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Exploring Input-Output Analysis with APL  
Abstract 

This volume is a computer software-supplemented version of the Input-Output Analysis 
Computational Workbook, which is a collection of annotated exercises to accompany the Third 
Edition of Input-Output Analysis: Foundations and Extensions ––a textbook and desk reference 
for students and scholars in the input–output research and applications community. Basic 
concepts of the computer language APL are introduced and used to illustrate solutions to the 
computational exercise problems aligned with the chapters of the textbook. 
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Introduction 
This volume is a computer software-supplemented version of the Input-Output Analysis 

Computational Workbook, which is a collection of annotated exercises to accompany the Third 
Edition of Input-Output Analysis: Foundations and Extensions1––a textbook and desk reference 
for students and scholars in the input–output research and applications community.  

The textbook, upon which both the basic and computer software-supplemented versions 
of the workbook are based, includes extensively referenced and indexed coverage of most 
subtopics in the field. It is an ideal introduction to the subject for advanced undergraduate and 
graduate students in a wide variety of fields, including economics, regional science, regional 
economics, city, regional and urban planning, environmental planning, public policy analysis, 
and public management.  

The workbook is an expanded discussion of exercise problems aligned with the book 
chapters, illustrating major concepts and key analytical approaches as well as exploring 
applications using examples and selected real-world data. This software-supplemented version of 
the workbook provides one source of computer software for experimenting with the workbook 
exercises, as well as an introduction to software for the workbook written in the computer 
language APL, which is a powerful, array-oriented, interactive, scientific computing language 
especially well-suited to input-output analysis (IOA) calculations.  

Many scientific computing software packages available today are suitable to work 
through the exercises in the workbook and, for those familiar with such packages, the workbook 
exercises can be easily formulated using them. The software introduced and used in this volume 
(written in APL) is tuned very specifically only to the needs of the workbook, which includes 
many calculations beyond the most basic input-output calculations so it is an efficient path for 
exploring many of the complex mathematical formulations developed in the text. However, in 
this volume, only the features necessary to analyze the IOA exercises considered in the 
workbook are developed which will barely scratch the surface of the language’s capabilities. For 
more extensive coverage of APL’s features and modern implementations, see the references and 
the appendix to this volume. 

The third edition of the textbook, which has been fully revised and updated to reflect 
important developments in the field since earlier editions, is also supported by an accompanying 
website with supplemental appendices including further information for more advanced readers, 
the exercise problems and solutions explored in more detail in this volume, and a sampling of 
real-world data sets for experimenting with IOA (http://cambridge.com/millerandblair), 
including some larger data sets necessary for some exercise problems. We begin with an 
overview of the field of input-output analysis. 

 
1 Ronald E. Miller and Peter D. Blair. 2021. Input-Output Analysis: Foundations and Extensions, 
(Third Edition). Cambridge: Cambridge University Press; and the accompanying volume, The 
Input-Output Analysis Computational Workbook: Annotated Exercises.  

http://cambridge.com/millerandblair
http://cambridge.com/millerandblair
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Overview of Input-Output Analysis 
Professor Wassily Leontief’s 1971 presidential address to the American Economic Association 
was entitled “Theoretical Assumptions and Non-observed Facts.” The address took many in the 
economics profession to task for failing to underscore the necessity of empirically verifying 
economic theory. This was a longstanding concern of Leontief’s about how much of the 
economics profession had evolved in the post-World War II period and one that he was 
particularly focused on in developing his own research on systematically analyzing the 
interdependence of industries in an economy.  

Leontief characterized his work as expressing mathematically the efforts of 18th century 
French economist, Francois Quesnay, to produce a diagrammatic representation of how 
expenditures can be traced through an economy in a systematic way, known as the Tableau 
Économique. Leontief referred to the analytical framework he had been devising since the 1930s 
as input-output analysis (IOA), referring to the essence of his approach of capturing from 
observed economic data for a specific geographic region (e.g., a nation, state, or county) the 
activity of a group of industries that both produce goods and services (outputs) and consume 
goods and services from other industries (inputs) in the process of producing each industry’s own 
output. In recognition of this work, Leontief received the 1973 Nobel Memorial Prize in 
Economic Sciences. Today, the basic concepts of IOA set forth by Leontief are key if not central 
components of many types of economic analysis and, indeed, IOA and its extensions over the 
last three-quarters of a century remain one of the most widely applied methods in economics.  

The number of industries considered in an IOA model may vary from only a few, to 
hundreds or thousands. The observed data are the flows among or transactions of products 
between each of an economy’s industries (as a producer/seller) and each of the industries (as a 
purchaser/buyer) over a standard time-period, usually a year. In more contemporary terms, 
depending upon the level of industry and geographic aggregation and accounting for the role of 
imports, IOA equations quantify essentially the complete and detailed supply chains for all 
products and services in the economy. 

 As noted at the beginning of this overview, one of Leontief’s central concerns was the 
degree to which the transactions table presented an empirically accurate and stable picture of 
economic activity and what time-period was suitable for sufficiently and faithfully capturing the 
production characteristics of the economy. Leontief often referred to production functions of 
industries in his model as production recipes, found by normalizing each column of the 
transactions table by the value of total output of the corresponding industry in the economy to 
produce a matrix of technical coefficients.  

Mathematically, in its simplest form, IOA is based on a matrix of interindustry 
transactions, Z, the rows of which correspond with producing industry sectors in the economy 
and the columns to those same industries as consumers of industrial products from across the 
economy, usually measured value terms such as dollars. The most common form of IOA is 
called an open model in which a schedule of final consumption is specified of industrial products 
in the economy, i.e., consumption outside the network of interindustry production, such as the 
total of personal consumption, government expenditures, capital expenditures, and exports. For 
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this vector of total final demand, f , the total industrial production for all sectors in the economy, 
including both deliveries to interindustry and final consumers, is specified as = +x Zi f   where x 
is the vector of total industrial outputs for all sectors in the economy. The production recipes or 
technical coefficients are defined by normalizing each column of Z by the value of total 
production for the industry designated by the column, 1ˆ −=A Zx , i.e., elements of this matrix of 
technical coefficients or direct requirements designate the dollars’ worth of input from each 
industry in the economy consumed directly to produce one dollar’s worth of the output for the 
industry designated by the column. The total production accounting can then also be written as
= +x Ax f or, rearranging terms, as 1( )−= −x I A f  or =x Lf  where 1( )−= −L I A .  The matrix, L, 

is known as the Leontief inverse or matrix of total requirements.   

Since, mathematically, 1 2 3( ) ... n−= − = + + + +L I A I A A A , we can interpret the terms of 
this power series expression as the “rounds” of industrial production necessary to ultimately 
supply the final consumption. That is, the production necessary to directly supply final 
consumption is Af. The production necessary to supply the inputs to that direct production (i.e., 
induced by the direct production) is ( )A Af  or 2A f  and subsequent “rounds” of induced 
production are 3A f , 4A f , ..., nA f  so that the value of total industry production in the economy, 
including the final consumption itself as well as the direct and all the induced production 
necessary to supply that final consumption, is 2 3 1... ( )n −= + + + + = −x f A f A f A f I A f . In a 
Leontief economy, for any newly projected increment of final consumption,Δf , the additional 
total industrial production, ∆x  necessary to satisfy that new increment of final consumption is 
then found by ∆ = ∆x L f . 

The matrix of technical coefficients, A, incorporates the central assumptions of the basic 
IOA model, i.e., that the interindustry flows from one industry to another for a given time-period 
depend entirely on the total output the consuming industry for that same time-period, i.e., 
industries exhibit a linear production function defined by fixed technical coefficients for that 
time-period. Thus, in a basic Leontief economy, an industry uses inputs in fixed proportions and 
ignores returns to scale.  

Throughout Leontief’s research career he spent much of his effort exploring the 
robustness of these assumptions and devising extensions and enhancements to the basic model to 
accommodate the situations when such assumptions were less suitable and to identifying 
characteristics of the approach and application that most influenced error and uncertainty in its 
use. Extensions to IOA became an important area of research in economics, many efforts of 
which focused on the practical challenges of implementing IOA, including managing the 
prodigious data and computational requirements, effects of industrial and geographic 
aggregation, and devising methods to characterize secondary industrial production, final 
consumer consumption, and the role of capital investment and use. Other extensions enabled 
IOA to be focused on analyzing structural change in the economy or on specific sectoral issues 
such as analyzing energy use, environment impacts, and labor utilization.  

With growing confidence in the utility of IOA in many different types of economic 
analysis, much more attention was paid by governments to assembling local, regional, and 
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national data suitable for IOA. A pivotal development in broad implementation of IOA was a 
widespread, if not essentially uniform adoption of a standardized System of National Accounts 
(SNA) for economic activity. Work spearheaded by British economist Richard Stone, for which 
he received the 1984 Nobel Memorial Prize in Economic Sciences, and subsequently 
promulgated by the United Nations, the SNA enabled systematic tracking of economic activities 
on a national and international scale. Since the late 1950s most developed nations and many 
developing ones routinely construct IOA tables along with governments or related agencies for 
many regions and localities and, increasingly, IOA efforts capture transactions between regions 
or nations in multiregional models, some at a global scale. 

Perhaps the three most significant early limitations to widespread use of IOA were: (1) 
the lack of reliable data from which to construct the basic interindustry accounts, (2) the lack of 
uniform standards in the kinds and scale of data collected for IOA, and (3) the extraordinary 
computational requirements of IOA relative to computer capacity at the time. In the earliest days 
of IOA, the computational requirements were dominant constraints, limiting its application, even 
if the necessary data were available, to scores of industries rather than the hundreds or thousands 
today. Even the most basic of IOA applications involves a large system of linear equations. 
While conceptually straightforward, computational solution at the time was challenging for even 
the most powerful computers of the day.  

The constraint on computational capacity at the time put IOA front and center in use of 
the earliest electronic computers, but with the exponential growth in computing capacity over the 
last half century, such limitations have all but evaporated today. With standardized and much 
more readily available data, supplemented with methods for utilizing alternative sources of data, 
IOA is experiencing a fresh resurgence of interest in its utility for many economic issues, 
especially for global issues requiring large multiregional models. As a result, long avoided 
because its data and computational burden was often considered a bridge too far, IOA has re-
emerged as a central tool in economics and, increasingly, in other areas such as accounting for 
pollution emissions and mitigation (and related ecosystem models), social accounting models, 
and many others.  

In the last decade IOA’s integration with other modeling frameworks has blossomed as 
well, including links with econometrics, resource planning, demographic modeling, and many 
others. Leontief’s original framework conceived of industry production functions as measured in 
physical units, such as specifying the technical coefficients in terms of tons of coal or bushels of 
wheat, as inputs, required per dollars’ worth of an industry’s output or per ton of steel output. 
However, the data collection requirements and other constraints rendered implementation of the 
framework measured in physical units too unwieldy, certainly at the time and even today to a 
lesser extent. But, while the basic methodology for IOA evolved, in both theory and application, 
largely through measuring all quantities in value terms with implicit fixed prices, its use 
expressed in physical units was always considered desirable, both to moderate the impact of 
prices in analysis and to allow IOA to relate more easily with other modeling frameworks.  

The generalization of IOA techniques to a broader conceptual level, such as accounting 
for economic activity beyond its primary focus on interindustry production, also originated with 
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simpler attempts to link IOA models and other national income accounting techniques. Such 
generalizations enabled extension of IOA to explore the roles of labor, households, and the social 
institutions of the economy. Extensions to IOA, such as social accounting matrices and other 
related constructs, capture many different socioeconomic characteristics of an economy 
associated with interindustry activity, and enable analysis, for example, of income from 
employment and its disposition, labor costs, and the demographics of the work force that 
comprise the market for the supply and demand of labor.  

Even late in his own life, Leontief continued to explore ways in which his framework 
could be implemented more widely, e.g., using physical units rather than value terms to facilitate 
wider use. These techniques involved many measurable quantities associated with interindustry 
activity, such as employment, energy use, and environmental pollution. Integration with 
ecosystem models, for example, addresses the interface between the economy and ecosystems, 
enabling systematic analysis of such contemporary issues as consumption accounting of global 
carbon emissions, measuring the energy and environmental resource “footprint” of nations, or 
the environmental emissions embodied in international trade.   

Today, IOA is a well-established and widely utilized tool for analyzing economic activity 
at any geographic scale, most recently at a global scale. Enabled by increasingly standardized 
data characteristics and availability of data as well as the formidable computational capacity 
available today, IOA will continue to grow in its use and utility for addressing many types of 
economic policy and planning issues. Our text captures most of the important features and 
extensions of IOA since its conception and its initial applications nearly a century ago.  The 
computational exercise problems in this workbook illustrate many of these features. 

Input-Output’s Computational History  
IOA is a computationally intensive field today, but in the field’s infancy, computational tools 
were not available to make practical even the most basic of necessary calculations for IOA. 
Today there are few computational impediments to constructing and using even the largest IOA 
models. The evolution of IOA can be characterized computationally in six development periods 
that roughly align with the development of IOA itself: 

(1) Birth.  In the 1930s Professor Leontief conceived of the IOA framework and introduced it to 
the world of economic thought, establishing the very specific needs for the computing 
capacity needed to implement it.  However, computer capacity at the time did not yet exist to 
carry out even the most basic calculations and only very specialized electro-mechanical 
calculators were available. Leontief made use of the first large scale mechanical computing 
machinery in 1935 and later the first commercial electro-mechanical computer, the IBM 
Automatic Sequence Controlled Calculator (called the Mark I) developed for military 
applications that preceded electronic computers. Leontief’s IOA was employed to help 
government preparations for the US entry into World War II, as well as during the war for 
operational planning and planning for postwar recovery in the US and in Europe. These tasks 
were very simple implementations of IOA but involved massive manual computational effort 
for the time. 
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(2) Infancy.  In the 1940s computer capabilities finally developed that were sufficient to carry 
out at least basic IO computations. Electronic computers were still in their infancy.  The very 
first programmable, electronic, general-purpose digital computer, Electronic Numerical 
Integrator and Computer (ENIAC), appeared at the University of Pennsylvania in 1945. 
Computers of ENIAC’s generation, such as the SEAC (Standards Eastern Automatic 
Computer), developed by the National Bureau of Standards for the Air Force, were applied to 
Leontief’s IOA through a government interagency project funded by the Air Force’s 
Planning Research Division, known as Scientific Computation of Optimum Programs 
(SCOOP). Project SCOOP commissioned Leontief to update the 1939 US interindustry 
transactions table to 1947 to help with economic planning following World War II.  

(3) Toddler.  In the 1950s and 1960s, computing capacity appeared gradually for widespread 
applications. This new capacity was used to develop many national and regional applications 
of IOA that materialized in the 1950s, including perhaps most notably Project SCOOP’s 
greatly expanded activities as the Korean War erupted in 1950. That effort, focused on 
possible obstructions to wartime mobilization, led to considerable progress in the ability to 
work with large-scale input–output tables of more than 500 industrial sectors.  And with 
introduction of Richard Stone’s UN-sponsored standardized system of national accounts 
(SNA) in 1961, implementation of IOA data and analysis began to proliferate world-wide.  

(4) Pre-school. In the 1970s and 1980s computing capacity became generally available to enable 
widespread IOA research activities and applications. Use of this capacity and databases 
which coincided with increasing adoption of SNA for IOA data across the globe, albeit in the 
1970s often at substantial expense which initially slowed the pace.  In the 1980s, with the 
introduction of desktop computers and increasing availability of software tuned to IOA 
needs, computing costs plummeted and cost concerns began to become less dominant in 
implementing IOA databases and modeling capabilities. Many sources have attempted to 
chronicle the history of the cost of computing, which is challenging to address in any 
meaningful way since it is affected by so many factors, but, generally, computing power 
available per dollar has increased by a factor of ten roughly every four years over the last 
quarter of a century. Empowered with growing computational capacity, extension of IOA to 
address more narrow policy concerns, including environmental, resource, and regional issues 
developed as well at national, regional, and even metropolitan geographic levels. 

(5) Young adult. In the 1990’s and 2000’s the cost of computing capacity continued to drop 
quickly, becoming much more affordable and widely accessible. Software with capabilities 
well-matched to IOA needs and the rapidly proliferating extensions became widely 
accessible and increasingly affordable as well.  

(6) Adulthood. Since the decade following 2010, the cost of computing capacity has all but 
evaporated as a significant factor in implementing IOA analysis models and databases 
relative to other costs, such as those associated with compiling suitable data.  Powerful 
desktop computers can often be used for even very large IOA models. Software tuned to 
most IOA needs continues to develop commercially and many specialized packages 
implementing at least basic IOA calculations are now widely available. 

As reported in the textbook: “Since the early days of input-output analysis, exponential 
increases in computing capacity and reductions in the cost of computing have removed many of 
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the practical obstacles to manipulating and inverting even very large matrices, so the computing 
shortcuts just described [in the text], along with many others, are no longer necessary.  . . .  In 
1939 it reportedly took 56 hours to invert a 42-sector table (on Harvard’s Mark II computer; see 
Leontief, 1951a, p. 20). In 1947, 48 hours were needed to invert a 38-sector input–output matrix. 
However, by 1953 the same operation took only 45 minutes. (Morgenstern, 1954, p. 496; also, see 
Lahr and Stevens, 2002, p. 478.) By 1969 a 100-sector matrix could be inverted in between 10 and 
36 seconds, depending on the computer used. (Polenske, 1980, p. 15.) Today, inversion of matrices 
of with thousands of sectors takes only seconds on even desktop computers.” (Miller and Blair, 2021, 
p. 32.)    

Again, from the text: “There is no simple way to characterize the combination of features 
contributing to the historical evolution of computing power. But as a simplistic comparison we 
note that when the first edition of this text appeared in 1985, a typical microprocessor (those 
used in early personal computers) could execute on the order of 1.25 million instructions per 
second (MIPS). This was vastly more computing power than was available in the 1950s and 60s 
when input-output was emerging as a widely applied tool, and it was even more capable than a 
mainframe computer in the mid-1970s when the commonly used IBM 370 was often referred to 
as a “1 MIPS machine. When the second edition of this text appeared in 2009, a typical 
microprocessor could execute 175,000 MIPS and, at the writing of the current edition, a typical 
microprocessor includes multiple processor cores that enable multiple “threads” of computations 
to be executed simultaneously, executing over 300,000 MIPS. And this does not include equally 
exponentially increasing capacity of computer storage and other features of modern computers. 
As a result, in the life of this textbook (since the first edition), computing capacity has all but 
vanished as a significant constraint on applying input-output analysis.” (Miller and Blair, 2021, 
p. 32) 

Computer Tools for IOA’s Computational Needs 
From the interwoven history of computing and of IOA, modern computers and software today 
meet or exceed most computational needs for IOA. For the most part, general modern 
mathematical software packages, such as MATLAB, R, STRATA, Scilab, or Mathematica are 
easily adapted to such needs. Spreadsheet interfaces, such as Microsoft Excel, and associated 
database software allow orderly editing and management of IOA data. Specialized IOA software 
packages such as ICIO, IO-Snap, IOT, and IRIOS (included in the references) as well as many 
others continue to make IOA and its successor frameworks, such as global multiregional input-
output models or computational general equilibrium models, accessible and easy to implement. 
However, for methodological development as well as implementation of such formulations 
beyond the most basic of familiar calculations, a software gap still remains, at least for easy 
implementation and experimentation of more complex IOA and related formulations, between 
specialized IOA packages and generalized scientific computing platforms. 

 The collection of computer software tools developed here is designed primarily to 
accompany our textbook, but its modular components can serve more generally to make even 
complex IOA formulations easier to construct and adapt for experimentation.  Because 
computing capacity has advanced so quickly these tools may also be suitable for even larger IOA 
implementations, as some exercises in this volume (Chapter 15) will illustrate, such as basic 
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implementation and experimentation with the World Input-Output Database for 43 countries 
defined as regions along with another region characterizing the rest of the world and 56 industry 
sectors, comprising nearly a 2,500-sector multiregional input-output table, or experimenting with 
the 405-sector U.S. input-output tables, both of which are easily and interactively exercised with 
the tools developed here.  

An Overview of APL (A Programming Language) as Applied to IOA 
In the history of computer software, few computer languages developed historically have been 
aligned as well with the original needs of IOA as APL, named after the 1962 book A 
Programming Language by Harvard mathematician Kenneth E. Iverson (Iverson, 1962).  In the 
late 1950s, Iverson began developing a notation for manipulating mathematical arrays that IBM, 
the dominant computer maker at the time, ultimately used to characterize developing computer 
systems. What became known as “Iverson notation” used special graphic symbols to represent 
many frequently-used mathematical functions and operators.  The Association for Computing 
Machinery awarded Iverson the Turing Award, often referred to as the “Nobel Prize of 
Computing,” for this work in 1979. 

  Iverson notation was first introduced as a commercially-available computer language 
called APL by IBM in 1967. The language design was faithful to Iverson’s original conceptual 
design as an array-oriented, interactive computer language and it became widely used in 
scientific applications in the 1970 and 80s. Dialects of the language were developed on many 
hardware platforms of the time. APL became especially attractive for configuring and solving 
problems rapidly and accurately, which somewhat by accident aligned well with the extensive 
methodological development of IOA ongoing at that time as well.  

In the 1990s, as spreadsheets, object-oriented programming, and a proliferation of short-
lived specific use-oriented languages came and went, APL’s fortunes faded amid the many 
offerings being developed for similar purposes, despite APL’s special inherent advantages for 
application areas such as IOA. Many industry observers attribute the general market decline at 
the time largely to the specialized character set, limiting its implementation to platforms that 
could accommodate it, as well as a higher initial learning curve relative to other developing 
languages of the time and the failure of APL developers to keep pace with many user 
expectations.  Today, however, APL is being rediscovered, especially in application spaces tuned 
to its inherent strengths.  This document illustrates the use of modern APL in IOA calculations, 
even very complex ones, using the computational workbook exercises of Miller and Blair (2021).   

Following a very brief introduction to APL itself below, a number of apps, known as 
functions in APL, for basic IOA calculations are developed and illustrated. Then a broad range of 
APL functions for IOA are developed and illustrated in the course of exploring the exercise 
problems. As noted earlier, APL is certainly not necessary to navigate through the computational 
workbook, but with the functions developed in this document that navigation could be more 
efficient. APL is a very powerful computer language but, in this volume, it will only be 
necessary to scratch the surface of the range of features inherent in the language––only those 
features necessary to carry out IOA calculations, as mathematically complex as some of them 
turn out to be. Interested readers are invited to select from among the many books and manuals 
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available for general introductions to APL, several of which are summarized in the appendix to 
this volume. Most notably, Legrand (2009) is a comprehensive introduction to the commonly 
used modern APL platform, Dyalog APL. The APL code developed in this volume, however, 
will work on essentially any modern dialect of APL. 

Brief Introduction to APL for Input-Output Analysis 
As noted earlier, APL is an array-oriented, interactive computer language. The principal data 
objects in APL are arrays of data known as variables. Basic operations on variables can be 
executed interactively as if they were being completed by a calculator with many powerful basic 
operations on variables built into the language as so-called primitive functions and operators. 
Variables, functions, and operators all exist in the basic organizational structure of the language 
known as a workspace.   

A distinctive feature of APL is its use of special characters denoting primitive functions 
and operators built into the language that are used to construct APL code, which is structured as 
chains of functions, operators, and variables, known as expressions.  A complete expression that 
accomplishes a task is known as a statement.  To begin, the APL operator known as assignment, 
denoted with the character ←, is used to define a variable, as in the APL statement A←3 4 5 6 
7, which associates the values of a vector of five integers, 3, 4, 5, 6, and 7, with the named 
variable A.  Subsequently, simply typing A, like a calculator, returns the contents of the variable 
A: 

A←3 4 5 6 7 
      A 
3 4 5 6 7 

We can subsequently use defined variables in constructing expressions using primitive functions, 
such as  

      1+A 
4 5 6 7 8 

This expression, using a primitive function not surprisingly known as addition, denoted by +, 
adds the integer 1 to each element of the array (vector) A to yield a new five-element vector of 
integers, 4, 5, 6, 7, and 8, the result of which can be assigned to a new variable name, B, as in 

      B←1+A 
      B 
4 5 6 7 8 

If we request the contents of a variable that is not yet defined, the result is not surprisingly an 
error, as in 

      C 
VALUE ERROR: Undefined name: C 
      C 
      ∧ 

As a matter of notation for what follows, note that in many instances throughout this 
document matrices and vectors in mathematical equations, which are generally shown in 
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boldface type, have the same names (characters) as the variable names to which they are 
assigned in APL.  Distinguishing between mathematical matrices/vectors and APL variables with 
the same names can be confusing, so to help we will distinguish them by their font. That is, when 
APL variables are defined within the text, they will be shown in the APL font (as illustrated in 
the expressions above), but if a mathematical vector or matrix is assigned a corresponding APL 
variable name with exactly the same characters, the variable name will appear in boldface type, 
e.g., as A rather than in the APL font as A.  

The range of operations built into APL as primitive functions is much broader than most 
other computer languages. Primitive functions and more advanced operators are the building 
blocks of APL code.  Many APL functions can be expressed with one argument known as 
monadic functions or with two arguments known as dyadic functions. For example, the primitive 
function reciprocal, denoted by the character ÷ , in its monadic form, yields the reciprocal of the 
single argument while the dyadic form, divide, yields the result of the left argument divided by 
the right argument, as in 

÷2 
0.5 
      10÷2 
5 

As an additional example, using the variables already defined, the element-by-element division 
of the array (vector, in this case) A by the array B is 

      A÷B 
0.75 0.8 0.8333333333 0.8571428571 0.875 

APL expressions are evaluated by the APL interpreter from right to left rather than with 
an implicit order of operations as in most computer languages (e.g., in most languages, 
multiplication and division operations are often by default carried out before addition and 
subtraction operations). In APL the right to left order of operations is, instead, the default, but 
can be altered by enclosing an expression in parentheses.  For example, again using the variables 
defined so far, the following two expressions yield different results: 

A÷B+2 
0.5 0.5714285714 0.625 0.6666666667 0.7 

(A÷B)+2 
2.75 2.8 2.833333333 2.857142857 2.875 

So far, we have illustrated how a string of data is created and assigned to a variable.  We 
can also create higher order arrays from a string of data with the dyadic function ⍴ known as 
reshape as in 

      Z←3 3⍴6 3 21 23 24 12 11 5 17 
      Z 
 6  3 21 
23 24 12 
11  5 17 
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The is, of course, a 3 3×  matrix, and can be used in operations as we did with vectors earlier, 
such as 

      10×Z 
 60  30 210 
230 240 120 
110  50 170 

The monadic form of ⍴ yields the shape of the right argument, as in 

      ⍴Z 
3 3  

Or, using variables already defined,  

      ⍴A+B 
5  

Note that in APL a distinction is made between arrays (one dimensional vectors, two-
dimensional matrices, three dimensional cubes, and so on) and scalars, which are single values 
such as a number like 3.14159 (or a single non-numeric character described later). For example, 
if we define a variable Pi←3.14159, APL interprets it as a scalar with “no shape.” That is, if 
you query the shape of Pi, an “empty vector” will be returned. As we have already seen, 
scalars can be used in operations with arrays of any shape, such as 

      Pi3←Pi×1 2 3 
      Pi3 
3.14149 6.28298 9.42447  

but to use two (or more) arrays in an operation they must be of conformable shape. For example, 
for scalar multiplication (element-by-element multiplication) arrays must be the same shape.  For 
example, 

      Pi3×10 20 30 
31.4149 125.6596 282.7341 
      Pi3×10 20 
LENGTH ERROR: Mismatched left and right argument shapes 
      Pi3×10 20 
         ∧   

Most primitive functions and operators in APL operate on scalars, vectors, and higher 
order arrays in a common manner, with some notable exceptions.  For example, one notable 
exception of particularly important use in IOA is the monadic function known as matrix inverse, 
denoted by the character ⌹, known as domino, which produces the inverse of a square matrix 
presented as the right argument, as in 

 ⌹Z 
¯0.1914191419  ¯0.0297029703    0.2574257426  
 0.1424642464   0.07095709571  ¯0.2260726073  
 0.08195819582 ¯0.001650165017 ¯0.04125412541  
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This is the inverse of the square matrix Z defined above. Both the monadic and dyadic versions 
of this function (the dyadic version is known as matrix divide) have many additional powerful 
features. Note another important feature of this matrix that is distinctive to APL.  Some numbers 
in the matrix include an upper-case negative sign, denoting a negative number, which is 
distinguished from the normal location of a negative sign that is interpreted in APL as a primitive 
function.  The dyadic form of this function is mathematical subtraction of the right argument 
from the left and the monadic form is negation, as in (using variables defined earlier) 

      B-4 
0 1 2 3 4 
      -B 
¯4 ¯5 ¯6 ¯7 ¯8 

With only what we have constructed so far, we can write the following intriguing APL 
statement: 

⌹(I←3 3⍴1,3⍴0)-A←(Z←3 3⍴6 3 21 23 24 12 11 5 17)÷3 3⍴x←100 50 200 
1.118124179  0.1556520249 0.1385160222 
0.5165790827 2.019549323  0.1917090307 
0.1908760305 0.2394280383 1.130500181 

For IOA it is easy to interpret this APL statement in the following way, once again interpreting 
the computations from right to left.  Assign values to a 3-element vector of total outputs, named 
x, reshape it into a 3 3× matrix with the elements of x duplicated in each row.  Then define 
another 3 3× matrix of interindustry transactions and assign it to the variable Z (in parentheses 
overriding the order of execution and using the same values of Z as specified above) and divide 
that matrix, element-by-element, by the reshaped matrix of the vector of total outputs defining 
each row. In IOA terms, this is the definition of the technical coefficients matrix, A, so we assign 
the result to the variable A. Next, we create a string of integers that, when reshaped into a 3 3×
matrix, yields the identity matrix, I, and assign it to the variable of the same name. Finally, we 
compute the inverse of the square matrix generated by subtracting, element-by-element, A from 
I, which yields the Leontief inverse, 1( )−−I A ––all in one APL statement.  While this certainly 
illustrates the power of APL’s primitive operators as they might be used in IOA, it would not be 
the general approach to fashioning code to solve IOA problems. Rather, in APL, user-defined 
functions can be constructed in a variety of ways and used in the same manner as primitive 
functions to accomplish various IOA tasks, such as 1ˆ −=A Zx  or 1( )−= −L I A .   

 We next illustrate the use of user-defined APL functions for carrying out basic input-
output calculations. User-defined functions are assigned names, like variables, and, like primitive 
functions, can be either monadic with a single argument or dyadic with left and right arguments.2  
User-defined functions can produce an explicit result, as in the case of primitive functions 
generating a result than can be stored in a variable.  So, for example, a dyadic function denoted 

 
2 The process of creation and editing user-defined functions depends on the APL 
implementation. One example is described later in this volume (and in further detail in the 
appendix) for the commonly-used APL system, Dyalog APL. 
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by the name AMAT to take an interindustry transactions matrix as the left argument, Z, and a 
total outputs vector, x, as the right argument to produce the technical coefficients matrix, A, 
delivered as an explicit result of the user-defined function might look like the following: 

[0] A←Z AMAT x     
[1] A←Z÷(2⍴n←⍴x)⍴x 

The first line (line [0]), known as the function header, assigns names to the left and right 
arguments and to an explicit result. The second line contains the APL statement executing the 
creation of the matrix of technical coefficients for the variables Z and x, appearing the function’s 
arguments and producing the explicit result, as in 

      Z←3 3⍴6 3 21 23 24 12 11 5 17 
      x←100 50 200 
      Z AMAT x 
0.06 0.06 0.105 
0.23 0.48 0.06  
0.11 0.1  0.085 

For later use, we can save the explicit result in a defined variable as  

      A←Z AMAT x 
      A 
0.06 0.06 0.105 
0.23 0.48 0.06  
0.11 0.1  0.085 

As variables and user-defined functions accumulate in an APL workspace, a number of so-called 
system commands can be used to keep track and for other workspace management chores.  
System commands are all distinguished by beginning with a right parenthesis. For example, the 
system command for listing the user-defined functions in the workspace is 

       )fns 
AMAT      

Similarly, to list the variables defined in the current workspace, the system command is  

 )vars 
A       B       I       Z      x        

APL variables defined in the workspace––those recognized by the system command )vars–– 
are called global variables. A useful feature of user-defined functions is the use of so-called 
local variables which are variables that are used only within the function while it is being 
executed. For example, the variable n in the function AMAT is defined within the function as the 
shape of x (the number of elements in the vector x) but, if designated as a local variable (or as an 
argument), will only be recognized and used during execution of the function AMAT as defined in 
the function itself.  In APL, local variables are designated as a list of names separated from the 
rest of the function header by a semicolon, as in 

[0] A←Z AMAT x;n     
[1] A←Z÷(2⍴n←⍴x)⍴x 
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Note that in a user-defined function if a global variable with the same name as that of a local 
variable exists, the function will recognize only the local variable during its execution which will 
not affect the global variable. 

We now illustrate several additional APL features that we will find essential in using 
APL for IOA.  First, we can refer to specific elements of an array by specifying its position or 
so-called index within square brackets.  For example, to retrieve the first element of the vector x, 
or its second and third elements we can write 

x←100 50 20 
      x[1] 
100 
      x[2 3] 
50 20 

For matrices or higher order arrays the index references for each dimension are separated by a 
semicolon, as in for the A defined above, the upper left element, the second and third elements of 
the second row, or the third row, respectively, are identified by 

      A[1;1] 
0.06 
      A[2; 2 3] 
0.48 0.6 
      A[3;] 
0.11 0.1 0.85 

To combine two arrays into one we can use the dyadic APL operator known as catenate, 
designated with a comma, which takes the left argument and combines it with the right 
argument, as in 

      x←100 50 200 
      y←300 400 500 
      x,y 
100 50 200 300 400 500   

Hence, the length (shape) of the result is 6 since each of arguments to be combined are of length 
3.  The monadic form of catenate operator, known as ravel, converts an array of any size or 
shape to string of the elements used to construct the array, specified as a vector. For example, 

      A 
0.06 0.06 0.105 
0.23 0.48 0.06  
0.11 0.1  0.085 

      ,A 
0.06 0.06 0.105 0.23 0.48 0.06 0.11 0.1 0.085 

We can extract an element from an array either by specifying its index, as above, or by 
specifying its relative position by using a pair of primitive functions, take and drop, designated 
by the characters ↑ and ↓. For example, we can take the first two elements of the vector x by 
the following expression 
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      2↑x 
100 50 

or retrieve the last two elements by 

      ¯2↑x 
50 200 

or retrieve the upper left 2 2×  partition of the matrix A as 

       2 2↑A 
0.06 0.06 
0.23 0.48 

With these added primitive functions and operators, we can easily assemble a monadic 
user-defined function to produce the Leontief inverse for an arbitrary matrix of technical 
coefficients defined as the right argument with the following: 

[0] L←LINV A;n;I         
[1] I←(2⍴n)⍴1,(n←1↑⍴A)⍴0 
[2] L←⌹I-A         

Hence, the APL expressions for computing the matrices of technical coefficients and of total 
requirements (Leontief inverse) can be defined in a more orderly fashion with user-defined APL 
functions as 

      Z 
 6  3 21 
23 24 12 
11  5 17 
      x 
100 50 200 
      L←LINV A←Z AMAT x 
      A 
0.06 0.06 0.105 
0.23 0.48 0.06  
0.11 0.1  0.085 
      L 
1.1181242  0.15565202 0.13851602 
0.51657908 2.0195493  0.19170903 
0.19087603 0.23942804 1.1305002         

Different implementations of APL have somewhat different features and capabilities for 
transferring data into and out of workspaces, but most of the primitive operators are the same.  In 
this volume we provide user-defined functions and illustrate additional primitive functions as 
needed for most of the common tasks in IOA successively as we work though the chapter 
exercises included in the Workbook.  In a final chapter of this manual, we illustrate use of the 
same functions in several larger sized real-world applications.  

The collection of functions presented here were originally developed in a variety of APL 
systems. The versions presented are intended to work in essentially any APL system available 
today.  Modern APL systems have many additional features as well.  To experiment with APL, 
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the appendix to this volume includes information on the installation and use of some distinctive 
features of a powerful and well-supported APL system known as Dyalog APL that is currently 
available without charge for personal and non-commercial use at http://www.dyalog.com. Other 
APL systems, however, are just as suitable for the functions developed in this volume. 

For the balance of this volume, we will use the computational exercises assembled for the 
workbook accompanying the text, as a means to explore IOA as well as well as to continue to 
develop features of APL useful to facilitating that exploration. Modern implementations of APL, 
such as Dyalog APL above, have many more powerful features that are worth exploring but, in 
this volume, we develop and use only features to facilitate explore IOA and that are common on 
essentially all versions of APL available today.    

http://www.dyalog.com/
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Chapter 2, Foundations of Input–Output Analysis  
Chapter 2 introduces Leontief’s conceptual input–output framework and explains how to develop 
the fundamental mathematical relationships from the interindustry transactions table. The key 
assumptions associated with the basic Leontief model and implications of those assumptions are 
recounted and the economic interpretation of the basic framework is explored. The basic 
framework is illustrated with a highly aggregated model of the US economy. In addition, the 
“price model” formulation of the input–output framework is introduced to explore the role of 
prices in input–output models. Appendices to this chapter include a fundamental set of 
mathematical conditions for input–output models, known as the Hawkins–Simon conditions. The 
exercise problems for this chapter explore applications of the basic mathematical relationships of 
input-output analysis.  

 

Problem 2.1: Basic Input-Output Relationships  
This problem explores the relationships of the fundamental input-output analysis identities 
developed in chapter 2:  = +x Zi f  and = +x Ax f  where 1ˆ −=A Zx .  

Problem 2.1 Overview 
Consider a two-sector economy (agriculture and manufacturing), the basic data for which are the 
matrix of interindustry transactions, Z, and vector of total outputs, x, expressed in dollar values, 
specified as:  

500 350 1,000
   

320 360 800
   

= =   
   

Z x   

Rearranging terms in the first input-output identity, = +x Zi f , to = −f x Zi  makes it easy to 
calculate the vector of final demands, f, for this economy as 

1,000 500 350 1 1,000 850
  = 

800 320 360 1 800 680
150
120

          
= − = − − =          

          
f x Zi   

To illustrate the process of impact analysis, i.e., computing the impact on industrial 
production in the economy resulting from a new final demands presented to the economy, we 
specify new final demands as 1f  increased by $50 and 2f decreased by $20, so that the vector of 

new final demands is 
200
100

new  
=  
 

f .  To determine the production of total output for each sector 

in this economy necessary to support these new levels of final demand, we first invoke the basic 
Leontief model assumptions defining the matrix of technical coefficients or direct requirements: 

1 500 350 1/1000 0
320 360 0 1/ 800

.5 .4375
ˆ

.32 .45
−     

= = =    
     

A Zx  
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We can compute a “round-by-round” approximation of the impacts of the new final 
demands on this economy to intuitively illustrate the effect of these new final demands on total 
industrial production throughout the economy by computing, first, the direct requirements to 
satisfy the new final demand vector added to the final demands themselves, new new+f Af , then 
added the production necessary to supply that first “round” of direct requirements, ( )newA Af , 
and so on. Mathematically, as discussed in chapter 2, this is expressed as the infinite power 
series 2( ) ( )new new new new new= + + + = + + +x f Af A Af I A A f  . This infinite power series 
ultimately converges to the total amount of production, required directly and indirectly through 
the successive rounds of intermediate industrial production, to support the new final demands. 

Terminating the power series is an approximation of the “exact” values found by 
rearranging = +x Ax f  as 1( )−= −x I A f  or =x Lf  where 1 2( ) n−= − = + + + +L I A I A A A   
with increasing precision of the approximation as n increases. The matrix of total 
requirements, L, is often referred to as the Leontief inverse.  

For this economy, computing the “round by round” requirements for the first five terms 
yields only a rough approximation of the total outputs in the economy necessary to satisfy the 

new final demands: 2 4 650.81
( )

453.98
new new  

= + + + =  
 

x I A A A f , compared with the “exact” value, 

1,138.90
844.40

new new  
= =  

 
x Lf  where 1 4.07 3.24

( )
2.37 3.7

−  
= − =  

 
L I A . It is a rough approximation 

because, in this particular case, the power series converges very slowly, e.g., for 25n = , the 

approximation is 25 1,122.80
( )

831.60
new new  

= + + + =  
 

x I A A f
 , compared again with the “exact” 

value, 
1,138.90
844.40

new  
=  
 

x , and it is not until 57n =  that new new=x x for both elements within 0.1. 

This feature of slow convergence, however, is not always the case depending upon the 
characteristics of A.  For example, if .01= ×A A , for the same vector of final demands, 
convergence, i.e., when new new=x x for both elements within 0.1, occurs at 6n = . This result is 
analogous to the result in ordinary algebra, 2 31/ (1 ) 1 na a a a a− = + + + + +  for a scalar a 
where 1a < . For example, if .427a = , this series converges to within 0.001 at 8n =    while, for 
.0427, i.e., .01a , the series converges at 2n = . 

Computational Notes 
In order to solve this problem with APL, we need to introduce a number of additional features of 
APL programming.  The first is a new monadic primitive function, designated with the character 
/, known as reduction. Reduction specifies an operation (often referred to as the operand) and 
produces a derived, combined function that is then applied to an array supplied as the argument.  
For example, the APL expression +/x takes the dyadic function addition and applies it 
repeatedly to the elements of the array (vector in this case) x, presented as the right argument. 
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So, “plus reduction” of a three-element vector x is simply the sum of all the elements of x, which 
can be found as x[1]+x[2]+x[3], but much more simply as +/x. For example, 

      x←10 20 30 
      x[1]+x[2]+x[3] 
60 
      +/x 
60 

 For higher order arrays, reduction applies to a specific dimension.  For example, with 
matrices, the rows are considered the first dimension and the columns the second.  By default, 
the reduction operator assumes the last dimension, so that for a matrix Q, the default operation 
would result in the rows sums of Q, as in  

      Q 
1 2 3 
4 5 6 
7 8 9 
      +/Q 
6 15 24 

To specify the dimension (overriding the default), the index of the dimension follows the 
operator before specifying the argument, so, for example, to compute the column sums of Q, the 
expression would be 

    +/[1]Q 
12 15 18 

and, of course, the default expression could be expressed equivalently as 

    +/[2]Q 
6 15 24 

Just as there is a default notation for reduction along the last dimension of an array, invoked for 
“plus reduction” by +/, there is also a default notation for reduction along the first dimension, 
denoted by the character ⌿, known as reduce first. We invoke “plus reduction” by +⌿, which for 
the matrix Q is 

      +⌿Q 
12 15 18    

The reduction operator can be used with many other primitive functions as well. For 
example, “times reduction,” or the successive multiplicative product of all elements of a vector is 
found as  

      x←10 20 30 
      x[1]×x[2]×x[3] 
6000 
      ×/x 
6000 
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 Also useful is the dyadic form denoted by the reduction function character, known as 
compression, which takes as the left argument a vector of zeroes or ones (referred to as a logical 
array) specifying which elements of a vector specified as the right argument are to be returned as 
an explicit result, as in 

      1 0 1 0/1 2 3 4 
1 3   

If compression retrieves none of the elements of the right argument the function returns an empty 
or null vector as the explicit result, i.e., as noted earlier, a vector with no elements which has 
shape 0, as in 

          ⍴1 2 3 4 
4 
      ⍴1 0 1 0/1 2 3 4 
2 
      ⍴0 0 0 0/1 2 3 4 
0 

In IOA, among the most common mathematical operations necessary is matrix 
multiplication.  For example, consider the following two arrays: 

Q 
1 2 3 
4 5 6 
7 8 9 
      R 
1 1 1 
1 0 1 
0 0 1 

The matrix product, QR, could be accomplished by computing the result for each element of the 
matrix product. Traditionally, and in most computer languages, this would mean specifying each 
element in QR, such as, for the upper left element of QR, as the sum of the element-by-element 
multiplication of the first row of Q by the first column of R, and so on for every element of QR 
as in 

      +/Q[1;]×R[;1] 
3 

The operation could be replicated for each the 9 combinations of rows and columns of Q and R 
to specify the corresponding elements of QR, which would be the process in most computer 
languages. In APL, this process can be accomplished much more efficiently by the operator 
inner product which combines two primitive functions operating on two arrays specified as left 
and right arguments. The symbols for the two primitive functions employed are separated by a 
period. For example, matrix multiplication of Q and R, using the inner product would be 

     Q+.×R 
 3 1  6 
 9 4 15 
15 7 24 
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 Finally, another APL feature necessary for solving this problem is the mechanism for 
branching and looping in APL functions. While many if not most tasks can be accomplished in 
APL by means of operations on arrays, sometimes a sequence of operations in a function must be 
altered and the order of execution of statements directed by branching and looping, as is common 
in most computer languages. When necessary, to accomplish this in APL, a unique symbol is the 
“branch to” character →. In many modern versions of APL this character can be replaced with the 
equivalent clause, :GoTo. The argument specified to the right of the “branch to” character is a 
label designating the destination of the next APL statement in a user-defined function to be 
interpreted.  The label is placed at the beginning of the statement and followed by a colon.   

The right argument of a “branch to” statement can be and often is another APL 
expression. If the result of that expression is a null vector (as defined earlier) then control 
transfers to the line following the “branch to” statement in the function.  

 The “branch to” statement can be executed conditionally as well, i.e., going to a labeled 
location (statement) in an APL function when a particular condition is satisfied, which can be 
accomplished with a family of primitive logical operators that compare arrays specified as 
arguments. For example, using the logical operator equals, designated not surprisingly by the 
character =, we can query whether or not the left argument is equal to the right argument, the 
result of which is a 1 if the condition is true and a 0 if the condition is false, as in 

      3=3 
1 
      3=5 
0 
      3=1 2 3 4 5 
0 0 1 0 0 

We can use a logical expression to specify the condition for conditional branching in a function. 
For example, consider the following expression: 

→(i=4)/L1 

This specifies that if the value of i is 4 then control will transfer to the statement located at label 
L1. If the value of i is not 4 then the “branch to” statement will transfer control by default to the 
next line in the function, since the result of the compression operation is an empty vector. As an 
aside, if the result of an APL expression appears as the operand of “branch to” statement is a 
vector, only the first element of the vector will be used.   

So, for this problem, collecting these new primitive functions and operators described so 
far, consider the following APL function named RINV to calculate the round-by-round 
approximation of the Leontief inverse as 1 2( ) n−= − = + + + +L I A I A A A   : 

[0] LN←n RINV A;i;AN;m           
[1] LN←(AN←A)+(2⍴m)⍴1,(m←1↑⍴A)⍴0 
[2] i←2                          
[3] L1:LN←LN+AN←AN+.×A            
[4] →(n≥i←i+1)/L1                
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In this function, the number of terms to be calculated in the power series approximation of the 
Leontief inverse, n, is specified as the left argument and the matrix of technical coefficients is the 
right argument A. The explicit result returned by the function is the nth order approximation of 
the Leontief inverse, defined as LN. Note how this function operates.  First, LN is initialized as 
+I A (a first order approximation of L) by first determining  the number of rows or columns of 

the A, found by retrieving the first element of the shape of A and storing it as the local variable 
m. The value of m is used to specify an identity matrix of the appropriate size ( m m× ) and then 
adding it to A, the result of which is also stored as the “current” value of 2 n+ + + +I A A A , 
named AN.  

We then specify that we will be calculating the 2nd order approximation of the power 
series by defining the local variable i and assigning it the value of 2. Then we calculate the value 
of 2A  by matrix multiplication of AN (the initial value of which was A) and adding the result to 
first order approximation of the power series +I A  (saved initially as the variable LN) and then 
saving the result ovewriting the previous value of LN, which now becomes the 2nd order 
approximation of the power series, 2+ +I A A .  

Specifying LN in this way allows us to iteratively add successive terms of nA to the 
result until we reach the specified number of terms of the approximation, n. The APL statement 
to be successively computed is designated with the label L1 and the “branch to” statement 
defines the number of times the statement is executed. That is, for each iteration, the value of i 
is incremented by 1 and tested to see if it is equal to or less than the desired number of successive 
terms n. If so, then the control is transferred again to the operative statement at L1 and, if not, the 
control is transfer to the next line of the function which does not exist, concluding execution of 
the function and returning the current value of AN as the explicit result.  

To illustrate the use of the function RINV, consider the following, by now familiar matrix 
of technical coefficients 

A 
0.06 0.06 0.105 
0.23 0.48 0.06  
0.11 0.1  0.085 

We compute the exact value of the Leontief inverse with the function, LINV, developed earlier: 

      LINV A 
1.118124179  0.1556520249 0.1385160222 
0.5165790827 2.019549323  0.1917090307 
0.1908760305 0.2394280383 1.130500181 

We can compute successive approximations of the Leontief inverse as 

      2 RINV A 
1.08895 0.1029 0.123825 
0.3608  1.7302 0.11805  
0.14895 0.1631 1.109775 
      3 RINV A 
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1.10262475 0.1271115 0.131038875 
0.4325795  1.863949  0.15173025  
0.16852525 0.1982025 1.119756625 
      4 RINV A 
1.109807406  0.1402748925 0.1345405931 
0.4713533675 1.935823315  0.1701548587 
0.1788713188 0.2172243775 1.124766614   

We can compare the successive approximations with the exact value to determine the accuracy 
of the approximations. 

Finally, another pair of primitive functions worth introducing here use to help with 
solving this problem are designated by the characters ceiling (⌈) and floor (⌊). In their dyadic 
forms these primitive functions compare the left and right arguments and return as the result 
which is the larger or smaller of the two arguments, respectively.  So, for example 

10⌊20 
10 
      10⌈20 
20 
      10⌈1 5 15 25 
10 10 15 25 

 If we use the ceiling function in a reduction operation, the result is the largest element of 
a vector presented as the argument and the floor reduction operation yields the smallest element 
of the vector, as in 

 

      x←1 5 15 25 
      ⌈/x 
25 
      ⌊/x 
1 

 We can use ceiling reduction to compare successive approximations of L using RINV 
with the exact value of L. To do this we can compute the largest of the element-by-element 
differences between the successive approximation of L and L itself. In this case we find that at 

12n =  all elements of the RINV approximation of L are within .001 of the exact value of L.  

    .001≥⌈/⌈/(LINV A)-11 RINV A 
0 
     001≥⌈/⌈/(LINV A)-12 RINV A 
1 
    12 RINV A 
1.118065703  0.155543786  0.1384881424 
0.5162608026 2.01896019   0.191557284  
0.1907916027 0.2392717631 1.130459928   

 We now have assembled APL tools sufficient to solve Problem 2.1.  The first question is 
to compute the vector of final demands given the specified vector of total outputs and matrix if 
interindustry transactions: 
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      f←(x←1000 800)-+/Z←2 2⍴500 350 320 360 
      f 
150 120  

Next the task is to compute the new production in each sector generated by changes in final 
demand involving an increase in sector 1 by 50 and a decrease in sector 2 by 20. 

      ∆x←(L←LINV A←Z AMAT x)+.×∆f←f+50 ¯20 
      ∆x 
1138.888889 844.4444444 

Next the problem is to produce an approximation to this answer by using the first five terms in 
the power series approximation.  

      (5 RINV A)+.×f+50 ¯10 
741.7648711 537.8563969 

Finally, we already computed the exact answer using the actual Leontief inverse above. 

      (LINV A)+.×f+50 ¯20 
1138.888889 844.4444444 

Problem 2.2: Basic Input-Output Relationships Expanded 
This problem explores a more extensive example of basic input-output relationships.  

Problems 2.2 Overview 
We specify interindustry sales and industry total outputs in a three-sector national economy for 
year t, given in the following table, where values are shown in thousands of dollars. (S1, S2, and 
S3 designate the three industry sectors). 

  Interindustry Sales Total Output   S1 S2 S3 

S1  350 0 0 1,000 
S2  50 250 150 500 
S3  200 150 550 1,000 

From the table, the matrix of interindustry transactions, tZ , and the vector of total outputs, tx , 

are defined as 
350 0 0
50 250 150
200 150 550

t

 
 =  
  

Z , and 
1,000
500

1,000

t

 
 =  
  

x . The matrix of technical coefficients for 

year t, tA , and the corresponding matrix of total requirements, tL , are then found as

1

.35 0 0
ˆ( ) .05 .5 .15

.2 .3 .55

t t t −

 
 = =  
  

A Z x , and 1

1.538 0 0
( ) .449 2.5 .833

.983 1.667 2.778

t t −

 
 = − =  
  

L I A .  

Suppose that government tax policy changes generate final demands for the products 
delivered by sectors 1, 2, and 3 projected for next year (year t + 1) to be 1,300, 100, and 200 for 
the three sectors, respectively (also measured in thousands of dollars). The corresponding total 
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outputs that would be necessary from the three sectors to meet this projected new demand, 
assuming that there is no change in the technological structure of the economy (that is, assuming 

that the A matrix does not change from year t to year t + 1), would be 1 1

2,000
1,000
2,000

t t t+ +

 
 = =  
  

x Lf  for 

1

1,300
100
200

t+

 
 =  
  

f . The original vector of final demands for year t is computed as 

650
50

100

t t t

 
 = − =  
  

f x Z i , from which we can observe that 1 2t t+ =f f , so it can be easily verified that 

that 1 2t t+ =x x  since 1 1 2 2t t t t t t+ += = =x Lf Lf x , illustrating the linearity of the Leontief model.  

Computational Notes 
We have all the APL tools we need to solve this problem. 
 
      Z←3 3⍴350 0 0 50 250 150 200 150 550 
      x←1000 500 1000 
      L←LINV A←Z AMAT x 
      A  
0.35 0   0    
0.05 0.5 0.15 
0.2  0.3 0.55 
      L 
1.538461538  0           0            
0.4487179487 2.5         0.8333333333 
0.9829059829 1.666666667 2.777777778   

For the new vector of final demands, we compute the corresponding vector of total outputs as 

      L+.×1300 100 200 
2000 1000 2000 

The original vector of final demands is found by 

      f←x-+/Z 
      f 
650 50 100 

Problem 2.3: Open and Closed Leontief Models 
This problem illustrates the distinctions between the open and closed Leontief models. 

Problem 2.3 Overview 
Using the data of problem 2.1, the interindustry transactions matrix and vector of total outputs, 

respectively, were defined as 
500 350
320 360
 =   

Z  and 
1,000
800

 =   
x .  
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Suppose that the part of the original final demands attributable to household 
(consumption) expenditures for this economy are $90 from sector 1 and $50 from sector 2 with 
the remaining parts of final demand reported as exports of products 1 and 2. Suppose, further, 
that (1) payments from sectors 1 and 2 for household labor services were $100 and $60, 
respectively; (2) that total household (labor) income in the economy was $300; (3) that 
household purchases of labor services was $40; and (4) that any new final demands presented to 
the economy are for exports.  

This additional information allows us to expand Z and x of the basic data for two-sector 

model from Problem 2.1, to be 
500   350   90
320   360   50
100     60   40

c

 
 =  
  

Z  and 
1,000
800
300

c

 
 =  
  

x . This illustrates the 

process known as closing the model to households. The result is a three-sector representation of 
the economy for which the matrices of direct and total requirements, respectively, are 

1

.5 .438 .3
ˆ( ) .32 .45 .167

.1 .075 .133

c c c −

 
 = =  
  

A Z x  and 1

5.820  5.036  2.983
( ) 3.686  5.057  2.248

0.990  1.019  1.693

c c −

 
 = − =  
  

L I A . 

We can now find the impacts in terms of required new production for sectors 1 and 2 of the new 
final demands specified in Problem 2.1, but this time using the Leontief inverse for the new, 
expanded matrix of technical coefficients of dimension 3 3× . The vector of new final demands 

(now attributed solely to exports) is 
200
100

0

c

 
 =  
  

f , and we compute the resulting new vector of 

total outputs necessary to support those final demands as  
1,667.5
1,242.9

300

c c c

 
 = =  
  

x L f . Since in 

Problem 2.1 we found 
1,138.9
844.4

o o o  
= =  

 
x L f  for 0 200

100
 

=  
 

f , the increases in outputs for both 

sectors 1 and 2 using the closed model reflect increased interindustry production resulting from 
the inclusion of households as an endogenous sector in the 3-sector model.  
 

Computational Notes 
We have all the APL tools to solve this problem. First, compute A and L, which in APL we 
define as A2 and L2, respectively. 
 
      Z2←3 3⍴500 350 90 320 360 50 100 60 40 
      x2←1000 800 300 
      L2←LINV A2←Z2 AMAT x2 
      A2 
0.5  0.4375 0.3          
0.32 0.45   0.1666666667 
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0.1  0.075  0.1333333333 
      L2 
5.819663567  5.03604639  2.982969387 
3.6861352    5.056942848 2.248458886 
0.9904921116 1.01870233  1.692613102 
 
The vector of total outputs for the new vector of final demands is then 
 
      L2+.×200 100 0 
1667.537352 1242.921325 299.9686553 

Problem 2.4: The Hawkins-Simon Conditions 
This problem explores the Hawkins-Simon conditions for the Leontief model developed in 
chapter 2.  

Problem 2.4 Overview 
Consider an economy organized into three industries: (1) lumber, (2) machinery, and (3) paper 
characterized by the following:  
• A consulting firm estimates that last year the lumber industry had an output valued at $50 

(assume all monetary values are in units of $100,000), 5 percent of which the industry 
consumed itself; 70 percent of the lumber industry’s output was consumed by final demand; 
20 percent by the paper industry; and 5 percent by the machinery industry.  

• The machinery industry consumed 15 percent of its own products, out of a total of $l00; 25 
percent went to final demand; 30 percent to the lumber industry; 30 percent to the paper 
industry.  

