 

the total outputs in that region, Sxi , is 
* 3.768100 100 0.395%

954.792

 −   = =     

Sx x i
Sxi

 



 and the 

corresponding value for region b (North and South) is 73.319100 3.959%
1851.735
 = 
 

. This indicates, 

not surprisingly, that more error is introduced into the prediction of outputs in the aggregated 
region than in the unaggregated region. The overall error (for both regions) is

77.087100 2.747%
2806.527

 = 
 

. 
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Table A4.1.2 Spatial Aggregation of IRIO Models: Results for Japanese IRIO Table 

  

Aggregated Gross 
Outputs from the 

Three-Region 
Model Sx  

Outputs from 
the Aggregated 

Two-Region 

Model ∗x  

Aggregation  

Error 
∗−Sx x   

Aggregation 
Error as a Percent 
of Gross Outputs 

of the Three-
Region Model 

100
∗− 

 
 

Sx x

Sxi

 



 

Region a      Sector     
 1 116.801 115.749 1.052 .901 
 2 101.649 101.394 .255 .251 
 3 443.529 444.330 −.801 −.181 
 4 121.260 120.363 .896 .739 
 5 171.553 170.789 .764 .446 

Region a Total Absolute)  954.792 952.625 3.768  
Region b      Sector     

 1 246.876 242.116 4.769 1.928 
 2 206.519 205.343 1.176 .570 
 3 853.242 911.145 −57.904 −6.786 
 4 235.381 238.800 −3.418 −1.452 
 5 309.717 315.778 −6.061 −1.957 

Region b Total (Absolute)  1851.735 1913.182 73.319  
Total (Absolute)  2806.527 2865.807 77.087  

Notice from the table that the aggregation bias is quite small in all three calculations, that is, 
region a, region b, and overall, particularly in the unaggregated region. Miller and Blair (1981) 
show that spatial aggregation of IRIO models generally seems to introduce only modest bias. 
This suggests, for example, that if one is interested in the impacts in one region in an 
interconnected interregional system of a change in final demands for some of the sectors in that 
region (e.g., effects on the California economy of new federal spending in California, which is 
one of the interconnected 48 continental states), then a “two-region” model of California and the 
rest of the United States may be sufficient. 

A4.1.4.2 Spatial Aggregation of MRIO Models 
Consider a highly aggregated (three-region, five-sector) MRIO input–output model of the United 
States given in Table A4.1.3. We consider the case of aggregating regions 2 (Central) and 3 
(West) of the basic three-region model, leaving region 1 (East) unaggregated. We designate the 
regions in the aggregated model by superscripts a (East) and b (Central plus West) so that the 
new intraregional flow matrices are found by (for i, j = 1,2, … 5 in all cases) the following: 

1 2 3= , .= +a b
ij ij ij ij ijz z z z z  Similarly, total regional outputs are 1 2 3= , = +a b

i i i i ix x x x x . Hence, the input 

coefficients for the aggregated model are found by = , = .
a b
ij ija b

ij ija b
j j

z z
a a

xx
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Table A4.1.3 Five-Sector, Three-Region Multiregional Input–Output Tables for the United States (1963) 

Regional Transactions (millions of dollars)  Commodity Trade Flows and Total Outputs 
(millions of dollars) 

  Agric Mining Const. & 
Manuf. Services Transport 

& Utilities 
   East  West  Central 

East            Agriculture       
Agriculture 2,013 0 7,863 44 0  East 6,007  2,124  208  
Mining 35 335 3,432 44 843  West 3,845  28,885  2,521  
Const. & Manuf. 2,029 400 78,164 11,561 2,333  Central 403  2,922  7,028  
Services 1,289 294 19,699 26,574 2,301  Mining       
Transport.& Util. 225 384 7,232 4,026 3,534  East 2,904  415  53  

Central            West 1,108  10,942  271  
Agriculture 10,303 0 13,218 97 0  Central 71  772  3,996  
Mining 82 472 8,686 15 1,271  Const. & Manuf.     
Const. & Manuf. 4,422 1,132 93,816 10,155 2,401  East 158,679  42,150  8,368  
Services 4,952 2,378 21,974 22,358 2,473  West 44,589  201,025  11,778  
Transport.& Util. 667 406 9,296 3,468 4,513  Central 4,702  6,726  61,385  

West            Services       
Agriculture 2,915 0 3,452 65 0  East 146,336  16,116  2,955  
Mining 4 292 2,503 0 353  West 9,328  121,079  3,185  
Const. & Manuf. 1,214 466 27,681 4,925 1,015  Central 1,939  3,643  58,663  
Services 1,307 721 8,336 10,809 991  Transp. & Util.       
Transport.& Util. 338 160 2,936 1,659 1,576  East 21,434  4,974  263  

       West 4,396  23,811  1,948  
       Central 1,009  1,334  9,635  
       Total Output     
       Agriculture 10,259  33,939  9,753  
       Mining 4,084  12,129  4,319  
       Const. & Manuf. 207,948  249,840  81,512  
       Services 157,468  140,850  64,803  
       Transport.& Util. 26,847  30,130  11,841  
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The resulting block diagonal aggregated technical coefficients matrix, which we denote *A , 

is given by 

*

.082 .003 .012 .005 .61 0 0 0 0 0
0 .196 .043 0 0 0 0 0 0 0

.156 .211 .302 .076 .110 0 0 0 0 0

.096 .133 .131 .220 .101 0 0 0 0 0

.012 .001 .061 .002 .234 0 0 0 0 0
0 0 0 0 0 .046 .002 .030 .007 .075
0 0 0 0 0 0 .302 .057 .001 0
0 0 0 0 0 .103 .143 .281 .075 .115
0 0 0 0 0 .207 .151