• Finally, the paper industry produced $50, of which it consumed 10 percent; 80 percent went 
to final demand; 5 percent went to the lumber industry; and 5 percent to the machinery 
industry.  

Using this information the matrix of interindustry transactions and the vector of total 

outputs for this economy are 
2.5 10 2.5
2.5 5 2.5
30 30 15

 
 =  
  

Z  and 
35
40
25

 
 =  
  

f , respectively, so the vector of 

total outputs, x,  and the matrix of technical coefficients, A, are then 
35
40
25

 
 =  
  

f , 

50
50

100

 
 = + =  
  

x Zi f and 1

.05 .2 .025
ˆ .05 .1 .025

.6 .6 .15

−

 
 = =  
  

A Zx . The Hawkins-Simon conditions require 

positivity of all principal minors of 
.95 .2 .025

( ) .05 .9 .025
.6 .6 .85

− − 
 − = − − 
 − − 

I A . Here the three first-order 

principal minors are the main diagonal elements, 0.95, 0.9 and 0.85; the three second-order 
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principal minors are 0.845, 0.75 and 0.793, and the third-order principal minor is just the 
determinant 0.687− =I A , so all the principal minors are positive (see Appendix A of the text 
for discussion of minors in matrix operations).  

The Leontief inverse for this economy is 1

1.092 .269 .04
( ) .084 1.154 .036

.830 1.005 1.23

−

 
 = − =  
  

L I A . If we 

anticipate an economic recession reflected in decreased final demands for lumber, machinery, 
and paper of 25, 10, and 5 percent, respectively. The vector of new final demands is then

1

2

3

(.75) 26.25
(.90) 36.00
(.95) 23.75

new

f
f
f

   
   = =   
      

f and the corresponding vector of total outputs supporting this change in 

final demand is found by 1

39.317
( ) 44.606

87.181

new new−

 
 = − =  
  

x I A f  for 
1

2

3

(.75) 26.25
(.90) 36.00
(.95) 23.75

new

f
f
f

   
   = =   
      

f . The new 

matrix of interindustry transactions is 
  1.97    8.92    2.18

ˆ( )   1.97    4.46    2.18
 23.59  26.76  13.08

new new

 
 = =  
  

Z A x , so the vectors of 

value-added inputs and of intermediate outputs, respectively, are then computed as 

( ) ( ) 11.795  4.461 69.744new new new   ′ ′= − =v x i Z and 
13.067

( )  8.606
63.431

new new

 
 = =  
  

u Z i .  

Computational Notes 
We can compute the Hawkins Simon conditions using the method of cofactors by first finding 
the determinant of the matrix ( )−I A but it is a tedious calculation and we won’t show all the 
steps here. Instead, included in the appendix to this volume, is a monadic user-defined function 
DETER which returns the determinant (if one exists) of a square matrix presented as the 
argument.  

Another useful primitive APL function for this problem is transpose designated by the 
character ⍉. The monadic form of transpose for a matrix simply interchanges the rows and 
columns as in 

Q←2 3⍴1 2 3 4 5 6 
      Q 
1 2 3 
4 5 6 
      ⍉Q 
1 4 
2 5 
3 6 
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The dyadic version specifies the order of transposition of the dimension (mostly applicable to 
arrays of 3 dimensions or more) but as you will see below of other use as well.  For example, 
with a matrix, the expression 2 1⍉Q is equivalent to the expression ⍉Q and the expression 1 
2⍉Q is equivalent to Q, as if the original matrix was not transposed at all. 
 
     2 1⍉Q 
1 4 
2 5 
3 6 
     1 2⍉Q 
1 2 3 
4 5 6 
 
For matrices this isn’t a very interesting result (it is for higher order arrays) but it does provide a 
mechanism to retrieve the elements of the principal diagonal of a matrix. For example, consider 
the matrix R defined by 
 
      R←3 3⍴ 1 2 3 4 5 6 7 8 9 
      R 
1 2 3 
4 5 6 
7 8 9 
 
The principal diagonal of R can easily be found by the dyadic transpose as 
 
      1 1⍉R 
1 5 9 
 
 Another helpful APL feature for this problem is the dyadic operator compression as 
applied to matrices.  If the right-hand argument is a matrix, then the left-hand argument specifies 
the columns to be extracted.  For example, if we wish to extract the first two columns from the 
matrix R, the APL expression would be 
 
      1 1 0/R 
1 2 
4 5 
7 8 
  
To compress along the rows, the character / is replaced by ⌿ , so to extract the first two rows of 
R the APL expression would be 
 
      1 1 0⌿R 
1 2 3 
4 5 6 
 
These operations can be combined as well, so, for example, we can extract the upper left 2 2×   
submatrix of R (equivalent to 2 2↑R) with the successive matrix compression operations 
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      1 1 0⌿1 1 0/R 
1 2 
4 5 
 
 This provides a convenient method for computing cofactor matrices in testing the Hawkins 
Simon conditions. For this problem to test the Hawkins Simon conditions, we first compute the 
determinant of ( )−I A  by 
 
     Z←3 3⍴2.5 10 2.5 2.5 5 2.5 30 30 15 
     f←35 40 25 
     x←50 50 100 
     A←Z AMAT x 
     A 
0.05 0.2 0.025 
0.05 0.1 0.025 
0.6  0.6 0.15  
     DET←DETER (3 3⍴1,3⍴0)-A 
     DET 
0.68675 
 
Then, the principal minors of ( )−I A  are just the diagonal elements, as in 
      I←3 3⍴1,3⍴0 
      IA←I-A 
      IA 
 0.95 ¯0.2 ¯0.025 
¯0.05  0.9 ¯0.025 
¯0.6  ¯0.6  0.85 
       1 1⍉IA 
0.95 0.9 0.85 
 
And the second order principal minors are found by using the compression operator as 
 
     DETER 1 1 0⌿1 1 0/IA 
0.845 
     DETER 1 0 1⌿1 0 1/IA 
0.7925 
     DETER 0 1 1⌿0 1 1/IA 
0.75 
 
The Leontief inverse for this problem is found by 
 
      L←LINV A 
      L 
1.0921005   0.26938478 0.040043684 
0.083727703 1.1539862  0.036403349 
0.82999636  1.0047324  1.2304332   
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Hence, the total outputs necessary to support the new vector of final demands is found by  
 
      x2←L+.×f2←f-f×.25 .1 .05 
      f2 
26.25 36 23.75 
      x2 
39.316527 44.605934 87.180561 
 
 Finally, it is convenient to use several functions we have developed already to create a 
function that diagonalizes a vector, i.e., places the elements of a vector along the main diagonal 
of a matrix with all the of non-diagonal elements set to zero. We can easily do this with an APL 
expression that element-by-element multiplies an appropriately size identity matrix by a matrix 
composed of the elements of the vector to be diagonalized repeated in each row.  For example, 
 
      x←50 50 100 
      x 
50 50 100 
      (3 3⍴1,3⍴0)× 3 3⍴x 
50  0   0 
 0 50   0 
 0  0 100 
 
We can generalize this expression with a user-defined function DIAG, defined by 
 
[0] R←DIAG x;n                 
[1] R←((2⍴n)⍴1,n⍴0)×(2⍴n←⍴x)⍴x 
 
This is a monadic function that receives a vector x as the argument and returns as the function’s 
explicit result a square matrix with the values of the vector x placed along the principal diagonal 
of the matrix with zeroes elsewhere in the matrix. 
 Our new function DIAG allows us to generate the transactions matrix corresponding to a 
matrix of technical coefficients matrix and vector of total output by means of the input-output 
identity ˆ=Z Ax  in APL as 
 
      A+.×DIAG x 
 2.5 10  2.5 
 2.5  5  2.5 
30   30 15    
 
For the problem at hand, we use the new vector of total outputs, x2, to generate the new matrix 
of interindustry transactions 
 
      Z2←A+.×DIAG x2 
      Z2 
 1.9658264  8.9211867  2.179514 
 1.9658264  4.4605934  2.179514 
23.589916  26.76356   13.077084 
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And the corresponding vectors of value-added and intermediate outputs are easily obtained, 
respectively, as 
 
      w2←x2-+⌿Z2 
      w2 
11.794958 4.4605934 69.744448 
      u2←+/Z2 
      u2 
13.066527 8.6059337 63.430561 
 

Problem 2.5: Impact Analysis 
This problem assembles an input-output transactions table and explores the Hawkins-Simon 
conditions along with impact analysis for a new vector of final demands for the defined 
economy. 

Problem 2.5 Overview  
 Consider a simple two-sector economy containing industries A and B. Industry A requires 
$2 million worth of its own product and $6 million worth of Industry B’s output in the process 
of supplying $20 million worth of its own product to final consumers. Similarly, Industry B 
requires $4 million worth of its own product and $8 million worth of Industry A’s output in the 
process of supplying $20 million worth of its own product to final consumers.  

 Using these data, we define the matrix of interindustry transactions and vector of final 

demands as 
2 8
6 4
 

=  
 

Z  and 
20
20
 

=  
 

f , respectively, so the corresponding vector of total outputs 

is computed as
30

 
30
 

= + =  
 

x f Zi . Hence, the matrix of direct requirements is found by 

1 .067 .267
ˆ

.2 .133
−  

= =  
 

A Zx  and the Hawkins-Simon conditions are satisfied as positive values for 

the determinant and the principal minors of the matrix ( )−I A , i.e., 0.756− =I A , 

11(1 ) 0.993a− = , and 22(1 ) 0.867a− = .  The matrix of total requirements is then found as 

1 1.147 .353
( )

.265 1.235
−  

= − =  
 

L I A  and, for new vector of final demands, 
15
18

new  
=  
 

f , the 

corresponding vector of total outputs is computed as 
23.559
26.206

new new  
= =  

 
x Lf  and related 

interindustry activity (matrix of interindustry transactions) is 
1.571  6.988

ˆ
4.712  3.494

new new  
= =  

 
Z Ax . 

Computational Notes 
We have already developed all the APL tools to complete this problem. First, we have 
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     Z←2 2⍴2 8 6 4 
     f←20 20 
     x←f++/Z 
      x 
30 30 

The matrx of technical coefficients and the Leontief inverse along with the determinant of 
( )−I A  and the principal minors are found by 

      I←2 2⍴1,2⍴0 
      L←LINV A←Z AMAT x 
      A 
0.066666667 0.26666667 
0.2         0.13333333 
      L 
1.1470588  0.35294118 
0.26470588 1.2352941  
      DETER I-A 
0.75555556 
      1 1⍉I-A 
0.93333333 0.86666667 

And, finally, the total outputs and accompanying interindustry transactions for the new vector of 
final demands is found by 

      x2←L+.×f2←15 18 
      Z2←A+.×DIAG x2 
      x2 
23.558824 26.205882 
      Z2 
1.5705882 6.9882353 
4.7117647 3.4941176 

Problem 2.6: Round-by-Round Approximation of L for Impact Analysis 
While computer advances have considerably reduced the computational constraints for many 
applications of input-output analysis, it has also made possible the construction and use of much 
larger scale input-output models with thousands of sectors specified. This problem illustrates, on 
a small scale, practical considerations in working with very large input-output models for 
determining when using round-by-round calculations for impact analysis is a cost-effective 
substitute for using the direct computation of the Leontief inverse in impact analysis. 

Problem 2.6 Overview 

Recall that the power series, 
0

r
i

i=
=∑x A f , is a substitute for using the direct computation of the 

Leontief inverse in impact analysis, =x Lf   where  1( )−= −L I A . 

Consider the following transactions table, Z , and total outputs vector, x, for a two-sector 
economy: 
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6 2 20
   

4 2 15
= =
   
   
   

Z x  

For this economy, the vectors of value-added inputs and final demands are computed as 

[ ]10 11′ ′ ′= − =v x i Z and 
20
20
 

= − =  
 

f x Zi , respectively. With 1 .3 .133
ˆ

.2 .133
−  

= =  
 

A Zx  we show 

first that the Hawkins-Simon conditions are satisfied by positive values for the determinant and 
the principal minors of the matrix ( )−I A : 0.58− =I A , 11(1 ) 0.7a− = , and 22(1 ) 0.867a− = , so 
we consider the economy to be “well behaved.” The r-order round-by-round approximation of 

20
15
 

= =  
 

x Lf  is found as: 
0

r
i

i=
=∑x A f (remember that 0 =A I  ), shown in the following table. 

Round-by-round approximation of total outputs for 1, 2, , 10r =    

r 1 2 3 4 5 6 7 8 9 10
16.800 18.720 19.488 19.795 19.918 19.967 19.987 19.995 19.998 19.999
12.600 14.040 14.616 14.846 14.939 14.975 14.990 14.996 14.998 14.999

1x

2x  
We see from the table that 0.05j jx x− <  for both sectors ( 1, 2j = )  at 6r = .  

The specified cost of performing impact analysis on the computer using the round-by-
round method is then computed as 1 2 ( 1.5)rC c r c r= + −  where r is the order of the approximation 
( 1c is the cost of an addition operation and 2c  is the cost of a multiplication operation). Also, we 

assume further that 1 0.5c c= , that the cost of computing 1( )−−I A  exactly rather than via 
successive approximation is given by 220eC c= , and that the cost of using this inverse in impact 
analysis (multiplying it by a final-demand vector) is given by 2fC c= .  

If we want to determine whether to use the round-by-round method or to compute the 
exact inverse and then perform impact analysis, i.e., to determine the least-cost method for 
computing the solution, for one final demand vector, the equation defining the computation cost 
is 2 2 2 2 2 20.5 1.5 (0.5 1.5) (1.5 1.5) 1.5( 1)rC c r c r c r r c r c r c= + − = + − = − = −  and, from the table, for 

0.2j jx x− <  then 5r =  so 26rC c= .  

Hence, for one final demand vector, the cost of the round-by-round approximation is 
26rC c=  which is less than the cost of using the exact inverse 221e fC C c+ = , it is much more 

cost effective to use the round-by-round round method. For five final demand vectors, however, 
2 2 2 2 25(6 ) 30 4 20 4 24r e fC c c C C c c c= = + = + => , so it is more cost effective to use the exact 

method. For four final demand vectors, it turns out, the total cost of computation is 
2 2 2 2 24(6 ) 24 4 20 4 24r e fC c c C C c c c= = + = + == , i.e., the costs of both methods are identical 

so at least in terms of cost effectiveness we are indifferent as to which method to employ. 
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Computational Notes 

We have all of the APL tools needed to solve this problem. First, the basic IOA data are 
      Z←2 2⍴6 2 4 2 
      x←20 15 
      w←x-+⌿Z 
      f←x-+/Z 
      w 
10 11 
      f 
12 9 

The Hawkins-Simon conditions are satisfied 
      I←2 2⍴1,2⍴0 
      IA←I-A←Z AMAT x 
      A 
0.3 0.13333333 
0.2 0.13333333 
      IA 
 0.7 ¯0.13333333 
¯0.2  0.86666667 
      DETER IA 
0.58 
      1 1⍉IA 
0.7 0.86666667 

For convenience we create a table R comparing successive approximations of x necessary to 
support the specified vector of final demands with the exact value computed with the Leontief 
inverse. To generate the table, we can use the following dyadic function 
[0] R←f RINVTEST A;i                 
[1] R←9 3⍴0                          
[2] i←1                              
[3] L1:R[i;]←(i+1),((i+1)RINV A)+.×f 
[4] →(9≥i←i+1)/L1            

 For this problem, we use RINVTEST with the defined values for f and A to generate the table of 
successive approximations of x. 
      f RINVTEST A 
 2 18.72     14.04     
 3 19.488    14.616    
 4 19.7952   14.8464   
 5 19.91808  14.93856  
 6 19.967232 14.975424 
 7 19.986893 14.99017  
 8 19.994757 14.996068 
 9 19.997903 14.998427 
10 19.999161 14.999371 

The exact value of x is found with 



2021 August 7 

-40- 
 

      (LINV A)+.×f 
20 15 

From the table we can see that for the successive approximation of x, all elements of the 
approximation come within .05 of the corresponding exact value at 6n = . 

Problem 2.7: Impact Analysis of an Eight-Sector Economy 
This problem explores computation of the Leontief inverse and impact analysis for an eight-
sector economy (practical only with computer tools). 

Problem 2.7 Overview 
Consider the following matrix of interindustry transactions, Z, and vector of total outputs, 

x, for an eight-sector economy: 

8,565 8,069 8,843 3,045 1,124 276 230 3,464
1,505 6,996 6,895 3,530 3,383 365 219 2,946

98 39 5 429 5,694 7 376 327
999 1,048 120 9,143 4,460 228 210 2,226

4,373 4,488 8,325 2,729 2,9671 1,733 5,757 14,756
2,150 36 640 1,234 165 821 90 6,717

506 7

=Z

180 0 2,352 0 18,091 26,529
5,315 1,895 2,993 1,071 13,941 434 6,096 46,338

 
 
 
 
 
 
 
 
 
 

 

[ ]37,610 45,108 46,323 41,059 209, 403 11, 200 55,992 161,079′ =x  

We compute the matrices of direct requirements, A, and the matrix of total requirements, L, as 
the following: 

 

 

1ˆ

  .228  .179  .191  .074  .005  .025  .004  .022
  .040  .155  .149  .086  .016  .033  .004  .018
  .003  .001  .000  .010  .027  .001  .007  .002
  .027  .023  .003  .223  .021  .020  .004  .014−= =A Zx
  .116  .099  .180  .066  .142  .155  .103  .092
  .057  .001  .014  .030  .001  .073  .002  .042
  .013     0    .004     0    .011     0    .323  .165
  .141  .042  .065  .026  .067  .039  .109  .288






 
 
 
 
 
 
 
 
 
 
 
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1( )

  1.339  .296    .312    .172     .034     .058   .030    .067
  .089   1.214   .209    .153     .038     .057   .025    .051
  .013    .009   1.011   .019     .034     .008   .018    .013
  .0−− − =L I A

65    .056    .034   1.306    .038     .041   .021    .041
  .265    .215    .320    .174   1.207     .230   .229    .240
  .100    .029    .045    .059     .011   1.089   .018    .074
  .109    .049    .068    .035     .054    .030   1.547   .372
  .321    .162    .210    .117     .135    .103   .269   1.506

 
 
 
 
 
 
 
 
 
 
 
  

 

For a case where final demands in sectors 1 and 2 increase by 30 percent while in sector 5 
they decrease by 20 percent with all other final demands unchanged, we first compute the base  

final demands as = −f x Ax , then new new=x Lf , for 

   3,994
 19,269
 39,348
 22,625
137,571
    -653
   8,327
 82,996

 
 
 
 
 
 = − =  
 
 
 
 
  

f x Ax , and, applying the 

changes indicated, 

5,192
25,050
39,348
22,625

110,057
653

8,327
82,996

new

 
 
 
 
 
 =  
 
− 

 
 
  

f  to yield 

  39,998
  51,181
  45,455
  40,404
177,756
  11,182
  54,929
158,687

new new

 
 
 
 
 
 = =  
 
 
 
 
  

x Lf . 

Computational Notes 
We can enter the data for the vector of total outputs and matrix of interindustry transactions as a 
string of data and reshape the transactions data to form the 8 8×  matrix by 

 x←37610 45108 46323 41059 209403 11200 55992 161079 
 Z←8565 8069 8843 3045 1124 276 230 3464 
 Z←Z,1505 6996 6895 3530 3383 365 219 2946 
 Z←Z,98 39 5 429 5694 7 376 327 
 Z←Z,999 1048 120 9143 4460 228 210 2226 
 Z←Z,4373 4488 8325 2729 29671 1733 5757 14756 
 Z←Z,2150 36 640 1234 165 821 90 6717 
 Z←Z,506 7 180 0 2352 0 18091 26529 
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 Z←Z,5315 1895 2993 1071 13941 434 6096 46338 
 Z←8 8⍴Z 

Now, using the functions we have already developed, it is straightforward to compute 

 L←LINV A←Z AMAT x 
 f←x-+/Z 

For larger matrices in APL, it is often convenient to use the format operator denoted by 
the character ⍕ to specify the precision of output displayed.  The simplest use of the format 
operator takes as the left argument the specification of the number of spaces for a column of 
formatted data and the number of significant digits to the right of the decimal point and the array 
to be formatted as the right argument.3 For example, for a vector  

      R←0.22773199 0.17888179 0.19089869 0.074161572  
      R 
0.22773199 0.17888179 0.19089869 0.074161572 

We might express R more succinctly as one of the following 

      10 4⍕R 
    0.2277    0.1789    0.1909    0.0742 
      8 5⍕R 
 0.22773 0.17888 0.19090 0.07416 

For this problem we use the format operator to show A and L in this way. 

      8 4⍕A 
  0.2277  0.1789  0.1909  0.0742  0.0054  0.0246  0.0041  0.0215 
  0.0400  0.1551  0.1488  0.0860  0.0162  0.0326  0.0039  0.0183 
  0.0026  0.0009  0.0001  0.0104  0.0272  0.0006  0.0067  0.0020 
  0.0266  0.0232  0.0026  0.2227  0.0213  0.0204  0.0038  0.0138 
  0.1163  0.0995  0.1797  0.0665  0.1417  0.1547  0.1028  0.0916 
  0.0572  0.0008  0.0138  0.0301  0.0008  0.0733  0.0016  0.0417 
  0.0135  0.0002  0.0039  0.0000  0.0112  0.0000  0.3231  0.1647 
  0.1413  0.0420  0.0646  0.0261  0.0666  0.0388  0.1089  0.2877 
      8 4⍕L 
  1.3394  0.2960  0.3115  0.1721  0.0337  0.0584  0.0299  0.0669 
  0.0887  1.2139  0.2091  0.1527  0.0382  0.0571  0.0247  0.0514 
  0.0129  0.0089  1.0111  0.0195  0.0340  0.0080  0.0175  0.0128 
  0.0646  0.0562  0.0343  1.3055  0.0384  0.0405  0.0208  0.0409 
  0.2648  0.2155  0.3196  0.1735  1.2070  0.2302  0.2294  0.2395 
  0.0999  0.0288  0.0454  0.0589  0.0111  1.0891  0.0178  0.0743 
  0.1093  0.0493  0.0684  0.0350  0.0538  0.0300  1.5472  0.3718 
  0.3214  0.1624  0.2099  0.1175  0.1351  0.1025  0.2686  1.5061 

For the new vector of total outputs, we compute 

      f2←f+f×0.3 0.3 0 0 ¯0.2 0 0 0 
      x2←L+.×f2 
      8 0⍕f2 

 
3 The format operator has many other features as well, detailed in Legrand (2009). 
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    5192   25050   39348   22625  110057    ¯653    8327   82996 
      8 0⍕x2 
   39998   51181   45455   40404  177756   11182   54929  158687 

Problem 2.8: Changes in Relative Prices Resulting From Value-Added 
Changes 
The problem explores changes in relative prices in an input-output formulation resulting from 
changes in value-added inputs.  

Problem 2.8 Overview 
Consider a two-sector input-output table measured in millions of dollars: 

  Manuf. Services 
Final 

Demand 
Total 

Output 
Manufacturing 10 40 50 100 
Services 30 25 85 140 
Value Added 60 75 135   
Total Output 100 140     

Using the table data, we define the matrix of interindustry transactions, 0 10 40
30 25=  
  

Z , 

the vector of total outputs, 0 100
140
 =   

x , and the vector of total value-added inputs 

[ ]0( ) 60 75′ =w , and we can then compute 

0 0 0 1
1 010 40 .1 .286100ˆ( )

30 25 1 .3 .1790 140

−
     = = =        

A Z x and 0 0 1 1.257 .437
( )

.459 1.377
−  

= − =  
 

L I A . For 

this formulation we will need the matrix transposes of 0A  and 0L  , i.e., 0 .1 .3
( )

.286 .179
 ′ =  
 

A  

and 0 0 1 1.257 .459
( ) [ ( ) ]

.437 1.377
−  ′ ′= − =  

 
L I A . The value-added coefficients are computed as 

[ ]0 0 0 1 60 75ˆ( ) ( ) .6 .536100 140c
−  ′= = = v w x for which the normalized prices are found, not 

surprisingly, as 0 0 0 1
( ) ( )

1c
 ′ ′= =  
 

p L v  or, perhaps more intuitively, since the transpose of a product 

of matrices is the product of the transposes of the individual matrices in the reverse order (see 
Appendix A) and the row vector, [ ]0 0 0( ) 1 1c′ = =p v L . This is not surprising since, beginning 

with the basic accounting identity, ′ ′= −w x i Z , which we can express as ˆ′ ′= −w x i Ax , we first 
postmultiply through by 1ˆ −x to obtain 1 1 1ˆ ˆ ˆ ˆ ( )c

− − −′ ′ ′ ′= = − = − = −v wx x x i Axx i iA i I A . Then, 

postmultiplying through by 1( )−−I A , the result is 1 1( ) ( )( )c
− −′− = − −v I A i I A I A  which reduces 

to the general result, c ′=v L i .  
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If labor costs in the services sector increase, causing a 25 percent increase in value added 
inputs required per unit of services and labor costs in manufacturing decrease by 25 percent, the 

new value-added coefficients, reflecting the changes are [ ]1 01.25 0
.75 .402

0 .75c c
 

= = 
 

v v , so 

the prices for the new period 1 relative to the current period 0 are [ ]1 1 0
0( ) 1.127 .881c′ = =p v L .   

Computational Notes 

We have developed all the APL tools we need to solve this problem.  First, we can compute all 
the basic quantities. 

 Z0←2 2⍴10 40 30 25 
 f0←50 85 
 x0←f0++/Z0 
 A0←Z0 AMAT x0 
 L0←LINV A0 
 L0T←LINV AT0←⍉A0 
 p0←L0T+.×vc0←60 75÷100 140 
 p1←L0T+.×vc1←1.25 0.75×vc0 

          Z             f0       x0 
    10        40        50       100 
    30        25        85       140 
  
          A0 
     0.100     0.286 
     0.300     0.179 
          AT0 
     0.100     0.300 
     0.286     0.179 
          L0 
     1.257     0.437 
     0.459     1.377 
          LT0 
     1.257     0.459 
     0.437     1.377 
      vc0,     p0 
     0.600     1.000 
     0.536     1.000 
      vc1,     p1 
     0.750     1.127 
     0.402     0.881 
  
          A1 
     0.127     0.284 
     0.298     0.139 
     

          AT1 
     0.127     0.298 
     0.284     0.139 
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          L1 
     1.291     0.425 
     0.446     1.308 
          LT1 
     1.291     0.446 
     0.425     1.308 
  
       Z,               f1,       x1 
    14        35        56       113 
    34        17        75       123 
      vc11,     p11 
     0.575     1.000 
     0.578     1.000 

 

Problem 2.9: Product Prices Changes Generated by National Corporate 
Income Tax 
This problem explores changes in relative product prices resulting from a change in value-added 
inputs generated by a national corporate income tax.  

Problem 2.9 Overview 
We use the 2003 U.S. direct requirements table given in Table 2.6. For the matrix of direct 
requirements, A, given in the table, the transpose of the Leontief inverse is 

1

  1.262  0.009  0.008  0.229  0.149  0.238  0.024
  0.006  1.075  0.003  0.119  0.085  0.293  0.024
  0.013  0.012  1.005  0.262  0.137  0.270  0.023

( )   0.057  0.034  0.006  1.342  0.156  0.29−′ ′= − =L I A 2  0.037
  0.004  0.019  0.007  0.069  1.089  0.271  0.028
  0.007  0.003  0.011  0.086  0.060  1.412  0.030
  0.007  0.007  0.025  0.126  0.085  0.314  1.034

 
 
 
 
 
 
 
 
 
  

.   

Suppose that the new corporate income tax generates increases in the total value-added 
inputs of 10 percent for primary industries (agriculture and mining), of 15 percent for 
construction and manufacturing, and of 20 percent for all other sectors. The vector of value- 
added coefficients for the original input output economy is found as 

[ ]0 .486 .633 .580 .470 .699 .629 .640c
′′= − =v i i A , so that 0 0

c′= =p L v i .  We define 
the vector of value-added growth factors, reflecting the value-added changes indicated, as  

=d [1.1   1.1   1.15   1.15   1.2   1.2   1.2]′ so that we can find the new vector of 
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value-added coefficients by 1 0

.534
1.1 0 0 0 0 0 0 .486

.6960 1.1 0 0 0 0 0 .633

.6670 0 1.15 0 0 0 0 .58
ˆ .5400 0 0 1.15 0 0 0 .47

0 0 0 0 1.2 0 0 .699 .839
0 0 0 0 0 1.2 0 .629 .754
0 0 0 0 0 0 1.2 .64

.768

c c

 
     
     
     
     = = =     
     
     
     
      

v dv . 

Hence the new prices are found as 

[ ]1 1 1.133 1.129 1.163 1.163 1.197 1.197 1.195c
′′= =p L v . 

Computational Notes 
We have developed all the APL tools we need to solve this problem. 

 vc0←1-+⌿A 
 LT←INV⍉A 
 p0←LT+.×vc0 
 vc1←vc0×d←1.1 1.1 1.15 1.15 1.2 1.2 1.2 
 p1←LT+.×vc1 

A 

     0.201     0.000     0.001     0.034     0.000     0.002     0.001 
     0.001     0.066     0.004     0.022     0.015     0.000     0.003 
     0.003     0.000     0.001     0.002     0.004     0.007     0.021 
     0.125     0.068     0.180     0.232     0.034     0.041     0.073 
     0.086     0.053     0.091     0.095     0.065     0.032     0.053 
     0.090     0.167     0.133     0.126     0.165     0.271     0.187 
     0.009     0.013     0.010     0.020     0.019     0.018     0.023 
LT 
     1.262     0.009     0.008     0.229     0.149     0.238     0.024 
     0.006     1.075     0.003     0.119     0.085     0.293     0.024 
     0.013     0.012     1.005     0.262     0.137     0.270     0.023 
     0.057     0.034     0.006     1.342     0.156     0.292     0.037 
     0.004     0.019     0.007     0.069     1.089     0.271     0.028 
     0.007     0.003     0.011     0.086     0.060     1.412     0.030 
     0.007     0.007     0.025     0.126     0.085     0.314     1.034 
  
   vc0         p0 
     0.486     1.000 
     0.633     1.000 
     0.580     1.000 
     0.470     1.000 
     0.699     1.000 
     0.629     1.000 
     0.640     1.000 
   vc1         p1 
     0.534     1.133 
     0.696     1.129 
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     0.667     1.163 
     0.540     1.163 
     0.839     1.197 
     0.754     1.197 
     0.768     1.195 

 

Problem 2.10: “Scrubbing” Imports from “U.S.-Style” IO Models 
This problem explores the process of opening a “U.S.-style” input-output economy (adopting the 
accounting conventions of national input-output tables assembled in the United States) to imports 
by “scrubbing” from the assembled interindustry transactions matrix the portion of interindustry 
transactions that represent competitive imports from outside the economy and reassigning them 
as value-added imports (noncompetitive imports are already treated as value added inputs). 

Problem 2.10 Overview 
Consider an input-output economy with three sectors: agriculture, services, and personal 

computers.  The matrix of interindustry transactions and vector of total outputs are given, 

respectively, by 
2 2 1
1 0 0
2 0 1

=
 
 
  

Z and 
5
2
2

=
 
 
  

x  so that the associated vector of final demands is 

0
1
1

= − =
−

 
 
  

f x Zi . Notice, first, that this is a closed economy where all industry outputs become 

inputs. That is, with the given vector of total outputs, x, the vector of total value-added inputs is 
found by [ ]0 0 0′ ′ ′= − =v x i Z  and, of course, the gross domestic product is 0′ ′= =v i i f . For 

this economy, 
.4 1 .5
.2 0 0
.4 0 .5

 
 =  
  

A , so we can compute 0− =I A . This means that ( )−I A is a 

singular matrix and L does not exist.  

 Suppose that we determine all the inputs for the personal computers sector are imported. 
We can create a domestic transactions matrix by “opening” the economy to imports, i.e., transfer 
the value of all inputs to personal computers to final demand. For a “U.S. style” input-output 
table, competitive imports are included in the matrix of transactions and a corresponding 
negative entry for imports is included in final demand.  

To “scrub” this transactions table of competitive imports we need to, first, subtract the 
value of imports from the first and third entries in the column for personal computers, then, add 
those amounts to the first and third entries of final demand. We define D as the matrix of 
domestic transactions where the values of competitive imports are subtracted to remove them 
from the matrix of interindustry transactions, Z, and g as the new vector of final demands where 
the values of competitive imports are added to remove imports from final demand, f, (recall that 
they were included originally in final demand as negative values).   
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Thus, 
2 2 1
1 0 0
2 0 1

 
 =  
  

Z  becomes 
2 2 1 1 2 2 0
1 0 0 1 0 0
2 0 1 1 2 0 0

−   
   = =   
   −   

D  and f becomes 

0 1 1
1 1

1 1 0

+   
   = =   
   − +   

g . The vector of total outputs, x, is unchanged, but the new vector of total value 

added is [ ]0 0 2′ ′ − =v = x iD and, hence, gross domestic product is 2′ ′= =v i i f . We then can 

compute the matrix of direct requirements as 
.4 1 0
.2 0 0
.4 0 0

 
 =  
  

A , for which 0.4− =I A  so the 

matrix ( )−I A  is non-singular and the matrix of total requirements can be computed as 

1

2.5 2.5 0
( ) .5 1.5 0

1 1 1

−

 
 = − =  
  

L I A . 

Computational Notes  
We have developed all the APL tools we need to solve this problem. 

 Z←3 3⍴2 2 1 1 0 0 2 0 1 
 x←5 2  
 f←x-+/Z 
 I←3 3⍴1,3⍴0 
 A←Z AMAT x 
 DET←DETER I-A 
 v←x-+⌿Z 
 D←3 3⍴2 2 0 1 0 0 2 0 0 
 g←1 1 0 
 L2←LINV A2←D AMAT x 
 vb←x-+⌿D 

        Z,                    f,        x 
2         2         1         0         5 
1         0         0         1         2 
2         0         1        ¯1         2 
 

v 
0         0         0 
  
A 
     0.400     1.000     0.500 
     0.200     0.000     0.000 
     0.400     0.000     0.500 
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DET 
0 

         D                            g 
         2         2         0         1 
         1         0         0         1 
         2         0         0         0 
vb 
         0         0         2 
  
A2 
     0.400     1.000     0.000 
     0.200     0.000     0.000 
     0.400     0.000     0.000 
L2 
     2.500     2.500     0.000 
     0.500     1.500     0.000 
     1.000     1.000     1.000 
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Chapter 3, Input–Output Models at the Regional Level 
Chapter 3 extends the basic input–output framework to analysis of regions and the relationships 
between regions. First, “single-region” models are presented, and the various assumptions 
employed in formulating regional models versus national models are explored. Next, the 
structure of an interregional input–output (IRIO) model, designed to expand the basic input–
output framework to capture transactions between industrial sectors in regions, is presented. An 
important simplification of the IRIO model designed to deal with the most common of data 
limitations in constructing such models is known as the multiregional input–output (MRIO) 
model. This chapter introduces the basic MRIO formulation and explores the implications of its 
simplifying assumptions along with the features of the balanced regional model which captures 
the distinction between industrial production for regional versus national markets. Finally, the 
chapter summarizes the fast-growing range of applications of MRIO analysis to multinational 
and global economic models and issues. The exercise problems for this chapter explore various 
characteristics of regional, IRIO, and MRIO model configurations and their applications.  

 

Problem 3.1: Regional Purchase Coefficients 
This problem explores the use of regional purchase coefficients to analyze regional interindustry 
activity. We begin with the data from Problem 2.2, which describes a small national economy 
that contains firms producing in each of the three industry sectors.  

Problem 3.1 Overview 
Suppose that for a regional economy within this national economy, the technological 

structure of production of firms within the region is estimated to be the same as that reflected in 
the national data, but that there is need to import into the region (from producers elsewhere in the 
country) some of the inputs used in production in each of the regional sectors. In particular, the 
percentages of required inputs from sectors 1, 2, and 3 that come from within the region are 60, 
90, and 75, respectively, which defines the vector of regional purchase coefficients as 

0.60
0.90
0.75

 
 =  
  

p . Using the matrix of technical coefficients, A, from Problem 2.2, we compute the 

regional direct requirements matrix as ˆR = =A pA
.210 0 0
.045 .450 .135
.150 .225 .413

 
 
 
  

and 

1

1.266 0 0
( ) .202 2.007 .461

.401 .759 1.879

R −

 
 − =  
  

I A is the regional total requirements matrix. If new final 

demands for the outputs of the regional producers are projected to be 1300, 100, and 200, 
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respectively, or 
1,300
100
200

new

 
 =  
  

f , the total regional production necessary to support those final 

demands is computed as the vector of regional total outputs,  1

1,645.57
( ) 555.346

973.257

new R new−

 
 = − =  
  

x I A f . 

Computational Notes 
We have developed all the APL tools needed to solve this problem. 

 Z←3 3⍴350 0 0 50 250 150 200 150 550 
 x←1000 500 1000 
 R←DIAG 0.6 0.9 0.75 
 x2←(L←INV AR←R+.×A←Z AMAT x)+.×f2←1300 100 200 

       Z                            x 
       350         0         0      1000 
        50       250       150       500 
       200       150       550      1000 
  
       R 
       0.6       0.0       0.0 
       0.0       0.9       0.0 
       0.0       0.0       0.8 
       A,                   AR,                  L 
       0.350  0.000  0.000  0.210  0.000  0.000  1.266  0.000  0.000 
       0.050  0.500  0.150  0.045  0.450  0.135  0.202  2.007  0.461 
       0.200  0.300  0.550  0.150  0.225  0.413  0.401  0.769  1.879 
  
       f2,       x2 
       1300.0    1645.6 
        100.0     555.3 
        200.0     973.3 

Problem 3.2: The Interregional Input-Output (IRIO) Model 
This problem explores the basic structure of an interregional input-output (IRIO) model.  

Problem 3.2 Overview 
The following table shows sales (in dollars) between and among two industry sectors in two 
regions, r and s. 

 

Industry 1 Industry 2 Industry 1 Industry 2
Industry 1 40 50 30 45
Industry 2 60 10 70 45
Industry 1 50 60 50 80
Industry 2 70 70 50 50

Region r Region s

Region r

Region s
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In addition, sales to final demand purchasers for each region are designated, respectively for 

regions r and s, are 
200 300

 and 
200 400

r s= =
   
   
   

f f .  

These data are sufficient to create a two-region IRIO model connecting regions r and s. 
Using the data from the table, Z is defined as the matrix of IRIO transactions, the corresponding 

vector of final demands is found as 
r

s

 
=  
  

f
f

f
, and the vector of total outputs is found as 

365
385
540
640

 
 
 = + =
 
 
 

x f Zi . Consequently, the matrix of technical coefficients is found as 1ˆ −=A Zx  

which can be partitioned into 

0.110     0.130 0.056     0.070
0.164     0.026 0.130     0.070
0.137     0.156 0.093     0.125
0.192     0.182 0.093     0.078

rr rs

sr ss

 
    = =       
  

A A
A

A A
. If, because of 

a stimulated region r economy, household demand increased by $280 for the output of sector 1 in 
region r and by $360 for the output of sector 2 in region r, the vector of changes in final demand 

is 

280
360

0
0

 
 
 ∆ =
 
 
 

f . Computing, 1

1.205 0.202 0.115 0.123
0.263 1.116 0.189 0.131

( )
0.273 0.262 1.177 0.200
0.330 0.289 0.179 1.156

−

 
 
 = − =
 
 
 

L I A , the matrix of total 

requirements, then we can compute 

409.98
475.67
170.62
196.24

r

s

∆

∆

 
    ∆ = = ∆ =       
 

x
x

x L f , defining the new necessary 

gross outputs from each of the sectors in each of the two regions to satisfy this new final 
demand. Note that the increased outputs in region s for sector 1 of 170.62 and 196.24 for sector 2 
are attributable solely to the interregional feedback effects associated with the new final demands 
in region r. 

Computational Notes 

We have developed all the APL tools needed to solve this problem. 
 Z←4 4⍴40 50 30 45 60 10 70 45 50 60 50 80 70 70 50 50 
 f←200 200 300 400 
 x←f++/Z 
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 L←LINV A←Z AMAT x 
 x2←L+.×f2←280 360 0 0 
        Z,                                     f,        x 
        40        50        30        45       200       365 
        60        10        70        45       200       385 
        50        60        50        80       300       540 
        70        70        50        50       400       640 
  
A,                                      L 
0.110     0.130     0.056     0.070     1.205     0.202     0.115     0.123 
0.164     0.026     0.130     0.070     0.263     1.116     0.189     0.131 
0.137     0.156     0.093     0.125     0.273     0.262     1.177     0.200 
0.192     0.182     0.093     0.078     0.330     0.289     0.179     1.156 
  
f2.           x2 
   280.000   409.981 
   360.000   475.665 
     0.000   170.619 
     0.000   196.240 

Problem 3.3: The Multiregional Input-Output (MRIO) Model 
This problem explores the basic structure of the multiregional input-output (MRIO) model. 

Problem 3.3 Overview 
 Suppose that you have assembled the following information on (1) the dollar values of 
purchases of each of two goods in each of two regions and (2) on the shipments of each of the 
two goods between regions: 

Purchases in Region r Purchases in Region s 

11 40rz =  12 50rz =  11 30sz =  12 45sz =  

21 60rz =  22 10rz =  21 70sz =  22 45sz =  
Shipments of Good 1 Shipments of Good 2 

1 50rrz =  1 60rsz =  2 50rrz =  2 80rsz =  

1 70srz =  1 70ssz =  2 50srz =  2 50ssz =  

These data are sufficient to generate the necessary matrices for a two-region MRIO model 
involving regions r and s. There will be six necessary matrices— ˆ ˆ ˆ ˆ,  ,  ,  ,   and ,r s rr rs sr ssA A c c c c . All 
of these will be 2 2×  matrices, configured from the transactions and trade shipments for each 
region. First, from the table we can construct the matrix of total transactions for each region as 

40 50 0 0
60 10 0 00
0 0 30 450
0 0 70 45

r

s

 
    = =    
 
 

Z
Z

Z
. These transactions for each region, rZ or sZ , include the 

inputs from all regions to support production in that region. We can configure the shipments of 
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goods 1 and 2 in a matrix defined as 

1 1

2 2

1 1

2 2

0 0
0 0

0 0
0 0

rr rs

rr rs

sr ss

sr ss

z z
z z

z z
z z

 
 
 =
 
 
  

Q

50 0 60 0
0 50 0 80

70 0 70 0
0 50 0 50

 
 
 =
 
 
 

 so the vector 

of row sums of Q is 

110
130
140
100

 
 
 = =
 
 
 

x Qi , which is the vector of total deliveries of commodities of 

each type for each region to all regions, and the vector of the column sums of Q is
[ ]120 100 130 130′= =q i Q , which is the vector of total availability from all regions of 

each commodity in each region. Hence, we can define matrix of technical coefficients as 

1

.364 .385 0 0
0 .545 .077 0 0

ˆ
0 0 0 .214 .45

0 0 .5 .45

r

s
−

 
    = = =       
 

A
A Zx

A
and the matrix of trade coefficients as 

1

.417 0 .462 0
ˆ ˆ 0 .5 0 .615

ˆ
ˆ ˆ .583 0 .538 0

0 .5 0 .385

rr rs

sr ss
−

 
    = = =       
 

c c
C Qq

c c
.  Now we compute the matrix of multiregional 

total requirements as 1

0.971     0.556 1.024     0.524
0.882     1.197 0.889     1.251

( ) 1.297     0.714 1.264     0.677
0.663     1.010 0.673     0.8 54

−

 
 
 − =  
 
  

I CA C . If the projected demands 

for the coming period are ( ) ( )50 40
 and 

50 60
r new s new= =

   
   
   

f f , then 
( )

( )

50
50
40
60

r new
new

s new

 
  

= =   
   

 

ff
f

. The 

corresponding vector of new total outputs for each sector in each region;  and r sx x , necessary to 
satisfy this new vector of final demands is found as the vector of new total outputs, 

( )
1

( )

148.778
214.539

( ) 191.718
161.772

r new
new new

s new
−

 
    = = − =       
  

x
x I CA Cf

x
.  

Computational Notes 
To solve this problem, it is helpful to develop an APL function to manage MRIO data more 
efficiently.  First, we presume that MRIO data are stored in three dimensional arrays. For 
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example, the array of interregional flows, which we will denote with the variable QQ includes a 
separate “sheet” for each commodity with each sheet including source regions designated in the 
rows and destination regions designated in the columns.  For this problem, since there are two 
commodities and two regions, the shape of QQ is 2 2 2× × , and would appear in APL as 

      QQ 
      50      60 
      70      70 
                 
      50      80 
      50      50  

 Similarly, we presume that the array of intraregional flows, which we will denote with 
the variable ZZ, includes a separate “sheet” for each region with each sheet including producing 
industries (of commodities) designated in the rows and consuming industries designated in the 
columns.  For this problem, since there are two regions and two commodities, the shape of ZZ is 
2 2 2× × , and would appear in APL as  

      ZZ 
      40      50 
      60      10 
                 
      30      45 
      70      45   

 Note that when working with arrays of dimension larger than two it is important to keep 
track of how the indices reference locations in the array.  For QQ and ZZ, the first dimension 
comprises the “sheets” of the three-dimensional array, the second the rows of each sheet, and the 
third the columns of each sheet. For example, you can retrieve the first “sheet” of QQ by 

      QQ[1;;] 
      50 60 
      70 70 

In addition, the behavior of operators is sensitive to the shape of the array.  For example, 
reduction operations presume that the operation will be carried out on the last dimension of the 
array unless otherwise specified.  For example, the expression +/QQ would sum along the 
columns of each sheet of QQ, as in 

      +/QQ 
      110 140 
      130 100 

In our case, this expression is equivalent to +/[3]QQ for the three-dimensional array. 
Similarly, the expression +/[2]QQ would sum along the rows of each “sheet” of QQ, and 
+/[1]QQ  (equivalently +⌿QQ) would sum across the first dimension of QQ, i.e., sum across the 
“sheets.”   For this problem the expression +/QQ is important since it results in a matrix in which 
each column is the total output vector of each region, summing the deliveries of each commodity 
to all regions including itself. We will denote that matrix by XX.  Hence, to specify the basic data 
for the MRIO model we have 
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 ZZ←2 2 2⍴40 50 60 10 30 45 70 45 
 QQ←2 2 2⍴50 60 70 70 50 80 50 50 
 XX←+/QQ 

To convert the basic data to the more conventional two-dimensional format, several new APL 
functions are useful.  The first in a monadic function GENQ that receives as its argument a three-
dimensional MRIO commodity flows array (such as QQ) and returns as its explicit result the 
interregional commodity flows matrix in the familiar two-dimensional format. 

[ 0]  CC←GENQ QQ;i;j;l;m;ns;nr;CQ       
[ 1] ⍝Generate big MRIO Q (comm flows)  
[ 2] ⍝from 3D interregional comm flows  
[ 3]  CQ←((ns←1↑⍴QQ),2⍴nr←¯1↑⍴QQ)⍴0×i←1 
[ 4] L1:CQ[i;;]←QQ[i;;]                 
[ 5]  →(ns≥i←i+1)/L1                    
[ 6]  CC←((2⍴nr)×ns)⍴l←m←0×i←j←1        
[ 7] L2:CC[m+⍳ns;l+⍳ns]←DIAG,CQ[;i;j]   
[ 8]  l←l+ns                            
[ 9]  →(nr≥j←j+1)/L2                    
[10]  j←1+l←0×m←m+ns                    
[11]  →(nr≥i←i+1)/L2           

In our case this is  

      Q←GENQ QQ 
 Q 
50  0 60  0 
 0 50  0 80 
70  0 70  0 
 0 50  0 50  
 

The second is a similar monadic function GENZ that receives as its argument a three-dimensional 
intraregional interindustry transactions array (such as ZZ) and returns as its explicit result the 
intraregional transactions matrix in the familiar two-dimensional format. 

[0]  ZZ←GENZ ZZZ;i;j;l;M;nr;ns   
[1] ⍝Generate MRIO Big ZZZ from  
[2] ⍝3 D interregional flows ZZZ 
[3]  nr←1↑⍴ZZZ ⋄ ns←¯1↑⍴ZZZ      
[4]  ZZ←((2⍴nr)×ns)⍴l←0×j←1      
[5] L2:M←ZZZ[j;;]                
[6]  ZZ[l+⍳ns;l+⍳ns]←M           
[7]  l←l+ns                      
[8]  →(nr≥j←j+1)/L2   

In our case this is 

      Z←GENZ ZZ 
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Z 
40 50  0  0 
60 10  0  0 
 0  0 30 45 
 0  0 70 45 

We can now generate the vectors of total industry outputs and total commodity outputs as 

      x←+/Q 
      x 
110 130 140 100 
      q←+⌿Q 
      q 
120 100 130 130 

We can now compute C as 

      C←Q AMAT q 
      C 
0.41666667 0   0.46153846 0          
0          0.5 0          0.61538462 
0.58333333 0   0.53846154 0          
0          0.5 0          0.38461538 

and A as 

      A←Z AMAT x 
      A 
0.36363636 0.38461538  0          0    
0.54545455 0.076923077 0          0    
0          0           0.21428571 0.45 
0          0           0.5        0.45 

and, finally, L as 

      L←(LINV C+.×A)+.×C 
      L 
0.97111491 0.55644409 1.0238482  0.52410525 
0.88159175 1.1970088  0.88866106 1.2510417  
1.2974875  0.71361698 1.2639161  0.67676551 
0.66302868 1.0098041  0.67294214 0.8535466 

So, for the new vector of final demands, defined as f2, wc compute the corresponding vector of 
total outputs as 

      f2←50 50 40 60 
      x2←L+.×f2 

      f2 
50 50 40 60 
      x2 
148.77819 214.53897 191.7178 161.77212 
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Problem 3.4: Distinctive Features of Regional Input-Output Data 
This problem illustrates several important features of regional input-output data.  

Problem 3.4 Overview 
Suppose that a federal government agency for a three-region country has collected the following 
data on input purchases for two sectors, (1) manufacturing and (2) agriculture, measured in 
dollars for previous year. These flows are not specific with respect to region of origin; that is, 
they can be described as of the s

ijz• sort rather than of the rs
ijz sort. The three regions are denoted 

by A, B, and C. 

 Region A Region B Region C 
 1 2 1 2 1 2 
1 200 100 700 400 100 0 
2 100 100 100 200 50 0 

Also, gross (total) outputs for each of the two sectors in each of the three regions are known and 
specified by the vectors: 

600 1, 200 200
,   and  

300 700 0
A B C= = =

     
     
     

x x x  

From the table we can define total regional interindustry transactions for each region as: 
200 100
100 100

A  
=  
 

Z , 
700 400
100 200

B  
=  
 

Z  and 
100 0
50 0

C  
=  
 

Z . We can then construct matrices of 

regional technical coefficients as 1ˆ( )r r r −=A Z x  for regions r = A, B and C as 
0.333     0.333
0.167     0.333

A  
=  
 

A , 
0.583     0.571
0.083     0.286

B  
=  
 

A ,  and 
0.500     0
0.250     0

C  
=  
 

A . It is also 

straightforward to assemble the matrix of national transactions as the sum of all the regional 

transactions matrices, 
1,000   500
 250    300

N A B C  
= + + =  

 
Z Z Z Z , and the vector of national total 

outputs as the sum of regional total output vectors, 
2,000
1,000

N A B C  
= + + =  

 
x x x x . Hence, the 

national technical coefficients matrix is found by 1 .500 .500
ˆ( )

.125 .300
N N N −  
= =  

 
A Z x .   

Since origin-destination data on shipments of each good have not been specified it is not 
yet possible to construct these data as an IRIO or MRIO model, but using the data specified, if 
the federal government is considering spending $5,000 on manufactured goods and $4,500 on 
agricultural products next year, we can define the vector of changes in final demand as 

5,000
4,500

new  
=  
 

f . Using NA and newf , we compute 1 2.435     1.739
( )

0.435     1.739
N −  

− =  
 

I A and we find that 
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1 20,000
( )

10,000
new N new−  

= − =  
 

x I A f .  Note that the original national total outputs vector was

2,000
1,000

N  
=  
 

x and the corresponding national final demand vector is 
500
450

N  
=  
 

f , found as 

N N N= −f x Z i  or as  N A B C= + +f f f f where r r r= −f x Z i  for regions r =  A, B and C.  This 
simply illustrates the linearity of the input-output model, since 10new N=x x  follows directly from 

10new N=f f . (See also the solution to Problem 2.2.) 

Computational Notes 
Using the new APL tools developed in Problem 3.4, first we formulate the available basic data 
for the matrix of interindustry transactions ZZ and vector of total outputs XX. 
 ZZ←3 2 2⍴200 100 100 100 700 400 100 200 100 0 50 0 
 XX←2 3⍴600 1200 200 300 700 0 

In this case there are three regions with two industries in each region, so XX is a matrix of total 
regional outputs, i.e., with two industries designating the rows and the regions designating the 
columns. 
ZZ 
     200     100 
     100     100 
                 
     700     400 
     100     200 
                 
     100       0 
      50       0 
XX 
     600    1200     200 
     300     700       0  

We can generate the three matrices of regional technical coefficients by  
 A1←ZZ[1;;] AMAT XX[;1] 
 A2←ZZ[2;;] AMAT XX[;2] 
 A3←ZZ[3;;] AMAT XX[;3] 
      A1 
0.33333333 0.33333333 
0.16666667 0.33333333 
      A2 
0.58333333  0.57142857 
0.083333333 0.28571429 
      A3 
0.5  1 
0.25 1 

The national data can be constructed by summing across all the regions 
 xn←+/XX 
 ZN←+/[1]ZZ 
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 LN←LINV AN←ZN AMAT xn 
 fN←xn-+/ZN 

xn 
    2000.0    1000.0 
fN 
     500.0     450.0 
ZN 
    1000.0     500.0 
     250.0     300.0 
AN 
     0.500     0.500 
     0.125     0.300 
LN 
     2.435     1.739 
     0.435     1.739 

For the new vector of final demands, we have 
 f2←5000 4500 
 x2←LN+.×f2 

f2 
    5000.0    4500.0 
x2 
   20000.0   10000.0 

 

Problem 3.5: Interregional Linkages in IRIO Models 
This problem illustrates the key features of an interregional input-output (IRIO) model 
configuration, especially the role of interregional linkages.  

Problem 3.5 Overview 
Consider the following two-region, three-sector interregional input-output transactions table: 

 

Agric. Mining
Const.& 
Manuf. Agric. Mining

Const.& 
Manuf.

Agriculture 277,757 3,654     1,710,816 8,293     26          179,483    3,633,382   
Mining 319        2,412     598,591    15          112        30,921     743,965      
Construction & Manufacturing 342,956 39,593   6,762,703 45,770   3,499     1,550,298 10,931,024 
Agriculture 7,085     39          98,386     255,023 3,821     1,669,107 3,697,202   
Mining 177        92          15,966     365        3,766     669,710    766,751      
Construction & Manufacturing 71,798   7,957     2,017,905 316,256 36,789   8,386,751 14,449,941 

Total Output

North South

  N
or

th
  S

ou
th
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Using the table’s data to define the IRIO transactions matrix, 
NN NS

SN SS

 
=  
  

Z Z
Z

Z Z
, the total 

regional final demand vector is found as 

1,453,353
   111,595
2,186,205
1,663,741
     76,675
3,612,485

N

S

 
 
 
  

= − = =   
   
 
 
  

f
f x Zi

f . Hence the matrices of 

regional technical coefficients for the North and South regions, respectively are  

1

0.076     0.005     0.157
ˆ( ) 0.000     0.003     0.055

0.094     0.053     0.619

NN NN N −

 
 = =  
  

A Z x  and 1

0.069     0.005     0.116
ˆ( ) 0.000     0.005     0.046

0.086     0.048     0.580

S S S S S −

 
 = =  
  

A Z x ; 

the matrices of interregional trade coefficients between the two regions are found as 

1

0.002     0.000     0.009
ˆ( ) 0.000     0.000     0.001

0.020     0.011     0.185

SN SN N −

 
 = =  
  

A Z x  and 1

0.002     0.000     0.012
ˆ( ) 0.000     0.000     0.002

0.012     0.005     0.107

NS NS S −

 
 = =  
  

A Z x . 

If we assume that a constrained availability of imported oil (upon which the economy is 
totally dependent) has forced the construction and manufacturing industry (sector 3) to reduce 
total output by 10 percent in the South and 5 percent in the North and, further, that interindustry 
relationships remain the same, i.e., the technical coefficients matrix remains unchanged, the 
corresponding amounts of output available for final demand in the economy are found by first 

assembling the IRIO coefficients matrix as 
NN NS

SN SS

 
=  
  

A A
A

A A
. The new constrained total outputs 

vector can be computed as 

  3,633,382
     743,965
10,384,473

ˆ
  3,697,202
     766,751
13,004,947

new

 
 
 
 

= =  
 
 
 
 

x rx  where the vector r is defined as 

[ ]1 1 .95 1 1 .9=r , reflecting the specified reduced total outputs for construction and 
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manufacturing in the two regions. The corresponding new vector of final demands is found by 
1,556,842
   144,617
2,132,819
1,835,571
   144,444
3,107,061

new new new

 
 
 
 

= − =  
 
 
 
 

f x Ax . 

 If we assume that tough import quotas imposed in Western Europe and the US on this 
country’s goods have reduced the final demand for output from the country’s construction and 
manufacturing industries by 15 percent in the North, the impact on the output vector for the 
North region (as an example) is computed by first expressing the modified final demand vector 

as 

1,453,353
   111,595
1,858,274

ˆ
1,663,741
     76,675
3,612,485

new

 
 
 
 

= =  
 
 
 
 

f rf  where [ ]1 1 .85 1 1 1=r , which reflects the specified reduction 

in final demand for construction and from the North region.  The corresponding impact on total 
outputs is found as  

( )new new−

= −
1

x I A f

 1.145     0.038     0.567  0.028     0.012     0.188
 0.020     1.014     0.180  0.007     0.004     0.054
 0.348     0.183     3.218  0.124     0.058     0.875
0.033     0.016     0.219
0.011     0.006  

=

1,453,353
   111,595
1,858,274

1.111     0.024     0.365 1,663,741
   0.075 0.014     1.012     0.135      76,675

0.215     0.112     1.500 0.284     0.147     2.868 3,612,485

   
   
   
   
  
  
  
  
     

 3,447,445
    684,913
 9,875,755
 3,625,440
    742,265
13,957,983

=

 
 
 
 

  
  
  
  
   

  

and for the North region, in particular, ,

 3,447,445
    684,913
 9,875,755

N new

 
 =  
  

x .  

 If, for comparison, we ignore interregional linkages by using the Leontief inverse for the 

North region only, i.e., using only NNA , we find 1

1.131     0.031     0.468
( ) 0.016     1.011     0.152

0.282     0.149     2.760

NN −

 
 − =  
  

I A . In 
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conjunction with ,

1,453,353
   111,595
1,858,274

N new

 
 =  
  

f , we find , 1 ,

2,517,159
( )    417,336

5,554,462

N new NN N new−

 
 = − =  
  

x I A f . 

Compared with the IRIO results we can conclude that interregional linkages are important in this 
economy since the outputs found for the three industries using the North region alone are 27, 39, 
and 44 percent below their corresponding values for each industry respectively using the full 
two-region IRIO model. 

Computational Notes 
We have already developed all the APL tools we need to solve this problem.  We begin with 
specifying the IRIO matrix of transactions, ZZ, and the vector of total outputs, XX, and 
computing A and L. 
       ZZ←277757 3654 1710816 8293 26 179483 

 ZZ←ZZ,319 2412 598591 15 112 30921 
 ZZ←ZZ,342956 39593 6762703 45770 3499 1550298 
 ZZ←ZZ,7085 39 98386 255023 3821 1669107 
 ZZ←ZZ,177 92 15966 365 3766 669710 
 ZZ←ZZ,71798 7957 2017905 316256 36789 8386751 
 ZZ←6 6⍴ZZ 
 XX←3633382 743965 10931024 3697202 766751 14449941 

       L←LINV A←ZZ AMAT XX 

A 
     0.076     0.005     0.157     0.002     0.000     0.012 
     0.000     0.003     0.055     0.000     0.000     0.002 
     0.094     0.053     0.619     0.012     0.005     0.107 
     0.002     0.000     0.009     0.069     0.005     0.116 
     0.000     0.000     0.001     0.000     0.005     0.046 
     0.020     0.011     0.185     0.086     0.048     0.580 
L 
     1.145     0.038     0.567     0.028     0.012     0.188 
     0.020     1.014     0.180     0.007     0.004     0.054 
     0.348     0.183     3.218     0.124     0.058     0.875 
     0.033     0.016     0.219     1.111     0.024     0.365 
     0.011     0.006     0.075     0.014     1.012     0.135 
     0.215     0.112     1.500     0.284     0.147     2.868 

The constrained vectors of total outputs, xc, and corresponding final demands, fc, are found by 
      xc←XX-0 0 0.05 0 0 0.1×XX 
      fc←((DIAG 6⍴1)-AA)+.×xc 
         fc,             xc 
      1556842.1      3633382.0 
       144616.6       743965.0 
      2132818.8     10384472.8 
      1835571.0      3697202.0 
       144444.3       766751.0 
      3107061.2     13004946.9 
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For the new vector of final demands, fnew, we find the corresponding vector of total outputs, 
xnew, as  
     fnew←f-0 0 0.15 0 0 0×f←XX-+/ZZ 
     xnew←L+.×fnew 
     f 
1453353 111595 2186205 1663741 76675 3612485 

     fnew,          xnew 
      1453353.0      3447445.2 
       111595.0       684913.3 
      1858274.3      9875755.0 
      1663741.0      3625440.4 
        76675.0       742265.2 
      3612485.0     13957983.0 

For the North region only (ignoring interregional linkages) we can compute the matrices of 
technical coefficients and the Leontief inverse as  
      AR←3 3↑AA 
      R←LINV AR 
AR 
     0.076     0.005     0.157 
     0.000     0.003     0.055 
     0.094     0.053     0.619 
LR 
     1.131     0.031     0.468 
     0.016     1.011     0.152 
     0.282     0.149     2.760 

The relative importance of interregional linkages is illustrated by  
      xn←LR+.×3↑fnew 
      DIF←100×((3↑xnew)-xn)÷3↑xnew 
      xn 
 2517158.7  417335.5 5554462.0 
      DIF  
 27.0      39.1      43.8 
 

Problem 3.6: Exploring Interregional Linkages in Multiple Region IO Models 
This problem illustrates some key features of the interregional linkage using data from a highly 
aggregated version of the 2000 China MRIO table. 

Problem 3.6 Overview  
Consider the following three-region, three-sector interregional transactions table:  
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If we denote the interindustry transactions matrix in this table by Z and the vector of total 
outputs by x, the corresponding direct and total requirements matrices, are found by 1ˆ −=A Zx  
and 1( )−= −L I A , respectively. Suppose, however, for this economy all the inputs to the North 
region from the South region were replaced with corresponding industry production from the 
Rest of China (ROC) region. We would reflect this change in the transactions table by removing 
the transactions from the 3 3×  matrix partition showing transactions from South to North (i.e., 
each element in that partition becomes zero) and add those transactions, element-by-element, to 
the partition showing transactions from ROC to the North (lower left 3 3× partition) with the rest 
of the table unchanged. This change corresponds to the situation where all inputs to the North 
from the South came instead from the Rest of China, and the resulting transactions table would 
be:  

Nat. Res.
Manuf. & 

Const. Services Nat. Res.
Manuf. & 

Const. Services Nat. Res.
Manuf. & 

Const. Services
Natural Resources 1,724 6,312 406 188 1,206 86 14 49 4
Manuf. & Const. 2,381 18,458 2,987 301 3,331 460 39 234 57
Services 709 3,883 1,811 64 432 138 5 23 5
Natural Resources 0 0 0 3,564 8,828 806 103 178 15
Manuf. & Const. 0 0 0 3,757 34,931 5,186 202 1,140 268
Services 0 0 0 1,099 6,613 2,969 31 163 62
Natural Resources 158 707 46 33 254 18 1,581 3,154 293
Manuf. & Const. 494 4,106 613 123 1,062 170 1,225 6,704 1,733
Services 53 321 105 25 168 47 425 2,145 1,000

16,651 49,563 15,011 27,866 81,253 23,667 11,661 21,107 8,910

Rest of China

N
or

th
So

ut
h

R
O

C

Total Output

China 2000
North South

 
Note that we have not changed the vector of total outputs, x. We can denote the revised 
transactions matrix as Z  and the revised direct and total requirements table then become 

1ˆ −=A Zx and 1( )−= −L I A  are the following: 

Revised direct requirements: 

Nat. Res.
Manuf. & 

Const. Services Nat. Res.
Manuf. & 

Const. Services Nat. Res.
Manuf. & 

Const. Services
Natural Resources 1,724 6,312 406 188 1,206 86 14 49 4
Manuf. & Const. 2,381 18,458 2,987 301 3,331 460 39 234 57
Services 709 3,883 1,811 64 432 138 5 23 5
Natural Resources 149 656 42 3,564 8,828 806 103 178 15
Manuf. & Const. 463 3,834 571 3,757 34,931 5,186 202 1,140 268
Services 49 297 99 1,099 6,613 2,969 31 163 62
Natural Resources 9 51 3 33 254 18 1,581 3,154 293
Manuf. & Const. 32 272 41 123 1,062 170 1,225 6,704 1,733
Services 4 25 7 25 168 47 425 2,145 1,000

16,651 49,563 15,011 27,866 81,253 23,667 11,661 21,107 8,910Total Output

So
ut

h
R

O
C

N
or

th
China 2000

North South Rest of China
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Nat. Res.
Manuf. & 

Const. Services Nat. Res.
Manuf. & 

Const. Services Nat. Res.
Manuf. & 

Const. Services
Natural Resources 0.1035 0.1273 0.0270 0.0067 0.0148 0.0036 0.0012 0.0023 0.0005
Manuf. & Const. 0.1430 0.3724 0.1990 0.0108 0.0410 0.0194 0.0034 0.0111 0.0064
Services 0.0426 0.0783 0.1206 0.0023 0.0053 0.0058 0.0004 0.0011 0.0006
Natural Resources 0.0000 0.0000 0.0000 0.1279 0.1087 0.0340 0.0089 0.0084 0.0017
Manuf. & Const. 0.0000 0.0000 0.0000 0.1348 0.4299 0.2191 0.0173 0.0540 0.0301
Services 0.0000 0.0000 0.0000 0.0394 0.0814 0.1255 0.0026 0.0077 0.0070
Natural Resources 0.0095 0.0143 0.0030 0.0012 0.0031 0.0008 0.1356 0.1494 0.0329
Manuf. & Const. 0.0297 0.0828 0.0408 0.0044 0.0131 0.0072 0.1050 0.3176 0.1945
Services 0.0032 0.0065 0.0070 0.0009 0.0021 0.0020 0.0364 0.1016 0.1122

South Rest of China

N
or

th
So

ut
h

R
O

C
China 2000

North

 

 

Revised total requirements: 

Nat. Res.
Manuf. & 

Const. Services Nat. Res.
Manuf. & 

Const. Services Nat. Res.
Manuf. & 

Const. Services
Natural Resources 1.1603 0.2494 0.0929 0.0225 0.0575 0.0264 0.0064 0.0159 0.0084
Manuf. & Const. 0.2938 1.7104 0.3988 0.0530 0.1579 0.0840 0.0189 0.0523 0.0311
Services 0.0826 0.1651 1.1775 0.0114 0.0303 0.0200 0.0034 0.0092 0.0054
Natural Resources 0.0032 0.0077 0.0041 1.1897 0.2441 0.1081 0.0237 0.0438 0.0220
Manuf. & Const. 0.0137 0.0332 0.0180 0.3165 1.8924 0.4892 0.0710 0.1923 0.1136
Services 0.0026 0.0063 0.0034 0.0834 0.1879 1.1943 0.0137 0.0362 0.0244
Natural Resources 0.0365 0.0775 0.0367 0.0087 0.0236 0.0120 1.1966 0.2816 0.1075
Manuf. & Const. 0.1028 0.2545 0.1374 0.0258 0.0714 0.0399 0.2096 1.5757 0.3577
Services 0.0202 0.0471 0.0298 0.0060 0.0158 0.0098 0.0735 0.1930 1.1724

China 2003
North South Rest of China

N
or

th
So

ut
h

R
O

C

 

 

To illustrate the impact on total outputs of all regions and sectors for a final demand of 
¥100,000 on export demand for manufactured goods produced in the North, we first specify the 
change in final demand as [ ]( ) 0 100 0 0 0 0 0 0 0N ′∆ =f . The corresponding vector 

of total outputs is then [ ]( ) ( ) 24.9 171.0 16.5 0.8 3.3 0.6 7.7 25.4 4.7N′ ′∆ = ∆ =x L f . 
If we recast ∆x  in the format of Table 3.10 we have the following table which shows the 
changes in production by region and sector generated by the shift in the location of inputs to 
production from the South to the Rest of China: 

Sector North   South  ROC North  South ROC
Nat. Res. 25.6 6.8 0.8 24.9 0.8 7.7
Mfg. &Const. 172.8 29.4 2.5 171 3.3 25.4
Services 16.9 4.5 0.5 16.5 0.6 4.7
Total 215.3 40.7 3.8 212.4 4.7 37.8

   Produced in the North 
(revised)

  Produced in the North 
(original)

 

Computational Notes 
We have all the APL tools needed to solve this problem.  First, you can retrieve these basic 
MRIO tables from the online Appendix SD1 to the main text or enter it from the tables above.  
We presume the original MRIO transactions table is the variable Z1 (and the vector of total 
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outputs is x1) and the modified MRIO transactions table is the variable Z2 (and the vector of 
total outputs is x2). We can compute matrices of technical coefficients and total requirements for 
each as 

       L1←INV A1←Z1 AMAT x1 
       L2←INV A2←Z2 AMAT x2 

A1 
   0.104   0.127   0.027   0.007   0.015   0.004   0.001   0.002   0.000 
   0.143   0.372   0.199   0.011   0.041   0.019   0.003   0.011   0.006 
   0.043   0.078   0.121   0.002   0.005   0.006   0.000   0.001   0.001 
   0.009   0.013   0.003   0.128   0.109   0.034   0.009   0.008   0.002 
   0.028   0.077   0.038   0.135   0.430   0.219   0.017   0.054   0.030 
   0.003   0.006   0.007   0.039   0.081   0.125   0.003   0.008   0.007 
   0.001   0.001   0.000   0.001   0.003   0.001   0.136   0.149   0.033 
   0.002   0.005   0.003   0.004   0.013   0.007   0.105   0.318   0.194 
   0.000   0.000   0.000   0.001   0.002   0.002   0.036   0.102   0.112 
L1 
   1.163   0.256   0.097   0.023   0.058   0.027   0.006   0.016   0.009 
   0.301   1.727   0.408   0.054   0.160   0.085   0.019   0.053   0.031 
   0.084   0.169   1.179   0.012   0.031   0.020   0.003   0.009   0.005 
   0.033   0.068   0.032   1.192   0.250   0.111   0.024   0.046   0.023 
   0.119   0.294   0.159   0.326   1.919   0.504   0.074   0.201   0.119 
   0.019   0.045   0.028   0.085   0.192   1.196   0.014   0.037   0.025 
   0.003   0.008   0.004   0.006   0.016   0.008   1.196   0.279   0.106 
   0.010   0.024   0.013   0.018   0.048   0.027   0.207   1.568   0.353 
   0.002   0.005   0.003   0.004   0.011   0.007   0.073   0.192   1.172 
A2 
   0.104   0.127   0.027   0.007   0.015   0.004   0.001   0.002   0.000 
   0.143   0.372   0.199   0.011   0.041   0.019   0.003   0.011   0.006 
   0.043   0.078   0.121   0.002   0.005   0.006   0.000   0.001   0.001 
   0.000   0.000   0.000   0.128   0.109   0.034   0.009   0.008   0.002 
   0.000   0.000   0.000   0.135   0.430   0.219   0.017   0.054   0.030 
   0.000   0.000   0.000   0.039   0.081   0.125   0.003   0.008   0.007 
   0.009   0.014   0.003   0.001   0.003   0.001   0.136   0.149   0.033 
   0.030   0.083   0.041   0.004   0.013   0.007   0.105   0.318   0.194 
   0.003   0.006   0.007   0.001   0.002   0.002   0.036   0.102   0.112 
L2 
   1.160   0.249   0.093   0.022   0.057   0.026   0.006   0.016   0.008 
   0.294   1.710   0.399   0.053   0.158   0.084   0.019   0.052   0.031 
   0.083   0.165   1.178   0.011   0.030   0.020   0.003   0.009   0.005 
   0.003   0.008   0.004   1.190   0.244   0.108   0.024   0.044   0.022 
   0.014   0.033   0.018   0.316   1.892   0.489   0.071   0.192   0.114 
   0.003   0.006   0.003   0.083   0.188   1.194   0.014   0.036   0.024 
   0.036   0.077   0.037   0.009   0.024   0.012   1.197   0.282   0.107 
   0.103   0.254   0.137   0.026   0.071   0.040   0.210   1.576   0.358 
   0.020   0.047   0.030   0.006   0.016   0.010   0.074   0.193   1.172 

For the new vector of final demands, we can compute the vectors of total outputs for the two 
model configurations as 
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 ∆y←0 100 0 0 0 0 0 0 0 
 ∆x1←L1+.×∆y 
 ∆x2←L2+.×∆y 

15 1⍕⍉3 9⍴∆y,∆x1,∆x2 

           ∆y            ∆x1            ∆x2 
            0.0           25.6           24.9 
          100.0          172.7          171.0 
            0.0           16.9           16.5 
            0.0            6.8            0.8 
            0.0           29.4            3.3 
            0.0            4.5            0.6 
            0.0            0.8            7.7 
            0.0            2.4           25.4 
            0.0            0.5            4.7 

Problem 3.7: Impact Analysis Using the US MRIO Model 
This exercise problem illustrates application of a multiregional input-output (MRIO) 

model, using a three-region, five-sector version of the U.S. multiregional input-output economy 
(shown below and in Table A4.1-3 of Appendix S4.1 in the text).  

Problem 3.7 Overview 

Suppose that a new government military project is initiated in the western United States, 
stimulating new final demand in that region of (in millions of dollars) which we can express as 

[ ]0 0 100 50 25W ′∆ =f . The impact on total production of all sectors in all three regions of 
the United States economy stimulated by this new final demand in the West, can be found by 
first defining the new final demand for the entire economy as 

[ ] [ ]( ) ( ) ( ) 0   0   0   0   0 0   0   0   0   0 0   0   100   50   25E C W′ ′ ′ ′ ∆ = ∆ ∆ ∆ = f f f f . 

Finally, we find the vector of changes in total output as ∆ = ∆x L f : 

[ ] [ ]0.75 1.125 23.3 13.2 8.225 3.525 5.375 38.175 20.475 13.4 4.825 4.65 96.45 68.125 25.6′∆ =x . 

 

 

 

 

 

 

 

 



2021 August 7 

-69- 
 

 

 

Five-Sector, Three-Region Multiregional Input–Output Tables for the United States (1963) 

Regional Transactions (millions of dollars)  Commodity Trade Flows and Total 
Outputs (millions of dollars) 

  Agric Mining Const & 
Manuf Services Transport 

& Utilities    East  West  Central 

East            Agriculture       
Agriculture 2,013 0 7,863 44 0  East 6,007  2,124  208  
Mining 35 335 3,432 44 843  West 3,845  28,885  2,521  
Const & Manuf 2,029 400 78,164 11,561 2,333  Central 403  2,922  7,028  
Services 1,289 294 19,699 26,574 2,301  Mining       
Transport & Util 225 384 7,232 4,026 3,534  East 2,904  415  53  

Central            West 1,108  10,942  271  
Agriculture 10,303 0 13,218 97 0  Central 71  772  3,996  
Mining 82 472 8,686 15 1,271  Const & Manuf     
Const & Manuf 4,422 1,132 93,816 10,155 2,401  East 158,679  42,150  8,368  
Services 4,952 2,378 21,974 22,358 2,473  West 44,589  201,025  11,778  
Transport & Util 667 406 9,296 3,468 4,513  Central 4,702  6,726  61,385  

West            Services       
Agriculture 2,915 0 3,452 65 0  East 146,336  16,116  2,955  
Mining 4 292 2,503 0 353  West 9,328  121,079  3,185  
Const & Manuf 1,214 466 27,681 4,925 1,015  Central 1,939  3,643  58,663  
Services 1,307 721 8,336 10,809 991  Transp & Util       
Transport & Util 338 160 2,936 1,659 1,576  East 21,434  4,974  263  

       West 4,396  23,811  1,948  
       Central 1,009  1,334  9,635  
       Total Output     
       Agriculture 10,259  33,939  9,753  
       Mining 4,084  12,129  4,319  
       Const & Manuf 207,948  249,840  81,512  
       Services 157,468  140,850  64,803  
       Transport & Util 26,847  30,130  11,841  

 

Computational Notes 

We presume the MRIO data (intraregional transactions ZZ and commodity flows QQ) are stored 
in three-dimensional arrays as earlier.  For this case we have 

      ZZ 
 2013    0  7863    44    0 
   35  335  3432    44  843 
 2029  400 78164 11561 2333 
 1289  294 19699 26574 2301 
  225  384  7232  4026 3534 
                            
10303    0 13218    97    0 
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   82  472  8686    15 1271 
 4422 1132 93816 10155 2401 
 4952 2378 21974 22358 2473 
  667  406  9296  3468 4513 
                            
 2915    0  3452    65    0 
    4  292  2503     0  353 
 1214  466 27681  4925 1015 
 1307  721  8336 10809  991 
  338  160  2936  1659 1576 

     QQ 
  6007   2124   208 
  3845  28885  2521 
   403   2922  7028 
                    
  2904    415    53 
  1108  10942   271 
    71    772   399 
                    
158679  42150  8368 
 44589 201025 11778 
  4702   6726 61385 
                    
146336  16116  2955 
  9328 121079  3185 
  1939   3643 58663 
                    
 21434   4974   263 
  4396  23811  1948 
  1009   1334  9635 

We presume the vector of total outputs is stored in a matrix the rows of which indicate industry 
sectors and the columns regions  

      XX 
 10259  33939  9753 
  4084  12129  4319 
207948 249840 81512 
157468 140850 64803 
 26847  30130 11841 

 

Using the APL tools we developed above we can construct the corresponding Z, C, and L 
matrices as 

C←Q AMAT q←+⌿Q←GENQ QQ 
A←(Z←GENZ ZZ) AMAT x←,⍉XX 
L←(LINV C+.×A)+.×C 

x 
10259   4084 207948 157468  26847  33939  12129 249840 140850  30130   9753   4319  81512  64803  11841 
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q 
10255   4083 207970 157603  26839  33931  12129 249901 140838  30119   9757    723  81531  64803  11846 
C 
 0.586 0.000 0.000 0.000 0.000 0.063 0.000 0.000 0.000 0.000 0.021 0.000 0.000 0.000 0.000 
 0.000 0.711 0.000 0.000 0.000 0.000 0.034 0.000 0.000 0.000 0.000 0.073 0.000 0.000 0.000 
 0.000 0.000 0.763 0.000 0.000 0.000 0.000 0.169 0.000 0.000 0.000 0.000 0.103 0.000 0.000 
 0.000 0.000 0.000 0.929 0.000 0.000 0.000 0.000 0.114 0.000 0.000 0.000 0.000 0.046 0.000 
 0.000 0.000 0.000 0.000 0.799 0.000 0.000 0.000 0.000 0.165 0.000 0.000 0.000 0.000 0.022 
 0.375 0.000 0.000 0.000 0.000 0.851 0.000 0.000 0.000 0.000 0.258 0.000 0.000 0.000 0.000 
 0.000 0.271 0.000 0.000 0.000 0.000 0.902 0.000 0.000 0.000 0.000 0.375 0.000 0.000 0.000 
 0.000 0.000 0.214 0.000 0.000 0.000 0.000 0.804 0.000 0.000 0.000 0.000 0.144 0.000 0.000 
 0.000 0.000 0.000 0.059 0.000 0.000 0.000 0.000 0.860 0.000 0.000 0.000 0.000 0.049 0.000 
 0.000 0.000 0.000 0.000 0.164 0.000 0.000 0.000 0.000 0.791 0.000 0.000 0.000 0.000 0.164 
 0.039 0.000 0.000 0.000 0.000 0.086 0.000 0.000 0.000 0.000 0.720 0.000 0.000 0.000 0.000 
 0.000 0.017 0.000 0.000 0.000 0.000 0.064 0.000 0.000 0.000 0.000 0.552 0.000 0.000 0.000 
 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.027 0.000 0.000 0.000 0.000 0.753 0.000 0.000 
 0.000 0.000 0.000 0.012 0.000 0.000 0.000 0.000 0.026 0.000 0.000 0.000 0.000 0.905 0.000 
 0.000 0.000 0.000 0.000 0.038 0.000 0.000 0.000 0.000 0.044 0.000 0.000 0.000 0.000 0.813 
A 
 0.196 0.000 0.038 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 0.003 0.082 0.017 0.000 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 0.198 0.098 0.376 0.073 0.087 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 0.126 0.072 0.095 0.169 0.086 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 0.022 0.094 0.035 0.026 0.132 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 0.000 0.000 0.000 0.000 0.000 0.304 0.000 0.053 0.001 0.000 0.000 0.000 0.000 0.000 0.000 
 0.000 0.000 0.000 0.000 0.000 0.002 0.039 0.035 0.000 0.042 0.000 0.000 0.000 0.000 0.000 
 0.000 0.000 0.000 0.000 0.000 0.130 0.093 0.376 0.072 0.080 0.000 0.000 0.000 0.000 0.000 
 0.000 0.000 0.000 0.000 0.000 0.146 0.196 0.088 0.159 0.082 0.000 0.000 0.000 0.000 0.000 
 0.000 0.000 0.000 0.000 0.000 0.020 0.033 0.037 0.025 0.150 0.000 0.000 0.000 0.000 0.000 
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.299 0.000 0.042 0.001 0.000 
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.068 0.031 0.000 0.030 
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.124 0.108 0.340 0.076 0.086 
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.134 0.167 0.102 0.167 0.084 
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.035 0.037 0.036 0.026 0.133 
L 
 0.681 0.003 0.032 0.003 0.003 0.101 0.002 0.016 0.002 0.002 0.043 0.002 0.010 0.001 0.001 
 0.005 0.759 0.016 0.002 0.023 0.002 0.039 0.007 0.001 0.008 0.002 0.083 0.007 0.001 0.004 
 0.197 0.112 1.142 0.098 0.108 0.094 0.049 0.369 0.042 0.056 0.067 0.047 0.238 0.028 0.033 
 0.136 0.091 0.139 1.118 0.104 0.058 0.043 0.065 0.165 0.042 0.036 0.034 0.043 0.070 0.018 
 0.028 0.073 0.045 0.030 0.907 0.014 0.015 0.025 0.011 0.215 0.009 0.014 0.014 0.004 0.036 
 0.596 0.008 0.055 0.006 0.007 1.190 0.010 0.086 0.008 0.009 0.462 0.008 0.046 0.005 0.006 
 0.010 0.305 0.023 0.003 0.021 0.013 0.944 0.046 0.005 0.043 0.009 0.411 0.027 0.003 0.023 
 0.175 0.085 0.469 0.048 0.068 0.226 0.135 1.238 0.099 0.113 0.129 0.086 0.330 0.037 0.056 
 0.116 0.077 0.066 0.089 0.036 0.202 0.203 0.138 1.011 0.097 0.093 0.099 0.053 0.074 0.035 
 0.026 0.030 0.029 0.011 0.215 0.037 0.040 0.052 0.028 0.912 0.025 0.026 0.025 0.010 0.215 
 0.079 0.001 0.009 0.001 0.001 0.153 0.002 0.013 0.001 0.002 0.940 0.004 0.045 0.005 0.004 
 0.001 0.021 0.003 0.000 0.002 0.002 0.069 0.004 0.001 0.004 0.004 0.577 0.020 0.002 0.018 
 0.025 0.010 0.054 0.007 0.011 0.034 0.017 0.063 0.008 0.013 0.140 0.079 1.041 0.088 0.092 
 0.020 0.009 0.012 0.019 0.009 0.034 0.022 0.016 0.038 0.011 0.157 0.118 0.129 1.080 0.097 
 0.006 0.006 0.006 0.003 0.050 0.009 0.006 0.007 0.003 0.059 0.039 0.027 0.041 0.029 0.920 
fnew 
     0     0     0     0     0     0     0     0     0     0     0     0   100    50    25 
xnew 
   1.0   0.8  26.0   8.2   2.5   5.0   3.4  36.3   9.9   8.4   4.8   2.6 110.8  69.3  28.5 
 

Problem 3.8: Impact Analysis Using the Japanese IRIO Model 
This problem explores the use of an interregional input-output (IRIO) model for impact analysis 
using the three-region, five-sector version of an interregional input-output economy of Japan for 
1965 given in Table A4.1-1 of Appendix S4.1.  
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Problem 3.8 Overview 
We begin with the vector of changes in total final demand 

[ ] [ ]( ) ( ) ( ) 0 0 0 0 0 0 0 0 0 0 0 0 100 50 25C N S′ ′ ′ ′∆ = ∆ ∆ ∆ =  f f f f  

This is the same vector as that used in Problem 3.6, but used in this case for the Japanese IRIO 
economy where the regions are Central, North, and South. Using ∆f , we find the corresponding 
vector of total outputs, ∆ = ∆x L f , for this very interconnected interregional economy: 

[ ]′∆ =x [.386  .024  13.061  0.892  3.024   ⁞  .145  .021  3.669  1.376  .339   ⁞  3.634  .475  181.630  56.029  42.904] 

Computational Notes 
We presume basic data for this IRIO Japanese economy are saved in global variable A for the 
matrix of interregional technical coefficients. We can now compute 

       L←INV A 
       x2←L+.×f2←(10⍴0),0 0 100 50 2 
     6 3⍕A 
 0.053 0.000 0.009 0.011 0.009 0.001 0.000 0.007 0.000 0.001 0.001 0.000 0.001 0.000 0.000 
 0.000 0.001 0.001 0.001 0.002 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 0.428 0.723 0.250 0.240 0.180 0.012 0.004 0.052 0.001 0.013 0.017 0.005 0.044 0.000 0.014 
 0.000 0.001 0.010 0.090 0.012 0.000 0.000 0.002 0.015 0.001 0.000 0.000 0.001 0.007 0.001 
 0.012 0.029 0.042 0.117 0.125 0.000 0.001 0.015 0.001 0.010 0.000 0.000 0.007 0.001 0.014 
 0.004 0.000 0.000 0.000 0.000 0.089 0.001 0.017 0.039 0.021 0.002 0.000 0.000 0.000 0.000 
 0.000 0.000 0.000 0.000 0.000 0.002 0.005 0.002 0.007 0.011 0.000 0.000 0.000 0.000 0.000 
 0.068 0.041 0.020 0.000 0.002 0.362 0.521 0.160 0.233 0.129 0.034 0.028 0.012 0.000 0.001 
 0.000 0.002 0.000 0.014 0.000 0.000 0.008 0.010 0.025 0.011 0.000 0.000 0.000 0.023 0.000 
 0.003 0.034 0.001 0.000 0.001 0.010 0.033 0.027 0.095 0.103 0.002 0.008 0.000 0.000 0.001 
 0.002 0.000 0.002 0.000 0.000 0.002 0.000 0.006 0.000 0.000 0.072 0.000 0.011 0.016 0.010 
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.004 0.001 0.002 0.004 
 0.036 0.021 0.082 0.000 0.013 0.012 0.012 0.056 0.000 0.007 0.473 0.719 0.303 0.264 0.196 
 0.000 0.000 0.001 0.024 0.000 0.000 0.000 0.001 0.022 0.000 0.000 0.003 0.009 0.068 0.012 
 0.001 0.005 0.006 0.000 0.003 0.000 0.001 0.009 0.000 0.003 0.012 0.050 0.037 0.112 0.110       
      6 3⍕L 
 1.064 0.012 0.014 0.019 0.014 0.006 0.006 0.011 0.003 0.003 0.003 0.003 0.003 0.001 0.001 
 0.001 1.002 0.002 0.002 0.003 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 0.639 1.016 1.379 0.413 0.300 0.064 0.066 0.109 0.042 0.044 0.081 0.084 0.098 0.040 0.050 
 0.008 0.014 0.016 1.106 0.019 0.002 0.003 0.005 0.019 0.003 0.002 0.003 0.003 0.010 0.003 
 0.050 0.088 0.071 0.169 1.161 0.013 0.018 0.029 0.014 0.019 0.012 0.016 0.019 0.011 0.024 
 0.007 0.003 0.001 0.001 0.000 1.108 0.015 0.024 0.053 0.030 0.004 0.001 0.001 0.002 0.000 
 0.000 0.001 0.000 0.000 0.000 0.004 1.007 0.003 0.009 0.013 0.000 0.000 0.000 0.000 0.000 
 0.109 0.086 0.038 0.019 0.013 0.489 0.648 1.218 0.336 0.200 0.060 0.055 0.025 0.018 0.009 
 0.001 0.004 0.001 0.017 0.000 0.005 0.016 0.013 1.031 0.015 0.001 0.001 0.001 0.026 0.001 
 0.008 0.042 0.003 0.003 0.002 0.028 0.059 0.039 0.120 1.123 0.005 0.011 0.001 0.004 0.002 
 0.006 0.005 0.006 0.003 0.002 0.007 0.006 0.010 0.004 0.002 1.088 0.015 0.019 0.026 0.017 
 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.002 1.006 0.002 0.003 0.005 
 0.149 0.170 0.178 0.071 0.063 0.075 0.088 0.128 0.050 0.038 0.772 1.098 1.488 0.481 0.352 
 0.003 0.004 0.004 0.030 0.002 0.002 0.002 0.003 0.026 0.001 0.008 0.015 0.015 1.081 0.018 
 0.013 0.021 0.018 0.010 0.009 0.009 0.012 0.019 0.010 0.008 0.049 0.106 0.065 0.157 1.142 

            f2            x2 
          0.000          0.386 
          0.000          0.024 
          0.000         13.061 
          0.000          0.892 
          0.000          3.024 
          0.000          0.145 
          0.000          0.021 
          0.000          3.669 
          0.000          1.376 
          0.000          0.339 
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          0.000          3.634 
          0.000          0.475 
        100.000        181.630 
         50.000         56.029 
         25.000         42.904 

Problem 3.9: Analysis with 4-Region (China, Japan, US, & Other Asia) IRIO 
Model 
This problem explores IRIO analysis using the 4-region, three sector IRIO model for China, 
Japan, the United States, and an aggregation of other Asian nations including Indonesia, 
Malaysia, the Philippines, Singapore, and Thailand for the year 2000.  

Problem 3.9 Overview 
The interindustry transactions and total outputs are specified in the following table.  

 

The table of direct requirements, 1ˆ −=A Zx , is the following: 

 

The table of total requirements is 1( )−= −L I A : 

Nat Res
Manuf & 

Const Services Nat Res
Manuf & 

Const Services Nat Res
Manuf & 

Const Services Nat Res
Manuf & 

Const Services

Nat Res 75,382    296,016      17,829        351        4,764         473           174        403           17            103        2,740       83            
Manuf & Const 68,424    1,667,042   960,671      160        21,902        3,775        587        8,863        1,710       383        45,066     4,391       
Services 95,115    1,148,999   3,094,357    118        6,695         807           160        1,466        296          197        7,393       953          

Nat Res 7            52              53               8,721     78,936        11,206       13         66             2              14          180          27            
Manuf & Const 859        41,484        11,337        28,088   1,414,078   484,802     764        20,145      2,809       462        72,258     4,108       
Services 97          4,390         1,424          24,901   662,488      1,001,832  107        2,763        335          270        7,816       1,189       

Nat Res 72          343            147             50          2,316         229           49,496   183,509     15,138     102        2,430       99            
Manuf & Const 331        15,657        6,442          93          10,199        1,989        89,384   892,227     181,932    157        15,093     1,237       
Services 38          2,218         1,099          17          1,780         280           25,391   210,469     136,961    23          2,078       132          

Nat Res 322        1,068         203             64          11,906        266           64         1,475        14            12,153    92,647     6,402       
Manuf & Const 503        56,287        18,129        278        35,418        3,562        1,141     41,496      4,685       23,022    566,274    144,417    
Services 152        4,578         1,921          41          3,982         447           138        3,669        422          15,163    213,470    239,053    

Total Output 468,403  5,866,935   11,609,307  140,622 3,883,455   4,658,191  408,153 2,000,741  702,248    173,080  1,727,367 1,225,460 

Ja
pa

n
C

hi
na

R
O

A

2000
United States Japan China Rest of Asia

U
S

Nat. Res.
Manuf. & 

Const. Services Nat. Res.
Manuf. & 

Const. Services Nat. Res.
Manuf. & 

Const. Services Nat. Res.
Manuf. & 

Const. Services

Nat. Res. 0.1609 0.0505 0.0015 0.0025 0.0012 0.0001 0.0004 0.0002 0.0000 0.0006 0.0016 0.0001
Manuf. & Const. 0.1461 0.2841 0.0828 0.0011 0.0056 0.0008 0.0014 0.0044 0.0024 0.0022 0.0261 0.0036
Services 0.2031 0.1958 0.2665 0.0008 0.0017 0.0002 0.0004 0.0007 0.0004 0.0011 0.0043 0.0008
Nat. Res. 0.0000 0.0000 0.0000 0.0620 0.0203 0.0024 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000
Manuf. & Const. 0.0018 0.0071 0.0010 0.1997 0.3641 0.1041 0.0019 0.0101 0.0040 0.0027 0.0418 0.0034
Services 0.0002 0.0007 0.0001 0.1771 0.1706 0.2151 0.0003 0.0014 0.0005 0.0016 0.0045 0.0010
Nat. Res. 0.0002 0.0001 0.0000 0.0004 0.0006 0.0000 0.1213 0.0917 0.0216 0.0006 0.0014 0.0001
Manuf. & Const. 0.0007 0.0027 0.0006 0.0007 0.0026 0.0004 0.2190 0.4459 0.2591 0.0009 0.0087 0.0010
Services 0.0001 0.0004 0.0001 0.0001 0.0005 0.0001 0.0622 0.1052 0.1950 0.0001 0.0012 0.0001
Nat. Res. 0.0007 0.0002 0.0000 0.0005 0.0031 0.0001 0.0002 0.0007 0.0000 0.0702 0.0536 0.0052
Manuf. & Const. 0.0011 0.0096 0.0016 0.0020 0.0091 0.0008 0.0028 0.0207 0.0067 0.1330 0.3278 0.1178
Services 0.0003 0.0008 0.0002 0.0003 0.0010 0.0001 0.0003 0.0018 0.0006 0.0876 0.1236 0.1951

U
.S

.
Ja

pa
n

C
hi

na
R

O
A

2000
United States Japan China Rest of Asia
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If we assume that annual final demand growth in China is 8 percent, growth in the U.S. and 
Japan is 4 percent, and that of other Asian nations is 3 percent, we can compute the original and 
projected final demand vectors as the following. The original vector of final demands is 
computed by = −f x Zi , so 

70,067  3,083,962  7,252,751 41,344  1,802,261  2,950,579 154,222  786,002  321,762 46,495  832,154  742,423  ′ =f  

For a level of growth in China at 8 percent, in the U.S. and Japan at 4 percent, and in the 
rest of Asia at 3 percent, the final demand in the next year is found by multiplying the first three 
elements of f (U.S. final demand) by 1.04, the next three (Japanese final demand) by 1.04, the 
next three (Chinese final demand) by 1.08, and the last three (final demand for the other nations 
in Asia) by 1.03, to yield 

[ ]( ) 72,869  3,207,321  7,542,861 42,998  1,874,352  3,068,602 166,560  848,883  347,503 47,890  857,119  764,696new ′ =f  

The corresponding vector of total outputs is then found as new new=x Lf : 

[ ]( ) 487,149  6,101,723  12,073,729 146,262  4,039,397  4,844,723 440,002  2,156,077  757,348 178,822  1,784,590  1,263,502new ′ =x  

Finally, the vector of the percentage growth in total output for each and all regions and 
sectors is then found as 

4.002   4.002   4.000 4.011   4.016   4.004 7.803   7.764   7.846 3.317   3.313   3.104
( )100

new −
 × =  

x x
x

 

Computational Notes 
We presume basic data for this Asian IRIO table are saved in global variable Z for the 
interregional interindustry transactions and x for total outputs. 

 L←INV A←Z AMAT x 
 f←x-+/Z 
 f2←f×1.04 1.04 1.04 1.04 1.04 1.04 1.08 1.08 1.08 1.03 1.03 1.03 
 x2←L+.×f2 
 ∆xp←100×(x2-x)÷x 

      8 0⍕x 
  468403 586693511609307  140622 3883455 4658191  408153 2000741  702248  173080 1727367 1225460 
      8 0⍕Z 

Nat. Res. Manuf. & 
Const. Services Nat. Res. Manuf. & 

Const. Services Nat. Res. Manuf. & 
Const. Services Nat. Res. Manuf. & 

Const. Services

Nat. Res. 1.2103 0.0889 0.0126 0.0043 0.0036 0.0008 0.0013 0.0019 0.0010 0.0022 0.0071 0.0016
Manuf. & Const. 0.2953 1.4643 0.1660 0.0071 0.0164 0.0039 0.0082 0.0183 0.0113 0.0147 0.0641 0.0163
Services 0.4140 0.4158 1.4113 0.0054 0.0096 0.0021 0.0040 0.0083 0.0051 0.0079 0.0289 0.0076
Nat. Res. 0.0002 0.0005 0.0001 1.0755 0.0366 0.0082 0.0004 0.0010 0.0006 0.0007 0.0027 0.0006
Manuf. & Const. 0.0085 0.0201 0.0048 0.3924 1.6463 0.2196 0.0161 0.0420 0.0233 0.0235 0.1117 0.0238
Services 0.0026 0.0061 0.0015 0.3280 0.3663 1.3236 0.0052 0.0136 0.0074 0.0090 0.0345 0.0083
Nat. Res. 0.0007 0.0012 0.0004 0.0013 0.0024 0.0005 1.1997 0.2184 0.1025 0.0020 0.0061 0.0013
Manuf. & Const. 0.0043 0.0096 0.0028 0.0046 0.0108 0.0027 0.5518 2.0243 0.6666 0.0077 0.0317 0.0075
Services 0.0009 0.0021 0.0007 0.0011 0.0026 0.0006 0.1649 0.2816 1.3374 0.0018 0.0071 0.0016
Nat. Res. 0.0015 0.0018 0.0005 0.0024 0.0070 0.0011 0.0022 0.0060 0.0028 1.0906 0.0914 0.0205
Manuf. & Const. 0.0081 0.0239 0.0062 0.0101 0.0261 0.0051 0.0255 0.0711 0.0368 0.2440 1.5530 0.2293
Services 0.0023 0.0055 0.0015 0.0028 0.0070 0.0014 0.0061 0.0166 0.0086 0.1562 0.2487 1.2798
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   75382  296016   17829     351    4764     473     174     403      17     103    2740      83 
   68424 1667042  960671     160   21902    3775     587    8863    1710     383   45066    4391 
   95115 1148999 3094357     118    6695     807     160    1466     296     197    7393     953 
       7      52      53    8721   78936   11206      13      66       2      14     180      27 
     859   41484   11337   28088 1414078  484802     764   20145    2809     462   72258    4108 
      97    4390    1424   24901  662488 1001832     107    2763     335     270    7816    1189 
      72     343     147      50    2316     229   49496  183509   15138     102    2430      99 
     331   15657    6442      93   10199    1989   89384  892227  181932     157   15093    1237 
      38    2218    1099      17    1780     280   25391  210469  136961      23    2078     132 
     322    1068     203      64   11906     266      64    1475      14   12153   92647    6402 
     503   56287   18129     278   35418    3562    1141   41496    4685   23022  566274  144417 
     152    4578    1921      41    3982     447     138    3669     422   15163  213470  239053 
      8 0⍕f 
   70067 3083962 7252751   41344 1802261 2950579  154222  786002  321762   46495  832154  742423 
       

      8 4⍕A 
  0.1609  0.0505  0.0015  0.0025  0.0012  0.0001  0.0004  0.0002  0.0000  0.0006  0.0016  0.0001 
  0.1461  0.2841  0.0828  0.0011  0.0056  0.0008  0.0014  0.0044  0.0024  0.0022  0.0261  0.0036 
  0.2031  0.1958  0.2665  0.0008  0.0017  0.0002  0.0004  0.0007  0.0004  0.0011  0.0043  0.0008 
  0.0000  0.0000  0.0000  0.0620  0.0203  0.0024  0.0000  0.0000  0.0000  0.0001  0.0001  0.0000 
  0.0018  0.0071  0.0010  0.1997  0.3641  0.1041  0.0019  0.0101  0.0040  0.0027  0.0418  0.0034 
  0.0002  0.0007  0.0001  0.1771  0.1706  0.2151  0.0003  0.0014  0.0005  0.0016  0.0045  0.0010 
  0.0002  0.0001  0.0000  0.0004  0.0006  0.0000  0.1213  0.0917  0.0216  0.0006  0.0014  0.0001 
  0.0007  0.0027  0.0006  0.0007  0.0026  0.0004  0.2190  0.4459  0.2591  0.0009  0.0087  0.0010 
  0.0001  0.0004  0.0001  0.0001  0.0005  0.0001  0.0622  0.1052  0.1950  0.0001  0.0012  0.0001 
  0.0007  0.0002  0.0000  0.0005  0.0031  0.0001  0.0002  0.0007  0.0000  0.0702  0.0536  0.0052 
  0.0011  0.0096  0.0016  0.0020  0.0091  0.0008  0.0028  0.0207  0.0067  0.1330  0.3278  0.1178 
  0.0003  0.0008  0.0002  0.0003  0.0010  0.0001  0.0003  0.0018  0.0006  0.0876  0.1236  0.1951 
      8 4⍕L 
  1.2103  0.0889  0.0126  0.0043  0.0036  0.0008  0.0013  0.0019  0.0010  0.0022  0.0071  0.0016 
  0.2953  1.4643  0.1660  0.0071  0.0164  0.0039  0.0082  0.0183  0.0113  0.0147  0.0641  0.0163 
  0.4140  0.4158  1.4113  0.0054  0.0096  0.0021  0.0040  0.0083  0.0051  0.0079  0.0289  0.0076 
  0.0002  0.0005  0.0001  1.0755  0.0366  0.0082  0.0004  0.0010  0.0006  0.0007  0.0027  0.0006 
  0.0085  0.0201  0.0048  0.3924  1.6463  0.2196  0.0161  0.0420  0.0233  0.0235  0.1117  0.0238 
  0.0026  0.0061  0.0015  0.3280  0.3663  1.3236  0.0052  0.0136  0.0074  0.0090  0.0345  0.0083 
  0.0007  0.0012  0.0004  0.0013  0.0024  0.0005  1.1997  0.2184  0.1025  0.0020  0.0061  0.0013 
  0.0043  0.0096  0.0028  0.0046  0.0108  0.0027  0.5518  2.0243  0.6666  0.0077  0.0317  0.0075 
  0.0009  0.0021  0.0007  0.0011  0.0026  0.0006  0.1649  0.2816  1.3374  0.0018  0.0071  0.0016 
  0.0015  0.0018  0.0005  0.0024  0.0070  0.0011  0.0022  0.0060  0.0028  1.0906  0.0914  0.0205 
  0.0081  0.0239  0.0062  0.0101  0.0261  0.0051  0.0255  0.0711  0.0368  0.2440  1.5530  0.2293 
  0.0023  0.0055  0.0015  0.0028  0.0070  0.0014  0.0061  0.0166  0.0086  0.1562  0.2487  1.2798 

      8 0⍕f 
72869 3207321 7542861   42998 1874352 3068602  166560  848883  347503   47890  857119  764696 
      8 0⍕x2 
487149 610172312073729  146262 4039397 4844723  440002 2156077  757348  178822 1784590 1263502 
     8 3⍕∆xp 
4.002   4.002   4.000   4.011   4.016   4.004   7.803   7.764   7.846   3.317   3.313   3.104 
 
 

Problem 3.10: Exploring the Partitioned Leontief Inverse 
This problem illustrates recursive use expressing the Leontief inverse of a matrix in terms of 
partitions of the original matrix, sometimes necessary for very large matrices (thousands of 
sectors).   

Problem 3.10 Overview 
Assume that a limited computer that can directly determine the inverse of matrices no larger than 
of dimension 2 2×  (in practice this might be more like 5,000 5,000× ). For 
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0 0.1 0.3 0.2 0.2
0.1 0.1 0.1 0 0
0.2 0 0.1 0.3 0.1
0.3 0 0 0.1 0.3
0.3 0.2 0.1 0.1 0.2

=

 
 
 
 
 
 
  

A , we first partition the matrix ( )−I A  as  

  1.0   -0.1   -0.3   -0.2   -0.2
 -0.1    0.9 -0.1    0.0    0.0
-0.2    0.0  0.9   -0.3   -0.1( )
-0.3    0.0  0.0    0.9   -0.3
-0.3   -0.2 -0.1   -0.1    0.8

 
 
   
 − = =  
   
 
 
 

E F
I A G H

  and then further partition the matrix H by 

1 2

3 4

0.9 0.3 0.1
0 0.9 0.3
0.1 0.1 0.8

 − −
  = − =     − − 

H H
H H H . We then can define 1( )−  − =   

S T
I A U V where partitions 

in similar positions in ( )−I A  and 1( )−−I A  have the same dimensions.  From the results on the 
inverse of a partitioned inverse (Appendix A), we find that we need 1−E  and 1−H , the inverses of 
a 2 2×  and a 3 3×   matrix. Therefore, to find 1−H  we again use the results on the inverse of a 
partitioned matrix, where H is partitioned as above. This requires that 1−H and 1

4
−H  be found; 

since these are 2 2×  and 1 1×  matrices, respectively, this is easily accomplished. Hence, we have 

1

1.144     0.415 0.299
0.050     1.177 0.448
0.149     0.199 1.343

−

 
 =  
  

H . This in conjunction with 1−E , F and G allows us to find S, T, U 

and V which comprise 1( )−−I A : 
1.566     0.332
0.253     1.172
 

=  
 

S , 
0.638     0.640     0.711
0.231     0.150     0.148
 

=  
 

T , 

0.708     0.217 
0.802     0.270
0.839     0.478 

 
 =  
  

U , and 
1.441     0.707     0.622
0.388     1.509     0.815
0.525     0.554     1.733

 
 =  
  

V . Therefore 

1

1.566     0.332 0.638     0.640     0.711
0.253     1.172 0.231     0.150     0.148
0.708     0.217 1.441     0.707     0.622( )
0.802     0.270 0.388     1.509     0.815
0.839     0.478 0.525     0.554  

−− =I A

   1.733

 
 
 
 
 
 
 
 

. In this problem we used the method of 

partitioning repeatedly (sometimes called recursive application of the method) on sub-partitions 
of the original four partitions of ( )−I A . We can in theory invert an infinitely large matrix by 
recursively partitioning it into smaller and smaller submatrices. 
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Computational Notes 
In order to solve this problem, we can either manually work through successive application of 
the method of matrix inversion using partitioned matrices or develop a more generalized function 
for applying the method successively.  Included in the appendix to this volume is an APL dyadic 
function PINV which takes the matrix to be inverted, M, as the right argument.  The left 
argument is a scalar defining the number of rows (or columns) of the upper left partition of the 
matrix to be inverted, which in turn determines the numbers of rows and columns of the other 
matrices involved in computing the inverse by means of partitioning.  For this problem we have 

A←5 5⍴0.1×0 1 3 2 2 1 1 1 0 0 2 0 1 3 1 3 0 0 1 3 3 2 1 1 2 
IA←(DIAG 5⍴1)-A 

R1←2 PINV ¯3 ¯3↑IA 
R2←2 PINV IA 

A 
   0.0   0.1   0.3   0.2   0.2 
   0.1   0.1   0.1   0.0   0.0 
   0.2   0.0   0.1   0.3   0.1 
   0.3   0.0   0.0   0.1   0.3 
   0.3   0.2   0.1   0.1   0.2 
I-A 
   1.0  ¯0.1  ¯0.3  ¯0.2  ¯0.2 
  ¯0.1   0.9  ¯0.1   0.0   0.0 
  ¯0.2   0.0   0.9  ¯0.3  ¯0.1 
  ¯0.3   0.0   0.0   0.9  ¯0.3 
  ¯0.3  ¯0.2  ¯0.1  ¯0.1   0.8 
PARTITIONED MATRIX: 
     0.900    ¯0.300 |    ¯0.100 
     0.000     0.900 |    ¯0.300 
-------------------------------- 
    ¯0.100    ¯0.100 |     0.800 
PARTITIONED INVERSE R1 IS: 
     1.144     0.415 |     0.299 
     0.050     1.177 |     0.448 
-------------------------------- 
     0.149     0.199 |     1.343 
PARTITIONED MATRIX: 
     1.000    ¯0.100 |    ¯0.300    ¯0.200    ¯0.200 
    ¯0.100     0.900 |    ¯0.100     0.000     0.000 
---------------------------------------------------- 
    ¯0.200     0.000 |     0.900    ¯0.300    ¯0.100 
    ¯0.300     0.000 |     0.000     0.900    ¯0.300 
    ¯0.300    ¯0.200 |    ¯0.100    ¯0.100     0.800 
PARTITIONED INVERSE R2 IS: 
     1.566     0.332 |     0.638     0.640     0.711 
     0.253     1.172 |     0.231     0.150     0.148 
---------------------------------------------------- 
     0.708     0.217 |     1.441     0.707     0.622 
     0.802     0.270 |     0.388     1.509     0.815 
     0.839     0.478 |     0.525     0.554     1.733     
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Chapter 4, Organization of Basic Data for Input–Output Models 
Chapter 4 deals with the construction of input–output tables from standardized conventions of 
national economic accounts, such as the widely used System of National Accounts (SNA) 
promoted by the United Nations, including a basic introduction to the so-called commodity-by-
industry or supply-use input–output framework developed in additional detail in Chapter 5. A 
simplified SNA is derived from fundamental economic concepts of the circular flow of income 
and expenditure, that, as additional sectoral details are defined for businesses, households, 
government, foreign trade, and capital formation, ultimately result in the basic commodity-by-
industry formulation of input–output accounts. The process is illustrated with the US input–
output model and some of the key traditional conventions widely applied for such considerations 
as secondary production (multiple products or commodities produced by a business), competitive 
imports (commodities that are also produced domestically) versus non-competitive imports 
(commodities not produced domestically), trade and transportation margins on interindustry 
transactions, or the treatment of scrap and secondhand goods. The exercise problems for this 
chapter illustrate the key features of the SNA and relationships with input-output accounts and 
models. 

 

Problem 4.1: Basic Concepts of the Circular Flow of Income and Expenditure 
This problem illustrates the basic concepts of the circular flow of income and expenditure in a 
simple macroeconomy and corresponding set of national accounts. Consider a macroeconomy 
show below where transactions are measured in millions of dollars. 

 

 

The balance equations, found by equating the sum of all flows into an account with the sum of 
all flows leaving the account, are the following: 
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1,000 900 100 1,000
900 90 1000 10 990
100 10 90

Q C I
C S Q D
I D S

= = + = + =
+ = + = + = − =
+ = − = =

 

The corresponding “T” account tables are the following: 

Debits Credits

Income (Q ) 1000 Sales of consumption goods (C ) 900
Sales of capital goods (I ) 100

Total 1000 Total 1000

Debits Credits

Purchases of consumption  goods (C ) 900 Income (Q ) 1000
Savings (S ) 90 Depreciation (D ) -10

Total 990 Total 990

Debits Credits

Purchase of capital goods (I ) 100 Savings (S ) 90
Depreciation (D ) -10   
  
Total 90 Total 90

Production (Domestic Product Account)

Consumption (Income and Outlay Account)

Accumulation  (Capital Transactions Account)

 

Problem 4.2: Adding Depreciation and Rest-of-World Accounts 
This problem illustrates adding depreciation and rest-of-world accounts to the macroeconomy 
from Problem 4.1. We presume new transactions added are a capital consumption allowance to 
account for depreciation of capital investments of 10 percent of total investment (I), international 
trade allowances with a. “rest of world” account to accommodate purchases of imports of $75 
million (M), sales of exports of $50 million (X), and savings made available to capital markets 
from overseas lenders of $25 million (L), resulting in a new total amount of capital available for 
businesses of $125 million.  The modified balance equations for the businesses, consumers, 
capital, and trade accounts are: 

1,000 75 900 125 50 1075Q M C I X+ = + = + + = + + =   
900 90 1,000 10 990C S Q D+ = + = + = − =   

125 10 25 90I D L S+ + = − − = =   
75 25 50X W L= − = − =   

and the corresponding set of “T” accounts are the following: 
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1000
Consumers (2)

-10

-25

90
50←

125 ↓
900 75

Rest of World (4)

  

Purchases of 
Imports (M)

Businesses (1)
Sales of  

Exports (X)

Net Lending Overseas (L)Capital Markets (3)

 

→Savings (S)

→

↑
Consumer Expenditures (C)

→Investment (I)

←
←

Income (Q)  

Depreciation (D)

 

Debits Credits

Income (Q ) 1000 Sales of consumption goods (C ) 900
Imports (W ) 75 Sales of capital goods (I ) 125

Exports (X ) 50

Total 1075 Total 1075

Debits Credits

Purchases of consumption  goods (C ) 900 Income (Q ) 1000
Savings (S ) 90 Depreciation (D ) -10

Total 990 Total 990

Debits Credits

Purchase of capital goods (I ) 125 Savings (S ) 90
Depreciation (D ) -10   
Net Lending Overseas (L ) -25
  
Total 90 Total 90

Debits Credits

Sales of exports (X ) 50 Purchases of Imports (W ) 75
  Net Overseas Lending (L ) -25
  
Total 50 Total 50

Production (Domestic Product Account)

Consumption (Income and Outlay Account)

Accumulation  (Capital Transactions Account)

Rest of World (Balance of Payments Account)
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Problem 4.3: National Economic Balance Sheet 
This problem illustrates expressing a national economic balance sheet for an economy as a 
collection of balance equations and as a matrix representation of the consolidated national 
accounts. Consider a national economic balance sheet for an economy is given by the following: 

Capital Rest of Capital Rest of 
Prod. Cons. Accum. Govt World Prod. Cons. Accum. Govt World

475 Consumption Goods (C) 475
54 Capital Goods (I) 54

46 Exports (X) 46
46 Imports (M) 46
554 Income (Q) 554  

-29 Depreciation (D) -29  
30 Savings (S) 30

25 Govt. Expenditures (G) 25
20 Taxes (T) 20

5 Govt Deficit Spending (B) 5

600 525 30 25 46 Totals 600 525 30 25 46

Debits Credits
Economic Transaction

 

The corresponding balance equations are: 

Domestic Product Account: Q M C I X G+ = + + +   
Income and Outlay Account: C S T Q D+ + = +   
Capital Transactions Account: I D B S+ + =   
Balance of Payments Account: X M=   
Government Account: G T B= +   

The corresponding matrix representation of the consolidated national accounts is the following: 

Prod. Cons. Cap. ROW Govt. Total
Production 475 54 46 25 600
Consumption 554  -29  525
Capital Accum.  30  30
Rest of World 46   46
Govt. 20 5 25
Total 600 525 30 46 25  

Problem 4.4: Double Deflation Adjustments to Interindustry Transactions 
This problem illustrates the application of double deflation to adjusting interindustry transactions 
according the changes in relative prices.  