=A

.127 .216 .101
0 0 0 0 0 .010 .001 .075 .002 .230

 
 
 
 
 
 
 
 
 
 
 
 
 

 

The interregional commodity flow matrices for the original unaggregated model are rs
i iz z=  

for r, s = 1, 2, 3 regions and i = 1, 2, ... 5 sectors, a total of five 3 × 3 matrices. Aggregation from 
three to two regions for the commodity flows can be accomplished by constructing a spatial 

aggregation matrix R, as in the case of sectoral aggregation; for this example
1 0 0

=
0 1 1
 
 
 

R  . 

We define R to be distinct from the sectoral aggregation this matrix, S, defined earlier. The 
aggregated (2 × 2) interregional flow matrices, *

iZ , are found by *
i i= ′Z RZ R  for i = 1,2, ... 5 

industries. 
 

We can then construct the aggregated trade coefficients = .
ab

ab i
i b

i

zc
T

 The matrix of trade 

coefficients for the aggregated MRIO model, C*, is 
.621 0 0 0 0 .047 0 0 0 0

0 .586 0 0 0 0 .053 0 0 0
0 0 .738 0 0 0 0 .144 0 0
0 0 0 .824 0 0 0 0 .121 0

ˆ ˆ 0 0 0 0 .721 0 0 0 0 .157= .379 0 0 0 0 .953 0 0 0 0ˆ ˆ
0 .414 0 0 0 0 .947 0 0 0
0 0 .262 0 0 0 0 .856 0 0
0 0 0 .176 0 0 0 0 .879 0
0 0 0 0 .279 0 0 0 0 .843

aa ab

ba bb

 




 

=  
  







* c cC
c c














The 

corresponding matrix of MRIO multipliers is 
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( ) 1

.658 .004 .012 .005 .039 .053 .002 .006 .006 .015

.004 .680 .032 .003 .004 .002 .088 .014 .002 .003

.124 .180 1.007 .084 .129 .045 .078 .271 .037 .071

.103 .142 .161 1.031 .127 .055 .068 .077 .193 .065

.017 .015 .063 .008 .895 .008 .01=
−

− * * *I C A C 0 .036 .005 .243
.425 .013 .028 .007 .061 1.008 .051 .048 .012 .095
.013 .678 .066 .008 .014 .013 1.358 .1 .01 .017
.118 .202 .493 .064 .128 .153 .264 1.213 .109 .189
.138 .176 .131 .281 .111 .237 .274 .218 1.115 .18
.021 .022 .066 .009 .433 .025 .025 .105 .013 1.083

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 We now compute the aggregation bias introduced by this spatial consolidation. Consider the 
following 15-element vector of hypothesized final demands for the unaggregated (three-region, 
five-sector) model [ ]100 100 100 ′f =  . The corresponding aggregated (two-region, five-

sector) version is [ ]* 100 100 100 100 100 200 200 200 200 200= ′f .  

We can compute 1* ** * *( – )−= I C A Cx f  and 1   ( – )−= I C fAx C where A and C are from the 
original unaggregated model. In order to compare *x and x , we must aggregate x , which, as noted 
earlier, we can accomplish by using a sectoral aggregation matrix, S, to compute: 

117
127
2541 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2400 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1550 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1390 0 0 1 0 0 0 0 0 0 0 0 0 0 0 190 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 

Sx =
2

293
277
175
126
145
191
219
135

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
Table A4.1.4 gives the vectors *x , S x , and the differences between corresponding elements. The 
sum of absolute differences between S x and *x for the unaggregated region a (East) as a 
percentage of the total outputs in that region, that is, Sxi , is 

8.352100 100 0.883%
954.679

∗ −   = =     

Sx x i
Sxi

 



 and the corresponding value for region b (Central 

plus West) is 41.625100 2.245%
1854.456
 = 
 

. This indicates, as in the IRIO case, that more error is 



14 
 

introduced into the prediction of outputs in the aggregated region than in the unaggregated 

region. The overall error (for both regions) is 49.977100 1.785%
2800.135

 = 
 

. 

 
Table A4.1.4 Spatial Aggregation of MRIO Models: Results for US MRIO Model 

  

Aggregated Gross 
Outputs from the 

Three-Region 
Model Sx  

Outputs from 
Aggregated 
Two-Region 

Model ∗x  

Aggregation 

Error ∗−Sx x   

Aggregation 
Error as a Percent 
of Gross Outputs 

of the Three-
Region Model 

100
∗− 

 
 

Sx x

Sx

 



 

Region a Sector     
 1   131.718   135.265       .547        .405 
 2   109.863   110.036       .173        .157 
 3   352.078   358.354      6.276       1.751 
 4   133.305   134.171       .866        .645 
 5   215.715   216.205       .490        .226 

Region a Total (Absolute)    954.679   954.031      8.352  
 

Region b 
 

Sector 
    

 1   311.061   318.149      7.088       2.228 
 2   229.036   229.359       .324        .141 
 3   658.678   633.958    −24.720      −3.899 
 4   262.909   257.744     −5.164      −2.004 
 5   392.772   388.443     −4.329      −1.115 

Region b Total (Absolute)   1854.456  1827.653     41.625  
Total (Absolute)   2800.135  2781.684     49.977  
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