Problem 4.4 Overview 
Consider the following 4-sector input-output transactions table for the year 2015 along with 
industry prices for 2015 and 2020.  
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Price Price
1 2 3 4 Year 2000 Year 2005

1 24 86 56 64 398 2 5
2 32 15 78 78 314 3 6
3 104 49 62 94 469 5 9
4 14 16 63 78 454 7 12

Total 
Output

Industry Transactions

 

To compute the matrices of interindustry transactions and technical coefficients as well as 
the vector of total outputs deflated to year 2015 value terms, first, the vector of price indices is 

[ ] [ ]2 / 5 3 / 6 5 / 9 7 /12 0.400  0.500  0.556  0.583= =p . This vector is comprised of the 

ratios of the year 2000 prices to the year 2005 prices. Hence, 2000Z  , 2000A  and 2000x    can be 
computed as 

2000 2005

.4 0 0 0   24     86     56     64 9.6 34.4 22.4 25.6
0 .5 0 0   32     15     78     78 16 7.5 39 39

ˆ
0 0 .556 0 104     49     62     94 57.78 27.22 34.4
0 0 0 .583   14     16     63     78

   
   
   = = =
   
   
   

Z pZ
4 52.22

8.17 9.33 36.75 45.5

 
 
 
 
 
 

 , 

2000 2000 2000 1 2005 2005 2005 2005 1 1 2005 1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( )− − − −= = = = =A Z x pZ px pZ x p pA p         

.0603 .2191 .0860 .0967

.1005 .0478 .1497 .1473

.3629 .1734 .1322 .1972

.0513 .0594 .1410 .1718

 
 
 
 
 
 

, and 2000 2005

159.1
157

ˆ
260.56
264.83

 
 
 = =
 
 
 

x px .  

Computational Notes 
We have developed all the APL tools needed to solve this problem.  

 ph←DIAG p←2 3 5 7÷5 6 9 12 
 Z←4 4⍴24 86 56 64 32 15 78 78 104 49 62 94 14 16 63 78 
 A←Z AMAT x←398 314 469 454 
 Zb←ph+.×Z 
 Ab←ph+.×Z+.×(DIAG ÷x)+.×DIAG ÷p 
 xb←ph+.×x 

p 
     0.400     0.500     0.556     0.583 
Z                               x 
        24        86        56        64 
        32        15        78        78 
       104        49        62        94 
        14        16        63        78 
x 
       398       314       469       454 
A 
     0.060     0.274     0.119     0.141 
     0.080     0.048     0.166     0.172 
     0.261     0.156     0.132     0.207 
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     0.035     0.051     0.134     0.172 
Zb 
       9.6      34.4      22.4      25.6 
      16.0       7.5      39.0      39.0 
      57.8      27.2      34.4      52.2 
       8.2       9.3      36.8      45.5 
Ab 
     0.060     0.219     0.086     0.097 
     0.101     0.048     0.150     0.147 
     0.363     0.173     0.132     0.197 
     0.051     0.059     0.141     0.172 
xb 
     159.2     157.0     260.6     264.8 

Problem 4.5: Sectoral Aggregation 
This problem illustrates the impact of sector aggregation on the accounting for production of 
total outputs in an input-output economy. 

Problem 4.5 Overview 
Recall the interindustry transactions data given in Problem 2.7: 

8,565 8,069 8,843 3,045 1,124 276 230 3, 464
1,505 6,996 6,895 3,530 3,383 365 219 2,946

98 39 5 429 5,694 7 376 327
999 1,048 120 9,143 4, 460 228 210 2, 226

4,373 4, 488 8,325 2,729 2,9671 1,733 5,757 14,756
2,150 36 640 1, 234 165 821 90 6,717

506 7

=Z

180 0 2,352 0 18,091 26,529
5,315 1,895 2,993 1,071 13,941 434 6,096 46,338

 
 
 
 
 
 
 
 
 
 

 

One way of illustrating the effects of aggregation is as follows. Using a final-demand 
vector of all 1's, determine the effect on total of total outputs throughout the entire economy (i.e., 
summed over all the sectors) by successively aggregating transactions from 8 to 7 to 6 sectors 
and so on (also aggregating the corresponding final-demand vector) and evaluating the relative 
impact on vectors of total outputs and the total of total outputs. Consider the following sequence 
of aggregations: 

• Case 1 (8 8× ) No sectoral aggregation 
• Case 2 ( 7 7× ) Combine sector 6 with sector 2 
• Case 3 ( 6 6× ) Also combine sector 5 with sector 1 
• Case 4 ( 5 5× ) Also combine sector 8 with sector 3 
• Case 5 ( 4 4× ) Also combine sector 7 with previously combined 6 and 2 
• Case 6 ( 3 3× ) Also combine sector 4 with previously combined 5 and 1 

 

The impact of the sum of total outputs is indicated in the following table at each level of 
aggregation:  
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Computational Notes 

To solve this problem, it is helpful to have a function that specifies an aggregation matrix from a 
table defining how sectors are to be aggregated. To do this efficiently, several new APL features 
are important.  First is the distinction between numeric and textual data. So far, we have only 
used numeric data.  Textual data in APL is contained in objects called character arrays. For 
example, to identify a string of data as text, we enclose the text in single quote characters.  For 
example 

      Text←'The World will continue despite the circumstances' 
      Text 
The World will continue despite the circumstances  

Character arrays have many similarities with numeric arrays, but there are important differences 
as well.  We can query the shape of the array but obviously we cannot perform numeric 
operations with it, as in 

      ⍴Text 
49 

      100×Text 
DOMAIN ERROR 
      100×Text 
         ∧ 

Some characters can be stored as either numeric or text data, but it must be in numeric form to 
perform numeric operations with it.  For example, 

      11×'99' 
DOMAIN ERROR 
      11×'99' 
          ∧ 
      11×99 
1089 

For this problem it is helpful to use the simplest form of the powerful APL primitive operator 
named execute, denoted by the character ⍎. In its simplest form, the execute operator converts 
character strings to numeric vector.  For example, 

      a←'99' 
      b←⍎a 

1 2 3 4 5 6 7 8
8 16.26 2.31 1.84 1.12 1.6 2.88 1.43 2.26 2.82
7 16.56 2.48 3.33 1.13 1.61 2.87 2.28 2.87
6 15.64 4.85 3.14 1.15 1.58 2.2 2.62
5 15.62 4.78 3.11 3.86 1.58 2.29
4 15.72 4.73 5.51 3.91 1.57
3 15.53 6.15 5.44 3.94

Aggregation 
Level x'i

Aggregated Sector Total Output
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      11×b 
1089 

Of particular importance to this problem, the execute operator recognizes spaces between 
numeric data stored as text as delimiters separating the elements of a numeric vector, as in 

      r←'1 3 5 9 11' 
      r 
1 3 5 9 11 
      ⍴r 
10 
      s←⍎r 
      s 
1 3 5 9 11 
      ⍴s 
5 

As a relevant aside, it is useful to note that the format operator (⍕), illustrated above in its 
dyadic form for formatting numeric data, does the reverse of the execute operator in its monadic 
form.  That is, it converts numeric strings into character strings, as in 

      a←100 200 
      ⍴a 
2 
      b←⍕a 
      ⍴b 
7   

The execute operator has many other important uses in APL, some of which will appear 
later in this handbook, but for the present we can use the feature just described to help with 
creating the aggregation matrix.  Consider the following 3 3×  matrix M, for which we seek to 
combine the first and third rows and columns in assembling an aggregated 2 2×  matrix. 

      M←3 3⍴14 75 46 53 22 5 68 68 93 
      M 
14 75 46 
53 22  5 
68 68 93 

We create a character array with two rows corresponding to the sectors in the aggregated matrix. 
Each row will contain the indices (as characters) for the sectors of the unaggregated matrix to be 
combined in the aggregated matrix.  Character arrays like this can be created in a variety of ways 
depending upon the APL implementation, but very simply for this illustration, it could be 

      CODE←2 4⍴'1 3 2    ' 
      CODE 
1 3  
2    
      ⍴CODE 
2 4 
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With such a feature and using the execute operator, we can write a monadic APL function 
SCREATE to take the character matrix just described and create the aggregation matrix necessary 
to combine the rows and columns of the unaggregated matrix. 

[0] S←SCREATE C;i;n;m 
[1] n←(i←1)↑⍴C 
[2] m←⍴⍎,C,' ' 
[3] S←(n,m)⍴0 
[4] L1:S[i;⍎C[i;]]←1 
[5] →(n≥i←i+1)/L1 

We can now use SCREATE to generate the aggregation matrix S and use it (pre-multiplying M 
by S and post-multiplying it by the transpose of S) to produce the aggregated matrix according to 
the specified code: 

      S←SCREATE CODE 
      S 
1 0 1 
0 1 0 
      S+.×M+.×⍉S 
221 143 
 58  22  

For this problem we can use SCREATE to successively aggregate Z according the 
alternative aggregation codes specified and tally the impact of aggregation bias on the sum of 
total outputs along the way in a six-element vector T with the unaggregated total as the first 
element. 

 Z←8565 8069 8843 3045 1124 276 230 3464 1505 6996 6895 3530 3383 365 219 
 Z←Z,2946 98 39 5 429 5694 7 376 327 999 1048 120 9143 4460 228 210 2226 
 Z←Z,4373 4488 8325 2729 29671 1733 5757 14756 2150 36 640 1234 165 821 90 
 Z←Z,6717 506 7 180 0 2352 0 18091 26529 5315 1895 2993 1071 13941 434 
 Z←Z,6096 46338 
 Z←8 8⍴Z 
 x←37610 45108 46323 41059 209403 11200 55992 161079 
 T←6⍴0 
 
 L←LINV A←Z AMAT x 
 T[1]←+/∆X1←L+.×∆Y1←8⍴1 
 
 S←S1←SCREATE C1←7 3⍴'1  2 6 3  4  5  7  8    ' 
 ZZ←S+.×Z+.×⍉S 
 XX←S+.×X 
 YY←S+.×∆Y1 
 T[2]←+/∆X2←(LINV ZZ AMAT XX)+.×YY 
 
 S←S2←SCREATE C2←6 3⍴'1 52 63  4  7  8  ' 
 ZZ←S+.×Z+.×⍉S 
 XX←S+.×X 
 YY←S+.×∆Y1 
 T[3]←+/∆X3←(LINV ZZ AMAT XX)+.×YY 
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 S←S3←SCREATE C3←5 3⍴'1 52 63 84  7   ' 
 ZZ←S+.×Z+.×⍉S 
 XX←S+.×X 
 YY←S+.×∆Y1 
 T[4]←+/∆X4←(LINV ZZ AMAT XX)+.×YY 
 
 S←S4←SCREATE C4←4 5⍴'1 5  2 6 73 8  4      ' 
 ZZ←S+.×Z+.×⍉S 
 XX←S+.×X 
 YY←S+.×∆Y1 
 T[5]←+/∆X5←(LINV ZZ AMAT XX)+.×YY 
 
 S←S5←SCREATE C5←3 5⍴'1 5 42 6 73 8   ' 
 ZZ←S+.×Z+.×⍉S 
 XX←S+.×X 
 YY←S+.×∆Y1 
 T[6]←+/∆X6←(LINV ZZ AMAT XX)+.×YY 
  

 T 
 16.262447 16.56122 15.54133 15.624984 15.720623 15.533131 

For this now growing list of steps, it might be more efficient to combine them all into an APL 
function, as in 

[ 0] T←MB3Prob_04_05;ZZ;YY;XX;C1;C2;C3;C4;C5;A;L;S;f                        
[ 1] Z←8565 8069 8843 3045 1124 276 230 3464 1505 6996 6895 3530 3383 365 219  
[ 2] Z←Z,2946 98 39 5 429 5694 7 376 327 999 1048 120 9143 4460 228 210 2226   
[ 3] Z←Z,4373 4488 8325 2729 29671 1733 5757 14756 2150 36 640 1234 165 821 90 
[ 4] Z←Z,6717 506 7 180 0 2352 0 18091 26529 5315 1895 2993 1071 13941 434     
[ 5] Z←Z,6096 46338                                                            
[ 6]  Z←8 8⍴Z                                                                   
[ 7]  x←37610 45108 46323 41059 209403 11200 55992 161079                       
[ 8]  T←6⍴0                                                                     
[ 9]  C1←7 3⍴'1  2 6 3  4  5  7  8    '                                         
[10]  C2←6 3⍴'1 52 63  4  7  8  '                                               
[11]  C3←5 3⍴'1 52 63 84  7   '                                                 
[12]  C4←4 5⍴'1 5  2 6 73 8  4      '                                           
[13]  C5←3 5⍴'1 5 42 6 73 8   '                                                 
[14]  L←LINV A←Z AMAT x                                                         
[15]  T[i←1]←+/L+.×f←8⍴1                                                        
[16] L1:⍎'S←SCREATE C',⍕i                                                       
[17]  ZZ←S+.×Z+.×⍉S                                                             
[18]  XX←S+.×x                                                                  
[19]  YY←S+.×f                                                                  
[20]  T[i+1]←+/(LINV ZZ AMAT XX)+.×YY                                           
[21]  →(5≥i←i+1)/L1                                                             

        MB3Prob_04_05 
16.262447 16.56122 15.54133 15.624984 15.720623 15.533131 

Note, however, that this function makes use of one of the additional features of the execute 
operator (in line [16]). The index number i increases with each cycle in the loop beginning with 
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line [16] (labelled L1) for the 5 different aggregation schemes. The current index number i is 
converted to a text format and catenated with the text string 'S←SCREATE C' to form the 
relevant string, for the first cycle, as S←SCREATE C1; for the second cycle, as S←SCREATE 
C2, etc. Then the execute operator “executes” the string as an APL statement.  This is actually 
quite consistent with the earlier use where a string of character data is converted to numeric data 
as if it had been entered by the keyboard, as in 

      a←'10 20 30 40' 
      a 
10 20 30 40 
      ⍴a 
11 
      b←⍎a 
      b 
10 20 30 40 
      ⍴b 
4 

 Finally, as our APL statements accumulate in user defined functions it is important keep 
track of what is going on and to use some other features for organizing the function.  First, 
comments can be inserted in a function, delimited with the character ⍝ placed before the 
comment which when encountered by the APL interpreter will be ignored.  Another useful 
feature is to combine several statements on one line by delimiting them with the character ⋄. 
Note, however, that statements delimited in this way are executed in the order left to right, unlike 
the order of execution within an individual state which is right to left.  With these two 
conventions we could show the new function somewhat more transparently as 

[ 0] T←MB3Prob_04_05;ZZ;YY;XX;C1;C2;C3;C4;C5;A;L;S;f                       
[ 1] Z←8565 8069 8843 3045 1124 276 230 3464 1505 6996 6895 3530 3383 365 219  
[ 2] Z←Z,2946 98 39 5 429 5694 7 376 327 999 1048 120 9143 4460 228 210 2226   
[ 3] Z←Z,4373 4488 8325 2729 29671 1733 5757 14756 2150 36 640 1234 165 821 90 
[ 4] Z←Z,6717 506 7 180 0 2352 0 18091 26529 5315 1895 2993 1071 13941 434     
[ 5] Z←Z,6096 46338                                                            
[ 6] Z←8 8⍴Z                                                                   
[ 7] x←37610 45108 46323 41059 209403 11200 55992 161079                       
[ 8] ⍝Alternative aggregation codes                                             
[ 9] C1←7 3⍴'1  2 6 3  4  5  7  8    '                                         
[10] C2←6 3⍴'1 52 63  4  7  8  '                                               
[11] C3←5 3⍴'1 52 63 84  7   '                                                 
[12] C4←4 5⍴'1 5  2 6 73 8  4      '                                           
[13] C5←3 5⍴'1 5 42 6 73 8   '                                                 
[14] ⍝Accumulate total outputs for aggregations                                 
[15] T←6⍴0                                                                     
[16] L←LINV A←Z AMAT x                                                         
[17] ⍝---Unaggregated                                                           
[18] T[i←1]←+/L+.×f←8⍴1                                                        
[19] ⍝---The 5 alternative aggregation schemes                                  
[20] L1:⍎'S←SCREATE C',⍕i                                                       
[21] ZZ←S+.×Z+.×⍉S ⋄ XX←S+.×x ⋄ YY←S+.×f                                       
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[22]  T[i+1]←+/(LINV ZZ AMAT XX)+.×YY                                           
[23]  →(5≥i←i+1)/L1   

                          

Problem 4.6: Measuring Aggregation Bias 
This problem illustrates the computation of first order and total aggregation bias. 

Problem 4.6 Overview 
The seven-sector input-output table of technical coefficients for the U.S. economy (1972) is 
given in Appendix SD1 (located on the supplemental resources website). Consider the following 

vector of final demands: [ ]100 100 100 100 100 100 100 ′∆ =f . To compute the first 
order and total aggregation bias associated with, as an example, combining agriculture with 
mining, construction with manufacturing, and transportation-utilities with services and other 
sectors to yield a new three-sector model we first compute the interindustry transactions, 

26,370          9          465    41,257         377      2,768       193
     160     1,647     1,511    22,531      6,038         104       322
     579       857           50      3,273      5,

ˆ= =Z Ax
887    13,734    2,676

12,056    2,865    58,464  287,046    15,360    46,582    1,257
  5,172    1,462    17,314    59,830    36,984    23,082    3,256
  7,262    4,470    11,387    44,987    43,664    84,651    1,693
     193       191         697      8,906      4,453      5,013       532

 
 
 
 
 
 
 
 
 
  

  . The aggregation 

matrix for the specified sectoral aggregation is 
1 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 1 1

 
 =  
  

S  so we compute the aggregated 

transactions and total outputs as *

28,186     65,763       9,804
16,358   348,834     85,496
18,750   143,121   203,328

 
 ′ =  
  

Z = SZS , 

*

   114,341
   927,192
1,060,811

 
 =  
  

x = Sx   and * * * 1

.247   .071   .009
( ) .143   .376   .081

.164   .154   .192

−

 
 =  
  

A = Z x , respectively. We subsequently 

compute * * 1

1.365  0.163  0.032
( ) 0.358  1.686  0.172

0.345  0.355  1.276

−

 
 = =  
  

L I - A ; *

315.2
460.5
523.0

 
 =  
  

x   and 1

174.5
120.9
116.5

( ) 329.7
184.6
218.3
110.1

−

 
 
 
 
 − ∆ =  
 
 
 
  

x = I A f . 
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The vector of first order bias for individual sectors is found by *

17.069
( )   7.726

  5.790

 
 − ∆ =  
  

φ = A S SA f  and 

the total first order bias is 30.58′ =i φ . The vector of the total aggregation bias for individual 

sectors is found by *

19.751
14.326
10.025

 
 = − =  
  

τ x Sx   and the overall total aggregation bias is 44.1′ =i τ . 

Computational Notes 
We first retrieve the matrix of interindustry transactions Z and the vector of total outputs x from 
the textbook data Appendix SD1 and generate A in the usual manner, i.e., A←Z AMAT x.   

Z 
     26369        11       466     41271       375      2758       201 
       159      1648      1506     22509      6035       120       315 
       583       858        47      3245      5875     13715      2672 
     12056      2866     58469    287075     15372     46564      1259 
      5170      1460     17316     59839     36998     23092      3249 
      7262      4471     11387     44991     43658     84626      1694 
       195       190       700      8871      4460      5018       531 
x 
     83955     30386    165998    761194    377389    522215    161207 
A 
     0.314     0.000     0.003     0.054     0.001     0.005     0.001 
     0.002     0.054     0.009     0.030     0.016     0.000     0.002 
     0.007     0.028     0.000     0.004     0.016     0.026     0.017 
     0.144     0.094     0.352     0.377     0.041     0.089     0.008 
     0.062     0.048     0.104     0.079     0.098     0.044     0.020 
     0.086     0.147     0.069     0.059     0.116     0.162     0.011 
     0.002     0.006     0.004     0.012     0.012     0.010     0.003 

We then use SCREATE to fashion the appropriate aggregation matrix S. 

      S←SCREATE 3 5⍴'1 2  3 4  5 6 7' 
      S 
1 1 0 0 0 0 0 
0 0 1 1 0 0 0 
0 0 0 0 1 1 1 
Then we can easily compute the aggregated matrix of transactions ZS, vector of total outputs xs, 
and matrices of technical requirements AS and the Leontief inverse LS. 

     ZS←S+.×Z+.×⍉S 
     LS←INV AS←ZS AMAT xs←S+.×x   

ZS 
     28186     65752      9804 
     16363    348835     85457 
     18748    143104    203327 
 



2021 August 7 

-91- 
 

AS 
     0.247     0.071     0.009 
     0.143     0.376     0.081 
     0.164     0.154     0.192 
LS 
     1.365     0.163     0.032 
     0.358     1.686     0.172 
     0.345     0.355     1.276 

If we denote the new test vector of final demands (all 7 elements equal to 100) as f2, we can 
compute the corresponding total outputs x2, and their respective aggregated values, fs2 and 
xs2, as 

     x2←(L←INV A)+.×f2 
     xs2←LS+.×fs2←S+.×f2←7⍴100  

f2 
     100.0     100.0     100.0     100.0     100.0     100.0     100.0 
x2 
     174.5     120.9     116.5     329.7     184.6     218.2     110.1 
fs2 
     200.0     200.0     300.0 
xs2 
     315.2     460.5     523.0  

And finally, the first order bias FOB and total aggregation bias TAB, can be computed as 

     TAB←xs2-(S+.×x2) 
     FOB←((AS+.×S)-(S+.×A))+.×f2 

     FOB 
17.065403 7.7211936 5.789844 
     +/FOB 
30.576441 
     TAB 
19.739274 14.316627 10.020306 
     +/TAB 
44.076206 
 

Problem 4.7: Table Consolidated National Accounts 
This problem illustrates construction of a table of consolidated national accounts in matrix form 
from a set of national accounting equations.  Consider the following national accounting 
equations: 

(1) Q M C I X G+ = + + +   
(2) C S T Q D+ + = +   
(3) L I D B S+ + + =   
(4) X M L= +   
(5) G T B= +   
where Q =   total consumer income payments; M =  purchases of imports; C =  total sales of 
consumption goods; S =   total consumer savings; T =  total taxes paid to government; I =  total 
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purchases of capital goods; D =  total capital consumption allowance (depreciation); L =   net 
lending from overseas; B =  total government deficit spending; X =  total sales of exports; G =   
total government purchases and the following are known: 500Q = − , 75M = , 60S = , 20T = , 

10D = , 20L = − , and 10B = .  

First, note that there are missing quantities C, I , X and G that are necessary to complete 
the table, which can be found with equations (2), (3), (4), and (5), respectively as: 

410C Q D S T= + − − = ; 80I D S L B= − + − − = ; 55X L M= + = ; and 30G T B= + = . The 
resulting consolidated table of national accounts represented in matrix form is the following: 

Prod. Cons. Cap. ROW Govt. Total
Prod. C=410 I=80 X=55 G=30 575
Cons. Q=500  D=-10  490
Cap.  S=60  60
ROW M=75  L=-20 55
Govt. T=20 B=10 30
Total 575 490 60 55 30  

Problem 4.8: Supply and Use IO Tables Derived from Table of National 
Accounts 
This problem illustrates conversion of table of national accounts to a consolidated table of supply 
and use input-output accounts. Consider the following table of national accounts (generated in 
Problem 4.7). 

Prod. Cons. Cap. ROW Govt. Total

Prod. 410 80 55 30 575
Cons. 500  -10  490
Cap.  60  60
ROW 75  -20  55
Govt. 20 10 30
Total 575 490 60 55 30  

Suppose the following tables become available providing the interindustry supply and use detail 
for this economy.  

Use of commodities by industries: 

Nat. Res. Manuf. Serv.

Agriculture 20 12 18 50
Mining 5 30 12 47
Manufacturing 10 13 11 34
Services 12 17 40 69Co

m
m

od
ity

Total 
Intermed. 

Output

Industry
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Final uses of commodity production: 

Households Government Investment Exports
30 6 16 5
60 9 16 17
50 3 40 22
70 12 8 11

210 30 80 55Totals

Agriculture
Mining
Manufacturing
Services

 

Supply of commodities by industries: 

Agric. Mining Manuf. Services

Natural Resources 99 10 109

Manufacturing 8 143 137 10 298

Services  6 12 150 168
Total Commodity 
Output 107 149 149 170 575

Commodity Total 
Industry 
Output

In
du

str
y

 

The corresponding consolidated set of supply and use accounts including the sector detail for 
interindustry transactions becomes the following: 

Agric. Mining Manuf. Serv. Nat. Res. Manuf. Serv.
Agriculture 20 12 18 57 107
Mining 5 30 12 102 149
Manufacturing 10 13 11 115 149
Services 12 17 40 101 170

Natural Resources 99 10 109
Manufacturing 8 143 137 10 298
Services  6 12 150 168

Value Added 62 226 87 375
Total Output 107 149 149 170 109 298 168 575

In
d.

Total 
Output 

Commodities Industries

C
om

m
.

 

Final 
Demand
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Problem 4.9: Generating Domestic Transactions Tables from “US-Style” IO 
Tables 
This problem illustrates a process of “scrubbing” a U.S. style input-output transactions table of 
competitive imports to yield a domestic transactions table.  

Problem 4.9 Overview 

We define an input-output economy with 
500 0 0
50 300 150
200 150 550

 
 =  
  

Z  and 
1,000
750

1,000

 
 =  
  

x . We also know 

the vector of the total value of competitive imports, 
150
105
210

 
 =  
  

m . Knowing m, we can define 

[ ]650 355 310 ′= + =g f m , which is the vector of total final demands, including imports.  In 
some cases, the accounting is such that m is recorded as a negative final demand so that the 
vector of total outputs, = +x Zi f , reflects total domestic output, which is the convention used 
for the US input-output tables. Using the assumption of import similarity, we can compute the 
domestic transactions matrix where competitive imports are removed from interindustry 
transactions by the following steps. First, we compute the vectors of total final demand and 

intermediate outputs, 
500
250
100

 
 = − =  
  

f x Zi  and 
500
500
900

 
 =  
  

u , respectively. The import similarity 

scaling factors are found for each commodity as the ratio of the value of total interindustry 
imports of that commodity divided by the total output (including imports), i

i
i i

mr
u f

=
+

, or 

[ ].15 .24 .21 ′=r  .  

We can then compute the scaled quantities 
425 0 0

ˆ 43 258 129
158 118.5 434.5

 
 =  
  

D = Z - rZ , 

75 0 0
ˆ 7 42 21

42 31.5 115.5

 
 =  
  

M = rZ , 
75

ˆ 35
21

 
 =  
  

h = rf , and 
575

ˆ 320
289

 
 = − =  
  

g g rf .  Note that the identity 

= +x Di g  (analogous to = +x Zi f ) still holds, but this balance equation now accounts for only 
domestic transactions with interindustry imports reassigned to total value added. The new total 
value-added vector is [ ]374 373.5 436.5′ ′ ′− =v = x i D , which inflates the original vector of 
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total valued added, [ ]250 300 300′ =v  by interindustry imports to each industry, i.e., 

[ ]124  73.5  136.5′ =m , excluding the value of imports consumed directly in final demand.  

 If we subsequently learn that 
150 0 0
25 50 30
35 75 100

 
 =  
  

M , i.e., we know precisely the 

competitive imports associated with interindustry transactions, we can compute the domestic 
transactions matrix (rather than approximate it with import similarity scaling factors) by 

350 0 0
25 250 120

165 75 450

 
 − =  
  

D = Z M  and compute 
150
105
210

 
 =  
  

m = Mi , and 
650
355
310

 
 + =  
  

g = f m  where 

500
250
100

 
 = − =  
  

f x Zi . Note that the balance equation = +x Di g  holds here as well. Then the new 

total value added vector, [ ]460 425 430′ ′ ′= − =v x i D , inflates the original vector of total 

valued added, [ ]250 300 300′ ′ ′= − =v x i Z , by the total value of all imports to each industry, 

[ ]210 125 130′ =m , i.e. ′ ′ ′ ′= = −m i M v v  .    

 We compute the Leontief inverse for the first case as 

1

1.739 0 0
( ) .222 1.613 .368

.548 .451 1.871

I I −

 
 = − =  
  

L I A  for 1

.425 0 0
ˆ .043 .344 .129

.158 .158 .435

I −

 
 = =  
  

A Dx   and for the 

second case as 1

1.538 0 0
( ) .146 1.551 .338

.488 .282 1.88

II II −

 
 = − =  
  

L I A   for 1

.35 0 0
ˆ .025 .333 .12

.165 .1 .45

II −

 
 = =  
  

A Dx . 

The mean absolute deviation (mad) between IA  and IIA is 
3 3

1 1
( ) (1/ 9) .0215I II

ij ij
i j

mad a a
= =

= − =∑∑A  and the mad between IL  and IIL  is found to be 

3 3

1 1
( ) (1/ 9) .0673I II

ij ij
i j

mad l l
= =

= − =∑∑L . 

Computational Notes 
We first create Z and x, from which we can create the vectors of final demands f, intermediate 
outputs u, and value-added inputs v. 

     Z←3 3⍴500 0 0 50 300 150 200 150 550 
     x←1000 750 1000 
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     f←x-u←+/Z 
     v←x-+⌿Z 

Z 
       500         0         0 
        50       300       150 
       200       150       550 
x 
      1000       750      1000 
v 
       250       300       300 
u 
       500       500       900 
f 
       500       250       100 

Then, knowing the vector of domestic imports m, we can compute the vector of domestic scaling 
factors r, and the associated domestic data. 

     m←150 105 210 
     g←f+m 
     r←m÷(u+f) 
     DB←Z-(rh←DIAG r)+.×Z 
     MB←rh+.×Z 
     h←rh+.×f 
     gb←g-rh+.×f 
     vb←x-+⌿DB 
     mb←+⌿MB 

m 
150 105 210 
g 
650 355 310 
r 
0.15 0.14 0.21 
DB 
     425.0       0.0       0.0 
      43.0     258.0     129.0 
     158.0     118.5     434.5 
MB 
      75.0       0.0       0.0 
       7.0      42.0      21.0 
      42.0      31.5     115.5 
h 
      75.0      35.0      21.0 
gb 
     575.0     320.0     289.0 
vb 
     374.0     373.5     436.5 
mb 
     124.0      73.5     136.5 



2021 August 7 

-97- 
 

Next, we presume we know the matrix of imports M and compute the “real” domestic 
transactions matrix D, the associated vectors of value-added inputs vt and of the total value of 
imports mt. 

     M←3 3⍴150 0 0 25 50 30 35 75 100 
     D←Z-M 
     vt←x-+⌿D 
     mt←vt-v 

 M 
       150         0         0 
        25        50        30 
        35        75       100 
D 
     350.0       0.0       0.0 
      25.0     250.0     120.0 
     165.0      75.0     450.0 
vt 
     460.0     425.0     430.0 
mt 
     210.0     125.0     130.0 

Finally, we compute the matrices of technical coefficients using the estimated and actual 
matrices of transactions, DB and D, as A1 and A2, respectively, and the associated Leontief 
inverses, L1 and L2, as well as the MAD measures between them. 

     L1←LINV A1←DB AMAT x 
     L2←LINV A2←D AMAT x 
     MAD←((+/+/|A1-A2)÷9),(+/+/|L1-L2)÷9 
A1 
     0.425     0.000     0.000 
     0.043     0.344     0.129 
     0.158     0.158     0.435 
L1 
     1.739     0.000     0.000 
     0.222     1.613     0.368 
     0.548     0.451     1.871 
A2 
     0.350     0.000     0.000 
     0.025     0.333     0.120 
     0.165     0.100     0.450 
L3 
     1.538     0.000     0.000 
     0.146     1.551     0.338 
     0.488     0.282     1.880 
MAD 
0.021462963  0.067318963 
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Problem 4.10: Spatial Aggregation 
This problem illustrates the calculation of spatial aggregation bias. 

Problem 4.10 Overview 
Recall the three-region, three-sector Chinese interregional model (for the year 2000) specified in 
Problem 3.6. Using that table as a point of departure, we aggregate regions 1 and 2 and leave 
region 3 unaggregated to yield a two-region model.  

To aggregate the North and South regions and leave the Rest of China region 

unaggregated, we construct the aggregation matrix 

1 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

 
 
 =  
 
  

S  and 

compute the aggregated matrix of interindustry transactions, ( )a ′=Z SZS , and the aggregated 
vector of total outputs, ( )a =x Sx , which are shown in the following table: 

 

 

The corresponding technical coefficients matrix and Leontief inverse, respectively, are 

( ) ( ) ( ) 1

.126 .13 .035 .01 .011 .002

.155 .463 .238 .021 .065 .037

.043 .086 .13 .003 .009 .008
ˆ( )

.001 .002 .001 .136 .149 .033

.003 .01 .005 .105 .318 .194

.001 .001 .001 .036 .102 .112

a a a −

 
 
 
 

= =  
 
 
 
 

A Z x  and  

Nat. Res.
Manuf & 

Const. Services Nat. Res.
Manuf & 

Const. Services
Nat. Resources 5,625       17,001     1,339       117          227          19            
Manuf. & Const. 6,902       60,554     9,203       241          1,374       325          
Services 1,920       11,225     5,017       35            186          68            
Nat. Resources 43            305          22            1,581       3,154       293          
Manuf. & Const. 155          1,334       212          1,225       6,704       1,733       
Services 29            193          53            425          2,145       1,000       

44,517     130,816   38,678     11,661     21,107     8,910       

North & 
South

North and South

Rest of 
China

Rest of China
China 2000

Total Chinese Output
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( ) ( ) 1

1.207 .315 .135 .031 .062 .032
.395 2.055 .580 .093 .252 .149
.099 .219 1.213 .018 .046 .03

( )
.005 .013 .006 1.196 .279 .106
.015 .039 .022 .207 1.567 .353
.004 .009 .006 .073 .191 1.171

a a −

 
 
 
 

= − =  
 
 
 
 

L I A .  

To calculate the aggregation bias measured as a percent of gross outputs with a reference 

vector of final demands given by [ ]100 100 100 ′=f   for the unaggregated model, we can 

specify [ ]100 100 100 100 100 100 100 100 100 ′=f  for the unaggregated case and 

we can write [ ]( ) 200 200 200 100 100 100a ′= =f Sf   for the aggregated case. We can 

now compute [ ]165 284 151 178 371 164 163 227 147 ′= =x Lf  and 

[ ]( ) ( ) ( ) 344 655 316 163 228 147a a a ′= =x L f  from which we can compute the aggregation 

bias as 
( )

100 100 (2.115 /1,850.718) 0.114
a−

× = × =
Sx x i

Sxi

 



 percent. 

Computational Notes 
We can retrieve the data from the textbook data appendix and presume that Z and x are defined 
as variables in the APL workspace. We can then compute A and L in the usual manner. 
     L←INV A←Z AMAT x 
Z 
    1723.8    6311.6     405.6     187.8    1205.7      85.8      13.9      48.8       4.1 
    2380.7   18457.7    2986.8     301.1    3331.1     459.6      39.1     234.1      57.4 
     708.6    3882.7    1810.7      63.9     432.3     138.0       4.6      23.1       5.3 
     148.7     656.1      42.2    3564.4    8828.1     805.7     103.5     177.9      15.4 
     462.7    3834.0     571.4    3757.5   34931.1    5185.6     202.1    1140.1     267.9 
      48.6     296.8      98.7    1098.6    6612.9    2969.1      30.8     163.1      62.2 
       9.4      50.7       3.4      33.5     254.0      18.3    1581.4    3154.0     292.8 
      31.7     271.6      41.3     123.4    1062.3     170.3    1224.8    6704.1    1732.8 
       3.9      24.6       6.6      24.9     168.0      46.7     424.9    2145.0     999.8 
x 
   16651.1   49563.3   15011.4   27866.2   81252.9   23666.8   11660.8   21107.3    8910.2 
A 
    0.1035    0.1273    0.0270    0.0067    0.0148    0.0036    0.0012    0.0023    0.0005 
    0.1430    0.3724    0.1990    0.0108    0.0410    0.0194    0.0034    0.0111    0.0064 
    0.0426    0.0783    0.1206    0.0023    0.0053    0.0058    0.0004    0.0011    0.0006 
    0.0089    0.0132    0.0028    0.1279    0.1087    0.0340    0.0089    0.0084    0.0017 
    0.0278    0.0774    0.0381    0.1348    0.4299    0.2191    0.0173    0.0540    0.0301 
    0.0029    0.0060    0.0066    0.0394    0.0814    0.1255    0.0026    0.0077    0.0070 
    0.0006    0.0010    0.0002    0.0012    0.0031    0.0008    0.1356    0.1494    0.0329 
    0.0019    0.0055    0.0027    0.0044    0.0131    0.0072    0.1050    0.3176    0.1945 
    0.0002    0.0005    0.0004    0.0009    0.0021    0.0020    0.0364    0.1016    0.1122 
L 
    1.1631    0.2561    0.0965    0.0227    0.0582    0.0268    0.0064    0.0161    0.0085 
    0.3008    1.7275    0.4080    0.0537    0.1596    0.0849    0.0191    0.0529    0.0314 
    0.0840    0.1686    1.1794    0.0115    0.0306    0.0202    0.0035    0.0093    0.0054 
    0.0325    0.0681    0.0321    1.1919    0.2504    0.1114    0.0245    0.0459    0.0232 
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    0.1194    0.2943    0.1588    0.3258    1.9193    0.5036    0.0742    0.2010    0.1187 
    0.0193    0.0447    0.0284    0.0848    0.1920    1.1965    0.0142    0.0375    0.0252 
    0.0034    0.0079    0.0039    0.0062    0.0164    0.0082    1.1958    0.2793    0.1061 
    0.0098    0.0245    0.0133    0.0176    0.0478    0.0272    0.2068    1.5681    0.3532 
    0.0021    0.0051    0.0030    0.0045    0.0114    0.0075    0.0730    0.1916    1.1716 

Since we are aggregating regions rather than sectors, we can streamline creating the aggregation 
matrix by the following 
    I←3 3⍴1,3⍴0 
    O←3 3⍴0 
    S←(I,I,O),[1]O,O,I 

    S 
1 0 0 1 0 0 0 0 0 
0 1 0 0 1 0 0 0 0 
0 0 1 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 

Now we can easily compute the aggregated matrices (and vectors), ZA, AA, LA, and xa as 
well as the aggregate the test final demand vector ft (a 9-element vector with all elements 
equal to 100) to fta (and the associated vectors of total outputs xt and xta; and then compute 
the total aggregation bias TAB. 
    ZA←S+.×Z+.×⍉S 
    xa←S+.×x 
    LA←INV AA←ZA AMAT xa 
    ft←9⍴100 
    fta←S+.×ft 
    xt←L+.×ft 
    xta←LA+.×fta 
    xts←S+.×xt 
    TAB←100×((+/|xts-xta)÷+/xts) 
ZA 
    5624.6   17001.5    1339.3     117.3     226.7      19.5 
    6902.0   60553.9    9203.3     241.1    1374.2     325.3 
    1919.8   11224.8    5016.5      35.3     186.2      67.5 
      42.9     304.7      21.7    1581.4    3154.0     292.8 
     155.2    1333.8     211.5    1224.8    6704.1    1732.8 
      28.8     192.6      53.3     424.9    2145.0     999.8 
xa 
       6.0 
AA 
     0.126     0.130     0.035     0.010     0.011     0.002 
     0.155     0.463     0.238     0.021     0.065     0.037 
     0.043     0.086     0.130     0.003     0.009     0.008 
     0.001     0.002     0.001     0.136     0.149     0.033 
     0.003     0.010     0.005     0.105     0.318     0.194 
     0.001     0.001     0.001     0.036     0.102     0.112 
LA 
     1.207     0.315     0.135     0.031     0.062     0.032 
     0.395     2.055     0.580     0.093     0.252     0.149 
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     0.099     0.219     1.213     0.018     0.046     0.030 
     0.005     0.013     0.006     1.196     0.279     0.106 
     0.015     0.039     0.022     0.207     1.567     0.353 
     0.004     0.009     0.006     0.073     0.191     1.171 
ft 
     100.0     100.0     100.0     100.0     100.0     100.0     100.0     
100.0     100.0 
xt 
     165.4     283.8     151.3     178.0     371.5     164.2     162.7     
226.8     147.0 
fta 
     200.0     200.0     200.0     100.0     100.0     100.0 
xta 
     344.0     655.4     315.6     163.0     227.7     147.2 
xts 
     343.4     655.3     315.5     162.7     226.8     147.0 
TAB 
0.11429872 

 

Problem 4.11: Removing Imports from a 6-Sector Input-Output Table for 
Nepal 
This exercise applies the same procedure for removing competitive imports from the 
interindustry transactions table utilized in Problem 4.9, but this time applied to real-world data. 

Problem 4.11 Overview 
Consider a six-sector input-output table for Nepal for the year 2013, defined by the matrix of 
interindustry transactions, Z, and vector of total outputs, x, in the following: 

 

This table includes both domestic transactions, D, and competitive imports, M, such that 
= +Z D M .  However, for the present, we presume we do not know the detailed transactions 

reported as M and, instead, know only [ ]68 48  3,227 65  1  457 ′= =m Mi , the value of all 
imports of each commodity to the economy. To estimate the interindustry import transactions we 
assume import similarity, i.e., the imports as a fraction of interindustry activity are the same as 
that of the entire economy.  To do this, first, we compute the vectors of intermediate outputs and 

Interindustry 
Transactions

Agric. Mining Manuf. Const. Utilities Services Total 
Output

Agriculture 774       0           1,149    45         0           719       9,766    
Mining 0           0           87         0           119       1           252       
Manufacturing 1,037    22         2,029    166       1,654    1,743    13,015  
Construction 47         5           109       47         79         376       834       
Utilities 11         1           13         6           2           394       3,963    
Services 780       22         781       201       377       3,443    20,446  
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total final demand, respectively, as [ ]2,686 206  6,651  663  427 5,603 ′= =u Zi  and

[ ]7,080 45  6,363 171  3,536  14,843 ′= − =f x u . 

 Knowing m, we can define [ ]7,147 94 9,591 236 3,537 15,300 ′= + =g f m , which 
is the vector of total final demands, including imports.  Note that in some cases the accounting is 
such that m is recorded as a negative final demand so that = +x Zi f  reflects total domestic 
output, which is the convention used for the US input-output tables.  Using the assumption of 
import similarity, we can estimate the domestic transactions matrix where competitive imports 
are removed from interindustry transactions by the following steps.   

We can develop import similarity scaling factors for each commodity as the ratio of the 
value of total interindustry imports of that commodity divided by the total output (including 

imports), i
i

i i

mr
u f

=
+

, or [ ]0.007  0.193  0.248 0.078  0.000  0.022 ′=r . We can then compute 

the scaled quantities for imports, domestic transactions, and final demands as 

          5           0           8           0           0           5
          0           0        1  7           0         23           0
      257           6       503         41       410       432
       ˆ  =M = rZ    4           0           8           4           6         29
          0           0           0           0           0           0
       1  7           0        1  7           4           8         77

 
 
 
 
 
 

, 

 

      769           0   1  ,141         45           0       714
          0           0         70           0         96           0
      780        1  7   1  ,526      1  25   1  , 244   1  ,311
        43           =D = Z - M 5      1  00         43         73       347
       1  1          1         1  3           6           2       394
      762         22       763      1  96       368    3,366

 
 
 
 
 
  

, 

[ ]49  9  1,578  13 1ˆ  332 ′=h = rf , and [ ]7,098  85  8,013  223  3,536 14,968 ′= − =g g h .   

Note that with these scaled quantities the identity = +x Di g  (analogous to = +x Zi f ) still 
holds, but this balance equation now accounts for only domestic transactions with interindustry 
imports reassigned to total value added. The new total value-added vector is 

[ ]7,401 208  9,402 419  2,180 14,314′ ′ ′ =v = x - i D , which inflates the original vector of 

total valued added, [ ]7,118  201  8,848  369 1,732  13,770′ =v  by interindustry imports to each 

industry, i.e., [ ]283 6  554 50  448  544′ ′= =m i M , excluding the value of imports consumed 
directly in final demand.  
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 If we subsequently learn that 
       1  8           0         30          1            0        1  8
          0           0         20           0         28           0
      406        1  6       793      1  24       672   1  , 216
          5       =M     0        1  2           5        1  0         33
          0           0           0           0           0           0
       1  9           2         54        1  0         22       350

 
 
 
 
 
  

, i.e., we know precisely the 

competitive imports associated with interindustry transactions, we can compute the domestic 

transactions matrix by 

      756          0   1  ,118         44           0       701
          0           0         67           0         91           0
      631           7   1  , 236         42       982       527
        42        − =D = Z M    5         97         42         69       344
       1  1          1         1  3           6           2       393
      760         20       727      1  90       355    3,093

 
 
 
 
 
  

  

(rather than approximate it with import similarity scaling factors) and compute 

[ ]68 48  3,227 65  1  457 ′= =m Mi  and [ ]7,012 3 3,136  106 3,535  14,386 ′= − = −g f m  

where [ ]7,080 45  6,363 171  3,536  14,843 ′= − =f x u , as earlier. Note that the balance 
equation = +x Di g  holds here as well. Then the new total value-added vector, 

[ ]7,565  219  9,757  510  2,465  15,388′ ′ ′= =v x - i D , inflates the original vector of total 

valued added, [ ]7,118  201  8,848  369 1,732  13,770′ ′ ′= − =v x i Z , by the total value of all 

imports to each industry, [ ]447  18  909  141  733  1,618′ =m , i.e., ′ ′ ′ ′= = −m i M v v  .    

We compute the Leontief inverse for the first case as  

1

1.1007 0.0145 0.1141 0.0947 0.0433 0.0577
0.0007 1.0006 0.0063 0.0015 0.0264 0.0012
0.1105 0.0909 1.1537 0.2180 0.3784 0.1063
0.0081 0.0234 0.0118 1.0632 0.0260 0.0234
0.0036 0.0047 0.0033 0.0146 1.0041 0.0238
0.1134 0

(

.

)I I −= − =L I A

1175 0.0960 0.3253 0.1524 1.2193

 
 
 
 
 
 
 
 

 for 

1

 0.0787  0.0001  0.0876  0.0534  0.0000  0.0349
 0.0000  0.0000  0.0054  0.0000  0.0243  0.0000
 0.0798  0.0665  0.1172  0.1499  0.3139  0.0641
 0.0044  0.0193  0.0077  0.0520  0.0184  0.0170
 0.0011  0.0021  0

ˆ

.0010  0

I −= =A Dx

.0075  0.0005  0.0193
 0.0780  0.0857  0.0587  0.2352  0.0930  0.1646

 
 
 
 
 
 
 
 

  and for the second case 

as 

1.0961 0.0084 0.1079 0.0786 0.0328 0.0498
0.0005 1.0003 0.0058 0.0007 0.0245 0.0008
0.0828 0.0346 1.1167 0.0771 0.2829 0.0452
0.0076 0.0228 0.0110 1.0590 0.0236 0.0221
0.0035 0.0042 0.0030 0.0137 1.0036 0.0

( )

233
0.1085 0.

II II= − =L I A

1051 0.0872 0.2984 0.1362 1.1943

 
 
 
 
 
 
 
 

  for  
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1

0.0774 0.0000 0.0859 0.0526 0.0000 0.0343
0.0000 0.0000 0.0051 0.0000 0.0230 0.0000
0.0646 0.0259 0.0949 0.0506 0.2477 0.0258
0.0043 0.0195 0.0075 0.0499 0.0174 0.0168
0.0011 0.0020 0.0010 0.0074 0.0004 0.0192
0.

ˆ

0779 0.08

II −= =A Dx

10 0.0559 0.2281 0.0896 0.1513

 
 
 
 
 
 
 
 

.  

The mean absolute deviations between IL  and IIL  and between IA  and IIA are found to be 
6 6

1 1
( ) (1/ 36) .016I II

ij ij
i j

mad l l
= =

= − =∑∑L  and 
6 6

1 1
( ) (1/ 36) .009I II

ij ij
i j

mad a a
= =

= − =∑∑A , respectively. 

Computational Notes   
First, we define Z and x. Then compute u, f, and v as in Problem 4.9. 
     x←9766 252 13015 834 3963 20446 
     Z←774 0 1149 45 0 719 0 0 87 0 119 1 
     Z←Z,1037 22 2029 166 1654 1743 47 5 109 47 79 376 
     Z←Z,11 1 13 6 2 394 780 22 781 201 377 3443 
     Z←6 6⍴Z 
     f←x-u←+/Z 
     v←x-+⌿Z 

Z 
       774         0      1149        45         0       719 
         0         0        87         0       119         1 
      1037        22      2029       166      1654      1743 
        47         5       109        47        79       376 
        11         1        13         6         2       394 
       780        22       781       201       377      3443 
x 
      9766       252     13015       834      3963     20446 
v 
      7117       202      8847       369      1732     13770 
u 
      2687       207      6651       663       427      5604 
f 
      7079        45      6364       171      3536     14842 

Then, knowing the vector of domestic imports m, we can compute the vector of domestic scaling 
factors r, and the associated domestic data. 

     m←68 48 3227 65 1 457 
     g←f+m 
     r←m÷(u+f) 
     DB←Z-(rh←DIAG r)+.×Z 
     MB←rh+.×Z 
     h←rh+.×f 
     gb←g-rh+.×f 
     vb←x-+⌿DB 
     mb←+⌿MB 
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m 
68 48 3227 65 1 457 
g 
7147 93 9591 236 3537 15299 
r 
0.0069629326 0.19047619 0.24794468 0.07793765 0.00025233409 0.02235156 
DB 
     768.6       0.0    1141.0      44.7       0.0     714.0 
       0.0       0.0      70.4       0.0      96.3       0.8 
     779.9      16.5    1525.9     124.8    1243.9    1310.8 
      43.3       4.6     100.5      43.3      72.8     346.7 
      11.0       1.0      13.0       6.0       2.0     393.9 
     762.6      21.5     763.5     196.5     368.6    3366.0 
MB 
       5.4       0.0       8.0       0.3       0.0       5.0 
       0.0       0.0      16.6       0.0      22.7       0.2 
     257.1       5.5     503.1      41.2     410.1     432.2 
       3.7       0.4       8.5       3.7       6.2      29.3 
       0.0       0.0       0.0       0.0       0.0       0.1 
      17.4       0.5      17.5       4.5       8.4      77.0 
h 
      49.3       8.6    1577.9      13.3       0.9     331.7 
gb 
    7097.7      84.4    8013.1     222.7    3536.1   14967.3 
vb 
    7400.6     208.3    9400.6     418.6    2179.4   14313.7 
mb 
     283.6       6.3     553.6      49.6     447.4     543.7 

Next, we presume we know the matrix of imports M and compute the “real” domestic 
transactions matrix D, the associated vectors of value added vt and of the total value of imports 
mt. 

     M←18 0 30 1 0 18 0 0 20 0 28 0 406 16 793 124 672 1216 
     M←6 6⍴M,5 0 12 5 10 33 0 0 0 0 0 0 19 2 54 10 22 350       
     D←Z-M 
     vt←x-+⌿D 
     mt←vt-v 
M 
        18         0        30         1         0        18 
         0         0        20         0        28         0 
       406        16       793       124       672      1216 
         5         0        12         5        10        33 
         0         0         0         0         0         0 
        19         2        54        10        22       350 
D 
     756.0       0.0    1119.0      44.0       0.0     701.0 
       0.0       0.0      67.0       0.0      91.0       1.0 
     631.0       6.0    1236.0      42.0     982.0     527.0 
      42.0       5.0      97.0      42.0      69.0     343.0 
      11.0       1.0      13.0       6.0       2.0     394.0 
     761.0      20.0     727.0     191.0     355.0    3093.0 
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vt 
    7565.0     220.0    9756.0     509.0    2464.0   15387.0 
mt 
     448.0      18.0     909.0     140.0     732.0    1617.0 

Finally, we compute the matrices of technical coefficients using the estimated and actual 
matrices of transactions, DB and D, as A1 and A2, respectively, and the associated Leontief 
inverses, L1 and L2, as well as the MAD measures between them. 

     L1←LINV A1←DB AMAT x 
     L2←LINV A2←D AMAT x 
     MAD←((+/+/|A1-A2)÷36),(+/+/|L1-L2)÷36 

A1 
     0.079     0.000     0.088     0.054     0.000     0.035 
     0.000     0.000     0.005     0.000     0.024     0.000 
     0.080     0.066     0.117     0.150     0.314     0.064 
     0.004     0.018     0.008     0.052     0.018     0.017 
     0.001     0.004     0.001     0.007     0.001     0.019 
     0.078     0.085     0.059     0.236     0.093     0.165 
L1 
     1.101     0.014     0.114     0.095     0.043     0.058 
     0.001     1.001     0.006     0.002     0.026     0.001 
     0.111     0.090     1.154     0.218     0.378     0.106 
     0.008     0.022     0.012     1.063     0.026     0.023 
     0.004     0.006     0.003     0.014     1.004     0.024 
     0.113     0.117     0.096     0.326     0.152     1.219 
A2 
     0.077     0.000     0.086     0.053     0.000     0.034 
     0.000     0.000     0.005     0.000     0.023     0.000 
     0.065     0.024     0.095     0.050     0.248     0.026 
     0.004     0.020     0.007     0.050     0.017     0.017 
     0.001     0.004     0.001     0.007     0.001     0.019 
     0.078     0.079     0.056     0.229     0.090     0.151 
L2 
     1.096     0.008     0.108     0.079     0.033     0.050 
     0.001     1.000     0.006     0.001     0.025     0.001 
     0.083     0.033     1.117     0.077     0.283     0.045 
     0.008     0.023     0.011     1.060     0.024     0.022 
     0.003     0.006     0.003     0.014     1.004     0.023 
     0.109     0.103     0.087     0.300     0.136     1.194 
MAD 
0.0090619248 0.016152259 
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Chapter 5, The Commodity-by-Industry Approach in Input–Output 
Models  
Chapter 5 explores variations to the commodity-by-industry input–output framework introduced 
in Chapter 4, expanding the basic input–output framework to include distinguishing between 
commodities and industries, i.e., the supply of specific commodities in the economy and the use 
of those commodities by collections of businesses defined as industries. The chapter introduces 
the fundamental commodity-by-industry accounting relationships and how they relate to the 
basic input–output framework. Alternative assumptions are defined for handling the common 
accounting issue of secondary production, and economic interpretations of those alternative 
assumptions are presented. The formulations of commodity-driven and industry-driven models 
are also presented along with illustrations of variants on combining alternative assumptions for 
secondary production. Finally, the chapter illustrates the problems encountered with commodity-
by-industry models, such as nonsquare commodity–industry systems, mixed technology options 
or the interpretation of negative elements. The exercise problems for this chapter illustrate key 
features of commodity-by-industry accounts and their applications. 

 

Problem 5.1: Basic Configuration of Commodity-by-Industry Models 
This problem illustrates the basic configuration a commodity by industry model using make and 
use matrices.  

Problem 5.1 Overview 
For a system of commodity-by-industry accounts, suppose we have defined three commodities 
and two industries.  

The use matrix, U, and the make matrix, V, and are the following: 

3 5
15 5 10

2 7 ,   
5 25 0

2 3
= =
 

  
      

U V  

From these matrices we can compute the vector of commodity final demands, e, the vector of 
industry value added inputs, ′v , the vector of total commodity outputs, q, and the vector of total 
industry outputs, x, as the following: 

20 12
30

,   ( ) 30 ,   23 15 ,  and  21
30

10 5

   
                    

′ ′ ′ ′ ′= = = = = − = = − =x Vi q i V v x i U e x Ui  
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The matrix of commodity-by-industry direct requirements is 1

.1 .167
ˆ .067 .233

.067 .1

−

 
 = =  
  

B Ux  and the 

matrix of commodity output proportions is 1 .75 0.167 1
ˆ

.25 0.833 0
−  

= =  
 

D Vq .  

Among the various configurations for total requirements matrices, as an example, if we 
assume a fixed commodity sales structure, the industry-by-industry total requirements matrix is 

found by 1 1 1.021 .555 1.22
( ) ( )

.435 1.149 0.129
− −  

− = − =  
 

I DB D D I BD . 

Computational Notes 
First, we define U and V from which we can compute the vector of total commodity outputs q, 
the vector of total industry outputs x, the vector of commodity final demands e, and the vector of 
value-added inputs v, as the following: 

     U←3 2⍴3 5 2 7 2 3 
     V←2 3⍴15 5 10 5 25 0 
     x←+/V 
     q←+⌿V 
     e←q-+/U 
     v←x-+⌿U 
U 
3 5 
2 7 
2 3 
V 
15  5 10 
 5 25  0 
x 
30 30 
q 
20 30 10 
v 
23 15 
e 
12 21 5   

Finally, we can compute B, D, and the industry-by-industry, industry-based technology, 
industry-demand-driven, commodity-by-industry total requirements matrix as T1 or equivalently 
T2. 

 B←U+.×DIAG÷x 
 D←V+.×DIAG÷q 
 T1←D+.×INV B+.×D 
 T2←(INV D+.×B)+.×D 

B 
     0.100     0.167 
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     0.067     0.233 
     0.067     0.100 
D 
     0.750     0.167     1.000 
     0.250     0.833     0.000 
T1 
     1.021     0.555     1.220 
     0.435     1.149     0.129 
T2 
     1.021     0.555     1.220 
     0.435     1.149     0.129 

Problem 5.2: Commodity-by-Industry Total Requirements Matrices 
This problem illustrates commodity-by-industry total requirements matrices under alternative 
assumptions of industry-based and commodity-based technology.  

Problem 5.2 Overview 
Consider the following system of commodity and industry accounts for a region: 

1 2 1 2
1 1 2 7 10
2 3 4 3 10
1 10 2 12
2 0 8 8

8 2 10
10 10 12 8

 

Total 
Output

Commodities

Commodities Industries Final 
Demand

Total Inputs
Value Added

Industries

 

From this table, the use matrix is 1 2
3 4
 =   

U ; the make matrix is 10 2
0 8

 =   
V ; the vector 

of commodity final demands is 7
3
 =   

e ; the vector of total commodity output is 10
10
 =   

q ; the 

vector of total industry output is 12
8

 =   
x ; and the vector of industry value added is [ ]8 2′ =v . 

We these definitions we can compute the commodity-by-industry matrix of direct requirements 

as 1 .083 .25
ˆ

.25 .5
−  

= =  
 

B Ux ; the commodity output proportions matrix as 1 1.0 .2
ˆ

0 .8
−  

= =  
 

D Vq ; 

and the industry output proportions matrix as 1 .833 0
ˆ

.167 1
−  ′= =  

 
C V x .  

 As one common variant, the industry-based technology, industry-demand-driven, 

commodity-by-industry total requirements matrix is 1 1.333 0.889
( )

.444 1.63
−  

− =  
 

I DB D . As another 

variant, the commodity-based technology, industry-demand drive, commodity-by-industry total 
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requirements matrix is 1 1 1 1.412 .706
( )

.235 2.118
− − −  

− =  
 

I C B C  under the fixed industry sale structure 

assumption, 
14.11
10.95
 

∆ =  
 

x , and under a commodity-based technology assumption, 
12
12
 

∆ =  
 

x . 

These are different because the accounting of secondary production is different in the two 
assumptions. 

Computational Notes 
First, we define U and V from which we can compute the vector of total commodity outputs q, 
the vector of total industry outputs x, and the vector of commodity final demands e, as the 
following: 

     U←2 2⍴1 2 3 4 
     V←2 2⍴10 2 0 8 
     x←+/V 
     q←+⌿V 
     e←x-+/U 

U 
1 2 
3 4 
V 
10 2 
 0 8 
x 
12 8 
q 
10 10 
e 
9 1 

Next, we can compute B, D, C, CI (the inverse of C), and the total requirements variants, 
industry-based technology, industry-demand-driven, commodity-by-industry total requirements 
matrix as T1, and the commodity-based technology, industry-demand drive, commodity-by-
industry total requirements matrix as T2. 

     B←U+.×DIAG ÷x 
     D←V+.×DIAG ÷q 
     C←(VT←⍉V)+.×DIAG ÷x 
     CI←⌹C 
     T1←D+.×(IBI←INV B)+.×D 
     T2←(INV CI+.×B)+.×CI 

B 
     0.083     0.250 
     0.250     0.500 
D 
     1.000     0.200 
     0.000     0.800 
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C 
     0.833     0.000 
     0.167     1.000 
T1 
     1.389     1.154 
     0.505     1.583 
CI 
     1.200     0.000 
    ¯0.200     1.000 
T2 
     1.412     0.706 
     0.235     2.118 
 

Problem 5.3: Mixed Technology Assumption in Commodity-by-Industry 
Models 
This problem illustrates the adoption of mixed technology assumptions in construction 
commodity-by-industry models.  

Problem 5.3 Overview 

Consider again the system of accounts given in Problem 5.1: 
3 5
2 7
2 3

 
 =
 
 

U  and 
15 5 10
5 25 0

 
=  
 

V  

so that 
30
30
 = =   

x Vi  v and we can compute the industry input requirements matrix as 

1

3 5
2 7
2 3

.1 .167
1/ 30 0

ˆ .067 .233
0 1/ 30

.067 .1

−

  
    = = =            

B Ux .  

Suppose we can split the make matrix,
15 5 10
5 25 0

=
 
 
 

V into two components, 

1

5 5 5
5 5 0
 

=  
 

V  and 2

10 0 5
0 20 0

 
=  
 

V  such that 1 2= +V V V . This means that 1 1
15
10
 = =   

x V i       

and 1

10
10
5

 
 = =
 
 

q iV .  

We might be interested in comparing the two “mixed technology” assumptions that were 
covered in Sections 5.7.1 and 5.7.2 in computing the industry-by-commodity total requirements 
matrix for this system of accounts. However, since V is nonsquare, the matrix of industry output 
proportions, C, will be nonsquare and hence no unique 1−C exists.  
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Since no unique 1−C exists we cannot use the mixed-technology assumption requiring 
computation of 1−C ; that is, we cannot determine either 1 1 1( )− − −−I C B C   or 1( )−−R I BR  where 

1
1 2 2[ ( ) ]− ′= − +R C I D D .  Nonetheless, we can use the industry-based technology assumption 

with 1
1 2 2 1[(     ) ]−= + −T I D C i'C D  where 1

1 1 1

.5 .5 1
ˆ

.5 .5 0
−  

= =  
 

D V q and 

1
2 2

.333 0
ˆ 0 .667

.137 0

−

 
 ′= =  
  

C V x , which in this case is 
.333 .333 1.333
.667 .667 .333
 

=  − 
T  and then we compute 

the matrix of total requirements as 1 .685 .685 1.476
( )

.949 .949 .264
−  

− =  − 
T I BT . Note the negative 

element in this matrix of total requirements, the implications of which are discussed in Section 
5.5 of the text. 

Computational Notes. 
First, as in Problem 5.1, we define U and V and compute x, q, B, and D but in addition we 
decompose V in V1 and V2. 

     U←3 2⍴3 5 2 7 2 3 
     V←2 3⍴15 5 10 5 25 ⋄ x←+/V ⋄ q←+⌿V 
     B←U+.×DIAG ÷x 
     D←V+.×DIAG ÷q 
     V1←2 3⍴5 5 5 5 5 0 
     V2←2 3⍴10 0 5 0 20 0 
U 
         3         5 
         2         7 
         2         3 
V 
        15         5        10 
         5        25         0 
x 
        30        30 
q 
        20        30        10 
B 
    0.1000    0.1667 
    0.0667    0.2333 
    0.0667    0.1000 
D 
     0.750     0.167     1.000 
     0.250     0.833     0.000 

V1 
         5         5         5 
         5         5         0 
 



2021 August 7 

-113- 
 

V2 
        10         0         5 
         0        20         0 

We compute the two total requirements matrices using industry-based technology assumptions as 
T and T4, which requires the additional computation of x1, q1, D1,and C2. 

 x1←+/V1 
 D1←V1+.×DIAG ÷q1←+⌿V1 
 C2←(V2T←⍉V2)+.×DIAG ÷x  
 T←(⌹I2+(D1+.×C2)-(DIAG+⌿C2))+.×D1 
 T4←T+.×LINV B+.×T 
 

x1 
        15        10 
q1 
        10        10         5 
D1 
     0.500     0.500     1.000 
     0.500     0.500     0.000 
C2 
     0.333     0.000 
     0.000     0.667 
     0.167     0.000 
T 
     0.333     0.333     1.333 
     0.667     0.667    ¯0.333 
T4 
     0.685     0.685     1.476 
     0.949     0.949    ¯0.264 

Problem 5.4: Additional Considerations in Mixed Technology Assumptions 
This problem explores further the use mixed technology assumptions in deriving industry-by-
commodity total requirements matrices. 

Problem 5.3 Overview 
Recall the system of accounts given in Problem 5.2. In this case the make matrix, V, is a square 
matrix so it is possible to compute the inverse of matrix of industry output proportions, C. First, 

we split 10 2
0 8

 =   
V  into two components, 1

10 0
0 2

 
=  
 

V  and 2

0 2
0 6
 

=  
 

V such that 1 2= +V V V

. The vectors of industry and commodity outputs are then found by 1 1

10
2

 
= =  

 
x V i , 

1 1

10
2

 ′= =  
 

q i V , respectively. 
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With this configuration, we can compute 1
1 1 1

1 0
ˆ( )

0 1
−  ′= =  

 
C V x , 1

2 2

0 .2
ˆ( )

0 .6
−  

= =  
 

D V q

, and, subsequently, 1
1

1 0
 

0 1
−  
=  
 

C . From V, we can compute 
10

( )
10
 ′ ′= =  
 

q i V and 

12
8

 
= =  

 
x Vi , and, subsequently, one variant of direct requirements using mixed technology 

assumptions as 1
1 2 2

1 0.2
( )

0 0.8
−  ′= − 〈 〉 + =  

 
R C I D i D and 1 1.333 .889

( )
.444 1.630

−  
− =  

 
R I BR . As 

another variant of direct requirements using mixed technology assumptions, T, we first compute 
1

1 1 1

1 0
ˆ( )

0 1
−  

= =  
 

D V q and 1
2 2

0 0
ˆ( )

0.167 0.750
−  ′= =  

 
C V x , so we can compute 

1
1 2 2 1

1.2 0
( )  

0.2 1
−  ′= + − 〈 〉 =  − 

T I D C C i D and 1 1.412 .706
( ) .

.235 2.118
−  

− =  
 

T I BT   

Of course, there are alternative partitions of the V matrix into its 1V  and 2V  components 
with the requirement that 1 2= +V V V , depending upon the suitable assumptions for industries 
and commodities in the economy. 

Computational Notes 
We begin with recalling the data for Problem 5.2, but in addition decomposing V into V1 and V2 
so we define the associated total industry and commodity outputs for V1 as x1 and q1, 
respectively, and for convenience we define a two-element identity vector as i and matrix as I. 

     U←2 2⍴1 2 3 4  
     V←2 2⍴10 2 0 8 ⋄ x←+/V ⋄ q←+⌿V 
     B←U+.×DIAG ÷x 
     D←V+.×DIAG ÷q 
     C←(⍉V)+.×DIAG ÷x 
     V1←2 2⍴10 0 0 2 
     V2←2 2⍴0 2 0 6  
     q1←+⌿V1 
     x1←+/V1 
     I←2 2⍴1,2⍴0 
     i←1 1 
 
U 
         1         2 
         3         4 
V 
        10         2 
         0         8 
x 
        12         8 
q 
        10        10 
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B 
     0.083     0.250 
     0.250     0.500 
D 
     1.000     0.200 
     0.000     0.800 
C 
     0.833     0.000 
     0.167     1.000 
V1 
        10         0 
         0         2 
V2 
         0         2 
         0         6 
x1 
        10         2 
q1 
        10         2       
 

Now invoking the alternative R and T mixed technology assumptions, we need to compute C1, 
D2, D1, and C1 to compute the total requirements matrices for R and T which we define as T3 
and T4, respectively. 

     C1←(⍉V1)+.×DIAG ÷x1 
     D2←V2+.×DIAG ÷q  
     R←D2+(⌹C1)+.×I-DIAG (⍉D2)+.×i 

     T3←R+.×LINV B+.×R 

     D1←V1+.×DIAG ÷q1 
     C2←(⍉V2)+.×DIAG ÷x  
     T←(⌹I+(D1+.×C2)-DIAG (⍉C2)+.×i)+.×D1 

     T4←T+.×LINV B+.×T 

C1 
     1.000     0.000 
     0.000     1.000 
D2 
     0.000     0.200 
     0.000     0.600 
C2 
     0.000     0.000 
     0.167     0.750 
D1 
     1.000     0.000 
     0.000     1.000 
 

R 
     1.000     0.200 
     0.000     0.800 
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T 
     1.200     0.000 
    ¯0.200     1.000 
T3 
     1.333     0.889 
     0.444     1.630 
T4 
     1.412     0.706 
     0.235     2.118 

Problem 5.5: Mixed Technology and Nonsquare Commodity-by-Industry 
Models 
In this problem we explore further the characteristics technology assumptions of commodity-by-
industry models.   

Problem 5.5 Overview 
In a system of commodity-by-industry accounts, suppose we have defined four commodities and 

three industries. The make matrix, V, and the use matrix, U, are given as 

20  12 18
5    30 12
10  13 11
12  17 40

=

 
 
 
 
 
 

U  and 

99    0      0    10
8   143  137   10
0      6    12   150

=
 
 
 
  

V . We can compute vectors of total commodity outputs and total industry 

outputs, respectively, as 

107
149
149
170

 
 
 ′= =
 
 
 

q V i and 
109
298
168

 
 = =  
  

x Vi . 

Recall that the commodity-by-industry total requirements matrix with the assumption of 
industry-based technology is 1 1( )− −−D I BD . In this case since there are more commodities than 
industries, the matrix D is non-square, hence, 1−D does not exist so it is impossible to compute 

1 1( )− −−D I BD . 

 For industry-by-commodity total requirements using the assumption of industry-based 
technology for commodity-driven final demand, we can compute: 

1

1.164 .077 .082 .25
( ) .321 1.159 1.122 .321

.182 .148 .197 .1.187

−

 
 − =  
  

D I BD  . 
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To illustrate mixed technology assumptions, we aggregate the first two commodities to 

one in both the make and use matrices. Hence, we have 
25 42 30
10 13 11
12 17 40

 
 =  
  

U  and 

99 0 10
151 137 10

6 12 150

 
 =  
  

V . We can compute vectors of total commodity outputs and total industry 

outputs, respectively, as 
256
149
170

 
 ′= =  
  

q V i and 
109
298
168

 
 = =  
  

x Vi .  We assume that V can be 

decomposed into 1V  and 2V  where 1

99   0     0
0    10    0
0     0    30

 
 =  
  

V , so we can compute 

2 1

0 0 10
151 127 10

6 12 120

 
 = − =  
  

V V V .  With these definitions we can compute the commodity-by-

industry matrix of direct requirements as 1

.229 .141 .179
ˆ .092 .044 .066

.110 .057 .238

−

 
 = =  
  

B Ux and the commodity 

output proportions matrix as 1

.387 0 .059
ˆ .590 .919 .059

.023 .081 .882

−

 
 = =  
  

D Vq . If we assume a commodity-based 

technology for 1V  and an industry-based technology for 2V , the four total requirements matrices 
(i.e., commodity-by-commodity, industry-by-commodity, commodity-by-industry and industry-
by-industry) to be used with commodity-driven demand calculations are found by first 

computing 1 1

99
10
30

 
 = =  
  

x V i . Also, in this case, since 1V  is diagonal, we can easily find 

1 1 1 1

99
10
30

 
 ′= = = =  
  

x V i q V i . 
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From these quantities we can compute 1 1
1 1 1 1

1 0 0
ˆ 0 1 0

0 0 1

− −

 
 ′= = =  
  

C V x C  and, subsequently, 

1
2 2

0 0 .059
ˆ( ) .59 .852 .059

.023 .081 .706

−

 
 = =  
  

D V q  so that 1
1 2 2

.387      0      .059
 .59    .925    .059
.023   .081    .882

−

 
 ′=  −  + =   
  

R C I D i D  and 

1

2.573 .015 .173
1.656 1.084 .038
.083 .099 1.134

−

− 
 = − 
 − 

R . (Note the negative elements in 1−R ). We can now compute the 

family of total requirements matrices as 

 

1

1.260 .213 .308
( ) .093 1.070 .111

.141 .121 1.324

−

 
 − =  
  

I BR , 1 1

2.916 .22 .14
( ) 1.524 1.15 .15

.272 .001 1.483

− −

 
 − = − 
  

I BR R ,  

1

.496 .09 .197
( ) .837 1.117 .362

.161 .198 1.185

−

 
 − =  
  

R I BR   and  1

1.144 .085 .141
( ) .334 1.187 .309

.186 .099 1.324

−

 
 − =  
  

I RB . 

Computational Notes 
We first define the basic Use and Make matrices as U and V, respectively, and compute the 
associated vectors of total industry and commodity outputs as x and q, respectively, and the 
matrix of commodity input proportions B. 
 
     U←3 3⍴25 42 30 10 13 11 12 17 40 
     V←3 3⍴99 0 10 151 137 10 6 12 150 
     x←+/V 
     q←+⌿V 
     B←U+.×DIAG ÷x 
 
U 
        25        42        30 
        10        13        11 
        12        17        40 
V 
        99         0        10 
       151       137        10 
         6        12       150 
x 
       109       298       168 
q 
       256       149       170 
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B 
    0.2294    0.1409    0.1786 
    0.0917    0.0436    0.0655 
    0.1101    0.0570    0.2381  
Now we decompose V into V1 (commodity-based technology) and V2 (industry-based 
technology) and compute the associated x1, q2, C1, and D2 in order to ultimately compute R 
and the family of total requirements matrices for commodity-by-commodity (TCCIC), 
commodity-by-industry (TCCCC), industry-by-commodity (TICIC), and industry-by-industry 
(TICCC) configurations under mixed technology assumptions. 
     V2←V-V1←3 3⍴99 0 0 0 10 0 0 0 30 
     x1←+/V1 
     q2←+⌿V2 
     I←3 3⍴1,3⍴0 
     iii←3⍴1 
     D2←V2+.×DIAG ÷q 
     C1←(⍉V1)+.×DIAG ÷x1 
     R←((CI←⌹C1)+.×((I-DIAG (⍉D2)+.×iii)))+D2 
     TCCIC←INV BR←B+.×R 
     TCCCC←TCCIC+.×RI←⌹R 
     TICIC←R+.×TCCIC 
     TICCC←INV R+.×B 
V1 
        99         0         0 
         0        10         0 
         0         0        30 
V2 
         0         0        10 
       151       127        10 
         6        12       120 
D2 
    0.0000    0.0000    0.0588 
    0.5898    0.8523    0.0588 
    0.0234    0.0805    0.7059 
C1 
    1.0000    0.0000    0.0000 
    0.0000    1.0000    0.0000 
    0.0000    0.0000    1.0000 
R 
    0.3867    0.0000    0.0588 
    0.5898    0.9195    0.0588 
    0.0234    0.0805    0.8824 
 

TCCIC 
    1.2604    0.2132    0.3077 
    0.0925    1.0699    0.1114 
    0.1407    0.1206    1.3244 
TCCCC 
    2.9158    0.2196    0.1397 
   ¯1.5244    1.1503    0.1512 
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    0.2719    0.0013    1.4828 
TICIC 
    0.4957    0.0895    0.1969 
    0.8368    1.1165    0.3619 
    0.1611    0.1976    1.1848 
TICCC 
    1.1436    0.0850    0.1413 
    0.3342    1.1873    0.3087 
    0.1855    0.0989    1.3238 

 
Problem 5.6: Additional Properties of Mixed Technology Assumptions 
This problem explores further the properties of mixed technology assumptions for commodity-
by-industry total requirements matrices. Recall first from the numerical results in Section 5.7.3 
for the examples provided that the column sums of both the mixed technology direct 
requirements matrices, R and T, are one, i.e., ′ ′=i R i T  . We can show that such is generally the 
case for C, D, R, and T.  

We start with the matrix of industry output proportions, 1ˆ −′=C V x . The column sums of 
C are found by premultiplying C by ′i ,  so 1ˆ −′ ′ ′=i C i V x . Since for any pair of matrices, A and B, 
( )′ ′ ′=AB B A , we rewrite this as 1 1ˆ ˆ( )− −′ ′ ′ ′= =i C i V x Vi x , and substituting =x Vi  yields 

1ˆ −′ ′ ′= =i C x x i  which proves the case generally for C.  

Similarly, if we start with the matrix of commodity output proportions, 1ˆ −=D Vq   the 
column sums of D are found with 1ˆ −′ ′ ′=i D i V q , using the same property of the transpose of a 
product of matrices as in the previous case, yields 1ˆ( ) −′ ′=i D Vi q   and substituting =q Vi  yields 

1ˆ −′ ′ ′= =i D q q i  which proves the case generally for D. 

 One variant of mixed technology began with the identity, 1
1 2 1 1 2

−= + = +x x x C q D q     

developed in Section 5.7.1 but expressing 1q  as a function of q to yield 
1

1 2 2[ ( ) ]− ′= = − +x Rq C I D i D q . Another variant, derived in Section 5.7.2, again expressing x as 

a function of q was 1
1 2 2 1[(     ) ]−= + −x = Tq I D C i'C D q . Applying property of the transpose of a 

product of matrices once again, this time on the term, 2′D i , yields 1 1
1 1 2 2
− −′ ′ ′ ′ ′= − +i R i C i C i D i D . 

Finally, substituting 1
1 1 1ˆ( )( )−′=C V x    or 1 1

1 1 1ˆ ( )− −′=C x V  and 1
2 2 ˆ −=D V q   yields 

1 1 1 1
1 1 1 1 2 2 2 2ˆ ˆˆ ˆ( ) ( )− − − −′ ′ ′ ′ ′ ′ ′= − +i R i x V i x V i V q i V q  and it follows directly that 1′ ′=i C i , ′ ′=i R i , 1′ ′=i D i , 

and ′ ′=i T i . 

 

Problem 5.7: Industry-by-Commodity Model Impact Analysis 
This problem explores the use of total industry-by-commodity requirements under an assumption 
of industry-based technology for impact analysis.  



2021 August 7 

-121- 
 

Problem 5.7 Overview 

Consider the following make and use matrices. 

20 12 18
5 30 12

10 13 11
12 17 40

 
 

=  
 
  

U  and 
99 0 0 10
8 143 137 10
0 6 12 150

 
 =
 
 

V  . We compute 

107
149
149
170

 
 
 ′= =
 
 
 

q V i and 

109
298
168

 
 = =  
  

x Vi  so 1

.183 .040 .107

.046 .101 .071
ˆ

.092 .044 .065

.110 .057 .238

−

 
 
 = =
 
 
 

B Ux  and 1

.925 0 0 .059
ˆ .075 .960 .919 .059

0 .040 .081 .882

−

 
 = =  
  

D Vq . 

We assume that the three industries are: Agriculture, Oil Production, and Manufacturing 
and the four commodities are Agricultural Products, Crude Oil, Natural Gas, and Manufactured 
Products. We can interpret this as meaning in this case that natural gas is considered a secondary 
product of the oil industry.  

To compute the levels of oil and natural gas industry production necessary to support a 
final demand of 100 manufactured products, first generate the total industry-by-commodity 

requirements using an industry-based technology: 1

1.164 .078 .082 .25
( ) .321 1.160 1.122 .321

.182 .148 .197 1.187

−

 
 − =  
  

D I BD . 

For the final demand of 100 for manufactured products, [ ]0 0 0 100 ′∆ =f , we have 

1

25.02
( ) 32.08

118.65

−

 
 ∆ = − ∆ =  
  

x D I BD f . 

Computational Notes 

We begin by defining U and V and computing the familiar commodity-by-industry quantities x, 
q, B, D, and C. 

     U←4 3⍴20 12 18 5 30 12 10 13 11 12 17 40 
     V←3 4⍴99 0 0 10 8 143 137 10 0 6 12 150 
     x←+/V 
     q←+⌿V 
     B←U+.×DIAG ÷x 
     D←V+.×DIAG ÷q 
     C←(VT←⍉V)+.×DIAG ÷x 

U 
        20        12        18 
         5        30        12 
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        10        13        11 
        12        17        40 
V 
        99         0         0        10 
         8       143       137        10 
         0         6        12       150 
x 
       109       298       168 
q 
       107       149       149       170 
B 
     0.183     0.040     0.107 
     0.046     0.101     0.071 
     0.092     0.044     0.065 
     0.110     0.057     0.238 
D 
     0.925     0.000     0.000     0.059 
     0.075     0.960     0.919     0.059 
     0.000     0.040     0.081     0.882 
C 
     0.908     0.027     0.000 
     0.000     0.480     0.036 
     0.000     0.460     0.071 
     0.092     0.034     0.893  

In this problem we compute the total industry-by-commodity requirements using an industry-
based technology, assigned to the matrix TICIC, and compute the vector of total outputs ∆x 
needed to supply final demand ∆y. 

      TICIC←D+.×LINV B+.×D 
      ∆x←TICIC+.×∆y←0 0 0 100 
TICIC 
1.164042   0.077481726 0.082421628 0.25017804 
0.32113128 1.1594591   1.1220161   0.32078062 
0.18217735 0.1479298   0.19733828  1.1864668   

∆y 
      0.00      0.00      0.00    100.00 
∆x 
     25.02     32.08    118.65 

Problem 5.8: “Purifying” Commodity-by-Commodity Models 
This problem explores the issues of using commodity-by-commodity models with commodity-

based technology. Consider the following make and use matrices: 
20 15 18
5 30 12

10 16 11

 
 =
 
 

U  and 
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30 0 0
10 50 35
0 25 150

 
 =
 
 

V . First, we compute 
40
75

185

 
 ′= =  
  

q i V  and then 

1

.75 0 0
ˆ .25 .667 .189 .

0 .333 .811

−

 
 = =  
  

D Vq  

A standard calculation for producing the commodity-by-commodity transactions matrix 
with commodity-base technology begins with the matrix of technical requirements,

1 1 1 1 1 1 1

( )
ˆ ˆ ˆ ˆ[ ][ ] [ ][ ] ( )C

c c

− − − − − − −

×

′ ′ ′= =A = BC = Ux V x Ux x(V ) U V . To express in terms of inter-

commodity transactions, we postmultiply through by q̂  to obtain 1ˆ ˆ[( ) ]C C
−′= =Z A q U V q . 

Recall that the definition of D is 1ˆ −=D Vq . Since the transpose of a product of matrices is 
the reverse product of the transposes of each matrix and that the transpose of a diagonal matrix is 
the original matrix itself, we can rewrite this definition as 1ˆ − ′ ′=q V D . Further, since the inverse 
of a product of matrices is the reverse product of the inverses of each matrix, this equation 
becomes 1 1ˆ( ) ( )− −′ ′=V q D  which we can substitute in the equation defining CZ   above so that 

1 1ˆ ˆ[( ) ] ( )C C
− −′ ′= = =Z A q U V q U D .  

For this case, the commodity-by-commodity matrix of interindustry transactions is

1

26.667 7.019 19.315
( ) 6.667 43.359 3.025

13.333 17.151 6.516
C

−

 
 ′= = − 
  

Z U D . Note that there is a negative element. So, we can 

apply the Almon purifying algorithm (Appendix 5.2 in the text) which iteratively distributes 
negative elements across positive elements to remove them while preserving the essential 
accounting identities. The result is a “purified” non-negative transactions matrix: 

1

26.667 7.019 19.315
( ) 6.667 40.334 0

13.333 17.151 6.516
C

−

 
 ′= =  
  

Z U D . 

Problem 5.9: Commodity-by-Industry US Model 
This problem explores application of an industry-based technology commodity-by-industry 
model using the use and make matrices for highly aggregated U.S. input-output tables for 2003. 

Problem 5.9 Overview 
The following are the use and make tables: 
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Below is a table providing the detail of the components of total commodity final demand. 

Note that the total final demand entry for mining is negative due to a negative trade balance, i.e., 
the value of net exports (exports minus imports) is negative and is sufficiently large to offset 
other components of final demand to render total final demand negative.  

Commodity Final Demands for U.S. 2003 Input-Output Tables 

Commodity\Final Demand Personal 
consumption 
expenditures

Private 
fixed 

investment

Change in 
private 

inventories

Exports of 
goods and 
services

Imports of 
goods and 
services

Government 
consumption 
expenditures 

and gross 
investment

Total Final 
Demand

Agriculture 47,922         -                175            24,859       (26,769)      (1,136)         45,050        
Mining 72                35,698       1,912         4,739         (125,508)    702              (82,384)       
Construction -                  704,792     -                71              -                 224,468       929,331      
Manufacturing 1,301,616    573,197     8,983         506,780     (1,075,128) 94,705         1,410,152   
Trade, Transportation & Utilit 1,549,792    125,271     2,994         131,884     8,065          10,289         1,828,294   
Services 4,780,516    303,426     461            175,546     (44,060)      30,256         5,246,145   
Other 80,963         (75,404)     (15,748)     98,989       (177,578)    1,716,238    1,627,459   
Total 7,760,881    1,666,980  (1,224)       942,868     (1,440,979) 2,075,522    11,004,047  

 

Suppose that the value for total imports of manufactured goods is projected to increase by 
$1 trillion from its 2003 value with, for simplicity, all other elements of total final demand 
remaining identical to those for 2003. To compute the impact on gross national product and on 
total output of all sectors of the economy, we first observe that if net exports are reduced by a 
rise in imports of $1 trillion, then final demand is reduced by the same amount and, all other 
values remaining constant, so GDP is also reduced by the same amount.  

US Use Table for 2003 1 2 3 4 5 6 7
1. Agriculture 61,946   1             1,270        147,559    231           18,453      2,093        
2. Mining 441        33,299    6,927        174,235    89,246      1,058        11,507      
3. Construction 942        47           1,278        8,128        10,047      65,053      48,460      
4. Manufacturing 47,511   22,931    265,115    1,249,629 132,673    516,730    226,689    
5. Trade, Transport & Utils 24,325   13,211    100,510    382,630    190,185    297,537    123,523    
6. Services 25,765   42,276    147,876    509,084    490,982    2,587,543 442,674    
7. Other 239        1,349      2,039        48,835      35,110      83,322      36,277      

US Make Table for 2003 1 2 3 4 5 6 7
1. Agriculture 273,244 -              -                67             -                1,748        -                
2. Mining -             232,387  -                10,843      -                -                -                
3. Construction -             -              1,063,285 -                -                -                -                
4. Manufacturing -             -              -                3,856,583 -                30,555      3,278        
5. Trade, Transport & Utils -             570         -                -                2,855,126 41             957           
6. Services -             475         -                -                133           9,136,001 3,278        
7. Other 3,359     896         -                3,936        104,957    323,996    1,827,119 
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To estimate the vector total outputs, we must first determine the commodity-by-industry 
input matrix, B, and the commodity output proportions matrix, D, to specify the industry-based 
technology, commodity-by-industry total requirements matrix, 1( )−−D I BD : 

0.225 0.000 0.001 0.038 0.000 0.002 0.001
0.002 0.137 0.007 0.045 0.031 0.000 0.005
0.003 0.000 0.001 0.002 0.004 0.007 0.021
0.173 0.094 0.249 0.321 0.046 0.057 0.100
0.088 0.054 0.095 0.098 0.067 0.033 0.055
0.094 0.174 0.139 0.131 0.1

=B

72 0.283 0.196
0.001 0.006 0.002 0.013 0.012 0.009 0.016

 
 
 
 
 
 
 
 
 
  

  

0.988 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.992 0.000 0.003 0.000 0.000 0.000
0.000 0.000 1.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.996 0.000 0.003 0.002
0.000 0.002 0.000 0.000 0.964 0.000 0.001
0.000 0.002 0.000 0.000 0.0

=D

00 0.962 0.002
0.012 0.004 0.000 0.001 0.035 0.034 0.996

 
 
 
 
 
 
 
 
 
  

  

1

1.290 0.011 0.023 0.076 0.007 0.011 0.012
0.029 1.163 0.036 0.092 0.045 0.011 0.021
0.009 0.004 1.006 0.008 0.008 0.012 0.025
0.377 0.207 0.421 1.551 0.118 0.145 0.206
0.170 0.104 0.157 0.185 1.060 0.068 0.096
0.284 0.341 0.313

( )−− =D I BD

0.355 0.292 1.387 0.339
0.044 0.035 0.030 0.048 0.068 0.068 1.035

 
 
 
 
 
 
 
 
 
  

  

The revised vector of total final demands is specified by simply reducing the value for total 
imports of manufactured goods by $1 trillion, so computing the corresponding change in total 
outputs is found by  

[ ]1( ) 75,840 91,880 7,742 1,550,525 184,877 355,257 48,461− ′∆ = − ∆ = −x D I BD f  

Computational Notes 
We presume that the US 2003 Use and Make matrices are saved as U and V in the APL 
workspace the compute the familiar commodity-by-industry commodities x, q, B and D. 

     q←+⌿V 
     x←+/V 
     B←U AMAT x 
     D←V AMAT q 
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U 
   61946.0       1.0    1270.0  147559.0     231.0   18453.0    2093.0 
     441.0   33299.0    6927.0  174235.0   89246.0    1058.0   11507.0 
     942.0      47.0    1278.0    8128.0   10047.0   65053.0   48460.0 
   47511.0   22931.0  265115.0 1249629.0  132673.0  516730.0  226689.0 
   24325.0   13211.0  100510.0  382630.0  190185.0  297537.0  123523.0 
   25765.0   42276.0  147876.0  509084.0  490982.0 2587543.0  442674.0 
     239.0    1349.0    2039.0   48835.0   35110.0   83322.0   36277.0 
V 
  273244.0       0.0       0.0      67.0       0.0    1748.0       0.0 
       0.0  232387.0       0.0   10843.0       0.0       0.0       0.0 
       0.0       0.0 1063285.0       0.0       0.0       0.0       0.0 
       0.0       0.0       0.0 3856583.0       0.0   30555.0    3278.0 
       0.0     570.0       0.0       0.0 2855126.0      41.0     957.0 
       0.0     475.0       0.0       0.0     133.0 9136001.0    3278.0 
    3359.0     896.0       0.0    3936.0  104957.0  323996.0 1827119.0 
x 
  275059.0  243230.0 1063285.0 3890416.0 2856694.0 9139887.0 2264263.0 
q 
  276603.0  234328.0 1063285.0 3871429.0 2960216.0 9492341.0 1834632.0 
B 
     0.225     0.000     0.001     0.038     0.000     0.002     0.001 
     0.002     0.137     0.007     0.045     0.031     0.000     0.005 
     0.003     0.000     0.001     0.002     0.004     0.007     0.021 
     0.173     0.094     0.249     0.321     0.046     0.057     0.100 
     0.088     0.054     0.095     0.098     0.067     0.033     0.055 
     0.094     0.174     0.139     0.131     0.172     0.283     0.196 
     0.001     0.006     0.002     0.013     0.012     0.009     0.016 
D 
     0.988     0.000     0.000     0.000     0.000     0.000     0.000 
     0.000     0.992     0.000     0.003     0.000     0.000     0.000 
     0.000     0.000     1.000     0.000     0.000     0.000     0.000 
     0.000     0.000     0.000     0.996     0.000     0.003     0.002 
     0.000     0.002     0.000     0.000     0.964     0.000     0.001 
     0.000     0.002     0.000     0.000     0.000     0.962     0.002 
     0.012     0.004     0.000     0.001     0.035     0.034     0.996   

   Now we can compute the industry-based technology, commodity-by-industry total 
requirements matrix T and use it to evaluate the change in final demand ∆f in terms of the 
change in total outputs ∆x. 

     T←D+.×INV B+.×D 
     e03←45050 ¯82384 929331 1410152 1828294 5246145 1627459 
     e04←45050 ¯82384 929331 410152 1828294 5246145 1627459 
     ∆x←T+.×∆f←e04-e 

e03 
     45050    ¯82384    929331   1410152   1828294   5246145   1627459 
e04 
     45050    ¯82384    929331    410152   1828294   5246145   1627459 
∆f 
         0         0         0  ¯1000000         0         0         0 
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∆x 
    ¯75840    ¯91880     ¯7742  ¯1550525   ¯184877   ¯355257    ¯48461



2021 August 7 

-128- 
 

Chapter 6, Multipliers in the Input–Output Model  
Chapter 6 examines key summary analytical measures known as multipliers that can be derived 
from input–output models to estimate the effects of exogenous changes on (1) new outputs of 
economic sectors, (2) income earned by households resulting from new outputs, and (3) 
employment generated from new outputs or (4) value-added generated by production or (5) 
energy and environmental effects.  

The chapter develops the general structure of multiplier analysis and special 
considerations associated with regional, IRIO, and MRIO models. Extensions to capture the 
effects of income generation for various household groups are then explored, as well as 
additional multiplier variants. Chapter appendices expand on mathematical formulations of 
household and income multipliers.  

The exercise problems for this chapter illustrate various types of input-output multipliers 
and their applications. 

Problem 6.1: Total Output Multipliers 
This problem explores the use of total output multipliers as an indicator of relative importance to 
the economy using the input-output tables utilized in the exercise Problems 2.1 through 2.10.  

Problem 6.1 Overview 
For exercise Problems 2.1 through 2.10, the output multipliers, the column sums of the Leontief 
inverse in each case (with the largest multiplier in each case highlighted in boldface), are the 
following: 

       Problem Output Multipliers 

2.1   6.444   6.944 
2.2    2.970   4.167   3.611 

 2.3     6.444   6.944 
2.4    2.006   2.428   1.307 
2.5     1.412   1.588 
2.6     1.839   1.437 
2.7    2.301   2.031   2.209   2.035   1.551   1.616   2.156   2.364 
2.8     1.716   1.814 
2.9   1.919   1.605   1.722   1.925   1.487   1.608   1.599 
2.10    4.000   5.000   1.000 

Computational Notes 
The APL expression mult←+⌿L←LINV A applied to the tables used in the ten problems yields the 
following values of L followed by the values for mult for each problem. 

2-1    
         4.074 3.241 
         2.370 3.704 
         6.444 6.944 
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2-2    
         1.538 0.000 0.000 
         0.449 2.500 0.833 
         0.983 1.667 2.778 
         2.970 4.167 3.611 

2-3    
         4.074 3.241 
         2.370 3.704 
         6.444 6.944 
  
2-4    
         1.092 0.269 0.040 
         0.084 1.154 0.036 
         0.830 1.005 1.230 
         2.006 2.428 1.307 
  
2-5    
         1.147 0.353 
         0.265 1.235 
         1.412 1.588 

2-6    
         1.494 0.230 
         0.345 1.207 
         1.839 1.437 
  
2-7    
         1.339 0.296 0.312 0.172 0.034 0.058 0.030 0.067 
         0.089 1.214 0.209 0.153 0.038 0.057 0.025 0.051 
         0.013 0.009 1.011 0.019 0.034 0.008 0.018 0.013 
         0.065 0.056 0.034 1.306 0.038 0.041 0.021 0.041 
         0.265 0.215 0.320 0.174 1.207 0.230 0.229 0.240 
         0.100 0.029 0.045 0.059 0.011 1.089 0.018 0.074 
         0.109 0.049 0.068 0.035 0.054 0.030 1.547 0.372 
         0.321 0.162 0.210 0.117 0.135 0.103 0.269 1.506 
         2.301 2.031 2.209 2.035 1.551 1.616 2.156 2.364 

2-8    
         1.257 0.437 
         0.459 1.377 
         1.716 1.814 

2-9    
         1.262 0.006 0.013 0.057 0.004 0.007 0.007 
         0.009 1.075 0.012 0.034 0.019 0.003 0.007 
         0.008 0.003 1.005 0.006 0.007 0.011 0.025 
         0.229 0.119 0.262 1.342 0.069 0.086 0.126 
         0.149 0.085 0.137 0.156 1.089 0.060 0.085 
         0.238 0.293 0.270 0.292 0.271 1.412 0.314 
         0.024 0.024 0.023 0.037 0.028 0.030 1.034 
         1.919 1.605 1.722 1.925 1.487 1.608 1.599 
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2-10   
         2.500 2.500 0.000 
         0.500 1.500 0.000 
         1.000 1.000 1.000 
         4.000 5.000 1.000 

Problem 6.2: Using Output Multipliers to Compute Impact Analysis Total 
Outputs 
This problem explores the use of output multipliers to derive the total value of output (across all 
sectors) associated with the new final demands, again using the exercise problems in Chapter 2.  

Problem 6.2 Overview 
Using the already-calculated the multipliers in Problem 6.1 in conjunction with the new final 
demands in the problems in Chapter 2, we can derive the total value of output (across all sectors) 
associated with the new final demands.  

Using Problem 2.2 as an example, the row vector of output multipliers is  

m(o) = [2.970   4.167   3.611]. In conjunction with the final-demand vector used in that problem, 

namely 1

1,300
100
200

t+

 
 =  
  

f , we find 1( ) 5,000to + =m . In the solution to Problem 2.2, we found that 

1

2,000
1,000
2,000

t+

 
 =  
  

x , and the sum of these elements is 5,000; that is, 1 5,000t+′ =i x . In matrix notation, 

this is comparing ( )o ∆m f  with ′ ′∆ = ∆i x i L f ; we know that they must be equal, since output 
multipliers are the column sums of the Leontief inverse— ( )o ′=m i L . 

Computational Notes 
The values of Z and x are specified and the corresponding values of A and L are computed 
     Z←3 3⍴350 0 0 50 250 150 200 150 550 
     x←1000 500 1000 
     L←LINV A←Z AMAT x 

Z 
       350         0         0 
        50       250       150 
       200       150       550 
x 
      1000       500      1000 
A 
     0.350     0.000     0.000 
     0.050     0.500     0.150 
     0.200     0.300     0.550 
 

 



2021 August 7 

-131- 
 

L 
     1.538     0.000     0.000 
     0.449     2.500     0.833 
     0.983     1.667     2.778 

For the new vector of final demands, defined as f2, the corresponding vector of total outputs x2 
is computed with L, along with the total of all outputs xt2 and the output multipliers mo.  
      x2←L+.×f2←1300 100 200 
   mo←+⌿L 
   xt2←+/mo×f2 
f2 
    1300.0     100.0     200.0 
x2 
    2000.0    1000.0    2000.0 
mo 
     2.970     4.167     3.611 
xt2 
    5000.0 

Problem 6.3: Type I and Type II Income Multipliers 
This problem explores type I and type II income multipliers in addition to total output 
multipliers. 

Problem 6.3 Overview 
Using the data in Problem 2.3 of a model closed to households, which included the matrix of 

interindustry transactions, 
500   350   90
320   360   50
100     60   40

c

 
 =  
  

Z , and vector of total outputs, 
1,000
800
300

c

 
 =  
  

x , we 

could the matrices of direct and total requirements, respectively, as 

1

.5 .438 .3
ˆ( ) .32 .45 .167

.1 .075 .133

c c c −

 
 = =  
  

A Z x  and 1

5.820  5.036  2.983
( ) 3.686  5.057  2.248

0.990  1.019  1.693

c c −

 
 = − =  
  

L I A   

The output multipliers for the three-sector model, closed with respect to households, are 
m(o) = [10.496   11.112   6.924]. The type I income multipliers require that we have the labor-
input coefficients, which are a31 = 0.100 and a32 = 0.075, along with the Leontief inverse of the 

model that is open with respect to households (from Problem 2.3), 1 4.074 3.241
( )

2.370 3.704
−  

− =  
 

I A . 

Then 1( )m h =  (0.1)(4.074)+(0.075)(2.370) = 0.5852 and 2( )m h =  (0.1)(3.241) + (0.075)(3.704) 

= 0.6019; 1( )Im h = 0.5852/0.1 = 5.852 and 2( )Im h =0.6019/0.075 =  8.025.   

The total household income multipliers can be found as the first two elements in the 
bottom row of the Leontief inverse of the model closed with respect to households, 

1( )c c −= −L I A , which are 1( )m h =  0.990 and 2( )m h =   1.019, so the type II income multipliers 
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are therefore 1( ) 0.990 / 0.1 9.90IIm h = =  and 2( ) 1.019 / 0.075 13.59IIm h = = . Note that, for both 
sectors, the ratio of the type II to the type I income multiplier is 1.69.  

Computational Notes 
The three sector versions of the matrix of interindustry transactions Z3 and vector of total 
outputs x3 are used to compute A3 and L3. 
     Z3←3 3⍴500 350 90 320 360 50 100 60 40 
     x3←1000 800 300 
     L3←LINV A3←Z3 AMAT x3 
Z3 
       500       350        90 
       320       360        50 
       100        60        40 
x3 
      1000       800       300 
A3 
     0.500     0.438     0.300 
     0.320     0.450     0.167 
     0.100     0.075     0.133 
L3 
     5.820     5.036     2.983 
     3.686     5.057     2.248 
     0.990     1.019     1.693 

The two sector versions of the matrix of interindustry transactions Z2 and vector of total outputs 
x2 are used to compute A2 and L2. 
     Z2←2 2⍴500 350 320 360 
     x2←1000 800 
     f2←x2-+/Z2 
     L2←LINV A2←Z2 AMAT x2 
Z2  
       500       350 
       320       360 
f2 
       150       120 
 

x2 
      1000       800 
A2 
     0.500     0.438 
     0.320     0.450 
L2 
     4.074     3.241 
     2.370     3.704 
 

For the three-sector and two-vectors of final demands, f3 and f32, respectively, the 
corresponding total outputs are found by 
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      x3←L3+.×f3←200 100 0 
      x32←L2+.×f32←200 100   
f3 
200 100 0 
x3 
  1667.537  1242.921   299.969 
f32 
   200.000   100.000 
x32 
  1138.889   844.444 

 
The total output multipliers for the two- and three-sectors models, mo2 and mo3, respectively are 
found as 
      mo2←+⌿L2 
      mo3←+⌿L3 
mo2 
     6.444     6.944 
mo3 
    10.496    11.112     6.924 

The type I and type II income multipliers and the ratio of type II to type I income multipliers are 
computed as 
      l2←A3[3;1 2] 
      mh←l2+.×L2 
      mhI←mh÷l2 
      mbh←L3[3;1 2] 
      mhII←mbh÷l2 
      Ratio←mhII÷mhI  
l2 
     0.100     0.075 
mh 
     0.585     0.602 
mhI 
     5.852     8.025 
mbh 
     0.990     1.019 
mhII 
     9.905    13.583 
Ratio 
     1.693     1.693 

 

Problem 6.4: Policy Analysis with Input-Output Multipliers 
This problem configures a typical policy question that can be addressed with input-output 
multipliers.  
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Problem 6.4 Overview 
Suppose we assemble the following facts about the two sectors that make up the economy of a 
small country under study where the available data pertain to the most recent quarter. Total 
interindustry inputs were $50 and $100, respectively, for Sectors 1 and 2. Sector 1’s sales to final 
demand were $60 and Sector 1’s total output was $100. Sector 2’s sales to Sector 1 were $30 and 
this represented 10 percent of Sector 2’s total output.  If we define the matrix of interindustry 

transactions as 11 12

21 22

z z
z z
 

=  
 

Z  and the vectors of final demands, interindustry inputs, and total 

outputs, respectively, as 1

2

f
f

 
=  
 

f  , [ ]1 2v v=v , and 1

2

x
x
 

=  
 

x  , we can summarize the known 

values as 21 30z = , 1 10f = , 1 50v = , 2 100v = , and 1 100x = .  The value of 2x  is easily found 
from 2 21 / 0.1 120x z= =   and the unavailable data for 11 12 22 2, , , andz z z f can be computed from 
the basic accounting identities, + =Zi f x   and ′ + =i Z v x  so that  Z, v, f, and x are, respectively, 

20 20
30 80
 

=  
 

Z  , [ ]50 100=v , 
60
10
 

=  
 

f . and 
100
120
 

=  
 

x , from which we can then calculate the 

direct requirements and total requirements matrices, respectively, as 1 .2 .067
ˆ

.3 .267
−  

= =  
 

A Zx and 

1 1.294 .118
( )

.529 1.412
−  

= − =  
 

L I A .  

 If we project that, after national elections are held, it may turn out that different 
government policy will be forthcoming during the first quarter of the coming year. For example, 
if there is an increase of $100 in government purchases of sector 1’s output, we specify the 

projected change in total final demand as 1 160
190
 

∆ =  
 

f , while if the same increase is of sector 2’s 

output, we specify the change in final demand as 2 60
290
 

∆ =  
 

f .  

We can compare the stimulative effect of the two scenarios by calculating the sum of 
total outputs for each that would be necessary to support the changed final demands, i.e., 

1 1 582.35′∆ = ∆ =x i L f  and 2 2 552.94′∆ = ∆ =x i L f . The first option generates the larger 
stimulative effect by 1 2 582.35 552.94 29.41.∆ −∆ = − =x x  

Computational Notes 
We can summarize the known values in APL statements with the following: 
     x←100,30÷0.1 
     f←60 0 
     u←50 100 
     Z←2 2⍴0 
     Z[2;1]←30 
     Z[1;1]←u[1]-Z[2;1] 
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     Z[1;2]←x[1]-(Z[1;1]+f[1]) 
     Z[2;2]←u[2]-Z[1;2] 
     f[2]←x[2]-(Z[2;1]+Z[2;2]) 
     x 
100 300 
     f 
60 190 
     u 
50 100 
     Z 
20 20 
30 80 
 

We can then compute the corresponding A and L; then for the alternative final demand vectors 
defined as f1 and f2 the corresponding sums of the vectors total outputs defined as ∆x1 and 
∆x2, respectively, and the absolute difference between them, defined as ∆x∆, are computed as 
      L←LINV A←Z AMAT x 
      ∆x1←+/L+.×f1←f+100 0 
      ∆x2←+/L+.×f2←f+0 100 
      ∆x∆←|∆x1-∆x2 
      A 
     0.200     0.067 
     0.300     0.267 
      L 
     1.294     0.118 
     0.529     1.412 
     f1 
160 190 
     ∆x1 
582.35294 
     f2 
60 290 
     ∆x2 
552.94118 
     ∆x∆  
29.411765 

 

Problem 6.5: Economic Planning Considerations 
This problem explores a typical economic planning question addressed with input-output 
analysis. 

Problem 6.5 Overview  

Consider an input output economy defined by 
140 350
800 50
 

=  
 

Z and 
1,000
1,000
 

=  
 

x . Suppose 

economic planners are asked to design an advertising campaign to stimulate export sales of one 
of the goods produced in the country and need to determine which of the two sectors on which to 
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concentrate their efforts or perhaps if some combination would be more effective. The answer 
rests on the relative size of the output multipliers, which will indicate the relative stimulative 
effect of focusing on one sector or the other (or a combination).  

The output multipliers are found by first computing the technical coefficients matrix, 
1 .14 .35

ˆ
.8 .05

−  
= =  

 
A Zx , and the total requirements matrix, 1 1.769 .652

( )
1.490 1.601

−  
= − =  

 
L I A , so the 

vector of output multipliers is [ ]( ) 3.259 2.253o ′= =m i L . So, in terms of relative stimulative 
effect, it is more effective to concentrate on stimulating export demand for the product of sector 
1; since it has a considerably larger output multiplier. 

 If we determine labor income coefficients for the two sectors in the region to be 31 0.1a =   

and 32 0.18a = , and the focus is on job creation, it is possible the priorities may change. In this 

case, knowing 31 0.1a =   and 32 0.18a = , we can find 1 0.4451H =  and 2 0.3534H =  by

[ ].4451 .3534= =H lL  where the vector of labor coefficients is [ ].1 .18=l . Thus, converting 
output effects to income earned per dollar of new final demand for each of the sectors does not 
change the ranking, so, in this case, stimulation of export demand for the output of sector 1 is 
still more beneficial. 

Computational Notes 
Define Z and x and compute A, L, and the total output multipliers m. 
     Z←2 2⍴140 350 800 50 
     x←1000 1000 
     m←+⌿L←LINV A←Z AMAT x 
     Z              

       140       350 
       800        50 
     x 
      1000      1000 
     A 
     0.140     0.350 
     0.800     0.050 
     L 
     1.769     0.652 
     1.490     1.601 
     m 
     3.259     2.253 

Use the labor coefficients l to calculate the labor input multipliers mh. 
     l←0.1 0.18 
     mh←l+.×L 
     l 
0.1 0.18 
     mh 
0.44506518 0.35344507 
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Problem 6.6: Interregional Input-Output Multipliers in IRIO Models 
This problem explores interregional input-output multipliers. 

Problem 6.6 Overview 
Recall the elements in the two-region interregional Leontief inverse from Problem 3.2: 

 11 121

21 22

1.205 .202 .115 .123
.263 1.116 .189 .131

( )
.273 .262 1.177 .2
.33 .289 .179 1.156

−

 
    = − = =    
 
 

L L
L I A

L L
.  

We can first calculate the vectors of simple intraregional output multipliers for sectors 1 
and 2 as [ ]11( ) 1.468 1.318rro ′= =m i L  and 22 [1.356 1.356]sso ′= =m( ) i [L ] . The vectors of 
simple national (total) output multipliers for sectors 1 and 2 are 

[ ]11

21
( ) 2.070 1.869ro  ′= =  

Lm i L  and [ ]12

22
( ) 1.660 1.610so  ′= =  

Lm i L .  

Finally, the sector-specific simple national output multipliers for sectors 1 and 2 in 
regions r and s. show the impact on sector i throughout the entire country, because of a dollar’s 
worth of final demand for sector j in either region.  In this case it means finding the four 
multipliers for each region as:

11 21 12 22 1.478 0.593 0.464 1.405( ) ( ) ( ) ( ) ( )r r r r ro m o m o m o m o     = =m       and 

11 21 12 22 1.292 0.368 0.323 1.287( ) ( ) ( ) ( ) ( )s s s s so m o m o m o m o     = =m      . 

Problem 6.7: Additional Characteristics of IRIO multipliers 
This problem further explores the characteristics of interregional input-output multipliers. Using 
the results of Problem 6.6, to determine which sector’s output increases the most for an arbitrary 
new final demand in the two regions, we can first simply compare the intraregional multipliers 
for each sector in each region, 11[ ] [1.468 1.318]rro = ′ =m( ) i L  and 

22 [1.356 1.356]sso ′= =m( ) i [L ] . In region r sector 1’s multiplier is larger than sector 2’s 
(1.468>1.318) and in region s the multipliers are equal for the two sectors. 

To determine which sector in which region produces the largest national (two-region) 
impact for an arbitrary increase in final demand we compare the sector-specific simple national 
output multipliers: 

11 21 12 22( ) ( ) ( ) ( ) ( ) 1.478 0.593 0.464 1.405r r r r ro m o m o m o m o     = =m          and 

11 21 12 22( ) ( ) ( ) ( ) ( ) 1.292 0.368 0.323 1.287s s s s so m o m o m o m o     = =m      , the largest 

of which is 1.478 for sector 1 in region r.  

To determine whether it would be better to institute policies that would increase 
household demand in region r or in region s, increasing the output of sector 1 nationally (i.e., in 
both regions), we compare the total interregional output multipliers 
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[ ]11

21

( ) =  = 2.070 1.869ro ′
 
 
 

L
m i

L
 and [ ]12

22

( ) =  = 1.660 1.610so ′
 
 
 

L
m i

L
. The multiplier for 

sector 1 in region r  is larger than the corresponding multiplier in region s (2.07>1.66) so 
increasing household demand in region r  is more beneficial. The same is true for sector 2 
(1.869>1.610). 

Problem 6.8: MRIO Multipliers 
This problem explores the basic characteristics of multiregional input-output (MRIO) 
multipliers. 

Problem 6.8 Overview 
Recall the MRIO model defined in Problem 3.3. The elements in 1( )−−I CA C   from that problem 

are: 1

0.971     0.556 1.024     0.524
0.882     1.197 0.889     1.251

( ) 1.297     0.714 1.264     0.677
0.663     1.010 0.673     0.8 54

−

 
 
 − =  
 
  

I CA C  . To determine which sector’s output 

increases the most for an arbitrary new final demand in the two regions, we simply compare the 
intraregional multipliers for each sector in each region, 11[ ] [1.853 1.753]rro = ′ =m( ) i L   and 

22 [1.937 1.530]sso ′= =m( ) i [L ] . In region r sector 1’s multiplier is greater than sector 2’s 
(1.853>1.753) and in region s the same is true (1.937>1.530). 

To determine which sector in which region produces the largest national (two-region) 
impact for an arbitrary increase in final demand we compare the sector-specific simple national 
output multipliers: 

11 21 12 22( ) ( ) ( ) ( ) ( ) 2.269 1.545 1.270 2.207r r r r ro m o m o m o m o     = =m       and 

11 21 12 22( ) ( ) ( ) ( ) ( ) 2.288 1.562 1.201 2.105s s s s so m o m o m o m o     = =m      , the largest 

of which is 2.288 for sector 1 in region s.  

To determine whether it would be better to institute policies that would increase 
household demand in region r or in region s so as to increase the output of sector 1 nationally 
(i.e., in both regions), we compare the total interregional output multipliers 

[ ]11

21

( ) =  = 3.813 3.477ro ′
 
 
 

L
m i

L
 and [ ]12

22

( ) =  = 3.849 3.306so ′
 
 
 

L
m i

L
. The multiplier for 

sector 1 in region s is larger than the corresponding multiplier in region r (3.849>3.813) so 
increasing household demand in region s is more beneficial. The opposite is true for sector 2, i.e., 
The multiplier for sector 1 in region r is larger than the corresponding multiplier in region s 
(3.477>3.306) so increasing household demand in region r is more beneficial. 

Computational Notes 
First generate the total requirements coefficients matrix from the MRIO data specified in 
Problem 3.3. 
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     ZZ←4 4⍴Z←2 2 2⍴40 50 60 10 30 45 70 45 
     QQ←4 2⍴Q←2 2 2⍴50 60 70 70 50 80 50 50 
     L←(INV C+.×A←Z GENA x←+/Q)+.×C←GENC Q 

L 
     0.971     0.556     1.024     0.524 
     0.882     1.197     0.889     1.251 
     1.297     0.714     1.264     0.677 
     0.663     1.010     0.673     0.854 

Compute the intraregional output multipliers for regions r and s, as mrr and mss, respectively. 

     mrr←+⌿L[1 2;1 2] 
     mss←+⌿L[3 4;3 4] 

mrr 
     1.853     1.753 
mss 
     1.937     1.530 

Compute and compare the total interregional output multipliers for region r as mr and region s as 
ms. 

     mr←+⌿L[;1 2] 
     ms←+⌿L[;3 4] 

mr 
     3.813     3.477 
ms 
     3.849     3.305 

Compute and compare the sector-specific simple national output multipliers for region r as mdr 
and region s as mds. 

     mdr←,⍉L[1 2;1 2]+L[3 4;1 2] 
     mds←,⍉L[1 2;3 4]+L[3 4;3 4] 

mdr 
     2.269     1.545     1.270     2.207 
mds 
     2.288     1.562     1.201     2.105 

Problem 6.9: Policy Analysis with Regional Output Multipliers 
This problem explores the use of regional output multipliers in analysis of a typical policy 
problem. 

Problem 6.9 Overview 
Using the basic data introduced in Problem 3.4, suppose the government is interested in starting 
an overseas advertising and promotion campaign aimed at increasing export sales of the products 
of the country. There is specialization of production in the regions of the country; in particular, 
the products are shown in the table below: 
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 Region A Region B Region C 
Manufacturing Scissors Cloth Pottery 

Agriculture Oranges Walnuts None 

To determine the product for which an increase in export sales would produce the 
greatest stimulation of the national economy, we calculate the total regional output multipliers 
for each region: 

[ ] [ ]1 1.714 0.857
( ) ( ) 1 1 2.143 2.571

0.429 1.714
A Ao −  ′= − = = 

 
m i I A  

[ ] [ ]1 2.857 2.286
( ) ( ) 1 1 3.190 3.952

0.333 1.667
B Bo −  ′= − = = 

 
m i I A  

[ ] [ ]1 2.0 0
( ) ( ) 1 1 2.5 1.0

0.5 1.0
C Co −  ′= − = = 

 
m i I A  

The largest total output multiplier is associated with sector 2 in region B (3.952); that is, 
with walnuts (this of course ignores and interregional multiplier effects that might be found with 
an IRIO or MRIO model). 

Computational Notes 
Retrieve the basic data from the example from Section 6.2.1 in the text for the matrices of 
interindustry transactions as Z1, Z2, and Z3, and for the corresponding vectors of total outputs 
as x1, x2, and x3. Then compute the corresponding matrices of technical coefficients A1, A2, 
and A3 and of total requirements L1, L2, and L3. Finally compute the corresponding output 
multipliers of each as m1, m2, and m3. 

     Z1←2 2⍴200 100 100 100 
     Z2←2 2⍴700 400 100 200 
     Z3←2 2⍴100 0 50 0 
     x1←600 300 
     x2←1200 700 
     x3←200 0 

     m1←+⌿L1←LINV A1←Z1 AMAT x1 
     m2←+⌿L2←LINV A2←Z2 AMAT x2 
     A3←Z3 AMAT x3 
     A3[;2]←0 
     m3←+⌿L3←LINV A3 

Note an important point about the calculation of A3. The actual result of executing the APL 
statement A3←Z3 AMAT x3 is 

      Z3 AMAT x3 
0.5  1 
0.25 1 

This is incorrect since the technical coefficients in the second column should both be zero but 
while the general convention in APL is that division by 0 results in a DOMAIN ERROR , an 
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exception is that the expression 0÷0 results in unity, at least by default. The default behavior in 
most APL implementations can be changed since such a convention may be inappropriate (as it 
is here) but in this particular case it is simpler to just refine the offending technical coefficients 
as zero (as in the next line).  

A1, A2, A3 
     0.333     0.333     0.583     0.571     0.500     0.000 
     0.167     0.333     0.083     0.286     0.250     0.000 
L1, L2, L3 
     1.714     0.857     2.857     2.286     2.000     0.000 
     0.429     1.714     0.333     1.667     0.500     1.000 
m1, m2, m3 
     2.143     2.571     3.190     3.952     2.500     1.000 

Problem 6.10: The Relationships Between Type I and Type II Income 
Multipliers 
This problem explores the relationships between Type I and Type II income multipliers.  

Problem 6.10 Overview 
We use the example provided in Section 6.2.1 (revisited from Section 2.5), which began with the 

matrix of interindustry transactions, 
150 500
200 100
 =   

Z  and the vector of total outputs, 

1,000
2,000
 =   

x   from which we can derive the matrix of technical coefficients, 

1 .15 .25
ˆ

.20 .05
−=

 
=  
 

A Zx  and corresponding matrix of total requirements, 
1.254 .330
.264 1.122

 
 
 

L = .  

We developed this model closed to households as 
.15 .25 .05
.20 .05 .40
.30 .25 .05

 
 

=  
 
 

A  with the corresponding 

matrix of total requirements computed as 1

1.365 .425 .251
( ) .527 1.348 .595

.570 .489 1.289

−

 
 

= − =  
 
 

L I A .   

Here, ( ) 0.7575− =I A and ( ) 0.587875− =I A , giving ( ) / ( ) 1.289− − =I A I A , which is the 

same as 33l  in L .  

In (A6.2.2) from Appendix 6.2 we showed in general for L , partitioned as

1 11 12

21 22

( )−
 

= − =  
 

L L
L I A

L L
, that 1

21 21 22( ) (  and  c
− ′=− =− =−L L GE L GL) h L GL  where E, F, and 
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G are defined by ( )  
− =  

 

E F
I A

G H
 and 1( )−= −L I A . Finally, 1ˆc

−′ = ′h h x , where h is household 

employment in units such as person-years, h. Then it was shown that the row vector of the ratios 
of the Type II to Type I income multipliers, ( ) / ( )II I

j j jR m h m h= ,  is  
1

22 22 22(1 ) ( ) (1 )(1 1) (1 1)
( )[ ] [1, ,1]

n n n n

−

× × ×× ×

′= − 〈− 〉 = =R L GL GL L L i ; that is, the ratios are all the same and are equal to 

the element in the lower-right of the closed model inverse.  Here 22 33 1.289l= =L . 

Computational Notes 
Retrieve the matrices of technical coefficients for the example provided in Section 6.2.1 
(revisited from Section 2.5) for the open model (defined above as A) by the variable A and the 
closed model (defined above as A ) by the variable A2. For convenience, generate 2nd and 3rd 
order identity matrices I2 and I3, respectively and compute the determinants. ( )−I A  and  

( )−I A  , as D1 and D2, respectively along with the ratio of D1 to D2 as R. 

     A←2 2⍴0.15 0.25 0.2 0.05 
     A2←3 3⍴0.15 0.25 0.05 0.2 0.05 0.4 0.3 0.25 0.05 
     I2←2 2⍴1,2⍴0 
     I3←3 3⍴1,3⍴0 

     D1←DETER I2-A 
     D2←DETER I3-A2 
     R←D1÷D2 

A 
    0.1500    0.2500 
    0.2000    0.0500 
 

A2 
    0.1500    0.2500    0.0500 
    0.2000    0.0500    0.4000 
    0.3000    0.2500    0.0500 
D1 
    0.7575 
D2 
    0.5879 
R 
    1.2885
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Chapter 7, Supply-Side Models, Linkages, and Important 
Coefficients 
Chapter 7 presents the supply side input–output model. It is discussed both as a quantity model 
(the early interpretation) and as a price model (the more modern interpretation). Relationships to 
the standard Leontief quantity and price models are also explored. In addition, the fast-growing 
literature on quantification of economic linkages and analysis of the overall structure of 
economies using input–output data is examined. Finally, approaches for identifying key or 
important coefficients in input–output models and alternative measures of coefficient importance 
are presented.  

The exercise problems for this chapter illustrate the configuration of supply side input-
models and measures of forward and backward economic linkages in both demand and supply 
models.  

 

Problem 7.1: The Output Inverse in Supply-Side Input-Output Models 
This problem explores the basic properties of the output inverse in a supply side input output 
model. 

Problem 7.1 Overview 
Consider the centrally planned economy of Czaria, which is involved in its planning for the next 
fiscal year. The matrix of technical coefficients, A, and vector of total industry outputs, x, for 
Czaria are given as the following: 

 1 2 3 4 Total Output 
1. Agriculture 0.168 0.155 0.213 0.212 12,000 
2. Mining 0.194 0.193 0.168 0.115 15,000 
3. Military Manufacturing 0.105 0.025 0.126 0.124 12,000 
4. Civilian Manufacturing 0.178 0.101 0.219 0.186 16,000 

From the table we define 1

.168   .194   .213   .283

.155   .193   .134   .123
ˆ

.105   .031   .126   .165

.134   .095   .164   .186

−

 
 
 = =
 
 
 

B x Z for ˆ=Z Ax . The output inverse 

for this economy is then 1

1.468    .455    .558    .692
 .376    1.393   .384    .418

( )
 .253     .155   1.300   .375
 .336     .268    .399   1.466

−

 
 
 = − =
 
 
 

G I B . The next year’s value-

added inputs for agriculture, mining, military manufacturing products, and civilian 
manufacturing in Czaria are projected to be $4,558 million, $5,665 million, $2,050 million and 
$5,079 million, respectively. The nation’s projected GDP, since it is the sum of either all final 
demands or value added, i.e., GDP ′ ′= =i f v i , can be computed very simply for the projected 
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new final demands, [ ]( ) 4,558 5,665 2,050 5,079new ′ =v , as ( ) 17,352new newGDP ′= =v i , 
the sum of all new value-added inputs, compared with the current value 21,246GDP ′= =v i . 
The corresponding vector of new total gross production is 

[ ]13,928.5   12,518.4    6,606.6   11,313.2new ′=x , found by 1( )new new−′= −x I B v , the supply side 
model. Note that this is the “old view” of the Ghosh model as described in Section 7.1.1.  

Computational Notes 
First define from the problem statement the values of A and x as well as the new value-added 
inputs defined as the variable vnew. 

     A←0.168 0.155 0.213 0.212 0.194 0.193 0.168 0.115 
     A←A,0.105 0.025 0.126 0.124 0.178 0.101 0.219 0.186 
     A←4 4⍴A  
     x←12000 15000 12000 16000 
     vnew←4558 5665 2050 5079 
A 
    0.1680    0.1550    0.2130    0.2120 
    0.1940    0.1930    0.1680    0.1150 
    0.1050    0.0250    0.1260    0.1240 
    0.1780    0.1010    0.2190    0.1860 
x 
     12000     15000     12000     16000 
vnew 
      4558      5665      2050      5079 
From these data we can compute the corresponding matrix of interindustry transactions Z, the 
current vectors of value-added inputs v and of final demands f along with the gross domestic 
product GDP. 

     Z←A+.×DIAG x 
     v←x-+⌿Z 
     f←x-+/Z 
     GDP←+/v   

Z 
      2016      2325      2556      3392 
      2328      2895      2016      1840 
      1260       375      1512      1984 
      2136      1515      2628      2976 
f 
      1711      5921      6869      6745 
x 
     12000     15000     12000     16000 
v 
    4260.0    7890.0    3288.0    5808.0 
GDP 
21246 

Finally, we can compute the supply model matrices B and G, as well as the new vector of total 
outputs xnew corresponding to vnew and the new value of gross domestic product GDPN. 
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     G←INV B←(DIAG÷x)+.×Z 
     xnew←G+.×vnew 
     GDPN←+/vnew 
B 
    0.1680    0.1938    0.2130    0.2827 
    0.1552    0.1930    0.1344    0.1227 
    0.1050    0.0313    0.1260    0.1653 
    0.1335    0.0947    0.1643    0.1860 
G 
    1.4682    0.4553    0.5578    0.6918 
    0.3756    1.3933    0.3844    0.4185 
    0.2533    0.1552    1.3003    0.3755 
    0.3356    0.2681    0.3986    1.4664 
xnew 
     13928     12518      6607     11313 

GDPN 
17352 

Problem 7.2: Comparing Results with Mean Absolute Percentage Differences 
This problem illustrates the use of mean absolute percentage difference (MAPD) as a measure 
for comparing output coefficients in supply-side input-output models.  

Problem 7.2 Overview 

Consider a case where 
13 75 45
53 21 48
67 68 93

=
 
 
 
 

Z  and 
130
150
220

=
 
 
 
  

f  for a base year.  If final demands for the 

next year are projected to be 
200
300
500

new =
 
 
 
  

f  and the change in interindustry transactions is 

expected to be 
0 5 0

10 0 0
0 0 15

∆ =
 
 
 
  

Z  the MAPD between the direct output coefficients for the base 

year and next year is found by first computing the output coefficients for the two years. First, 

1

.049   .285   .171
ˆ .195   .077   .176

.150   .152   .208

−

 
 = =  
  

B x Z , and, since 
 13    80    45
 63    21    48
 67    68   108

new

 
 = + ∆ =  
  

Z Z Z  and 

338
432
743

new new new

 
 = + =  
  

x f Z i , newB   is found as 1

.038   .123   .133
ˆ( ) .146   .049   .111

.090   .092   .145

new new new−

 
 = =  
  

B x Z .  

The MAPD between B and newB  is found by 
2

1 1
(1/ ) [ / ] 100 29.1

n n
new

ij ij ij
i j

MAPD n b b b
= =

= − × =∑∑ . For the total output coefficients or output 
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inverses, 1

1.195   .427   .353
( )  .307   1.235  .341

 .284   .317   1.394

−

 
 = − =  
  

G I B  and 1

1.104   .295     .210
( )  .185   1.114    .174

 .136   .150     1.211

new new −

 
 = − =  
  

G I B , 

the MAPD between G and newG  is 32.806 

Computational Notes 
First define the matrix of transactions Z and the vector of final demands f as well as the new 
vector of final demands f2 and the matrix of changes in transactions ∆Z. 

     Z 
13 75 45 
53 21 48 
67 68 93 
     f 
130 150 220 
     f2 
200 300 500 
     ∆Z 
 0 5  0 
10 0  0 
 0 0 15 

We now compute the vector of total outputs x so we can compute the matrix of technical 
coefficients A and the Leontief inverse L as well as the direct and total supply coefficients B and 
G. 

     x←f++/Z 
     L←INV A←Z AMAT x 
     G←LINV B←(DIAG ÷x)+.×Z 
     x 
       263       272       448 
     A,L 
     0.049     0.276     0.100     1.195     0.413     0.207 
     0.202     0.077     0.107     0.317     1.235     0.207 
     0.255     0.250     0.208     0.484     0.522     1.394 
 

        B,G 
     0.049     0.285     0.171     1.195     0.427     0.353 
     0.195     0.077     0.176     0.307     1.235     0.341 
     0.150     0.152     0.208     0.284     0.317     1.394 
Next, we compute the new interindustry transactions Z2 and new vector of total outputs x2 
corresponding to the new vector of final demands f2. From these we can compute the new direct 
and total supply coefficients B2 and G2, respectively. 

     Z2←Z+∆Z 
     x2←f2++/Z2 
     G2←LINV B2←(DIAG÷x2)+.×Z2 
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     Z2 
        13        80        45 
        63        21        48 
        67        68       108 
     x2 
     338.0     432.0     743.0 
     B2,G2 
     0.038     0.237     0.133     1.104     0.295     0.210 
     0.146     0.049     0.111     0.185     1.114     0.174 
     0.090     0.092     0.145     0.136     0.150     1.211 

Finally, we compute the mean absolute percentage errors between B and B2 as MAPB and 
between G and G2 as MAPG 

     MAPB←(÷9)×+/+/100×(|B-B2)÷B 
     MAPDG←(÷9)×+/+/100×(|G-G2)÷G  
     MAPB 
29.999834 
        MAPDG 
32.806272 

Problem 7.3: Relative Price Changes Using the Ghosh Price Model 
This problem explores the calculation of relative price changes using the Ghosh price model.  

Problem 7.3 Overview 

For an input-output transactions matrix of 
384 520 831
35 54 530

672 8 380
=
 
 
 
  

Z  and total outputs of 
2,500
1, 200
3,000

=
 
 
 
  

x  

given for a base year, if additional growth in value added for the next year is projected to result 

in 
2,000
1,000
1,500

new =
 
 
 
  

v , the corresponding price changes of output for the three industries for the new 

year relative to the base year are found by first calculating 1

.154 .208 .332
ˆ( ) .029 .045 .442

.224 .003 .127

−

 
 = =  
  

B x Z and 

1

1.37      .3      .673
( ) .205   1.093   .631

.352    .080   1.320

−

 
 = − =  
  

G I B . Using the Ghosh price model, the new total outputs are 

found as 
3, 472.7
1,814.5
3,956.9

new new

 
 ′= =  
  

x G v and the relative price changes between the two years are 

[ ]1ˆ 1.389   1.512   1.319new−= =π x x .  
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Computational Notes 
First define the matrix of transactions Z and the vector of total outputs x, along with the vector of 
new value-added inputs vnew. 

     Z←3 3⍴384 520 831 35 54 530 672 8 380 
     x←2500 1200 3000 
     vnew←2000 1000 1500 

     Z 
384 520 831 
 35  54 530 
672   8 380 
     x 
2500 1200 3000 
     vnew 
    2000.0    1000.0    1500.0 

Now we can compute the matrices of direct and total supply coefficients B and G respectively 
and for convenience save the transpose of G as the variable GT. 

     GT←⍉G←INV B←(DIAG ÷x)+.×Z 

     B 
     0.154     0.208     0.332 
     0.029     0.045     0.442 
     0.224     0.003     0.127 
     G 
     1.370     0.300     0.673 
     0.205     1.093     0.631 
     0.352     0.080     1.320 

Finally we can compute the new vector of total outputs xnew corresponding to vnew and the 
relative prices changes between the two periods p. 

     xnew←GT+.×vnew 
     p←(DIAG ÷x)+.×GT+.×vnew 

     xnew 
    3472.7    1814.5    3956.9 
     p 
     1.389     1.512     1.319 
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Problem 7.4: The Leontief Price Model and The Ghosh Price Model 
This problem illustrates that the Ghosh and Leontief price models produce the same result.  

Problem 7.4 Overview 

Using the basic data in Problem 7.3, first recall that 
384 520 831
35 54 530

672 8 380
=
 
 
 
  

Z and 
2,500
1, 200
3,000

=
 
 
 
  

x  

produces 1

.154 .433 .277
ˆ .014 .045 .177

.269 .007 .127

−

 
 = =  
  

A Zx  and 1

1.37 .626 .561
( ) .098 1.093 .252

.422 .201 1.32

−

 
 = − =  
  

L I A . Also, with 

the new year’s value added defined in Problem 7.3 as 
2,000
1,000
1,500

new

 
 =  
  

v , we calculate the vector of 

the new value added as a fraction of the base year total outputs, [ ]1ˆ .8   .833   .5new new
c

− ′= =v x v .  

The vector of relative price changes using the Leontief price model as 

[ ]1( ) 1.389   1.512   1.319new new
c c

− ′′ ′= − = =p I A v L v which are identical to the Ghosh model price 
changes, i.e., =p π from Problem 7.3. 

Computational Notes 
Recalling Z, x, and vnew from Problem 7.3, we can compute the corresponding A and L as well 
as the value-added coefficients vcnew from vnew and x. 

      L←LINV A←Z AMAT x 
      vcnew←vnew÷x  
      L 

     1.370     0.626     0.561 
     0.098     1.093     0.252 
     0.422     0.201     1.320 
vcnew 
     0.800     0.833     0.500 

Using the transpose of L and vcnew we can compute the relative prices pl with the Leontief 
price model as  

     pl←(⍉L)+.×vcnew 

     pl  
1.3890738 1.5121032 1.3189828 

Note that these values are identical to the relative prices generated in Problem 7.3. 
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Problem 7.5: Forward and Backward Linkages in Input-Output Models 
This problem explores the basic concepts of forward and backward linkages in input-output 
models.  

Problem 7.5 Overview 

Consider the case of a matrix of transactions, 

418 687 589 931
847 527 92 654
416 702 911 763
263 48 737 329

=

 
 
 
 
  

Z , and vector of total final 

demands, 

2,000
3,000
2,500
1,500

 
 
 =
 
 
 

f . With 

4,625
5,120
5,292
2,877

 
 
 = + =
 
 
 

x f Zi  we compute the matrix of direct requirements, 

1

.090  .134  .111  .324

.183  .103  .017  .227
ˆ

.090  .137  .172  .265

.057  .009  .139  .114

−

 
 
 = =
 
 
 

A Zx  , and 1

1.207   .227    .264    .579
 .280   1.182   .138    .447

( )
 .214    .241   1.332   .539
 .114    .065    .228   1.256

−

 
 
 = − =
 
 
 

L I A , for the 

demand-driven model. We next compute 1

.090  .149  .127  .201

.165  .103  .018  .128
ˆ

.079  .133  .172  .144

.091  .017  .256  .114

−

 
 
 = =
 
 
 

B x Z , the matrix of direct 

requirements, and 1

1.207   .251    .303    .360
 .253   1.182   .142    .251

( )
 .187    .233   1.332   .293
 .183    .116    .419   1.256

−

 
 
 = − =
 
 
 

G I B , the matrix of total requirements 

for supply driven input-output models.  

The vectors of direct and total backward linkages are found as 

[ ].420   .384   .440   .930′ =i A  and [ ]1.815   1.716   1.962   2.820′ =i L , respectively, from the 

demand-driven model. The vectors of direct and total forward linkages are found as 

[ ]0.568   0.414   0.528   0.479 ′=Bi  and [ ]2.121   1.828   2.046   1.974 ′=Gi , respectively, from 

the supply-driven model. 



2021 August 7 

-151- 
 

Computational Notes 

We define the matrix of interindustry transactions Z and vector of total final demands f, from 
which we can compute the vector of total outputs x. 

     Z←418 687 589 931 847 527 92 654 
     Z←4 4⍴Z,416 702 911 763 263 48 737 329 
     f←2000 3000 2500 1500 
     x←f++/Z 

     Z 
418 687 589 931 
847 527  92 654 
416 702 911 763 
263  48 737 329 
     f 
2000 3000 2500 1500 
     x 
4625 5120 5292 2877 

Now we can compute the matrix of technical coefficients A and the Leontief inverse L along 
with the corresponding vectors of direct backward linkages BLD and total backward linkages 
BLT. 

     A 
     0.090     0.134     0.111     0.324 
     0.183     0.103     0.017     0.227 
     0.090     0.137     0.172     0.265 
     0.057     0.009     0.139     0.114 
     L 
     1.207     0.227     0.264     0.579 
     0.280     1.182     0.138     0.447 
     0.214     0.241     1.332     0.539 
     0.114     0.065     0.228     1.256 
     BLD 
     0.420     0.384     0.440     0.930 
     BLT 
     1.815     1.716     1.962     2.820    

Finally, we can also compute the direct supply coefficients B and the supply invers G, along with 
the corresponding vectors of direct forward linkages FLD and total forward linkages FLT. 

     G←LINV B←(DIAG ÷x)+.×Z 
     FLD←+/B 
     FLT←+/G 

     B 
     0.090     0.149     0.127     0.201 
     0.165     0.103     0.018     0.128 
     0.079     0.133     0.172     0.144 
     0.091     0.017     0.256     0.114 
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     G 
     1.207     0.251     0.303     0.360 
     0.253     1.182     0.142     0.251 
     0.187     0.233     1.332     0.293 
     0.183     0.116     0.419     1.256 
     FLD 
     0.568     0.414     0.528     0.479 
     FLT 
     2.121     1.828     2.046     1.974 

Problem 7.6: Forward and Backward Linkages in IRIO Models 
This problem explores spatial forward and backward linkages in an interregional input-output 
(IRIO) model. 

Problem 7.6 Overview 
Using the three region IRIO table for Japan given in problem in Table A4.1.1 of Appendix S4.1, 
first define ( ) (1/ )rr rrB d n ′= i A i  for regions, 1, 2, and 3r =  designating the average direct spatial 
linkage of a region to itself as the average of the intraregional technical coefficients. Also 
designate ( ) (1/ )sr srB d n ′= i A i  for regions 1, 2, and 3r =  and 1, 2, and 3s =  but for r s≠  to 
designate the average direct interregional spatial linkage of a region to other regions as the 
average of the interregional technical coefficients relating the regions. Similarly, 

( ) (1/ )rr rrB t n ′= i L i  and ( ) (1/ )sr srB t n ′= i L i  designate the total spatial linkage of a region to itself 
and the total spatial linkage between regions, respectively.  

For the Japanese IRIO model provided, 5n =  industry sectors, and , , andr c n s=  for the 
Japanese central, north, and south regions, the specific direct backward linkage measures are 

( ) ( ) ( ) ( )c cc cn csB d B d B d B d= + + , ( ) ( ) ( ) ( )n nn nc nsB d B d B d B d= + +  and 
( ) ( ) ( ) ( )s ss sn scB d B d B d B d= + + . These are the direct backward linkages for the central, north, 

and south regions, respectively. Analogous notation applies for the total backward linkages and 
the direct and total forward linkages which use B and G instead of A and L.   

The results of these calculations are the following: 

        r = Central r =  North r = South          
 ( )rb d     .865     .741     .939 

  ( )rb t      3.177    2.731    3.434 
( )rf d     .579     .453     .597 

 ( )rf t     2.615    2.483    2.595 
From the table of results, we can observe that the North region is both the least backward-linked 
and forward-linked among the 3 regions.  

Computational Notes 
We retrieve 15 sector (3 region, 5 sector) matrix of technical coefficients matrix A and the 
corresponding vector of total outputs x, from which we can calculate the interindustry 
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transactions matrix Z, direct supply coefficients B, total supply coefficients G, and the Leontief 
inverse L. Each of these matrices can be partitioned into 9 blocks, each of shape 5x5 with the 
intraregional matrices along the block diagonal and interregional matrices describing the activity 
from supply regions along the rows to demand regions along the columns. Which we denote for 

A by 

 
 
 
 
 

A11 A12 A13
A21 A22 A23
A31 A32 A33

 where each partition is defined by a corresponding variable. We 

replace the A with B, G, and L for the other matrices. We compute the forward and backward 
direct and total linkages bd, bt, fd, and ft with the following APL function. 
[  0]  A LINKAGES x;n;m;i;j                                                 
[  1]  Z←A+.×DIAG x ⋄ B←(DIAG÷x)+.×Z ⋄ G←LINV⍉B ⋄ L←LINV A ⋄ n←5 ⋄ m←3           
[  2] ⍝--linkage blocks (backward)                                             
[  3]  A11←A[⍳n;⍳n] ⋄ A12←A[⍳n;n+⍳n] ⋄ A13←A[⍳n;(2×n)+⍳n]                      
[  4]  A21←A[n+⍳n;⍳n] ⋄ A22←A[n+⍳n;n+⍳n] ⋄ A23←A[n+⍳n;(2×n)+⍳n]                
[  5]  A31←A[(2×n)+⍳n;⍳n] ⋄ A32←A[(2×n)+⍳n;n+⍳n] ⋄ A33←A[(2×n)+⍳n;(2×n)+⍳n]    
[  6]  L11←L[⍳n;⍳n] ⋄ L12←L[⍳n;n+⍳n] ⋄ L13←L[⍳n;(2×n)+⍳n]                      
[  7]  L21←L[n+⍳n;⍳n] ⋄ L22←L[n+⍳n;n+⍳n] ⋄ L23←L[n+⍳n;(2×n)+⍳n]                
[  8]  L31←L[(2×n)+⍳n;⍳n] ⋄ L32←L[(2×n)+⍳n;n+⍳n] ⋄ L33←L[(2×n)+⍳n;(2×n)+⍳n]    
[  9] ⍝--linkage blocks (forward)                                              
[ 10]  B11←B[⍳n;⍳n] ⋄ B12←B[⍳n;n+⍳n] ⋄ B13←B[⍳n;(2×n)+⍳n]                      
[ 11]  B21←B[n+⍳n;⍳n] ⋄ B22←B[n+⍳n;n+⍳n] ⋄ B23←B[n+⍳n;(2×n)+⍳n]                
[ 12]  B31←B[(2×n)+⍳n;⍳n] ⋄ B32←B[(2×n)+⍳n;n+⍳n] ⋄ B33←B[(2×n)+⍳n;(2×n)+⍳n]    
[ 13]  G11←G[⍳n;⍳n] ⋄ G12←G[⍳n;n+⍳n] ⋄ G13←G[⍳n;(2×n)+⍳n]                      
[ 14]  G21←G[n+⍳n;⍳n] ⋄ G22←G[n+⍳n;n+⍳n] ⋄ G23←G[n+⍳n;(2×n)+⍳n]                
[ 15]  G31←G[(2×n)+⍳n;⍳n] ⋄ G32←G[(2×n)+⍳n;n+⍳n] ⋄ G33←G[(2×n)+⍳n;(2×n)+⍳n]    
[ 16] ⍝--aggregate measures                                                    
[ 17] ⍝--spatial-sectoral linkage                                              
[ 18]  BDIJ←TDIJ←FDIJ←FTIJ←(2⍴m)⍴0 ⋄ i←j←1                                     
[ 19] l1:⍎'BDIJ[i;j]←(÷m)×+/+/A',(1 0⍕i,j) ⋄ ⍎'TDIJ[i;j]←(÷m)×+/+/L',(1 0⍕i,j) 
[ 20]  ⍎'FDIJ[i;j]←(÷m)×+/+/B',(1 0⍕i,j) ⋄ ⍎'FTIJ[i;j]←(÷m)×+/+/G',(1 0⍕i,j)   
[ 21]  →(m≥j←j+1)/l1                                                           
[ 22]  →(m≥i←i+(j←1))/l1                                                       
[ 23] ⍝--spatial linkage                                                       
[ 24]  bd←+/BDIJ ⋄ bt←+/TDIJ ⋄ fd←+⌿FDIJ ⋄ ft←+⌿FTIJ      

A 
  0.053  0.000  0.009  0.011  0.009  0.001  0.000  0.007  0.000  0.001  0.001  0.000  0.001  0.000  0.000 
  0.000  0.001  0.001  0.001  0.002  0.000  0.000  0.001  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
  0.428  0.723  0.250  0.240  0.180  0.012  0.004  0.052  0.001  0.013  0.017  0.005  0.044  0.000  0.014 
  0.000  0.001  0.010  0.090  0.012  0.000  0.000  0.002  0.015  0.001  0.000  0.000  0.001  0.007  0.001 
  0.012  0.029  0.042  0.117  0.125  0.000  0.001  0.015  0.001  0.010  0.000  0.000  0.007  0.001  0.014 
  0.004  0.000  0.000  0.000  0.000  0.089  0.001  0.017  0.039  0.021  0.002  0.000  0.000  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.002  0.005  0.002  0.007  0.011  0.000  0.000  0.000  0.000  0.000 
  0.068  0.041  0.020  0.000  0.002  0.362  0.521  0.160  0.233  0.129  0.034  0.028  0.012  0.000  0.001 
  0.000  0.002  0.000  0.014  0.000  0.000  0.008  0.010  0.025  0.011  0.000  0.000  0.000  0.023  0.000 
  0.003  0.034  0.001  0.000  0.001  0.010  0.033  0.027  0.095  0.103  0.002  0.008  0.000  0.000  0.001 
  0.002  0.000  0.002  0.000  0.000  0.002  0.000  0.006  0.000  0.000  0.072  0.000  0.011  0.016  0.010 
  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.001  0.000  0.000  0.001  0.004  0.001  0.002  0.004 
  0.036  0.021  0.082  0.000  0.013  0.012  0.012  0.056  0.000  0.007  0.473  0.719  0.303  0.264  0.196 
  0.000  0.000  0.001  0.024  0.000  0.000  0.000  0.001  0.022  0.000  0.000  0.003  0.009  0.068  0.012 
  0.001  0.005  0.006  0.000  0.003  0.000  0.001  0.009  0.000  0.003  0.012  0.050  0.037  0.112  0.110 
x 
 1307.0  123.016400.0 1342.0 8591.0 1308.0  201.0 4167.0  394.0 2759.0 2131.0  267.022053.0 1546.0 9968.0 
Z 
   69.3    0.0  147.6   14.8   77.3    1.3    0.0   29.2    0.0    2.8    2.1    0.0   22.1    0.0    0.0 
    0.0    0.1   16.4    1.3   17.2    0.0    0.0    4.2    0.0    0.0    0.0    0.0    0.0    0.0    0.0 
  559.4   88.9 4100.0  322.1 1546.4   15.7    0.8  216.7    0.4   35.9   36.2    1.3  970.3    0.0  139.6 
    0.0    0.1  164.0  120.8  103.1    0.0    0.0    8.3    5.9    2.8    0.0    0.0   22.1   10.8   10.0 
   15.7    3.6  688.8  157.0 1073.9    0.0    0.2   62.5    0.4   27.6    0.0    0.0  154.4    1.5  139.6 
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    5.2    0.0    0.0    0.0    0.0  116.4    0.2   70.8   15.4   57.9    4.3    0.0    0.0    0.0    0.0 
    0.0    0.0    0.0    0.0    0.0    2.6    1.0    8.3    2.8   30.3    0.0    0.0    0.0    0.0    0.0 
   88.9    5.0  328.0    0.0   17.2  473.5  104.7  666.7   91.8  355.9   72.5    7.5  264.6    0.0   10.0 
    0.0    0.2    0.0   18.8    0.0    0.0    1.6   41.7    9.9   30.3    0.0    0.0    0.0   35.6    0.0 
    3.9    4.2   16.4    0.0    8.6   13.1    6.6  112.5   37.4  284.2    4.3    2.1    0.0    0.0   10.0 
    2.6    0.0   32.8    0.0    0.0    2.6    0.0   25.0    0.0    0.0  153.4    0.0  242.6   24.7   99.7 
    0.0    0.0    0.0    0.0    0.0    0.0    0.0    4.2    0.0    0.0    2.1    1.1   22.1    3.1   39.9 
   47.1    2.6 1344.8    0.0  111.7   15.7    2.4  233.4    0.0   19.3 1008.0  192.0 6682.1  408.1 1953.7 
    0.0    0.0   16.4   32.2    0.0    0.0    0.0    4.2    8.7    0.0    0.0    0.8  198.5  105.1  119.6 
    1.3    0.6   98.4    0.0   25.8    0.0    0.2   37.5    0.0    8.3   25.6   13.4  816.0  173.2 1096.5 
B 
  0.053  0.000  0.113  0.011  0.059  0.001  0.000  0.022  0.000  0.002  0.002  0.000  0.017  0.000  0.000 
  0.000  0.001  0.133  0.011  0.140  0.000  0.000  0.034  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
  0.034  0.005  0.250  0.020  0.094  0.001  0.000  0.013  0.000  0.002  0.002  0.000  0.059  0.000  0.009 
  0.000  0.000  0.122  0.090  0.077  0.000  0.000  0.006  0.004  0.002  0.000  0.000  0.016  0.008  0.007 
  0.002  0.000  0.080  0.018  0.125  0.000  0.000  0.007  0.000  0.003  0.000  0.000  0.018  0.000  0.016 
  0.004  0.000  0.000  0.000  0.000  0.089  0.000  0.054  0.012  0.044  0.003  0.000  0.000  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.013  0.005  0.041  0.014  0.151  0.000  0.000  0.000  0.000  0.000 
  0.021  0.001  0.079  0.000  0.004  0.114  0.025  0.160  0.022  0.085  0.017  0.002  0.064  0.000  0.002 
  0.000  0.001  0.000  0.048  0.000  0.000  0.004  0.106  0.025  0.077  0.000  0.000  0.000  0.090  0.000 
  0.001  0.002  0.006  0.000  0.003  0.005  0.002  0.041  0.014  0.103  0.002  0.001  0.000  0.000  0.004 
  0.001  0.000  0.015  0.000  0.000  0.001  0.000  0.012  0.000  0.000  0.072  0.000  0.114  0.012  0.047 
  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.016  0.000  0.000  0.008  0.004  0.083  0.012  0.149 
  0.002  0.000  0.061  0.000  0.005  0.001  0.000  0.011  0.000  0.001  0.046  0.009  0.303  0.019  0.089 
  0.000  0.000  0.011  0.021  0.000  0.000  0.000  0.003  0.006  0.000  0.000  0.001  0.128  0.068  0.077 
  0.000  0.000  0.010  0.000  0.003  0.000  0.000  0.004  0.000  0.001  0.003  0.001  0.082  0.017  0.110 
G 
  1.064  0.009  0.051  0.008  0.008  0.007  0.002  0.034  0.005  0.004  0.004  0.002  0.009  0.002  0.002 
  0.001  1.002  0.008  0.001  0.001  0.000  0.000  0.003  0.001  0.002  0.000  0.000  0.001  0.000  0.000 
  0.181  0.210  1.379  0.201  0.136  0.011  0.010  0.150  0.032  0.018  0.043  0.019  0.132  0.042  0.030 
  0.019  0.020  0.034  1.106  0.026  0.001  0.001  0.006  0.057  0.002  0.002  0.001  0.004  0.026  0.001 
  0.094  0.186  0.157  0.120  1.161  0.002  0.002  0.026  0.010  0.007  0.007  0.004  0.025  0.009  0.008 
  0.006  0.006  0.005  0.002  0.002  1.108  0.023  0.153  0.018  0.013  0.004  0.003  0.004  0.001  0.001 
  0.001  0.001  0.001  0.000  0.000  0.002  1.007  0.031  0.008  0.004  0.001  0.001  0.001  0.000  0.000 
  0.034  0.047  0.028  0.015  0.014  0.077  0.063  1.218  0.139  0.059  0.019  0.023  0.024  0.009  0.008 
  0.001  0.001  0.001  0.006  0.001  0.016  0.018  0.032  1.031  0.017  0.001  0.001  0.001  0.007  0.000 
  0.007  0.006  0.007  0.006  0.006  0.064  0.178  0.132  0.104  1.123  0.003  0.003  0.005  0.002  0.002 
  0.005  0.003  0.011  0.003  0.003  0.006  0.002  0.031  0.005  0.004  1.088  0.017  0.075  0.011  0.011 
  0.001  0.000  0.001  0.001  0.000  0.000  0.000  0.004  0.001  0.001  0.002  1.006  0.013  0.003  0.003 
  0.049  0.029  0.132  0.053  0.048  0.010  0.008  0.135  0.038  0.009  0.196  0.151  1.488  0.220  0.144 
  0.002  0.001  0.004  0.012  0.002  0.002  0.002  0.007  0.101  0.002  0.019  0.019  0.034  1.081  0.024 
  0.009  0.009  0.031  0.020  0.028  0.002  0.002  0.022  0.015  0.006  0.079  0.187  0.159  0.118  1.142 
L 
  1.064  0.012  0.014  0.019  0.014  0.006  0.006  0.011  0.003  0.003  0.003  0.003  0.003  0.001  0.001 
  0.001  1.002  0.002  0.002  0.003  0.001  0.001  0.001  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
  0.639  1.016  1.379  0.413  0.300  0.064  0.066  0.109  0.042  0.044  0.081  0.084  0.098  0.040  0.050 
  0.008  0.014  0.016  1.106  0.019  0.002  0.003  0.005  0.019  0.003  0.002  0.003  0.003  0.010  0.003 
  0.050  0.088  0.071  0.169  1.161  0.013  0.018  0.029  0.014  0.019  0.012  0.016  0.019  0.011  0.024 
  0.007  0.003  0.001  0.001  0.000  1.108  0.015  0.024  0.053  0.030  0.004  0.001  0.001  0.002  0.000 
  0.000  0.001  0.000  0.000  0.000  0.004  1.007  0.003  0.009  0.013  0.000  0.000  0.000  0.000  0.000 
  0.109  0.086  0.038  0.019  0.013  0.489  0.648  1.218  0.336  0.200  0.060  0.055  0.025  0.018  0.009 
  0.001  0.004  0.001  0.017  0.000  0.005  0.016  0.013  1.031  0.015  0.001  0.001  0.001  0.026  0.001 
  0.008  0.042  0.003  0.003  0.002  0.028  0.059  0.039  0.120  1.123  0.005  0.011  0.001  0.004  0.002 
  0.006  0.005  0.006  0.003  0.002  0.007  0.006  0.010  0.004  0.002  1.088  0.015  0.019  0.026  0.017 
  0.000  0.000  0.000  0.000  0.000  0.001  0.001  0.001  0.000  0.000  0.002  1.006  0.002  0.003  0.005 
  0.149  0.170  0.178  0.071  0.063  0.075  0.088  0.128  0.050  0.038  0.772  1.098  1.488  0.481  0.352 
  0.003  0.004  0.004  0.030  0.002  0.002  0.002  0.003  0.026  0.001  0.008  0.015  0.015  1.081  0.018 
  0.013  0.021  0.018  0.010  0.009  0.009  0.012  0.019  0.010  0.008  0.049  0.106  0.065  0.157  1.142 
  
bd   0.865   0.741   0.939 
bt   3.177   2.731   3.434 
fd   0.579   0.453   0.597 
ft   2.615   2.483   2.595 

Problem 7.7: Hypothetical Extraction 
This problem explores the concept of hypothetically extracting an industry sector from the 
economy and calculating the decrease in total output of the economy resulting from the 
hypothetical extraction. 

Problem 7.7 Overview 
The following is a highly aggregated version of the 2005 U.S. input-output table: 
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To hypothetically extract the agriculture sector (sector 1), we set the first row and first column of 
the matrix A to zero, the result of which we define as (1)A  and set the first element of the vector f 
to zero which we define as (1)f . Then we compute (1) (1) 1( )−= −L I A  and subsequently 

(1) (1)
1 54,744,946t ′ ′= − =i x i L f , which would be the reduction in total output of the economy if 

the agriculture sector were extracted.  

If we now define ( ) ( )100 ( ) /i i
ip ′ ′ ′= × −i x i L f i x  as the percentage reduction in total output 

by extracting industry i, we can compute the vector of all the seven 'sip  for this economy as 

[ ]2.4   2.6  11.5  29.8  22.0  54.8  18.8 ′=p , which indicates that the services sector (sector 6) 
would yield the highest reduction in output from a hypothetical extraction with a 54.8 percent 
reduction in total output.  

Computational Notes 
We retrieve A and x and compute f. Then we set the first row and first column of A to zero in a 
variable labeled Aj and the first element of f to zero in a variable labeled fj. We can then 
compute the corresponding Aj and Lj and use Lj to compute the vector of total outputs xj 
associated with fj. The total outputs of the original economy summed and divided by the sum of 
all total outputs for the economy with sector one extracted in percentage terms is t. These steps 
are included in the dyadic function HEXTRACT1 which takes as the right argument an n×1 by n 
matrix, the first n rows of which comprise the technical coefficients matrix A and the last row is 
the vector of total outputs x. The left argument is the index of the vector to be hypothetically 
extracted.  

[  0]  R←i HEXTRACT1 Ax;n;A;x;f;fj;Aj;Lj;xt;t;xj 
[  1] ⍝Hypotherical Extraction                   
[  2] ⍝Ax is (n+1)×n A,[1]x                      
[  3]  n←¯1↑⍴Ax ⋄ A←(2⍴n)↑Ax ⋄ x←,Ax[n+1;]       
[  4]  Aj←A ⋄ fj←f←x-A+.×x                       
[  5]  fj[1]←0 ⋄ Aj[1;]←0 ⋄ Aj[;1]←0             
[  6]  xj←(Lj←LINV Aj)+.×fj                      
[  7]  R←t,100×(t←xt-+/xj)÷xt←+/x      

We can repeat this process for each sector in the economy and save the results, or perhaps more 
efficiently modify HEXTRACT1 to form HEXTRACT2 that take a vector defining a selection 
of sectors S to be hypothetically extracted (instead of just one sector j), as in 

1 2 3 4 5 6 7 Tot. Output
1 Agriculture 0.2258 0.0000 0.0015 0.0384 0.0001 0.0017 0.0007 312,754
2 Mining 0.0027 0.1432 0.0075 0.0675 0.0367 0.0004 0.0070 396,563
3 Construction 0.0051 0.0002 0.0010 0.0018 0.0037 0.0071 0.0215 1,302,388
4 Manufacturing 0.1955 0.0877 0.2591 0.3222 0.0547 0.0566 0.1010 4,485,529
5 Trade, Transport & Utilities 0.0819 0.0422 0.1011 0.0994 0.0704 0.0334 0.0487 3,355,944
6 Services 0.0843 0.1276 0.1225 0.1172 0.1760 0.2783 0.2026 10,477,640
7 Other 0.0099 0.0095 0.0093 0.0219 0.0215 0.0188 0.0240 2,526,325

US Technical Coefficients 2005
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[  0]  R←S HEXTRACT2 Ax;n;A;x;f;fj;Aj;Lj;xt;t;xj;S;r;k;m 
[  1] ⍝Hypotherical Extraction                           
[  2] ⍝Ax is (n+1)×n A,[1]x; S is vector of sectors      
[  3]  m←⍴S ⋄ n←¯1↑⍴Ax ⋄ A←(2⍴n)↑Ax ⋄ x←,Ax[n+1;]        
[  4]  r←(2,m)⍴0 ⋄ k←1                                   
[  5] L1:Aj←A ⋄ fj←f←x-A+.×x                             
[  6]  fj[k]←0 ⋄ Aj[k;]←0 ⋄ Aj[;k]←0                     
[  7]  xj←(Lj←LINV Aj)+.×fj                              
[  8]  r[;k]←t,100×(t←xt-+/xj)÷xt←+/x                    
[  9]  →(m≥k←k+1)/L1                                     
[ 10]  R←(3,m)⍴(⍳m),,r            

We can use HEXTRACT2 to hypothetically extract all the sectors. The second line of the results 
below (computed as the explicit result) show the total outputs associated with the hypothetical 
extraction of the sectors indicated by the column and the third line shows those results in 
percentage terms.  

      (⍳7) HEXTRACT2 Ax 
     1              2               3             4              5               6              7        
547449.46      591737.58      2632898.3     6814684.2      5036387.3      12526318        4307032.5      
     2.3950914      2.5888519      11.51893      29.814244      22.034195       54.802643      18.843267      

Problem 7.8: Identifying “Inverse-Important” Coefficients 
This problem explores the concept of “inverse important” coefficients in a Leontief model. 

Problem 7.8 Overview 

Consider an economy with 
8 64 89
28 44 77
48 24 28

=
 
 
 
 

Z  and 
300
250
200

=
 
 
 
  

x . Using the element 13a  as an 

example, we define the criteria for a sector designated as “inverse important” as the following. 

 We define parameters 30α =  and 5β =  as specifying that a 30 percent change in 13a  
generates a 5 percent change in one or more elements in the associated Leontief inverse. We can 
explore the sensitivity of the results to the values of and  α β  as a relative indication of inverse 
importance. First, compute the matrix of technical coefficients, 

1

0.0267    0.2560    0.4450
ˆ 0.0933    0.1760    0.3850

0.1600    0.0960    0.1400

−

 
 = =  
  

A Zx , and the matrix of total requirements, 

1

1.2107    0.4738    0.8386
( ) 0.2557    1.3805    0.7503

0.2538    0.2423    1.4026

−

 
 = − =  
  

L I A .  If 13a  is increased to 0.5785 ( 30)α =  we find 

*
(13)

1.2531    0.5144    1.0732
0.2647    1.3890    0.7999
0.2627    0.2507    1.4517

 
 =  
  

L  and consequently the element by element normalized 
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percentage difference between elements in *
(13)L  and L which is found by 

*
(13) (13)

3.5069    8.5531   27.9806
100{[ ] } 3.5069    0.6201    6.6051

3.5069    3.5069    3.5069

 
 = − =  
  

P L L L . In this case, 13a  is identified as 

inverse important because a 30 percent change in its value causes a greater than 5 percent change 
in three inverse elements— 12 13 23, , andl l l . Notice that, as expected, the largest impact of a 
change in 13a  is on the corresponding element in L, namely 13l .  

If we change the parameters to 20α =  and 10β =  then, 

*
(13)

1.2387    0.5005    0.9932
0.2616    1.3861    0.7830
0.2597    0.2478    1.4350

 
 =  
  

L and (13)

2.3109    5.6362   18.4382
2.3109    0.4086    4.3525
2.3109    2.3109    2.3109

 
 =  
  

P , so 13a  would still be 

classified as inverse important, since there is (now only) one element, 13l , that is changed by 
more than 10β =  percent. Finally, as another illustration, with 10α =  and 10β = , we find 

*
(13)

1.2245    0.4870    0.9150
0.2586    1.3832    0.7664
0.2567    0.2450    1.4186

 
 =  
  

L and (13)

1.1423    2.7859    9.1138
1.1423    0.2020    2.1514
1.1423    1.1423    1.1423

 
 =  
  

P . In this case, 13a  

would not be labeled inverse important since the largest percentage change in an element of the 
Leontief inverse is less than the threshold of 10β =  percent. 

Computational Notes 
Define Z and x and computer A and L. Then, sequentially test the three cases of inverse 
importance in the APL function INVIMP. 

[  0]  INVIMP                                          
[  1]  Z←3 3⍴8 64 89 28 44 77 48 24 28 ⋄ x←300 250 200 
[  2]  L←INV A←Z AMAT x                                
[  3] ⍝--7.8a                                          
[  4]  A1←A ⋄ A1[1;3]←1.3×A[1;3]                       
[  5]  L113←L1←LINV A1                                 
[  6]  P113←100×(|L1-L)÷L                              
[  7]  P1135←P113≥5                                    
[  8] ⍝--7.8b                                          
[  9]  A2←A ⋄ A2[1;3]←1.2×A[1;3]                       
[ 10]  L213←L2←LINV A2                                 
[ 11]  P213←100×(|L2-L)÷L                              
[ 12]  P21310←P213≥10                                  
[ 13] ⍝--7.8c                                          
[ 14]  A3←A ⋄ A3[1;3]←1.1×A[1;3]                       
[ 15]  L313←L3←LINV A3                                 
[ 16]  P313←100×(|L3-L)÷L                              
[ 17]  P31310←P313≥10      
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Z 
 8 64 89 
28 44 77 
48 24 28 
x 
300 250 200 
A,L 
    0.0267    0.2560    0.4450    1.2107    0.4738    0.8386 
    0.0933    0.1760    0.3850    0.2557    1.3805    0.7503 
    0.1600    0.0960    0.1400    0.2538    0.2423    1.4026 
A1,L1 
    0.0267    0.2560    0.5785    1.2531    0.5144    1.0732 
    0.0933    0.1760    0.3850    0.2647    1.3890    0.7999 
    0.1600    0.0960    0.1400    0.2627    0.2507    1.4517 
P113 
    3.5069    8.5531   27.9806 
    3.5069    0.6201    6.6051 
    3.5069    3.5069    3.5069 
P13≥5 
         0         1         1 
         0         0         1 
         0         0         0 
A2,L2 
    0.0267    0.2560    0.5340    1.2387    0.5005    0.9932 
    0.0933    0.1760    0.3850    0.2616    1.3861    0.7830 
    0.1600    0.0960    0.1400    0.2597    0.2478    1.4350 
P213 
    2.3109    5.6362   18.4382 
    2.3109    0.4086    4.3525 
    2.3109    2.3109    2.3109 
P213≥10 
         0         0         1 
         0         0         0 
         0         0         0 
A3,L3 
    0.0267    0.2560    0.4895    1.2245    0.4870    0.9150 
    0.0933    0.1760    0.3850    0.2586    1.3832    0.7664 
    0.1600    0.0960    0.1400    0.2567    0.2450    1.4186 
P313 
    1.1423    2.7859    9.1138 
    1.1423    0.2020    2.1514 
    1.1423    1.1423    1.1423 
P313≥5 
         0         0         0 
         0         0         0 
         0         0         0 
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Problem 7.9: Analysis of Supply Interruption with Supply Driven IO Models  
This problem explores the use of a supply-driven model to determine the sensitivity of an 
economy to an interruption in availability of a scarce-factor input 

Problem 7.9 Overview 
Consider a labor strike in one of the sectors using the U.S. economy for 2005 (using the data 
presented in Problem 7.7). For this economy, specified are A and x from which we can compute 
the interindustry transaction matrix, 

 

70,629 10 1,973 172,428 435 18,296 1,739
832 56,798 9,707 302,783 123,117 4,273 17,745

1,597 74 1,329 7,886 12,449 74,678 54,282
61,158 34,779 3,37,412 1,445,451 183,602 593,372 255,282
25,620 16,748 131,675 445,685 236,30

ˆ
9 350

= =Z Ax
,316 123,084

26352 50611 159600 525827 590537 2915594 511919
3091 3773 12087 98416 72256 197062 60628

 
 
 
 
 
 
 
 
 
  

.  

With Z specified we can now find the direct and total supply coefficients, 1ˆ −=B x Z  and 
1( )−= −G I B , respectively as:  

0.2258 0.0000 0.0063 0.5513 0.0014 0.0585 0.0056
0.0021 0.1432 0.0245 0.7635 0.3105 0.0108 0.0447
0.0012 0.0001 0.0010 0.0061 0.0096 0.0573 0.0417
0.0136 0.0078 0.0752 0.3222 0.0409 0.1323 0.0569
0.0076 0.0050 0.0392 0.1328 0.0704

=B
0.1044 0.0367

0.0025 0.0048 0.0152 0.0502 0.0564 0.2783 0.0489
0.0012 0.0015 0.0048 0.0390 0.0286 0.0780 0.0240

 
 
 
 
 
 
 
 
 

 

1.3139 0.0129 0.1027 1.1313 0.0811 0.3446 0.0987
0.0365 1.1863 0.1691 1.5050 0.4944 0.4018 0.1883
0.0026 0.0010 1.0054 0.0257 0.0190 0.0930 0.0499
0.0301 0.0169 0.1284 1.5707 0.0997 0.3280 0.1182
0.0165 0.0102 0.0674 0.2631 1.1072

=G
0.2229 0.0716

0.0085 0.0102 0.0379 0.1502 0.1005 1.4409 0.0868
0.0041 0.0036 0.0154 0.0863 0.0454 0.1363 1.0390

 
 
 
 
 
 
 
 
 

  

We can also determine the corresponding vector of total value added as: 

123,475  233,770  648,605  1, 487,054  2,137,239  6,324,050  1,501[ ,645]′ ′ ′= − =v x i Z   

 As an example, a 10 percent reduction in construction primary inputs (sector 3) would 
reduce 3v  to 583,745 from 648,605.  If we define the new v incorporating the reduced 
manufacturing labor input as v , then we can compute  
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312,584  396,496  1, 237,177  4, 483,860  3,354,712  10,471,611  2,52 1][ 3,09′ ′= =x v G , 

which represents a 0.33 percent reduction in total output ( ′i x compared with ′i x ). For 
comparison, a 10 percent reduction in the services sector (sector 6) generates a 5.08 percent 
reduction in total output.  

Computational Notes 
Retrieve A and x and compute the associated Z, B, and G, as well as the vector of total value-
added inputs v. 
 
     G←LINV B←(DIAG ÷x)+.×Z←A+.×DIAG x 
     v←x-+⌿Z 
A 
    0.2258    0.0000    0.0015    0.0384    0.0001    0.0017    0.0007 
    0.0027    0.1432    0.0075    0.0675    0.0367    0.0004    0.0070 
    0.0051    0.0002    0.0010    0.0018    0.0037    0.0071    0.0215 
    0.1955    0.0877    0.2591    0.3222    0.0547    0.0566    0.1010 
    0.0819    0.0422    0.1011    0.0994    0.0704    0.0334    0.0487 
    0.0843    0.1276    0.1225    0.1172    0.1760    0.2783    0.2026 
    0.0099    0.0095    0.0093    0.0219    0.0215    0.0188    0.0240 

x 
    312753.9    396562.7   1302388.3   4485529.1   3355943.7  10477640.1 

B 
    0.2258    0.0000    0.0063    0.5513    0.0014    0.0585    0.0056 
    0.0021    0.1432    0.0245    0.7635    0.3105    0.0108    0.0447 
    0.0012    0.0001    0.0010    0.0061    0.0096    0.0573    0.0417 
    0.0136    0.0078    0.0752    0.3222    0.0409    0.1323    0.0569 
    0.0076    0.0050    0.0392    0.1328    0.0704    0.1044    0.0367 
    0.0025    0.0048    0.0152    0.0502    0.0564    0.2783    0.0489 
    0.0012    0.0015    0.0048    0.0390    0.0286    0.0780    0.0240 
G 
    1.3139    0.0129    0.1027    1.1313    0.0811    0.3446    0.0987 
    0.0365    1.1863    0.1691    1.5050    0.4944    0.4018    0.1883 
    0.0026    0.0010    1.0054    0.0257    0.0190    0.0930    0.0499 
    0.0301    0.0169    0.1284    1.5707    0.0997    0.3280    0.1182 
    0.0165    0.0102    0.0674    0.2631    1.1072    0.2229    0.0716 
    0.0085    0.0102    0.0379    0.1502    0.1005    1.4409    0.0868 
    0.0041    0.0036    0.0154    0.0863    0.0454    0.1363    1.0390 

v 
  123474.5  233769.6  648605.2 1487053.6 2137238.6 6324050.5 1501645.3 

We define the new vector of total value-added inputs reflecting the reduction in 
construction as v1 and the resulting vector of differences in value added from v as dv and the 
sum of all differences as tdv. The corresponding differences in total output using the total 
supply coefficients are then x1, dx, and tdx. We specify the percentage changes in x and v and 
their totals as pdx, ptdx, pdv, and ptdv.  
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     tdv←+/dv←v-v1←v×1 1 0.9 1 1 1 1 
     tdx←+/dx←x-x1←,(1 7⍴v1)+.×G 
     pdx←100×dx÷x  
     ptdx←100×tdx÷tx 
     pdv←100×dv÷v 
     ptdv←100×tdv÷tv 
v1 
  123474.5  233769.6  583744.7 1487053.6 2137238.6 6324050.5 1501645.3 
dv 
       0.0       0.0   64860.5       0.0       0.0       0.0       0.0 
tdv 
64860.52 
x1 
    312584.2    396496.4   1237177.4   4483860.2   3354712.2  10471611.0   
2523090.8 
dx 
     169.7      66.3   65210.9    1668.9    1231.5    6029.1    3234.1 
tdx 
77610.436 
pdx 
0.054258429 0.016706818 5.007025 0.037206196 0.036694852 0.057542365 
0.12801772 
ptdx 
0.33954566 
pdv 
0 0 10 0 0 0 0 
ptdv 
0.52072389 

 We define new vector of value-added inputs reflecting a reduction in services instead of 
construction as v12 so  

     tdv2←+/dv2←v-v12←v×1 1 1 1 1 0.9 1 
     tdx2←+/dx2←x-x12←,(1 7⍴v12)+.×G 
     pdx2←100×dx÷x 
     ptdx2←100×tdx2÷tx 
     pdv2←100×dv÷v 
     ptdv2←100×tdv2÷tv 
 

v1 
  123474.5  233769.6  648605.2 1487053.6 2137238.6 5691645.4 1501645.3 
dv 
       0.0       0.0       0.0       0.0       0.0  632405.0       0.0 
tdv 
632405.05 
x1 
    307352.4    390098.5   1278392.7   4390562.8   3292412.5   9566439.1   
2471433.6 
dx 
    5401.5    6464.2   23995.6   94966.3   63531.2  911201.0   54891.3 
tdx 
1160451 
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pdx 
0.054258429 0.016706818 5.007025 0.037206196 0.036694852 0.057542365 
0.12801772 
ptdx 
5.076973 
pdv 
0 0 10 0 0 0 0 
ptdv 
5.0771782 

Problem 7.10: Direct and Indirect Linkages of the US Economy  
This problem explores the direct and the direct and indirect forward and backward linkages for 
the sectors in the U.S. economy and examine how these linkages have changed over time, using 
the seven-sector input-output data for the United States presented in the Supplemental Resources 
to this text (Appendix SD1, described in Appendix B). 

Overview of Problem 7.10  
The following shows, for the seven industry sectors for the years 1919-2018, the backward direct 
linkages, ( )d ′=b i Α  [denoted as B(d) in the table, found as the column sums of A for each year 
along with the average across the 7 sectors, b(d)], the backward total linkages, ( )t ′=b i L  
[denoted as B(t) in the table found by the column sums of L along with the average across the 7 
sectors; b(t)];the forward direct linkages ( )d =f Bi  [denoted by F(d) in the table, found as the 
row sums of B along with the average across the 7 sectors, f(d)]; and the forward total linkages, 

( )t =f Gi  [denoted by F(t) in the table, found by the row sums of G, along with the average 
across the 7 sectors, f(t)].  

 

B(d) 1 2 3 4 5 6 7 b(d)
1919 0.556 0.748 0.729 0.722 0.57 0.546 0.524 0.628
1929 0.57 0.653 0.59 0.706 0.53 0.638 0.444 0.59
1938 0.624 0.724 0.517 0.807 0.639 0.449 0.626 0.627
1947 0.38 0.467 0.58 0.657 0.348 0.358 0.161 0.422
1958 0.462 0.472 0.609 0.633 0.35 0.333 0.266 0.446
1963 0.528 0.459 0.586 0.62 0.346 0.326 0.238 0.443
1967 0.548 0.492 0.553 0.611 0.334 0.335 0.265 0.448
1972 0.541 0.488 0.596 0.619 0.302 0.335 0.239 0.446
1977 0.572 0.479 0.559 0.656 0.357 0.332 0.263 0.46
1982 0.581 0.447 0.557 0.665 0.379 0.325 0.302 0.465
1987 0.547 0.454 0.573 0.636 0.347 0.351 0.308 0.459
1992 0.546 0.494 0.544 0.629 0.344 0.347 0.294 0.457
1997 0.579 0.463 0.521 0.645 0.351 0.372 0.312 0.463
2002 0.604 0.425 0.491 0.63 0.36 0.374 0.334 0.46
2007 0.585 0.34 0.466 0.659 0.395 0.393 0.357 0.456
2012 0.603 0.415 0.485 0.666 0.412 0.374 0.363 0.474
2018 0.627 0.444 0.478 0.627 0.415 0.389 0.358 0.477
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B(t) 1 2 3 4 5 6 7 b(t)
1919 2.366 2.922 3.01 2.879 2.547 2.354 2.47 2.65
1929 2.359 2.5 2.475 2.701 2.292 2.415 2.141 2.412
1938 2.915 3.245 2.702 3.525 2.988 2.401 2.978 2.965
1947 1.742 1.916 2.219 2.359 1.648 1.703 1.296 1.84
1958 1.899 1.913 2.262 2.304 1.636 1.634 1.528 1.882
1963 2.066 1.843 2.219 2.291 1.623 1.6 1.467 1.873
1967 2.1 1.92 2.133 2.259 1.596 1.613 1.509 1.876
1972 2.071 1.886 2.2 2.263 1.524 1.602 1.454 1.857
1977 2.218 1.944 2.215 2.42 1.662 1.622 1.522 1.943
1982 2.23 1.862 2.179 2.41 1.707 1.604 1.595 1.941
1987 2.088 1.838 2.142 2.302 1.616 1.63 1.59 1.887
1992 2.078 1.892 2.071 2.266 1.602 1.607 1.543 1.865
1997 2.178 1.872 2.068 2.374 1.617 1.658 1.599 1.909
2002 2.211 1.772 1.974 2.294 1.622 1.649 1.62 1.877
2007 2.214 1.634 1.967 2.38 1.716 1.707 1.692 1.901
2012 2.271 1.797 2.011 2.415 1.752 1.667 1.704 1.945
2018 2.299 1.837 1.964 2.297 1.739 1.687 1.684 1.929

F(d) 1 2 3 4 5 6 7 f(d)
1919 0.821 0.806 0.671 0.531 0.679 0.307 0.631 0.635
1929 0.743 0.835 0.624 0.554 0.691 0.412 0.52 0.625
1938 0.717 0.871 0.732 0.571 0.959 0.18 0.879 0.701
1947 0.866 0.812 0.161 0.555 0.406 0.41 0.123 0.476
1958 0.808 0.917 0.151 0.598 0.448 0.39 0.137 0.493
1963 0.847 0.947 0.114 0.607 0.412 0.373 0.138 0.491
1967 0.844 0.915 0.139 0.6 0.416 0.386 0.128 0.49
1972 0.846 0.976 0.162 0.601 0.42 0.383 0.12 0.501
1977 0.793 0.252 0.133 0.619 0.442 0.378 0.128 0.535
1982 0.786 0.957 0.122 0.62 0.448 0.384 0.144 0.494
1987 0.888 0.096 0.146 0.619 0.417 0.404 0.151 0.532
1992 0.8 0.115 0.173 0.6 0.412 0.39 0.163 0.522
1997 0.812 0.14 0.127 0.627 0.4 0.418 0.171 0.528
2002 0.812 0.244 0.134 0.628 0.391 0.425 0.16 0.542
2007 0.811 0.294 0.155 0.657 0.403 0.43 0.159 0.558
2012 0.848 0.197 0.218 0.643 0.404 0.416 0.159 0.555
2018 0.84 0.879 0.179 0.659 0.403 0.43 0.164 0.508
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Computational Notes 
We presume that the USIO tables for the years 1919, 1929, and 1938 are present in the 
workspace and saved under the variable names Zii and and xii where  ii is replaced by the 
last two digits of the designated year, and for rest of the tables the Make and Use tables are 
named Uii and Vii, respectively, with the same naming convention for designated years.  

For the first set of tables, for each designated year, we compute the corresponding A, L, B, and 
G matrices. 

L←INV A←Z AMAT x 
G←INV B←(DIAG ÷x)+.×Z 

For the second group of tables, for each designated year, we first compute the total industry and 
commodity output vectors as x and q, respectively, and then compute the commodity-by-industry 
requirements matrix BB and the commodity output proportions matrix D in order to compute the 
industry-by-industry direct requirements matrix (under an industry-based technology 
assumption) AI and corresponding total requirements matrix LI. Then we derive the 
corresponding matrices of interindustry transactions Z, of direct supply coefficients B, and of 
total supply coefficients G. 

x←+/V ⋄ q←+⌿V ⋄ D←V AMAT q ⋄ BB←U AMAT x  
LI←LINV AI←D+.×BB  

            G←LINV B←(DIAG ÷x)+.×Z←AI+.×DIAG x 
 
The APL function USIOLINKAGE listed below sequentially applies these APL expressions to 
generate the results table listed above as an explicit result RES. 
  

F(t) 1 2 3 4 5 6 7 f(t)
1919 3.357 3.081 2.725 2.36 2.902 1.8 2.571 2.685
1929 2.941 3.038 2.444 2.316 2.75 1.947 2.269 2.529
1938 3.153 4.006 3.379 2.789 3.981 1.579 3.702 3.227
1947 2.885 2.744 1.271 2.122 1.813 1.782 1.208 1.975
1958 2.802 3.016 1.251 2.194 1.895 1.747 1.237 2.02
1963 2.97 3.041 1.185 2.22 1.81 1.693 1.252 2.024
1967 2.989 2.949 1.229 2.197 1.809 1.712 1.226 2.016
1972 2.974 3.089 1.258 2.184 1.812 1.691 1.216 2.032
1977 2.872 3.858 1.222 2.293 1.902 1.715 1.244 2.158
1982 2.851 3.125 1.199 2.266 1.905 1.72 1.271 2.048
1987 3.105 3.388 1.231 2.224 1.812 1.725 1.276 2.109
1992 2.819 3.355 1.27 2.168 1.785 1.686 1.29 2.053
1997 2.952 3.511 1.22 2.283 1.766 1.752 1.31 2.113
2002 2.917 3.675 1.228 2.234 1.724 1.748 1.285 2.116
2007 2.976 3.966 1.268 2.334 1.77 1.772 1.29 2.197
2012 3.073 3.784 1.369 2.309 1.783 1.74 1.29 2.193
2018 3.04 2.96 1.298 2.306 1.761 1.763 1.297 2.061
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[  0] RES←USIOLINKAGE  
[  1] ⍝--This version uses MB3 Data for USIO tables                                          
[  2] ⍝Compute Bd, Bt, Fd, Ft for all US 7 sector tables                                     
[  3]  nall←1919 1929 1938 1947 1958 1963 1967 1972 1977                                     
[  4]  n←⍴nall←nall,1982 1987 1992 1997 2002 2007 2012 2018                                  
[  5]  nall←(((k←1),n)⍴nall),[1](3⍴1),14⍴2 ⋄ nw←54                                           
[  6]  label←(6 0⍕⍳7)[3+⍳39],(3⍴' ')                                                         
[  7]  Bd←(1,nw)⍴' B(d) ',label,'  b(d)' ⋄ Bt←(1,nw)⍴' B(t) ',label,'  b(t)'                 
[  8]  Fd←(1,nw)⍴' F(d) ',label,'  f(d)' ⋄ Ft←(1,nw)⍴' F(t) ',label,'  f(t)'                 
[  9] LL:K←⍕nall[1;k] ⋄ nK←⍴K                                                                
[ 10]  ⍝For 1919-1938 use Zxx and Xxx                                                        
[ 11]  ⍝For 1946-2018 use Uxx and Vxx                                                        
[ 12]  ⍝where xx are last two digits of the designated year                                  
[ 13]  →(2=nall[2;k])/L2                                                                     
[ 14]  ⍎'Z←D',K,'_7_Z'                                                                       
[ 15]  ⍎'x←,D',K,'_7_x'                                                                      
[ 16]  L←INV A←Z AMAT x ⋄ G←LINV B←(DIAG ÷x)+.×Z                                              
[ 17]  Bd←Bd,[1](6 0⍕nall[1;k]),6 3⍕(+⌿A),(+/+⌿A)÷7                                          
[ 18]  Bt←Bt,[1](6 0⍕nall[1;k]),6 3⍕(+⌿L),(+/+⌿L)÷7                                          
[ 19]  Fd←Fd,[1](6 0⍕nall[1;k]),6 3⍕(+/B),(+/+/B)÷7                                          
[ 20]  Ft←Ft,[1](6 0⍕nall[1;k]),6 3⍕(+/G),(+/+/G)÷7                                          
[ 21]  →END                                                                                  
[ 22] L2:⍎'U←D',K,'_7_U'                                                                     
[ 23]  ⍎'V←⍉D',K,'_7_S'                                                                      
[ 24]  x←+/V ⋄ q←+⌿V ⋄ D←V AMAT q ⋄ BB←U AMAT x                                              
[ 25]  LI←LINV AI←D+.×BB                                                                     
[ 26] ⍝AI and LI for industry based tech; change to AC snd LC for comm based tech            
[ 27]  G←LINV B←(DIAG ÷x)+.×Z←AI+.×DIAG x                                                     
[ 28]  Bd←Bd,[1](6 0⍕nall[1;k]),6 3⍕(+⌿AI),(+/+⌿AI)÷7                                        
[ 29]  Bd[;2++\8⍴6]←' '                                                                      
[ 30]  Bt←Bt,[1](6 0⍕nall[1;k]),6 3⍕(+⌿LI),(+/+⌿LI)÷7                                        
[ 31]  Fd←Fd,[1](6 0⍕nall[1;k]),6 3⍕(+/B),(+/+/B)÷7                                          
[ 32]  Fd[;2++\8⍴6]←' '                                                                      
[ 33]  Ft←Ft,[1](6 0⍕nall[1;k]),6 3⍕(+/G),(+/+/G)÷7                                          
[ 34] END:→(n≥k←k+1)/LL                                                                      
[ 35]  s←(1,nw)⍴' '                                                                          
[ 36]  RES←Bd,[1]s,[1]Bt,[1]s,[1]Fd,[1]s,[1]Ft                          
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Chapter 8, Decomposition Approaches 
Chapter 8 introduces and illustrates the basic concepts of structural decomposition analysis 
(SDA) within an input–output framework, in related additive and multiplicative formulations. 
The application of SDA to MRIO is developed to introduce a spatial context. Appendices to this 
chapter develop extended presentations of additional decomposition results as well as an 
overview of early applied studies and some further mathematical results. The exercise problems 
for this chapter illustrate various analytical features of SDA. 

Problem 8.1: The Basic Principles of Structural Decomposition Analysis 
(SDA) 
This problem explores the basic principles of SDA.  

Overview of Problem 8.1 
Consider an input-output economy specified at two points in time, 0 1 and t t by matrices of 
interindustry transactions and final demand vectors: 

0 0 1 1

10 20 30 60 15 25 40 75
5 2 25 ,  40 ,  12 7.5 30 ,  and  55
20 40 60 55 10 30 40 40

= = = =
       
       
       
              

Z f Z f . To measure how the 

economy has changed in structure over the period, we can compute for each sector the change in 
total output between the two years that was attributable to changing final demand or to changing 
technology by the following.  

First, we compute 0 0 0 1

.083   .260   .176
ˆ( ) .042   .026   .147

.167   .519   .353

−

 
 = =  
  

A Z x and 

1 1 1 1

.097   .239   .333
ˆ( ) .077   .072   .250

.065   .287   .333

−

 
 = =  
  

A Z x . Next, 0 0 1

1.199 .562 .455
( ) .111 1.221 .308

.398 1.125 1.910

−

 
 = − =  
  

L I A and 

1 1 1

1.214 .566 .82
( ) .15 1.289 .558

.182 1.61 1.82

−

 
 = − =  
  

L I A . Then 1 0

15
10
10

 
 ∆ = − =  
 − 

f f f  and 

1 0

.015 .004 .365

.039 .068 .251
.216 .515 .09

 
 ∆ = − =  
 − − − 

L L L .  
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We can find 0 0 0 1 1 1
120 155
77  and 104.5

170 120

   
   = = = =
   
   

x L f x Lf  so 
35

27.5
50

 
 ∆ =  
 − 

x . Then, using the 

basic structural decomposition relationship, 0 1 0 1

Technology change effect Final-demand change effect

(1/ 2)( )( ) (1/ 2)( )( )∆ = ∆ + + + ∆x L f f L L f
 

,  we 

have the results in the following table (figures in parentheses are percentages of the total output 
change in each row). 

 Output Change Technology Change 
Contribution 

Final-Demand 
Change Contribution 

Sector 1 35 17.65 (50) 17.35 (50) 
Sector 2 27.5 17.3 (63) 10.2 (37) 
Sector 3 -50 -44.4 (89) -5.6 (11) 
Economy-wide Total 12.5 -9.45 (-75) 21.95 (175) 

Computational Notes 
We define the given matrices of transactions and vectors of final demands for the two years, 
respectively, as Z0, Z2, f0, and f1 and compute the corresponding vector of total outputs and 
matrices of direct requirements and total requirements with the same naming convention.  

     Z0←3 3⍴10 20 30 5 2 25 20 40 60 ⋄ f0←60 45 50 
     Z1←3 3⍴15 25 40 12 7.5 30 10 30 40 ⋄ f1←75 55 40 
     L1←INV A1←Z1 AMAT x1←f1++/Z1 ⋄ L0←INV A0←Z0 AMAT x0←f0++/Z0 

10 0⍕Z0,⍉2 3⍴f0,x0 
        10        20        30        60       120 
         5         2        25        45        77 
        20        40        60        50       170 
10 0⍕Z1,⍉2 3⍴f1,x1 

        15        25        40        75       155 
        12         8        30        55       105 
        10        30        40        40       120 
A0,L0 
    0.0833    0.2597    0.1765    1.1992    0.5624    0.4549 
    0.0417    0.0260    0.1471    0.1114    1.2205    0.3078 
    0.1667    0.5195    0.3529    0.3983    1.1247    1.9097 
A1,L1 
    0.0968    0.2392    0.3333    1.2142    0.5664    0.8195 
    0.0774    0.0718    0.2500    0.1504    1.2888    0.5585 
    0.0645    0.2871    0.3333    0.1823    0.6098    1.8198 

We then compute the changes in the Leontief invers coefficients ∆L, the changes in final 
demands ∆f, and the resulting changes in total requirements ∆x, including the technology 
change effect T and the final demand change effect F. 

     ∆L←L1-L0 ⋄ ∆f←f1-f0 
     ∆x←0.5×(T←∆L+.×f0+f1)+F←(L0+L1)+.×∆f 
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∆L 
    0.0151    0.0040    0.3647 
    0.0389    0.0683    0.2507 
   ¯0.2161   ¯0.5149   ¯0.0899 
∆f 
      15.0      10.0     ¯10.0 
f0+f1 
     135.0     100.0      90.0 
L0+L1 
    2.4134    1.1288    1.2744 
    0.2618    2.5093    0.8663 
    0.5806    1.7345    3.7295 
∆x 
  35.0  27.5 ¯50.0 
T 
  35.3  34.6 ¯88.8 
F 
  34.7  20.4 ¯11.2 

 

Problem 8.2: Illustrating SDA with the US Economy 
This problem illustrates the basic principles of SDA using input-output data for the U.S. 
economy for the years 1972 and 2002 aggregated to 7 industry sectors. 

Problem 8.2 Overview  
The technical requirements and total outputs tables for 2002 and 1972 are the following:  

 

A and x for US, 2002 1 2 3 4 5 6 7 Tot. Output
1  Agriculture 0.2637 0.0020 0.0028 0.0374 0.0007 0.0008 0.0008 270,514
2  Mining 0.0032 0.0467 0.0097 0.0377 0.0226 0.0005 0.0040 184,516
3  Construction 0.0040 0.0336 0.0007 0.0030 0.0053 0.0078 0.0186 967,568
4  Manufacturing 0.1502 0.0942 0.2399 0.3464 0.0645 0.0464 0.0939 3,850,417
5  Trade, Transport & Utils 0.0868 0.0676 0.0960 0.0920 0.0816 0.0302 0.0475 2,811,865
6  Services 0.1310 0.2416 0.1436 0.1349 0.1813 0.2640 0.1954 8,948,582
7  Other 0.0098 0.0159 0.0083 0.0160 0.0276 0.0179 0.0203 2,146,282

A and x for US, 1972 1 2 3 4 5 6 7 Tot. Output
1  Agriculture 0.3141 0.0003 0.0028 0.0542 0.0010 0.0053 0.0012 83,955
2  Mining 0.0019 0.0542 0.0091 0.0296 0.0160 0.0002 0.0020 30,386
3  Construction 0.0069 0.0282 0.0003 0.0043 0.0156 0.0263 0.0166 165,998
4  Manufacturing 0.1436 0.0943 0.3522 0.3771 0.0407 0.0892 0.0078 761,194
5  Trade, Transport & Utils 0.0616 0.0481 0.1043 0.0786 0.0980 0.0442 0.0202 377,389
6  Services 0.0865 0.1471 0.0686 0.0591 0.1157 0.1621 0.0105 522,215
7  Other 0.0023 0.0063 0.0042 0.0117 0.0118 0.0096 0.0033 161,207
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To compute the changes in total output between 1972 and 2002 for all sectors attributed 
to changes in final demand and to changes in technology, we employ the basic SDA relationship, 

0 1 0 1

Technology change effect Final demand change effect

(1/ 2)( )( ) (1/ 2)( )( )∆ = ∆ + + + ∆x L f f L L f
 

, to yield: 

 

Computational Notes 
We presume the matrix of technical coefficients for 1972 resides in the workspace as A0, along 
with the corresponding vector of total outputs as x0 and the same quantities for 2002 as A1 and 
x1. We can compute the corresponding vectors of final demand, f0 and f1, and matrices of 
total requirements, L0 and L1. 

     Z0←A0+.×DIAG x0 ⋄ f0←x0-+/Z0 
     Z1←A1+.×DIAG x1 ⋄ f1←x1-+/Z1 
     L1←LINV A1 ⋄ L0←LINV A0 
A0 
  0.3141  0.0003  0.0028  0.0542  0.0010  0.0053  0.0012 
  0.0019  0.0542  0.0091  0.0296  0.0160  0.0002  0.0020 
  0.0069  0.0282  0.0003  0.0043  0.0156  0.0263  0.0166 
  0.1436  0.0943  0.3522  0.3771  0.0407  0.0892  0.0078 
  0.0616  0.0481  0.1043  0.0786  0.0980  0.0442  0.0202 
  0.0865  0.1471  0.0686  0.0591  0.1157  0.1621  0.0105 
  0.0023  0.0063  0.0042  0.0117  0.0118  0.0096  0.0033 
x0 
   83955   30386  165998  761194  377389  522215  161207 
f0 
   12504   ¯1907  139002  337534  230264  324127  141242 
L0 
  1.4913  0.0204  0.0552  0.1353  0.0125  0.0262  0.0044 
  0.0182  1.0665  0.0326  0.0563  0.0232  0.0087  0.0037 
  0.0206  0.0387  1.0117  0.0172  0.0237  0.0351  0.0179 
  0.3979  0.2261  0.6256  1.6905  0.1187  0.2087  0.0292 
  0.1503  0.0936  0.1854  0.1704  1.1327  0.0850  0.0286 
  0.2078  0.2216  0.1642  0.1683  0.1723  1.2272  0.0212 
  0.0121  0.0128  0.0157  0.0241  0.0168  0.0155  1.0043 
A1 
  0.2637  0.0020  0.0028  0.0374  0.0007  0.0008  0.0008 
  0.0032  0.0467  0.0097  0.0377  0.0226  0.0005  0.0040 
  0.0040  0.0336  0.0007  0.0030  0.0053  0.0078  0.0186 
  0.1502  0.0942  0.2399  0.3464  0.0645  0.0464  0.0939 
  0.0868  0.0676  0.0960  0.0920  0.0816  0.0302  0.0475 
  0.1310  0.2416  0.1436  0.1349  0.1813  0.2640  0.1954 

Sector       Technology Final Demand
1 186,559 -107,931 294,490
2 154,131 27,372 126,758
3 801,570 -73,551 875,121
4 3,089,223 -209,242 3,298,465
5 2,434,476 -3,750 2,438,225
6 8,426,367 1,224,317 7,202,050
7 1,985,075 109,282 1,875,793

∆x
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  0.0098  0.0159  0.0083  0.0160  0.0276  0.0179  0.0203 
x1 
  270514  184516  967568 3850417 2811865 8948582 2146281 
f1 
   41201  ¯56147  824036 1428128 1727026 4918450 1789205 
L1 
  1.3779  0.0148  0.0260  0.0831  0.0093  0.0077  0.0116 
  0.0242  1.0614  0.0314  0.0692  0.0330  0.0072  0.0147 
  0.0120  0.0411  1.0071  0.0123  0.0108  0.0125  0.0234 
  0.3743  0.2192  0.4243  1.6164  0.1508  0.1179  0.1951 
  0.1850  0.1218  0.1651  0.1913  1.1213  0.0623  0.0889 
  0.3784  0.4379  0.3371  0.3943  0.3293  1.4097  0.3434 
  0.0326  0.0327  0.0271  0.0411  0.0408  0.0298  1.0333       

We the compute the changes in the Leontief inverse coefficients ∆L, the changes in final 
demands ∆f, and the resulting changes in total requirements ∆x, including the technology 
change effect T and the final demand change effect F. 

     ∆L←L1-L0 ⋄ ∆f←f1-f0 
     ∆x←0.5×(T←∆L+.×f0+f1)+F←(L0+L1)+.×∆f 

∆L 
 ¯0.1134 ¯0.0057 ¯0.0292 ¯0.0522 ¯0.0032 ¯0.0186  0.0072 
  0.0060 ¯0.0051 ¯0.0012  0.0130  0.0098 ¯0.0015  0.0110 
 ¯0.0085  0.0024 ¯0.0046 ¯0.0049 ¯0.0128 ¯0.0227  0.0055 
 ¯0.0236 ¯0.0069 ¯0.2013 ¯0.0741  0.0321 ¯0.0908  0.1659 
  0.0346  0.0283 ¯0.0203  0.0210 ¯0.0114 ¯0.0227  0.0603 
  0.1706  0.2164  0.1730  0.2260  0.1570  0.1825  0.3223 
  0.0205  0.0199  0.0114  0.0170  0.0240  0.0142  0.0290 
∆f 
   28698  ¯54240  685034 1090594 1496763 4594323 1647963 
f0+f1 
   53705  ¯58054  963038 1765662 1957290 5242577 1930446 
L0+L1 
  2.8692  0.0352  0.0811  0.2184  0.0218  0.0339  0.0160 
  0.0425  2.1279  0.0639  0.1255  0.0562  0.0158  0.0183 
  0.0326  0.0798  2.0188  0.0295  0.0345  0.0476  0.0414 
  0.7722  0.4454  1.0499  3.3068  0.2695  0.3266  0.2243 
  0.3353  0.2154  0.3505  0.3617  2.2540  0.1473  0.1175 
  0.5862  0.6595  0.5013  0.5626  0.5015  2.6368  0.3646 
  0.0447  0.0455  0.0428  0.0653  0.0576  0.0453  2.0376 
  
∆x 
  186559  154131  801570 3089223 2434475 8426367 1985075 
T 
 ¯215862   54745 ¯147102 ¯418484   ¯7500 2448634  218564 
.5×T 
 ¯107931   27372  ¯73551 ¯209242   ¯3750 1224317  109282 
F 
  588981  253517 1750242 6596931 487645114404100 3751585 
.5×F 
  294490  126758  875121 3298465 2438225 7202050 1875793 
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Problem 8.3: Uniform Growth 
This problem illustrates a special case of SDA, uniform growth.  

Problem 8.3 Overview 
Consider an input-output economy specified by transactions matrices and final demand vectors 
for periods 0 and 1. 

0 0 1 1

10 20 25 45 15 30 37.5 67.5
15 5 30 ,  30 ,  22.5 7.5 45 ,  and  45
30 40 5 25 45 60 7.5 37.5

= = = =
       
       
       
              

Z f Z f  

If we apply the basic SDA formulation in this case, we find that the changes represent uniform 
growth, i.e., both transactions and final demand grow uniformly by 50 percent between periods 0 
and 1 as will the resulting total outputs (perhaps obvious in retrospect). 

Computational Notes 
We define the matrices of transactions and corresponding vectors of total outputs for the two 
periods, respectively, as Z0, f0, Z1, and f1. Then compute the vectors of total outputs, x0 and 
x1, and the matrices of direct requirements, A0 and A1, and of total requirements, L0 and L1. 

     Z0←3 3⍴10 20 25 15 5 30 30 40 5 ⋄ f0←45 30 25 
     Z1←3 3⍴15 30 37.5 22.5 7.5 45 45 60 7.5 ⋄ f1←67.5 45 37.5 
     L1←LINV A1←Z1 AMAT x1←f1++/Z1 ⋄ L0←LINV A0←Z0 AMAT x0←f0++/Z0 

10 0⍕Z0,⍉2 3⍴f0,x0 
        10        20        25        45       100 
        15         5        30        30        80 
        30        40         5        25       100 
10 0⍕Z1,⍉2 3⍴f1,x1 
        15        30        38        68       150 
        23         8        45        45       120 
        45        60         8        38       150 
A0,L0 
    0.1000    0.2500    0.2500    1.4260    0.6980    0.5957 
    0.1500    0.0625    0.3000    0.4477    1.5018    0.5921 
    0.3000    0.5000    0.0500    0.6859    1.0108    1.5523 
A1,L1 
    0.1000    0.2500    0.2500    1.4260    0.6980    0.5957 
    0.1500    0.0625    0.3000    0.4477    1.5018    0.5921 
    0.3000    0.5000    0.0500    0.6859    1.0108    1.5523 

We the compute the changes in the Leontief inverse coefficients ∆L, the changes in final 
demands ∆f, and the resulting changes in total requirements ∆x, including the technology 
change effect T and the final demand change effect F. 

∆L 
    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000 
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∆f 
      22.5      15.0      12.5 
∆x 
  50.0  40.0  50.0 
.5×T 
   0.0   0.0   0.0 
.5×F 
  50.0  40.0  50.0 

Problem 8.4: More Complex Forms of Structural Decomposition 
This problem explores a more complex form of SDA involving changes in technology and final 
demand as well as interactions between technology and final demand.  

Problem 8.4 Overview 
Consider two observations on an input-output economy specified by matrices of interindustry 
transactions and vectors of total outputs for two years, designate 0 and 1: 

0 0 1 1

20 30 45 55
,  ,  35 23 50 ,  50

50 65 24 60

12 15 35 50
24 11 30 35
36 50 8 26

= = = =

       
       
       
             

Z f Z f . From these basic data we can 

compute the vectors of total outputs and the matrices of technical requirements and total 

requirements for both years: 0 0 0

112
100
120

 
 = + =  
  

x f Z i , 1 1 1

150
158
199

 
 = + =  
  

x f Z i , 

0 0 0 1

.107 .150 .292
ˆ( ) .214 .110 .25

.321 .5 .067

−

 
 = =  
  

A Z x , 1 1 1 1

.133 .19 .226
ˆ( ) .233 .146 .251

.333 .411 .121

−

 
 = =  
  

A Z x , 

0 1

1.491 .604 .628
( ) .592 1.563 .604

.831 1.045 1.611

−

 
 = − =  
  

L I A , and 1 1

1.541 .618 .573
( ) .687 1.633 .643

.905 .998 1.655

−

 
 = − =  
  

L I A . The 

changes in total outputs, final demands, and elements of the total requirements matrices are the 

1 0

38
58
79

 
 = − =  
  

Δx x x , 1 0

5
15
34

 
 = − =  
  

Δf f f , and 1 0

.05 .014 .055
.095 .07 .039
.075 .047 .044

− 
 = − =  
 − 

ΔL L L , 

respectively. Now we can compute a variety of alternative structural decompositions accounting 
for the interaction term as summarized in equations (8.3) through (8.7): 

(8.3) ( )1 0 1 0 0 1 –   ( ) ( ) ( ) = + + = ∆ +Δx L f Δf L ΔL f L f L Δf   

(8.4) 0 1 0 1 1 0( ) (  – – ) ( ) ( ) = + = ∆ +Δx L ΔL f L f Δf L f L Δf   
(8.5) 0 0 0 0 0 0  ( ) ( ) ( ) ( )(( ) )= + + ∆ − = ∆ + ∆ + ∆ ∆Δx L ΔL f f L f L f L f L f   
(8.6) 1 1 1 1 1 1– –( )( ) ( ) ( ) ( )(– )–= = ∆ + ∆ ∆Δx Lf L ΔL f Δf L f L Δf L f   
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(8.7) 0 1 0 1

Technology change Final-demand change

(1/ 2) ( )( ) (1/ 2) ( )( )= ∆ + + + ∆Δx L f f L L f
 

  

The following are the results from applying these equations:  

 

Computational Notes 
We define the transactions and final demand data for the two periods as Z0, f0, Z1, and f1, and 
compute the associated x0, A0, L0, x1, A1, and L1, and the important differences for SDA 
equations as df, dx, and DL. 

     Z0←3 3⍴12 15 35 24 11 30 36 50 8 ⋄ f0←50 35 26 
     Z1←3 3⍴20 30 45 35 23 50 50 65 24 ⋄ f1←55 50 60   
     L1←LINV A1←Z1 AMAT x1←f1++/Z1 
     L0←LINV A0←Z0 AMAT x0←f0++/Z0 
     df←f1-f0 ⋄ dx←x1-x0 ⋄ DL←L1-L0   

We compute the components for each of the alternative SDA approaches and save the results as 
the data in the Table above in RES. 

⍝eq 8.3 
 DX←⍉3 3⍴(dx1a←DL+.×f0),(dx2a←L1+.×df),3⍴0 
⍝eq 8.4 
 DX←DX,[1]⍉3 3⍴(dx1b←DL+.×f1),(dx2b←L0+.×df),3⍴0 
⍝eq 8.5 
 DX←DX,[1]⍉3 3⍴(dx1c←DL+.×f0),(dx2c←L0+.×df),dx3c←DL+.×df 
⍝eq 8.6 

Output Percent Output Percent Output Percent Output Percent
Sector 1 38 100 1.55 4.09 36.45 95.91 0.00 0.00
Sector 2 58 100 8.21 14.15 49.79 85.85 0.00 0.00
Sector 3 79 100 3.23 4.09 75.77 95.91 0.00 0.00
Total 175 100 12.99 7.42 162.01 92.58 0.00 0.00
Sector 1 38 100 0.15 0.39 37.85 99.61 0.00 0.00
Sector 2 58 100 11.08 19.10 46.92 80.90 0.00 0.00
Sector 3 79 100 4.40 5.57 74.60 94.43 0.00 0.00
Total 175 100 15.62 8.93 159.38 91.07 0.00 0.00
Sector 1 38 100 1.55 4.09 37.85 99.61 -1.41 -3.70
Sector 2 58 100 8.21 14.15 46.92 80.90 2.87 4.94
Sector 3 79 100 3.23 4.09 74.60 94.43 1.17 1.48
Total 175 100 12.99 7.42 159.38 91.07 2.63 1.50
Sector 1 38 100 0.15 0.39 36.45 95.91 1.41 3.70
Sector 2 58 100 11.08 19.10 49.79 85.85 -2.87 -4.94
Sector 3 79 100 4.40 5.57 75.77 95.91 -1.17 -1.48
Total 175 100 15.62 8.93 162.01 92.58 -2.63 -1.50
Sector 1 38 100 0.85 2.24 37.15 97.76 0.00 0.00
Sector 2 58 100 9.64 16.63 48.36 83.37 0.00 0.00
Sector 3 79 100 3.81 4.83 75.19 95.17 0.00 0.00
Total 175 100 14.31 8.17 160.69 91.83 0.00 0.00

Equation (8.3)

Equation (8.4)

Equation (8.5)

Interaction TermTotal Output Change
Technology Change 

Contribution
Final-Demand 

Change Contribution

Equation (8.6)

Equation (8.7)
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 DX←DX,[1]⍉3 3⍴(dx1d←DL+.×f1),(dx2d←L1+.×df),dx3d←-DL+.×df 
⍝eq 8.7 
 DX←DX,[1]⍉3 3⍴(dx1e←0.5×DL+.×f0+f1),(dx2e←0.5×(L1+L0)+.×df),3⍴0 
 ⍝sector specific results 
 DXS←5 3 4⍴(+/DX),DX ⋄ DXS←DXS,[2]+/[2]DXS 
 DXSP←100×DXS÷1 3 2⍉5 4 4⍴dx,+/dx 
 RES←5 4 8⍴0 
 RES[;;1 3 5 7]←DXS 
 RES[;;2 4 6 8]←DXSP 
 ((4⍴5 0),12⍴10 2 5 0)⍕RES 

      RES 
 38 100  1.5523912   4.0852399   36.447609 95.91476   0          0         
 58 100  8.209741   14.154726    49.790259 85.845274  0          0         
 79 100  3.2292861   4.0877039   75.770714 95.912296  0          0         
175 100 12.991418    7.4236676  162.00858  92.576332  0          0         
                                                                           
 38 100  0.14669727  0.38604544  37.853303 99.613955  0          0         
 58 100 11.076367   19.097184    46.923633 80.902816  0          0         
 79 100  4.397554    5.566524    74.602446 94.433476  0          0         
175 100 15.620618    8.9260675  159.37938  91.073933  0          0         
                                                                           
 38 100  1.5523912   4.0852399   37.853303 99.613955 ¯1.4056939 ¯3.6991944 
 58 100  8.209741   14.154726    46.923633 80.902816  2.8666258  4.9424583 
 79 100  3.2292861   4.0877039   74.602446 94.433476  1.1682679  1.4788201 
175 100 12.991418    7.4236676  159.37938  91.073933  2.6291998  1.5023999 
                                                                           
 38 100  0.14669727  0.38604544  36.447609 95.91476   1.4056939  3.6991944 
 58 100 11.076367   19.097184    49.790259 85.845274 ¯2.8666258 ¯4.9424583 
 79 100  4.397554    5.566524    75.770714 95.912296 ¯1.1682679 ¯1.4788201 
175 100 15.620618    8.9260675  162.00858  92.576332 ¯2.6291998 ¯1.5023999 
                                                                           
 38 100  0.84954421  2.2356427   37.150456 97.764357  0          0         
 58 100  9.6430539  16.625955    48.356946 83.374045  0          0         
 79 100  3.8134201   4.827114    75.18658  95.172886  0          0         
175 100 14.306018    8.1748675  160.69398  91.825132  0          0   

   

Problem 8.5: Final Demand Decomposition 
This problem explores further sector-specific and economy-wide structural decomposition with 
additional details for sectoral technology and final-demand decomposition of level, mix, and 
distribution. 

Problem 8.5 Overview 
Using the input-output economy specified in Problem 8.4, we first we assume that the final 
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demand vectors can be specified with two components: 0 0 0
1 2

20 30
15 20  
12 14

 
  = =   
  

F f f and 

1 1 1
1 2

25 30
30 20
35 25

 
  = =   
  

F f f (in both cases =f Fi ).  

The quantities 0x ,  1x , 0A , 1A , 0L , 1L , ∆f , ∆x  and ∆L  were computed in Problem 8.4. 
From F we can now compute distribution across final demand categories [from (8.13)]: 

0 147 /111 0.4234 58 /111 0.5455
and

64 /111 0.5766 53 /111 0.4545
       

= = = =       
       

d d  

The bridge matrices [from (8.14)] are found as 

0

20 30 0.4255 0.4545
1/ 47 0

15 20 0.3191 0.3636  and
0 1/ 64

12 14 0.2553 0.1818

   
    = =           

B  

1

25 30 0.2778 0.4000
1/ 90 0

30 20 0.3333 0.2667
0 1/ 75

35 25 0.3889 0.3333

   
    = =           

B  

And changes are computed as   

.1478 .0687
.1220

,   .0142 .0458 and 54
.1220

.1336 .1146
f

− − 
   ∆ = ∆ = − ∆ =   −    

d B  

Equation (8.31) defines, for Δx, both the final-demand decomposition (including 
distribution across final-demand categories) and the technology change decomposition in the 
same expression, now including all six of the change components, i.e., the three-sector specific 
technology change components, the final demand level component, the final demand mix 
component, and the final demand distribution component: 

( )

0 1 0 1

11 0 0 1 1 (2) 0 0 1

Effect of technology change in sector 1 Effect of technology change in sector 2

1

(1/ 2)( )( ) (1/ 2)( )( )

(1/ 2)[ ( ) ]( ) (1/ 2)[ ( ) ]( )

(1/ 2)[ (

∆ = ∆ + + + ∆

= ∆ + + ∆ +

+ ∆

x L f f L L f

L A L f f L A L f f

L A

 

(3) 0 0 1 0 1 0 0 1 1

Effect of technology change in sector 3 Effect of change in final-demand level

0 1 0 1 1 0

Effect of change in fina

) ]( ) (1/ 4)( )( )( )

(1/ 4)( )[ ( ) ( ) ]

f

f f

+ + + ∆ +

+ + ∆ + ∆

L f f L L B d B d

L L B d P d

 

0 1 0 0 1 1

l-demand mix Effect of change in final-demand distribution

(1/ 4)( )( )( )f f+ + + ∆L L B B d
 
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Application of equation (8.31) yields the various change contributions given in the table 
below. 

 

Computational Notes 
We retrieve the transactions and final demands for the two periods of economy in Problem 8.4 as 
Z0, f0, Z1, and f1 along with the final demand each divided into two components columns of 
the matrices F0 and F1.  

Z0←3 3⍴12 15 35 24 11 30 36 50 8 ⋄ f0←50 35 26 
Z1←3 3⍴20 30 45 35 23 50 50 65 24 ⋄ f1←55 50 60 
F0←⍉2 3⍴20 15 12 30 20 14 ⋄ F1←⍉2 3⍴25 30 35 30 20 25 

      Z0 
12 15 35 
24 11 30 
36 50  8 
      f0 
50 35 26 
      Z1 
20 30 45 
35 23 50 
50 65 24 
      f1 
55 50 60 

We compute the associated x0, A0, L0, x1, A1, and L1. 

     L1←LINV A1←Z1 AMAT x1←f1++/Z1 ⋄ L0←LINV A0←Z0 AMAT x0←f0++/Z0 

      x0 
       112       100       120 
      10 3⍕A0,L0 
     0.107     0.150     0.292     1.491     0.604     0.628 
     0.214     0.110     0.250     0.592     1.563     0.604 
     0.321     0.500     0.067     0.831     1.045     1.611 
      x1 
       150       158       199 
      10 3⍕A1,L1 
     0.133     0.190     0.226     1.541     0.618     0.573 

Sector 1 Sector 2 Sector 3 Total Level Mix Dist. Total
Output 7.72 4.03 -10.90 0.85 51.97 -13.43 -1.39 37.15

Percentage 20 11 -29 2 137 -35 -4 98

Output 7.43 3.52 -1.30 9.64 50.27 -2.59 0.67 48.36
Percentage 13 6 -2 17 87 -4 1 83

Output 8.17 -9.27 4.91 3.81 61.79 12.67 0.73 75.19

Percentage 10 -12 6 5 78 16 1 95

Output 23.32 -1.72 -7.30 14.31 164.02 -3.34 0.01 160.69
Percentage 13 -1 -4 8 94 -2 0 92

Sector 2 58

Output 
Change

Technology Change Contribution Final Demand Change Contribution

Sector 1 38

Sector 3 79

Total 175
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     0.233     0.146     0.251     0.687     1.633     0.643 
     0.333     0.411     0.121     0.905     0.998     1.655 

From F0 and F1, we compute the changes as df, dx, DA, DL, and the vectors of distribution of 
total final demand d0 and d1. We compute sums of final demands for each period, ft0 and 
ft1, and the totals of final demand components (column totals FO and F1) as y0 and y1.  

 df←f1-f0 ⋄ dx←x1-x0 ⋄ DL←L1-L0 ⋄ DA←A1-A0 
 ft1←+/f1 ⋄ ft0←+/f0 ⋄ y1←+⌿F1 ⋄ y0←+⌿F0 
 d0←(+⌿F0)÷+/+/F0 ⋄ d1←(+⌿F1)÷+/+/F1 

       df 
5 15 34 
       dx 
38 58 79 
       DA 
0.026190476  0.039873418 ¯0.065536013  
0.019047619  0.03556962   0.0012562814 
0.011904762 ¯0.088607595  0.053936348  
       d0 
0.42342342 0.57657658 
       d1 
0.54545455 0.45454545 
       y0 
47 64 
       y1 
90 75 
       ft0 
111 
       ft1 
165 
       DA 
0.026190476  0.039873418 ¯0.065536013  
0.019047619  0.03556962   0.0012562814 
0.011904762 ¯0.088607595  0.053936348  
       DL 
0.049653707  0.014216275 ¯0.05491784  
0.094590793  0.070114224  0.039469367 
0.074525847 ¯0.046981021  0.044128057 

We compute the bridge matrices B0 and B1 and compute the differences between d0 and d1 as 
dd; differences between B0 and B1 as DB; and between ft1 and ft0 as dfs.  The sum  of all 
final demands (both periods) is tfs. 

B0←F0+.×DIAG ÷+⌿F0 ⋄ B1←F1+.×DIAG ÷+⌿F1 
dd←d1-d0 ⋄ DB←B1-B0 ⋄ dfs←ft1-ft0 ⋄ tfs←ft1+ft0 

       B0 
0.42553191 0.46875 
0.31914894 0.3125  
0.25531915 0.21875 
       B1 
0.27777778 0.4        
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0.33333333 0.26666667 
0.38888889 0.33333333 
       DB 
¯0.14775414  ¯0.06875     
 0.014184397 ¯0.045833333 
 0.13356974   0.11458333  
       dd 
0.12203112 ¯0.12203112 
       dfs 
54 
       tfs 
276 

Finally, we compute the final demand decomposition, DF1, DF2, and DF3, and the total output 
decomposition, DX1, DX2, and DX3, and compile the results in the variable DATA and expressed 
as percentages in DATAP shown in the table of results above. 

⍝Final demand decompoosition from equation 8.31 
 DF1←0.25×(L0+L1)+.×dfs×((B0+.×d0)+(B1+.×d1)) 
 DF2←0.25×(L0+L1)+.×((ft0×DB+.×d1)+(ft1×DB+.×d0)) 
 DF3←0.25×(L0+L1)+.×((ft0×B0)+(ft1×B1))+.×dd 
⍝total output decompostion (equation 8.28 & 8.31) 
 DA1←DA2←DA3←3 3⍴0 
 DA1[;1]←DA[;1] ⋄ DA2[;2]←DA[;2] ⋄ DA3[;3]←DA[;3] 
 DX1←0.5×(L1+.×DA1+.×L0)+.×(f0+f1) 
 DX2←0.5×(L1+.×DA2+.×L0)+.×(f0+f1) 
 DX3←0.5×(L1+.×DA3+.×L0)+.×(f0+f1) 
⍝results 
 DXALL←(⍉(3 3⍴DX1,DX2,DX3)) 
 DXALL←DXALL,3 1⍴+/DXALL 
 DFALL←(⍉(3 3⍴DF1,DF2,DF3)) 
 DFALL←DFALL,3 1⍴+/DFALL 
 DATA←(3 1⍴dx),DXALL,DFALL 
 DATA←DATA,[1]+⌿DATA 
⍝Percentages 
 DATAP←100×DATA÷⍉9 4⍴DATA[;1] 

        DATA 
 38  7.7167494  4.0326763 ¯10.899882   0.84954421  51.9655   ¯13.428276  ¯1.3867677    37.150456 
 58  7.4294337  3.5159897  ¯1.3023694  9.6430539   50.271104  ¯2.587164   0.67300641   48.356946 
 79  8.1730017 ¯9.2665518   4.9069702  3.8134201   61.785777  12.673491   0.72731184   75.18658  
175 23.319185  ¯1.7178859  ¯7.2952807 14.306018   164.02238   ¯3.3419487  0.013550537 160.69398  
        DATAP 
100 20.307235  10.612306   ¯28.683899   2.2356427 136.75131  ¯35.337569  ¯3.6493887    97.764357 
100 12.809368   6.0620511   ¯2.2454645 16.625955   86.674317  ¯4.4606275  1.1603559    83.374045 
100 10.345572 ¯11.729812     6.2113547  4.827114   78.209844  16.042394   0.92064789   95.172886 
100 13.325248  ¯0.98164907  ¯4.1687318  8.1748675  93.727074  ¯1.9096849  0.0077431638 91.825132 
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Chapter 9, Nonsurvey and Partial-Survey Methods: Fundamentals  
Chapter 9 introduces approaches designed to deal with a major challenge in input–output 
analysis that the kinds of information-gathering surveys needed to collect input–output data for 
an economy can be expensive and very time consuming, resulting in tables of input–output 
coefficients that are outdated before they are produced. These techniques, known as partial 
survey and nonsurvey approaches to input–output table construction, are central to modern 
applications of input–output analysis.  

 The chapter begins by reviewing the basic factors contributing to the stability of input– 
output data over time, such as changing technology, prices, and the scale and scope of business 
enterprises. Several techniques for updating input–output data are developed and the economic 
implications of each described. The bulk of the chapter is concerned with the widely utilized 
biproportional scaling (or RAS) technique and some related “hybrid model” variants. The 
exercise problems for this chapter explore various nonsurvey approaches to assembling input-
output tables and measures for the accuracy of such tables. 

Problem 9.1: Input-Output Tables in Constant Value Terms 
This exercise explores the adjustment of input-output tables to express input-output relationships 
in constant value terms in prices of another point in time. 

Problem 9.1 Overview 
Using highly aggregated U.S. input-output tables for 19974, 2003 and 2005. The following are 
the make and use tables for these years all expressed in current year dollars. 

 

 
4 These tables differ from those provided in the supplemental resources for the text (described in 
Appendix B in the text) in that they reflect data assembled “before redefinitions” as discussed in 
Chapter 4. 

US Use Matrix 1997 1 2 3 4 5 6 7 Imports
1 Agriculture 74,938      15             1,121        150,341    2,752        13,400        11             (23,123)       
2 Mining 370           19,461      4,281        112,513    53,778      5,189          30             (64,216)       
3 Construction 1,122        29             832           7,499        11,758      50,631        27             -                  
4 Manufacturing 49,806      19,275      178,903    1,362,660 169,915    418,412      1,914        (765,454)     
5 Trade, Transport & Utilities 21,650      11,125      76,056      380,272    199,004    224,271      612           6,337          
6 Services 32,941      45,234      107,723    483,686    545,779    1,592,426   3,801        (16,942)       
7 Other 63             781           422           33,905      19,771      26,730        -               (126,350)     

US Make Matrix 1997 1 2 3 4 5 6 7 Ind. Output
1 Agriculture 284,511    -               65             356           455           1,152          -               286,539      
2 Mining -               158,239    109           9,752        295           258             -               168,653      
3 Construction -               -               670,210    -               -               -                 -               670,210      
4 Manufacturing -               727           1,258        3,703,275 39,720      36,034        3,669        3,784,683   
5 Trade, Transport & Utilities 556           381           21,393      15,239      2,201,532 141,674      -               2,380,776   
6 Services -               410           54,850      1,306        109,292    6,444,098   1,821        6,611,778   
7 Other -               -               6,206        -               -               7,010          947,023    960,238      
Total Commodity Output 285,067    159,757    754,091    3,729,928 2,351,295 6,630,226   952,513    14,862,876 



2021 August 7 

-180- 
 

 

 

 

First, as one variant, we produce industry-by-industry transactions tables using the 
assumption of industry-based technology for these three years. That is, for each year from the 
corresponding table if the make and use matrices are V and U, respectively, and the total industry 
and commodity outputs are x and g, respectively, we construct transactions tables in current 
dollar terms by computing ˆ=Z DBx  where 1ˆ −=D Vq  and 1ˆ −=B Ux : 

  

US Use Matrix 2003 1 2 3 4 5 6 7 Imports
1 Agriculture 61,946      1               1,270        147,559    231           18,453        2,093        (26,769)       
2 Mining 441           33,299      6,927        174,235    89,246      1,058          11,507      (125,508)     
3 Construction 942           47             1,278        8,128        10,047      65,053        48,460      -                  
4 Manufacturing 47,511      22,931      265,115    1,249,629 132,673    516,730      226,689    (1,075,128)  
5 Trade, Transport & Utilities 24,325      13,211      100,510    382,630    190,185    297,537      123,523    8,065          
6 Services 25,765      42,276      147,876    509,084    490,982    2,587,543   442,674    (44,060)       
7 Other 239           1,349        2,039        48,835      35,110      83,322        36,277      (177,578)     

US Make Matrix 2003 1 2 3 4 5 6 7 Ind. Output
1 Agriculture 273,244    -               -               67             -               1,748          -               275,058      
2 Mining -               232,387    -               10,843      -               -                 -               243,231      
3 Construction -               -               1,063,285 -               -               -                 -               1,063,285   
4 Manufacturing -               -               -               3,856,583 -               30,555        3,278        3,890,416   
5 Trade, Transport & Utilities -               570           -               -               2,855,126 41               957           2,856,693   
6 Services -               475           -               -               133           9,136,001   3,278        9,139,886   
7 Other 3,359        896           -               3,936        104,957    323,996      1,827,119 2,264,263   
Total Commodity Output 276,602    234,328    1,063,285 3,871,429 2,960,216 9,492,341   1,834,631 19,732,832 

US Use Matrix 2005 1 2 3 4 5 6 7 Imports
1 Agriculture 71,682      1               1,969        174,897    335           18,047        1,671        (31,248)       
2 Mining 524           57,042      8,045        297,601    123,095    1,290          16,570      (226,059)     
3 Construction 1,597        74             1,329        7,886        12,449      74,678        54,282      -                  
4 Manufacturing 61,461      34,860      339,047    1,452,738 183,135    589,452      255,456    (1,372,424)  
5 Trade, Transport & Utilities 26,501      17,197      136,193    460,348    244,153    362,324      127,266    6,790          
6 Services 27,274      52,297      165,179    543,690    610,978    3,017,728   529,779    (50,588)       
7 Other 240           1,323        2,021        61,316      44,561      90,071        39,656      (208,971)     

US Make Matrix 2005 1 2 3 4 5 6 7 Ind. Output
1 Agriculture 310,868    -               -               65             -               1,821          -               312,754      
2 Mining -               373,811    -               22,752      -               -                 -               396,563      
3 Construction -               -               1,302,388 -               -               -                 -               1,302,388   
4 Manufacturing -               -               -               4,454,957 -               26,106        4,467        4,485,529   
5 Trade, Transport & Utilities -               808           -               -               3,354,043 47               1,046        3,355,944   
6 Services -               556           -               -               152           10,473,161 3,771        10,477,640 
7 Other 4,657        1,410        -               4,111        115,428    339,582      2,061,136 2,526,325   
Total Commodity Output 315,525    376,586    1,302,388 4,481,885 3,469,622 10,840,717 2,070,419 22,857,143 
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Suppose historical price indices for these tables are given in the following table (price 
indices in percent relative to some arbitrary earlier year): 

1997 2003 2005
Agriculture 100 113.5 122.7
Mining 96.6 131.3 201
Construction 181.6 188.9 209.9
Manufactuirng 133.7 150.8 156.9
Trade, Transport & Utilities 200.4 205.7 217.1
Services 129.3 151.6 219.8
Other 140 144.7 161.4  

To generate price indices relative to the year 2005, the elements in each row of the historical 
price indices are divided by the last element in that row to yield the following table of relative 
price indices: 

Z(1997) 1 2 3 4 5 6 7
1 74,807     27            1,170       150,337    2,897       13,738      12            
2 501          19,330     4,722       115,074    53,759     6,331        35            
3 997          26            739          6,665        10,450     44,999      24            
4 49,998     19,663     179,517   1,362,631 175,369   428,076    1,932       
5 21,358     11,509     74,280     372,728    199,152   247,197    663          
6 33,123     44,541     108,369   489,159    540,798   1,562,040 3,725       
7 106          825          540          34,282      20,330     28,677      4              

Z(2003) 1 2 3 4 5 6 7
1 61,199     9              1,286       145,882    321          18,714      2,153       
2 570          33,088     7,612       176,292    88,879     2,496        12,046     
3 942          47            1,278       8,128        10,047     65,053      48,460     
4 47,412     22,981     264,578   1,246,562 133,807   523,227    227,310   
5 23,463     12,824     96,960     369,498    183,671   287,032    119,187   
6 24,800     40,759     142,346   490,430    472,802   2,490,571 426,150   
7 2,782       3,406       10,953     83,306      58,947     182,603    55,918     

Z(2005) 1 2 3 4 5 6 7
1 70,629     10            1,973       172,428    435          18,296      1,739       
2 832          56,798     9,707       302,783    123,117   4,273        17,745     
3 1,597       74            1,329       7,886        12,449     74,678      54,282     
4 61,158     34,779     337,412   1,445,451 183,602   593,372    255,282   
5 25,620     16,748     131,675   445,685    236,309   350,316    123,084   
6 26,352     50,611     159,600   525,827    590,537   2,915,594 511,919   
7 3,091       3,773       12,087     98,416      72,256     197,062    60,628     
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The constant price transactions tables expressed relative to 2005 dollars are then found as 
(2005) (2005)

1997ˆ(1997) (1997)=Z p Z  where (2005)
1997p̂  is a matrix with the first column of the relative price 

table placed along the diagonal and zeros elsewhere.  The matrix (2003)(2003)Z  is computed in 
the same manner, i.e., (2005) (2005)

2003ˆ(2003) (2003)=Z p Z  where (2005)
2003p̂  is matrix of price indices 

converting 2003 to 2005 year prices, but (2005) (2005)
2005ˆ(2005) (2005)=Z p Z  is, of course, identical to 

the Z(2005) since 2005 is the base year of the price indices, i.e., (2005)
2005ˆ =p I : 

 

 
Computational Notes 
First, we define the price table PP and create the table of normalized prices PI. Then we can 
construct the price index matrices for the three years as P1, P2, and P3. 

     PP←100 113.5 122.7 96.6 131.3 201 181.6 188.9 209.9 133.7 150.8 156.9 
     PP←7 3⍴PP,200.4 205.7 217.1 129.3 151.6 219.8 140 144.7 161.4 
     PI←PP÷⍉3 7⍴PP[;3] ⋄ P1←⍉7 7⍴PI[;1] ⋄ P2←⍉7 7⍴PI[;2] ⋄ P3←⍉7 7⍴PI[;3]    

     PP 
 100.0 113.5 122.7 
  96.6 131.3 201.0 

1997 2003 2005
1 Agriculture 0.815 0.925 1
2 Mining 0.481 0.653 1
3 Construction 0.865 0.900 1
4 Manufacturing 0.852 0.961 1
5 Trade, Transport & Utilities 0.923 0.947 1
6 Services 0.588 0.690 1
7 Other 0.867 0.897 1

Z(1997)2005 1 2 3 4 5 6 7
1 60,967     22            953          122,524     2,361       11,197        10            
2 241          9,290       2,269       55,304       25,837     3,043          17            
3 863          22            640          5,766         9,041       38,932        21            
4 42,605     16,755     152,973   1,161,145  149,438   364,778      1,646       
5 19,715     10,624     68,566     344,057     183,832   228,182      612          
6 19,485     26,202     63,749     287,754     318,131   918,889      2,191       
7 92            715          469          29,737       17,635     24,874        4              

Z(2003)2005 1 2 3 4 5 6 7
1 56,611     8              1,190       134,944     297          17,311        1,991       
2 372          21,614     4,973       115,160     58,059     1,631          7,869       
3 847          42            1,150       7,315         9,042       58,544        43,612     
4 45,568     22,088     254,292   1,198,098  128,605   502,885      218,472   
5 22,231     12,150     91,869     350,096     174,027   271,960      112,928   
6 17,105     28,112     98,179     338,258     326,100   1,717,792   293,923   
7 2,494       3,053       9,820       74,687       52,848     163,709      50,132     
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 181.6 188.9 209.9 
 133.7 150.8 156.9 
 200.4 205.7 217.1 
 129.3 151.6 219.8 
 140.0 144.7 161.4 
  
     PI 
 0.815 0.925 1.000 
 0.481 0.653 1.000 
 0.865 0.900 1.000 
 0.852 0.961 1.000 
 0.923 0.947 1.000 
 0.588 0.690 1.000 
 0.867 0.897 1.000 

We retrieve the three pairs of use and make matrices, saved as U1, V1, U2, V2, U3, and V3.  
From each V, we calculate x and q. We then calculate B and D, from which we can compute an 
industry-by-industry based A and L. 

     D1←V1 AMAT q1 ⋄ B1←U1 AMAT x1 ⋄ A1←D1+.×B1 ⋄ L1←LINV A1 ⋄ Z1←A1+.×DIAG x1 
     D2←V2 AMAT q2 ⋄ B2←U2 AMAT x2 ⋄ A2←D2+.×B2 ⋄ L2←LINV A2 ⋄ Z2←A2+.×DIAG x2 
     D3←V3 AMAT q3 ⋄ B3←U3 AMAT x3 ⋄ A3←D3+.×B3 ⋄ L3←LINV A3 ⋄ Z3←A3+.×DIAG x3 

Now we can apply the price index matrices and construct the constant price transactions matrices 
Z1C, Z2C, and Z3C and total outputs vectors x1c, x2c, and x3c. Then we can calculate the 
direct requirements matrices, A1C, A2C, and A3C, and the total requirements matrices L1C, 
L2C, and L3C. 

Z1C←P1×Z1 ⋄ Z2C←P2×Z2 ⋄ Z3C←P3×Z3 
L1C←LINV A1C←Z1C AMAT x1c←x1×PI[;1] 
L2C←LINV A2C←Z2C AMAT x2c←x2×PI[;2] 
L3C←LINV A3C←Z3C AMAT x3c←x3×PI[;3] 

Z1 
   74806.8      26.5    1169.8  150336.5    2897.2   13738.5      11.7 
     500.8   19329.9    4722.0  115074.4   53759.4    6331.4      34.8 
     997.5      25.8     739.3    6664.8   10449.8   44999.0      24.1 
   49998.3   19662.7  179516.9 1362630.7  175368.9  428075.8    1931.8 
   21357.6   11509.1   74280.1  372727.9  199151.8  247197.1     662.7 
   33122.7   44541.3  108368.6  489159.4  540797.7 1562040.5    3725.0 
     106.2     824.6     540.2   34282.2   20330.4   28676.5       4.2 
x1 
  286538.7  168653.1  670209.7 3784683.0 2380775.6 6611777.7  960238.4 
Z1C 
   60967.2      21.6     953.4  122523.7    2361.2   11196.8       9.6 
     240.7    9289.9    2269.4   55304.4   25836.6    3042.9      16.7 
     863.0      22.3     639.6    5766.2    9040.9   38932.0      20.8 
   42605.3   16755.2  152972.7 1161145.5  149438.0  364778.4    1646.1 
   19714.7   10623.8   68566.2  344056.5  183832.4  228181.9     611.7 
   19484.9   26201.9   63749.1  287753.9  318130.8  918889.2    2191.3 
      92.1     715.2     468.6   29736.7   17634.8   24874.3       3.7 
x1c 
  233527.9   81054.2  579847.9 3225061.3 2197639.0 3889457.9  832920.5 
Z2 
   61199.4       8.7    1286.4  145881.9     320.9   18714.4    2152.7 
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     569.9   33087.5    7612.2  176291.6   88878.9    2496.1   12046.4 
     941.6      46.8    1277.5    8128.1   10047.2   65052.7   48460.3 
   47411.7   22981.3  264578.4 1246562.5  133807.0  523226.8  227309.7 
   23462.6   12823.8   96960.1  369498.4  183671.2  287031.7  119186.9 
   24799.9   40758.9  142346.5  490430.0  472802.5 2490571.3  426150.2 
    2782.3    3405.7   10953.0   83306.4   58946.9  182602.5   55917.9 
x2 
  275057.9  243230.7 1063284.8 3890415.8 2856693.4 9139886.4 2264263.2 
Z2C 
   56610.7       8.0    1189.9  134943.8     296.8   17311.2    1991.3 
     372.3   21613.9    4972.5  115159.6   58058.7    1630.6    7869.1 
     847.4      42.1    1149.7    7314.9    9042.0   58544.3   43612.0 
   45568.4   22087.8  254292.0 1198098.3  128604.8  502884.6  218472.3 
   22230.5   12150.4   91868.7  350095.9  174026.5  271959.6  112928.4 
   17104.9   28112.2   98178.9  338258.4  326100.3 1717791.6  293923.4 
    2494.4    3053.3    9819.7   74686.7   52847.7  163708.7   50132.1 
x2c 
  254434.2  158886.5  956905.7 3739163.2 2706687.4 6303943.5 2029980.7 
  
Z3 
   70629.2       9.9    1973.0  172427.6     435.4   18295.9    1739.0 
     831.9   56798.4    9706.8  302782.7  123117.3    4272.6   17744.7 
    1596.9      74.3    1328.7    7885.9   12448.9   74678.0   54281.8 
   61158.3   34779.1  337412.2 1445450.9  183601.9  593371.7  255282.2 
   25619.8   16747.6  131674.9  445685.3  236308.7  350315.5  123083.9 
   26351.8   50610.8  159600.1  525827.5  590536.8 2915593.7  511919.4 
    3091.4    3773.0   12087.4   98415.7   72256.1  197062.2   60628.5 
x3 
  312753.9  396562.7 1302388.3 4485529.1 3355943.710477640.1 2526324.9 
Z3C 
   70629.2       9.9    1973.0  172427.6     435.4   18295.9    1739.0 
     831.9   56798.4    9706.8  302782.7  123117.3    4272.6   17744.7 
    1596.9      74.3    1328.7    7885.9   12448.9   74678.0   54281.8 
   61158.3   34779.1  337412.2 1445450.9  183601.9  593371.7  255282.2 
   25619.8   16747.6  131674.9  445685.3  236308.7  350315.5  123083.9 
   26351.8   50610.8  159600.1  525827.5  590536.8 2915593.7  511919.4 
    3091.4    3773.0   12087.4   98415.7   72256.1  197062.2   60628.5 
x3c 
  312753.9  396562.7 1302388.3 4485529.1 3355943.710477640.1 2526324.9 
  
A2C,L2C 
 0.261 0.000 0.002 0.038 0.001 0.003 0.000 1.378 0.029 0.029 0.087 0.011 0.017 0.000 
 0.001 0.115 0.004 0.017 0.012 0.001 0.000 0.013 1.143 0.017 0.036 0.019 0.007 0.000 
 0.004 0.000 0.001 0.002 0.004 0.010 0.000 0.009 0.008 1.005 0.007 0.007 0.015 0.000 
 0.182 0.207 0.264 0.360 0.068 0.094 0.002 0.459 0.496 0.487 1.664 0.168 0.226 0.004 
 0.084 0.131 0.118 0.107 0.084 0.059 0.001 0.199 0.263 0.208 0.225 1.131 0.118 0.002 
 0.083 0.323 0.110 0.089 0.145 0.236 0.003 0.249 0.596 0.251 0.263 0.244 1.365 0.004 
 0.000 0.009 0.001 0.009 0.008 0.006 0.000 0.008 0.021 0.009 0.019 0.012 0.012 1.000 
A2C,L2C 
 0.222 0.000 0.001 0.036 0.000 0.003 0.001 1.305 0.016 0.023 0.073 0.006 0.014 0.012 
 0.001 0.136 0.005 0.031 0.021 0.000 0.004 0.021 1.172 0.026 0.060 0.032 0.010 0.015 
 0.003 0.000 0.001 0.002 0.003 0.009 0.021 0.008 0.006 1.006 0.007 0.007 0.015 0.026 
 0.179 0.139 0.266 0.320 0.048 0.080 0.108 0.393 0.305 0.449 1.556 0.117 0.193 0.218 
 0.087 0.076 0.096 0.094 0.064 0.043 0.056 0.175 0.147 0.165 0.183 1.096 0.091 0.101 
 0.067 0.177 0.103 0.090 0.120 0.272 0.145 0.211 0.358 0.240 0.255 0.211 1.428 0.259 
 0.010 0.019 0.010 0.020 0.020 0.026 0.025 0.031 0.042 0.030 0.044 0.031 0.044 1.039 
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A3C,L3C 
 0.226 0.000 0.002 0.038 0.000 0.002 0.001 1.314 0.010 0.025 0.079 0.008 0.010 0.012 
 0.003 0.143 0.007 0.068 0.037 0.000 0.007 0.046 1.186 0.051 0.133 0.058 0.015 0.030 
 0.005 0.000 0.001 0.002 0.004 0.007 0.021 0.011 0.003 1.005 0.007 0.007 0.012 0.026 
 0.196 0.088 0.259 0.322 0.055 0.057 0.101 0.432 0.191 0.442 1.571 0.133 0.140 0.210 
 0.082 0.042 0.101 0.099 0.070 0.033 0.049 0.177 0.086 0.174 0.197 1.107 0.071 0.095 
 0.084 0.128 0.123 0.117 0.176 0.278 0.203 0.286 0.270 0.305 0.351 0.314 1.441 0.360 
 0.010 0.010 0.009 0.022 0.022 0.019 0.024 0.033 0.023 0.030 0.049 0.034 0.033 1.039 

 

Problem 9.2: Measuring Year-to-Year Changes in Technical Coefficients 

This exercise explores measurement of year-to-year changes in technical coefficients of an input-
output model as the average of the absolute value of differences between the column sums of A 
for the same industry sectors in two different years. 

Problem 9.2 Overview 
Using the series of transactions tables developed in exercise Problem 9.1, we arbitrarily pick the 
years 1997 and 2005 with 2005 assumed to be the base year. First, we must compute the 
technical coefficients matrices for 2005 and 1997 expressed in current year prices, 

1ˆ(2005) (2005) (2005)−=A Z x  and 1ˆ(1997) (1997) (1997)−=A Z x , as well as the technical 
coefficient matrix for 1997 expressed in 2005 (the base year) prices: 

1(2005) (2005) (2005)ˆ(1997) (1997) (1997)
−

 =  A Z x : 

 

 

A (1997) 1 2 3 4 5 6 7
1               0.2611 0.0002 0.0017 0.0397 0.0012 0.0021 0.0000
2               0.0017 0.1146 0.0070 0.0304 0.0226 0.0010 0.0000
3               0.0035 0.0002 0.0011 0.0018 0.0044 0.0068 0.0000
4               0.1745 0.1166 0.2679 0.3600 0.0737 0.0647 0.0020
5               0.0745 0.0682 0.1108 0.0985 0.0836 0.0374 0.0007
6               0.1156 0.2641 0.1617 0.1292 0.2272 0.2363 0.0039
7               0.0004 0.0049 0.0008 0.0091 0.0085 0.0043 0.0000

A(2005) 1 2 3 4 5 6 7
1               0.2258 0.0000 0.0015 0.0384 0.0001 0.0017 0.0007
2               0.0027 0.1432 0.0075 0.0675 0.0367 0.0004 0.0070
3               0.0051 0.0002 0.0010 0.0018 0.0037 0.0071 0.0215
4               0.1955 0.0877 0.2591 0.3222 0.0547 0.0566 0.1010
5               0.0819 0.0422 0.1011 0.0994 0.0704 0.0334 0.0487
6               0.0843 0.1276 0.1225 0.1172 0.1760 0.2783 0.2026
7               0.0099 0.0095 0.0093 0.0219 0.0215 0.0188 0.0240
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Then, using the constant price technical coefficient tables, i.e., (2005)(2005) and (1997)A A , we 
compute the average of the absolute value of differences between the column sums of A for each 
industry:  

[ ](2005)1 [ (2005) (1997) ] .009 .062 .007 .02 .014 .017 .057
7

′ − =i A A . 

The most changed sectors in decreasing order are 2, 7 and 4.  If we, instead, compare the current 
price tables, (2005) and (1997)A A , these values are: 

[ ]1 [ (2005) (1997) ] .015 .032 .01 .015 .016 .01 .057
7

′ − =i A A . 

In this case, the most changed sectors in decreasing order are 7, 2 and 5. The differences in rates 
of inflation explain the difference between the comparisons in constant and current year prices. 

Computational Notes 
For this problem, using the tables compiled in Problem 9.1, we compute the mean absolute 
differences between the original and constant price technical coefficients mad and madc. 

      madc←(+⌿|A3C-A1C)÷7 
      mad←(+⌿|A3-A1)÷7 

       madc 
0.0091716325 0.061875254 0.006673803 0.019524133 0.013931034 0.017315044 0.057171175 
       mad 
0.015295436 0.03211081 0.0095505127 0.014564504 0.016033482 0.0099650962 0.056991671 

 

Problem 9.3: Marginal Technical Coefficients 
This exercise problem illustrates the computation of marginal technical coefficients. 

Problem 9.3 Overview 
Using the current price transactions tables developed in Problem 9.1 between the years 1997 and 
2005, the matrix of marginal input coefficients is computed as 

[ ] 1
(2005) (1997) (2005) (1997)

−
−  −  Z Z x x . 

A(1997)(2005) 1 2 3 4 5 6 7
1               0.2611 0.0003 0.0016 0.0380 0.0011 0.0029 0.0000
2               0.0010 0.1146 0.0039 0.0171 0.0118 0.0008 0.0000
3               0.0037 0.0003 0.0011 0.0018 0.0041 0.0100 0.0000
4               0.1824 0.2067 0.2638 0.3600 0.0680 0.0938 0.0020
5               0.0844 0.1311 0.1182 0.1067 0.0836 0.0587 0.0007
6               0.0834 0.3233 0.1099 0.0892 0.1448 0.2363 0.0026
7               0.0004 0.0088 0.0008 0.0092 0.0080 0.0064 0.0000
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Note that these marginal coefficients deal with changes, so negative entries can appear and do in 
this case in industries 1, 2, 5, and 6.  

Computational Notes 
Using the Problem 9.1 data again, we compute marginal input coefficients AM based on the 
difference in interindustry transactions Z31 and in total outputs x31. 

     AM←(Z31←Z3-Z1) AMAT x31←x3-x1 

     Z3-Z1 
   ¯4177.6     ¯16.6     803.2   22091.1   ¯2461.7    4557.4    1727.3 
     331.2   37468.5    4984.8  187708.3   69357.9   ¯2058.8   17709.9 
     599.4      48.5     589.4    1221.1    1999.1   29679.0   54257.7 
   11160.1   15116.5  157895.3   82820.2    8233.1  165295.9  253350.4 
    4262.2    5238.5   57394.8   72957.4   37156.9  103118.5  122421.2 
   ¯6770.9    6069.5   51231.5   36668.1   49739.0 1353553.2  508194.5 
    2985.2    2948.4   11547.2   64133.5   51925.6  168385.7   60624.3 
     x3-x1 
   26215.2  227909.6  632178.6  700846.1  975168.1 3865862.4 1566086.5 
     AM 
    ¯0.159     0.000     0.001     0.032    ¯0.003     0.001     0.001 
     0.013     0.164     0.008     0.268     0.071    ¯0.001     0.011 
     0.023     0.000     0.001     0.002     0.002     0.008     0.035 
     0.426     0.066     0.250     0.118     0.008     0.043     0.162 
     0.163     0.023     0.091     0.104     0.038     0.027     0.078 
    ¯0.258     0.027     0.081     0.052     0.051     0.350     0.324 
     0.114     0.013     0.018     0.092     0.053     0.044     0.039 

Problem 9.4: Biproportional Scaling (The RAS Technique) 
This exercise problem illustrates use of the so-called RAS technique of biproportional scaling to 
generate an estimate of a future technical coefficients table for an economy based on a previous 
year’s table and future estimates of the vectors for total final demand, total value-added, and total 
output. 

Problem 9.4 Overview  
Consider the following interindustry transactions and total outputs two-sector input-output 

economy for the year 2020: 

 

1 2 3 4 5 6 7
1            -0.1594 -0.0001 0.0013 0.0315 -0.0025 0.0012 0.0011
2            0.0126 0.1644 0.0079 0.2678 0.0711 -0.0005 0.0113
3            0.0229 0.0002 0.0009 0.0017 0.0020 0.0077 0.0346
4            0.4257 0.0663 0.2498 0.1182 0.0084 0.0428 0.1618
5            0.1626 0.0230 0.0908 0.1041 0.0381 0.0267 0.0782
6            -0.2583 0.0266 0.0810 0.0523 0.0510 0.3501 0.3245
7            0.1139 0.0129 0.0183 0.0915 0.0532 0.0436 0.0387
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Estimates for the year 2030 for the vectors of total final demand, total value-added, and total 
output are the following: 

 

To use the 2020 table as a base and the 2030 projections for final demand, value-added and 
total output in computing an estimate of the 2030 technical coefficients table first, from the 

matrix of interindustry transactions, 
1 2

(0)
3 4
 

=  
 

Z , and vector of total outputs, 
10

(0)
10
 

=  
 

x , we 

can compute 1 .1 .2
ˆ(0) (0) (0)

.3 .4
−  

= =  
 

A Z x . Finally, we can compute the vectors of intermediate 

outputs and inputs, respectively, as  
25 12 13

(1) (1) (1)
20 6 14
     

= − = − =     
     

u x f  and 

25 10 15
(1) (1) (1)

20 8 12
     

= − = − =     
     

v x va . [Here we use va(1) for the value added vector in 2030 

to differentiate it from v(1), the total intermediate inputs vector in 2030.] Performing the RAS 
procedure using A(0), u(1), v(1) and x(1) converges to the 2030 matrix in 6 iterations. That is, 

the result is 
.262 .323

(1)
.338 .277
 

=  
 

A , such that (1) (1) (1)=u A x  and ˆ(1) (1) (1)′=v i A x  within .0001 for 

each element of the intermediate inputs and outputs vectors, u(1) and v(1), respectively. 

Computational Notes 
We define the base matrix of transactions Z0 and vector of total outputs x0 from which we can 
calculate the base matrix of technical coefficients A0. We also define the target vectors of final 
demands f1, of value-added inputs w1, and total outputs x1 from which we can calculate the 
target vectors of intermediate outputs u1 and of intermediate inputs v1. 

     Z0←2 2⍴1 2 3 4 ⋄ x0←10 10 
     A0←Z0 AMAT x0 

     f1←12 6 ⋄ w1←10 8 ⋄ x1←25 20 
     u1←x1-f1 ⋄ v1←x1-w1    

2020 A B Total 
Output

A 1 2 10

B 3 4 10

2030 Final 
Demand

Value 
Added 

Total 
Output

A 12 10 25

B 6 8 20
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Z0 
         1         2 
         3         4 
x0 
        10        10 
A0 
     0.100     0.200 
     0.300     0.400 
f1 
        12         6 
w1 
        10         8 
x1 
        25        20 
u1 
        13        14 
v1 
        15        12 

For this problem we need an APL function RAS to implement the RAS algorithm. 

[  0]  A←A0 RAS UVX;tol;lim;n;nn;k;XD;u1;v1;x;r;s                     
[  1] ⍝Basic function for RAS biproportional scaling                   
[  2] ⍝INPUT: A0 and rows of UVX are u1 v1 x                           
[  3]  nn←2⍴n←1↑⍴A0 ⋄ tol←0.001 ⋄ lim←100                              
[  4]  A←A0 ⋄ u1←UVX[1;] ⋄ v1←UVX[2;] ⋄ x←UVX[3;] ⋄ XD←(nn⍴x)×nn⍴1,n⍴0 
[  5]  u←A+.×x ⋄ v←+⌿A+.×XD ⋄ k←0                                      
[  6]  →(((⌈/|(v-v1))≤tol)∧((⌈/|(u-u1))≤tol))/CON                      
[  7] ⍝----ROW ADJUSTMENT                                              
[  8] LOOP:A←A×⍉nn⍴r←u1÷u                                              
[  9]  u←A+.×x ⋄ v←+⌿A+.×XD ⋄ k←k+1                                    
[ 10]  →(((⌈/|(v-v1))≤tol)∧((⌈/|(u-u1))≤tol))/CON                      
[ 11] ⍝----COL ADJUSTMENT                                              
[ 12]  A←A×nn⍴s←v1÷v                                                   
[ 13]  u←A+.×x ⋄ v←+⌿A+.×XD ⋄ k←k+1                                    
[ 14]  →(((⌈/|(v-v1))≤tol)∧((⌈/|(u-u1))≤tol))/CON                      
[ 15]  →(lim>k)/LOOP                                                   
[ 16]  →0,0⍴⎕←'**** STOPPED: ',(⍕k),' ITERATIONS ****'                 
[ 17] CON:→0   

Note several new APL features in this function. First, assigning values to the character ⎕ (called 
Quad) in and APL statement enables delivery of immediate output of an array from the function 
as it is executed, such as an intermediate result.  For example,        

⎕←3 4 5 
3 4 5 
      ⎕←'This is the end' 
This is the end 

     (⎕←1 2 3)+⎕←4 5 6 
4 5 6 
1 2 3 
5 7 9 
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In the RAS function it is used to issue a message indicating that the biproportional scaling 
iterations did not converge within a specified number of iterations if that condition materializes.  

Also new is the dyadic logical function and (denoted with the symbol ∧) which returns 
the value 1 as the explicit result if two logical statements as arguments are both true. As an aside, 
the function or (denoted by ∨) returns the value 1 as the explicit result if either of the two logical 
statements as arguments is true (or both are true). For example,  

     (2=5)∧(1=1) 
0 
     (5=5)∧(1=1) 
1 
 
In the RAS function, the and function is used to determine if in the current iteration of 
biproportionately scaling the technical coefficients matrix produces values for the differences 
between the current values of all intermediate inputs and outputs are within a specified tolerance 
level.  

 We use the RAS function by providing A0 as the left argument and a matrix where u1 is 
the first row, v1 is the second, and x1 is the third with the explicit result as the biproportionately 
scaled A within a default tolerance of .001 and if the iterative process is unable to meet the 
specified tolerance within 100 iterations the process is halted and the last value of the matrix A is 
returned as the explicit result.  For the problem, 

     A←A0 RAS 3 2⍴u1,v1,x1    

     A   (RAS estimate) 
     0.262     0.323 
     0.338     0.277 

In this case the RAS algorithm converges in 6 iterations.                       

Problem 9.5: Measurement of Error in Nonsurvey Estimation 
This exercise explores measurement of error between an RAS-estimated table of technical 
coefficients and a “real” table with the mean absolute percentage error (MAPE) of the element-
by-element comparison of the two tables as the error metric.  

Problem 9.5 Overview 
Recall the 1997 input-output table expressed in 1997 dollars constructed in Problem 9.1 and the 
vectors of intermediate inputs, intermediate outputs, and total outputs from the corresponding 
input-output table for 2005. The 1997 input-output table, 1(1997) (1997) (1997)−=A Z x  was 
computed in exercise Problem 9.2. We can retrieve the year 2005 total outputs, x(2005), from 
exercise Problem 9.1 and compute the year 2005 intermediate outputs, (2005) (2005)=u Z i , and 
intermediate inputs, (2005) (2005)′=v i Z , all given in the following table: 
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 Performing the RAS procedure using A(1997), u(2005), v(2005) and x(2005), yields the 
RAS-estimate of A(2005), which we designate as (2005)A , given in the following table: 

 

For the 2005 “real” input-output table, 1(2005) (2005) (2005)−=A Z x  (also derived in exercise 
Problem 9.2), since there are a total of 7 7 49× =  elements to compare, the MAPE is computed 

as 
7 7

1 1

(2005) (2005)1( ) 100 49.028
49 (2005)

ij ij

i j ij

a a
a= =

 −
× = 
  

∑∑


 [for (2005) 0ija ≠  and 0 otherwise].  

Note that in this case the RAS estimate is very weak since the average error is nearly 50 percent. 

Computational Notes 
We retrieve the technical coefficients matrix A1 from Problem 9.1 along with the target table’s 
u3, v3, and x3.  

u3 
  265510.0  515254.5  152294.5 2911056.4 1329435.7 4780440.1  447314.2 
v3 
  189279.4  162793.1  653783.1 2998475.5 1218705.1 4153589.6 1024679.6 
x3 
  312753.9  396562.7 1302388.3 4485529.1 3355943.710477640.1 2526324.9 
A1 
     0.261     0.000     0.002     0.040     0.001     0.002     0.000 
     0.002     0.115     0.007     0.030     0.023     0.001     0.000 
     0.003     0.000     0.001     0.002     0.004     0.007     0.000 
     0.174     0.117     0.268     0.360     0.074     0.065     0.002 
     0.075     0.068     0.111     0.098     0.084     0.037     0.001 
     0.116     0.264     0.162     0.129     0.227     0.236     0.004 
     0.000     0.005     0.001     0.009     0.009     0.004     0.000 

We now use the function RAS with A1 as the left argument and a matrix with u3, v3, and x3 as 
the rows to yield AR and calculate the mean average percentage error, mape, between AR and 
A3 which we also retrieve from Problem 9.1. 

1 2 3 4 5 6 7
u(2005)' 265,510 515,254 152,295    2,911,056 1,329,436 4,780,440   447,314    
v(2005)' 189,279 162,793 653,783    2,998,476 1,218,705 4,153,590   1,024,680 
x(2005) 312,754 396,563 1,302,388 4,485,529 3,355,944 10,477,640 2,526,325 

Ã(2005) 1 2 3 4 5 6 7
1 0.2448   0.0001   0.0015   0.0357   0.0009   0.0021   0.0007   
2 0.0037   0.1423   0.0140   0.0622   0.0373   0.0022   0.0048   
3 0.0052   0.0001   0.0015   0.0025   0.0050   0.0109   0.0023   
4 0.1592   0.0618   0.2274   0.3148   0.0519   0.0638   0.1129   
5 0.0737   0.0392   0.1020   0.0933   0.0639   0.0400   0.0420   
6 0.1172   0.1557   0.1525   0.1256   0.1780   0.2588   0.2419   
7 0.0015   0.0112   0.0030   0.0343   0.0261   0.0185   0.0011   
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      AR←A1 RAS 3 7⍴u3,v3,x3 
      mape←(÷49)×+/+/100×(|A3-AR)÷A3 
 

AR 
     0.245     0.000     0.002     0.036     0.001     0.002     0.001 
     0.004     0.142     0.014     0.062     0.037     0.002     0.005 
     0.005     0.000     0.002     0.003     0.005     0.011     0.002 
     0.159     0.062     0.227     0.315     0.052     0.064     0.113 
     0.074     0.039     0.102     0.093     0.064     0.040     0.042 
     0.117     0.156     0.153     0.126     0.178     0.259     0.242 
     0.001     0.011     0.003     0.034     0.026     0.019     0.001 
mape 
49.027628 

Problem 9.6: RAS Estimation of Interindustry Transactions 
This exercise demonstrates an example of the equivalence of performing an RAS-estimate using 
either interindustry transactions or technical coefficients.  

Problem 9.6 Overview 

Suppose we have a baseline transactions matrix defined as 
100 55 5

(0) 50 75 45
25 10 110

 
=  
  

Z . We are 

provided with estimates of intermediate inputs and outputs, 
265
225
325

(1)
 
 =
 
  

v  and 
325
235
255

(1)
 
 =
 
  

u , 

respectively.  

To compute an estimate of the transactions table for the next year, (1)ZZ , if Z(0), v(1) and 
u(1) are known, we use the RAS technique to biproportionately scale Z(0) iteratively to 
convergence of (1)(1) Z= Z iu   and (1)(1) Z′= Zv i   within .0001 for each element of u(1) and v(1) to 

yield: 
167.5 104.5 53

(1) 61.2 104.1 69.7
36.3 16.5 202.2

Z

 
 =  
  

Z .  

Alternatively, suppose we know the vector of total outputs, 
750

(0) 500
1,000

=
 
 
 
  

x , corresponding 

to (0)Z , and we also have an estimate of total outputs for next year, 
1,000

(1) 750
1,500

=
 
 
 
  

x . Compute 
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.133 .11 .025
ˆ(0) (0) (0) .067 .15 .045

.033 .02 .11
= =

 
 
 
  

A Z x  and use it [rather than Z(0)] along with (1)v  and (1)u  to 

generate an estimate of the technical coefficients matrix for next year using the RAS technique, 

we find (1)
.168 .139 .035
.061 .139 .047
.036 .022 .135

A

 
 =  
  

A . If we also compute the matrix of technical coefficients 

matrix from the (1)ZZ  and 1ˆ (1)−x , we find that 1ˆ(1) (1) (1)
.168 .139 .035
.061 .139 .047
.036 .022 .135

Z Z −=

 
 =  
  

A Z x  , which is 

identical to (1)ZA . The explanation for why this is true generally is discussed in Section 9.4.3 of 
the text. 

Computational Notes 
We define, for two regions, matrices of interindustry transactions, Z0 and Z1, and vectors of 
total outputs, x0 and x1. We compute the intermediate outputs and inputs for each region, u1, 
v1, u2, and v2, as well as the matrices of technical coefficients A0 and A1. 

Z0←3 3⍴100 55 25 50 75 45 25 10 110 
Z1←3 3⍴200 75 50 35 125 75 30 25 200 
x0←750 500 1000 ⋄ x1←1000 750 1500 
u1←+/Z1 ⋄ v1←+⌿Z1 ⋄ u0←+/Z0 ⋄ v0←+⌿Z0 
A0←Z0 AMAT x0 ⋄ A1←Z1 AMAT x1    

      Z0 
100 55  25 
 50 75  45 
 25 10 110 
      u0 
180 170 145 
      v0 
175 140 180 
      x0 
750 500 1000 
      Z1 
200  75  50 
 35 125  75 
 30  25 200 
      u1 
325 235 255 
      v1 
265 225 325 
      x1 
1000 750 1500 
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      A0 
     0.133     0.110     0.025 
     0.067     0.150     0.045 
     0.033     0.020     0.110 
      A1 
     0.200     0.100     0.033 
     0.035     0.167     0.050 
     0.030     0.033     0.133 

We first use RAS to produce an estimate, which we call AR, of A3 using A1 as the base matrix. 

      AR←A0 RAS 3 3⍴u1,v1,x1 

      AR 
     0.168     0.139     0.035 
     0.061     0.139     0.046 
     0.036     0.022     0.135 

Next, we adapt the RAS algorithm to modify transactions rather than technical coefficients in the 
APL function RAST. 

[  0]  Z←Z0 RAST UV;tol;n;k;XD;test;u1;v1;r;s         
[  1] ⍝Basic function for RAS biproportional scaling   
[  2] ⍝of Z rather than A                              
[  3] ⍝INPUT: Z0 and rows of UV are u1 v1              
[  4]  nn←2⍴n←1↑⍴Z0 ⋄ tol←0.001 ⋄ lim←500000           
[  5]  test←'((⌈/|(v-v1))≤tol)∧((⌈/|(u-u1))≤tol)'      
[  6]  Z←Z0 ⋄ u1←UV[1;] ⋄ v1←UV[2;]                    
[  7] ⍝BEGIN ITERATION                                 
[  8]  u←+/Z ⋄ v←+⌿Z ⋄ k←0                             
[  9]  →CON×⍳1=⍎test                                   
[ 10] ⍝----ROW ADJUSTMENT                              
[ 11] LOOP:Z←Z×⍉nn⍴r←u1÷u                              
[ 12]  u←+/Z ⋄ v←+⌿Z ⋄ k←k+1                           
[ 13]  →CON×⍳1=⍎test                                   
[ 14] ⍝----COL ADJUSTMENT                              
[ 15]  Z←Z×nn⍴s←v1÷v                                   
[ 16]  u←+/Z ⋄ v←+⌿Z ⋄ k←k+1                           
[ 17]  →CON×⍳1=⍎test                                   
[ 18]  →LOOP×⍳lim>k                                    
[ 19]  →0,0⍴⎕←'**** STOPPED: ',(⍕k),' ITERATIONS ****' 
[ 20] CON:→0 

We apply RAST to produce an estimate of Z3, which we call ZR, using Z1 as a base matrix and 
generate the corresponding technical coefficients matrix AZR.  

     ZR←Z0 RAST 2 3⍴u1,v1   
     AZR←ZR AMAT x1 
ZR 
     167.5     104.5      53.0 
      61.2     104.1      69.7 
      36.3      16.5     202.2 
AZR 
     0.168     0.139     0.035 
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     0.061     0.139     0.046 
     0.036     0.022     0.135 

Finally, note another new APL function in RAST, used in lines 9, 13, 17, and 19, which 
are all conditional branching statement.  The new monadic function is called index generator 
denoted with the character ⍳ (iota). The function takes as its argument a positive integer and 
returns as its explicit result a vector with from the index origin (which by default is zero but can 
be changed to 1) incremented by 1 until the number specified by the right argument. For 
example, 

      ⍳3 
1 2 3 
      ⍳9 
1 2 3 4 5 6 7 8 9 

The one exception is if the right argument is 0, the function returns an empty vector. The 
function’s use here takes advantage of how operations with an empty vector work, the most 
important feature of which is an empty vector times any value results in another empty vector. 
This means, for example, if an expression is a scalar value multiplied by the result of the index 
generator function (⍳) with the argument of a logical condition expression is true or 1, the result 
is the scalar value. That is, if the logical condition is false or 0, the result is the empty vector. So, 
in an APL function a branch condition →LOOP×⍳lim>k would branch to the line denoted by 
the label LOOP if the current value of the variable lim is larger than the current value of the 
variable k, but would just proceed to the next line of the function otherwise. The method of 
branching is actually not used frequently in modern APL implementations since it is dependent 
upon the value of the index origin, but the index generator has many other uses.  

Problem 9.7: Incorporation of Partial Information into RAS Estimation 
This exercise problem explores the prospects using of partial information about a target technical 
coefficients matrix to improve an RAS-estimated technical coefficients table compared with 
estimation absent such information.  

Problem 9.7 Overview 
For the economy in Problem 9.6, suppose we acquire a survey-based table of technical 

coefficients for next year of (1)
.2 .1 .033

.035 .167 .05
.03 .033 .133

 
 =  
  

A  , which we consider to be the “real” 

target technical coefficients matrix since it is based on more comprehensive information.  

At the beginning of the survey, however, suppose we know only 32(1) .033a =  of the nine 
survey-based coefficients and we use that value along with (0)A , (1)v  and (1)u  to generate an 
intermediate estimate of the entire matrix of coefficients, (1)A



. To so this we first define the 
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matrix of known coefficients for the target table as 
0 0 0
0 0 0
0 .033 0

=
 
 
 
  

K  and the reference table, 

.133 .11 .025
(0) .067 .15 .047

.033 0 .110
=

 
 
 
  

A , where 32(0)a  (the location of the known coefficient) is set to 0. We 

must also revise u(1) and v(1) to reflect removal of the interindustry transaction associated with 
the know information, which we can compute as 

325 0 325
(1) (1) (1) 235 0 235

255 24.75 230.25

     
     = − = − =     
          

u u Kx  and 

265 0 265
ˆ(1) (1) (1) 225 24.75 200.25

325 0 325

     
     = − = − =     
          

v v iKx .  

The “intermediate estimate,” (1)A


, for this case, is then found by adding K to the result 
of applying the RAS procedure using (1), (1), (1), and (1)A u v x , to yield 

.169 .134 .037
(1) .062 .133 .049

.034 .033 .131

 
 =  
  

A


, including the known value for 32(1)a . The MAPE for the RAS 

estimate, (1)A , which excludes the additional information about 32(1)a , compared with the 

known A(1) is 24.05. The MAPE for the modified RAS estimate, (1)A  (including the known 

coefficient), is 19.5, which we record for this case as ( 1)(1) 19.5case =A


. The MAPE value is lower 
so the estimate with the additional information is better.  

For a second case, we assume instead that we know only 33(1) 0.133a = , i.e., instead of 

32(1) 0.033a = . If we apply the same procedure to determine (1)A , we find that the MAPE for the 

modified RAS estimate, (1)A


, including the alternative known coefficient, is ( 2)(1) 24.18case =A


. 
Recall that the MAPE of the estimate without additional information is 24.05, which is lower 
than that of the modified estimate in this case, so the estimate without additional information is 
better in this case. In general, introduction of more accurate exogenous information in applying 
RAS improves the resulting estimates, but it is not always the case as discussed in Section 9.4.6 
of the text. 

Computational Notes 
We retrieve from Problem 9.6 the two technical coefficients matrices, A0 and A1, along with the 
associated values of u1, u2, and x1. We create an RAS estimate AR of A1 by using A0 as the 
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left argument of RAS and the values of u1, v1, and x1 as the rows of the right argument.  
Calculate the mean absolute percentage error comparing A1 with AR. 

     AR←A0 RAS 3 3⍴u1,v1,x1 
     mape1←(÷9)×+/+/100×(|AR-A1)÷A1 
A0 
    0.1333    0.1100    0.0250 
    0.0667    0.1500    0.0450 
    0.0333    0.0200    0.1100 
A1 
    0.2000    0.1000    0.0333 
    0.0350    0.1667    0.0500 
    0.0300    0.0333    0.1333 
u1 
       325       235       255 
v1 
       265       225       325 
x1 
      1000       750      1500 
AR 
    0.1675    0.1393    0.0354 
    0.0612    0.1388    0.0465 
    0.0363    0.0220    0.1348 

mape1 
24.048867 

We temporarily create A0B as a copy of A0 but replace the location of the known coefficient by 
0 and create K as a matrix of zeroes except for the location of the known information (we label 
the two cases of K as K32 and K33). We also net out the know information from u1 and v1 
which we label u1b and v1b. For the two cases compute RAS estimates of A1, labeling them 
ARB32 and ARB33. Then we can calculate the mean absolute percentage error comparing A1 
with ARB32 and ARB33, reporting the comparative results in R. 

 R←2 4⍴0 
 AR←A0 RAS 3 3⍴u1,v1,x1 
 mape1←(÷9)×+/+/100×(|AR-A1)÷A1 
  
 A0B←A0 ⋄ A0B[3;2]←0 
 K←3 3⍴0 ⋄ K[3;2]←0.033 ⋄ K32←K 
 ARB32←ARB←K+A0B RAS 3 3⍴(u1b←u1-K+.×x1),(v1b←v1-+⌿K+.×DIAG x1),x1 
 mape2←(÷9)×+/+/100×(|ARB-A1)÷A1 
 R[1;]←3,2,mape1,mape2 
  
 A0B←A0 ⋄ A0B[3;3]←0 
 K←3 3⍴0 ⋄ K[3;3]←0.133 ⋄ K33←K 
 ARB33←ARB←K+A0B RAS 3 3⍴(u1b←u1-K+.×x1),(v1b←v1-+⌿K+.×DIAG x1),x1 
 mape2←(÷9)×+/+/100×(|ARB-A1)÷A1 
 R[2;]←3,3,mape1,mape2 

K32 
    0.0000    0.0000    0.0000 
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    0.0000    0.0000    0.0000 
    0.0000    0.0330    0.0000 
ARB32 
    0.1692    0.1337    0.0370 
    0.0619    0.1333    0.0488 
    0.0340    0.0330    0.1309 
K33 
    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.1330 
 

ARB33 
    0.1664    0.1390    0.0362 
    0.0605    0.1378    0.0474 
    0.0381    0.0232    0.1330 
R 
3 2 24.048867 19.500293 
3 3 24.048867 24.182855 

Problem 9.8: Degenerate Cases in Application of RAS 
This problem illustrates two degenerate cases that occur in applying RAS.  

Problem 9.8 

Consider the transactions matrix 
100 55 25

(0) 0 75 25
25 10 110

 
 =  
  

Z  and projected vectors of intermediate 

inputs and outputs, 
125

(1) 140
160

 
 =  
  

v  and 
180

(1) 100
145

 
 =  
  

u , respectively. In this case u(1) and v(1) are 

identical to u(0) and v(0), respectively, so an RAS procedure attempting to produce (1)Z  will 
converge immediately and is, of course, unnecessary.  

If we project 1(1) 100v =  instead of 125, By reducing 1(1)v  to substantially below the 
existing value, without any other changes, then (1) (1)′ ′≠i u i v .  Successive RAS adjustments in 
this case fail to converge since both row and column constraints in the RAS procedure cannot be 
satisfied simultaneously. 

Computational Notes 
We first define the base Z0 and the target u1 and v1. 

Z0←3 3⍴100 55 25 0 75 25 25 10 110 
  v1←125 140 160 ⋄ u1←180 100 145 

      Z0 
100 55  25 
  0 75  25 
 25 10 110 
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      u1 
180 100 145 
      v1 
125 140 160 

We attempt to create an RAS estimate of a new matrix of transactions based on Z0, u1, and v1 

Z0 RAST 2 3⍴u1,v1 

**** CONVERGENCE: 0 ITERATIONS **** 
 
 For the second case we modify the first element of the vector v1 to a value of 100, and 
label it v11 and attempt to create an RAS estimate of a new matrix of transactions based on Z0, 
u1, and v11. 

      v11 
100 140 160 
      Z0 RAST 2 3⍴u1,v11 
**** STOPPED: 500000 ITERATIONS **** 

 

Problem 9.9: Measuring Accuracy of RAS-Estimated Total Requirements 
Matrices 
This exercise explores the degree to which the accuracy of RAS estimates of technical 
coefficients relates to that of the total requirements matrices.  

Problem 9.9 Overview 
We use the U.S. input-output tables for 1997 and 2005 (from Problem 9.1, expressed in current 
dollars rather than constant dollars). 

The matrices A(1997), A(2005) and (2005)A  [produced by using RAS with A(1997)], u(2005), 

v(2005) and x(2005), were all computed in Problems 7.1 and 7.5. The MAPE for (2005)A   

compared with A(2005) is 49.03. The MAPE for 1(2005) [ (2005)]−= −L I A  compared with 
L(2005) is 12.33, where the matrices L(2005) and (2005)L  are computed as: 

 

L(2005) 1 2 3 4 5 6 7
1 1.3139 0.0102 0.0247 0.0789 0.0076 0.0103 0.0122
2 0.0462 1.1863 0.0515 0.1331 0.0584 0.0152 0.0296
3 0.0109 0.0034 1.0054 0.0075 0.0074 0.0116 0.0257
4 0.4324 0.1907 0.4421 1.5707 0.1332 0.1404 0.2098
5 0.1773 0.0865 0.1737 0.1969 1.1072 0.0714 0.0950
6 0.2861 0.2701 0.3053 0.3508 0.3136 1.4409 0.3600
7 0.0330 0.0231 0.0300 0.0486 0.0342 0.0329 1.0390
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Computational Notes 
We retrieve from Problem 9.1 the values for A1, A3, L3, u3, v3, and x3.   

u3 
  265510.0  515254.5  152294.5 2911056.4 1329435.7 4780440.1  447314.2 
v3 
  189279.4  162793.1  653783.1 2998475.5 1218705.1 4153589.6 1024679.6 
x3 
  312753.9  396562.7 1302388.3 4485529.1 3355943.710477640.1 2526324.9 
A1 
    0.2611    0.0002    0.0017    0.0397    0.0012    0.0021    0.0000 
    0.0017    0.1146    0.0070    0.0304    0.0226    0.0010    0.0000 
    0.0035    0.0002    0.0011    0.0018    0.0044    0.0068    0.0000 
    0.1745    0.1166    0.2679    0.3600    0.0737    0.0647    0.0020 
    0.0745    0.0682    0.1108    0.0985    0.0836    0.0374    0.0007 
    0.1156    0.2641    0.1617    0.1292    0.2272    0.2363    0.0039 
    0.0004    0.0049    0.0008    0.0091    0.0085    0.0043    0.0000 
A3 
    0.2258    0.0000    0.0015    0.0384    0.0001    0.0017    0.0007 
    0.0027    0.1432    0.0075    0.0675    0.0367    0.0004    0.0070 
    0.0051    0.0002    0.0010    0.0018    0.0037    0.0071    0.0215 
    0.1955    0.0877    0.2591    0.3222    0.0547    0.0566    0.1010 
    0.0819    0.0422    0.1011    0.0994    0.0704    0.0334    0.0487 
    0.0843    0.1276    0.1225    0.1172    0.1760    0.2783    0.2026 
    0.0099    0.0095    0.0093    0.0219    0.0215    0.0188    0.0240 
L3 
    1.3139    0.0102    0.0247    0.0789    0.0076    0.0103    0.0122 
    0.0462    1.1863    0.0515    0.1331    0.0584    0.0152    0.0296 
    0.0109    0.0034    1.0054    0.0075    0.0074    0.0116    0.0257 
    0.4324    0.1907    0.4421    1.5707    0.1332    0.1404    0.2098 
    0.1773    0.0865    0.1737    0.1969    1.1072    0.0714    0.0950 
    0.2861    0.2701    0.3053    0.3508    0.3136    1.4409    0.3600 
    0.0330    0.0231    0.0300    0.0486    0.0342    0.0329    1.0390 

We compute an RAS estimate of A3, labeled AR, using the RAS function with A1 as the base 
matrix of technical coefficients (left argument) and a matrix with u3, v3, and x3 as its rows as 
the right argument and compute the associated Leontief inverse LR. 

AR 
     0.245     0.000     0.002     0.036     0.001     0.002     0.001 
     0.004     0.142     0.014     0.062     0.037     0.002     0.005 
     0.005     0.000     0.002     0.003     0.005     0.011     0.002 

L̃(2005) 1 2 3 4 5 6 7
1 1.3426 0.0081 0.0218 0.0746 0.0084 0.0114 0.0126
2 0.0407 1.1812 0.0534 0.1223 0.0585 0.0188 0.0266
3 0.0124 0.0044 1.0073 0.0094 0.0095 0.0164 0.0078
4 0.3670 0.1485 0.3931 1.5503 0.1297 0.1533 0.2197
5 0.1607 0.0795 0.1686 0.1853 1.1006 0.0807 0.0876
6 0.3324 0.3030 0.3381 0.3682 0.3148 1.4147 0.3999
7 0.0254 0.0261 0.0278 0.0665 0.0398 0.0339 1.0187
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     0.159     0.062     0.227     0.315     0.052     0.064     0.113 
     0.074     0.039     0.102     0.093     0.064     0.040     0.042 
     0.117     0.156     0.153     0.126     0.178     0.259     0.242 
     0.001     0.011     0.003     0.034     0.026     0.019     0.001 
LAR 
     1.343     0.008     0.022     0.075     0.008     0.011     0.013 
     0.041     1.181     0.053     0.122     0.058     0.019     0.027 
     0.012     0.004     1.007     0.009     0.009     0.016     0.008 
     0.367     0.149     0.393     1.550     0.130     0.153     0.220 
     0.161     0.080     0.169     0.185     1.101     0.081     0.088 
     0.332     0.303     0.338     0.368     0.315     1.415     0.400 
     0.025     0.026     0.028     0.066     0.040     0.034     1.019 

 

Finally, we compute the mean absolute percentage error of A3 compared with AR, labeled 
mape1   and the same measure of L3 compared with LAR, labeled mape2. 

     mape1←(÷49)×+/+/100×(|A3-AR)÷A3 
     mape2←(÷49)×+/+/100×(|L3-LAR)÷L3 

     mape1, mape2 
49.027628 12.327383
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Chapter 10, Nonsurvey and Partial-Survey Methods: Extensions 
Chapter 10 surveys a range of partial survey and nonsurvey estimation approaches for creating 
input–output tables at the regional level. Variants of the commonly used class of estimating 
procedures using location quotients are reviewed; these presume a regional estimate of input–
output data can be derived using some information about a target region. Cross-hauling is 
discussed and approaches to address it are presented.  

The RAS technique developed in Chapter 9 is applied using a base national table or a 
table for another region and some available data for the target region.  Techniques for partial 
survey estimation of commodity flows between regions are also presented along with discussions 
of several real-world multinational applications, including the China–Japan Transnational 
Interregional Model and Leontief’s World Model. The exercise problems for this chapter explore 
application of nonsurvey techniques for generating regional input-output models. 

Problem 10.1: RAS Estimation of IO Tables for Regions with Similar 
Economies 
The exercise explores the use of the RAS technique to develop and use input-output tables for 
target economies with similar basic structural characteristics.  

Problem 10.1 Overview 
Consider three different nations. The first, the economy of the Land of Lilliput, is described by 
the following input-output table: 

 
The Land of Brobdingnag is described by another input-output table: 

 
And finally, the economy of the distant land of the Houyhnhnms is described by yet another 
input-output table: 

 
 

A B
A 1 6 20
B 4 2 15

Interindustry 
Transactions Total 

Outputs

A B
A 7 4 35
B 1 5 15

Interindustry 
Transactions Total 

Outputs

A B
A 20 30.67 100
B 2.86 38.3 115

Interindustry 
Transactions Total 

Outputs
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First, we compute the vectors of value-added, intermediate inputs, final-demand, and 
intermediate outputs for each economy, shown in the following table: 

 Lilliput (L) Brobdingnag (B) Houyhnhnm (H) 
Value Added  [15   7] [27   6] [77.14   46.03] 
Intermediate Inputs ( ′=v i Z )  [5   8] [8   9] [22.86   68.97] 

Final Demands  
13
9

 
 
 

 
24
9

 
 
 

 
49.33
73.84
 
 
 

 

Intermediate Outputs ( =u Zi ) 
7
6
 
 
 

 
11
6

 
 
 

 
50.67
41.16
 
 
 

 

A Lilliputian economist is interested in examining the structure of the Brobdingnagian 
economy. Likewise, a Brobdingnagian economist is interested in examining the structure of the 
Lilliputian economy. However, each economist only has available to him the value-added, final-
demand, and total-output vectors for the foreign economy. Each economist knows the RAS 
modification procedure and uses it with the technical coefficients matrix of her own economy 
serving as the base A matrix. To determine which of the two economists calculates a better 
estimate of the foreign economy's technical coefficients matrix in terms of mean absolute 
deviation (all elements of A), first we compute the true technical coefficients matrices for each 

economy:
.050 .400
.200 .133

L  
=  
 

A  and 
.200 .267
.029 .333

B  
=  
 

A . We denote the L estimate of the BA

matrix as 
.088 .529

;
.141 .071

L B  
=  
 

A  we use the metric of mean absolute deviation (MAD) to measure 

the relative accuracy of between LAB
 as an estimate of BA , which is 0.187.  The B estimate of 

LA  is 
.207 .190

,
.043 .343

B L  
=  
 

A  with a MAD comparing of B LA as an estimate of LA found as 

0.183. Therefore, the Brobdingnagian economist does slightly better. 

 Suppose now that an economist in the distant land of the Houyhnhnms learned of the two 
other economies from a world traveler. She becomes interested in the economic structures of 
these foreign lands but is only able to obtain the final-demand, value-added, and total-output 
vectors for each economy from the world traveler. The economist uses RAS with her own 
country’s A matrix as a base to estimate the interindustry structure of the two distant lands. The 

two Houyhnhnm estimates are 
.207 .190
.043 .343

H L  
=  
 

A and 
.200 .267
.029 .333

H B  
=  
 

A , respectively (note 

that  
.200 .267
.029 .333

H B H B  
= = =  

 
A A A ).  The error, as measured by MAD, is 0.183 in the first case 

and, of course, zero in the second case since H B=A A , i.e., the Houyhnhnm and Brobdingnagian 
economies are identical. 
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 Suppose now that the Land of Lilliput plans to build a new power plant which will 
require the following value of output (in millions of dollars) from each of the economy’s 
industries (directly, so it can be thought of as a final demand presented to the Lilliputian 

economy) of [ ]100 150 ′=f . To measure the accuracy of the Houyhnhnms’ estimate of the total 
industrial activity (output) in the Lilliputian economy required to construct this power plant, 
measured as an average mean absolute deviation, we first compute the true impact as 

197.3
218.6

L L  
∆ = ∆ =  

 
x L f  for 

100
150
 

∆ =  
 

f  and 1 1.166 .538
( )

.269 1.278
L L −  
= − =  

 
L I A . Using the same 

final demand vector with 1 1.281 .371
( )

.083 1.546
H L −  

− =  
 

I A  yields 
183.8

[ ]
240.3

H L  
∆ =  

 
x . The mean 

absolute deviation between these two vectors is 17.6. 

Computational Notes 
We create the transactions matrix for the three Lilliputian, Houyhnhnm, and Brobdingnagian 
economies, Z1, Z2, and Z3, respectively, as well as the associated vectors of final demands, f1, 
f2, and f3; value-added, w1, w2, and w3; and total outputs, x1, x2, and x3. Then compute the 
corresponding matrices of technical coefficients, A1, A2, and A3. 

Z1←2 2⍴1 6 4 2 ⋄ Z2←2 2⍴7 4 1 5 ⋄ Z3←2 2⍴20 30.67 2.86 38.3 
x1←20 15 ⋄ x2←35 15 ⋄ x3←100 115 
f1←x1-u1←+/Z1 ⋄ f2←x2-u2←+/Z2 ⋄ f3←x3-u3←+/Z3 
w1←x1-v1←+⌿Z1 ⋄ w2←x2-v2←+⌿Z2 ⋄ w3←x3-v3←+⌿Z3 
A1←Z1 AMAT x1 ⋄ A2←Z2 AMAT x2 ⋄ A3←Z3 AMAT x3 

A1,A2,A3 
     0.050     0.400     0.200     0.267     0.200     0.267 
     0.200     0.133     0.029     0.333     0.029     0.333 

Now compute the RAS estimate of A2, named ARR2, using the function RAS with A1 as 
the left argument and as the right argument a matrix with u2, v2, and x2 as the rows of the 
matrix. Also compute the RAS estimate of A1, named ARR1, using the function RAS with A2 as 
the left argument and as the right argument a matrix with u1, v1, and x1 as the rows of the 
matrix. In each case, compute the mean absolute deviation of ARR2 compared with A2 (MAD2) 
and the mean absolution deviation of ARR1 compared with A1 (MAD1). 

ARR2←A1 fras 3 2⍴u2,v2,x2 ⋄ MAD1←(÷n×n)×+/+/|ARR2-A2 
ARR1←A2 fras 3 2⍴u1,v1,x1 ⋄ MAD2←(÷n×n)×+/+/|ARR1-A1 

      ARR2 
     0.088     0.529 
     0.141     0.071 
      MAD1 
0.18349075 
  
      ARR1 
     0.207     0.190 
     0.043     0.343 
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      MAD1 
0.1873887 

 Next, compute the RAS estimates of A1, named ARS1, using the function RAS with A3 
as the left argument and as the right argument a matrix with u1, v1, and x1 as the rows of the 
matrix, and the RAS estimate of A2, named ARS2, using the function RAS with A3 as the left 
argument and as the right argument a matrix with u2, v2, and x2 as the rows of the matrix. Also, 
compute the mean absolute deviation of A1 compared with ARS1 and A2 compared with ARS2. 

     ARS1←A3 fras 3 2⍴u1,v1,x1 ⋄ MADH1←(÷n×n)×+/+/|ARS1-A1 
     ARS2←A3 fras 3 2⍴u2,v2,x2 ⋄ MADH2←(÷n×n)×+/+/|ARS2-A2 
     ARS1 
     0.207     0.190 
     0.043     0.343 
     MADH1 
0.18343186 
     ARS2 
     0.200     0.267 
     0.029     0.333 
     MADH2 
0.000048197817 

 Finally, define the new vector of final demands ∆f and the Leontief inverses of A1 and 
of ARS1, labeled L1 and LRS1, respectively and compute the vector of total outputs, 
respectively, for each, xreal and xest, for the new vector of final demands. Then compute the 
mean absolute deviation of xreal compared with xest, labelled MADPP. 

     ∆f 
100 150 
     L1,                 LRS1 
     1.166     0.538     1.281     0.371 
     0.269     1.278     0.083     1.546 
     xest 
     183.8     240.3 
     xreal 
     197.3     218.6 
     MADPP 
17.555423 

Problem 10.2: Expanded Case of Regional Estimation 
This exercise expands the economies given in Problem 10.1 to three economic sectors.  

Problem 10.2 Overview 
The Land of Lilliput is described by the following input-output table: 

 Interindustry Transactions Total Outputs  A B C 
A 1 6 6 20 
B 4 2 1 15 
C 4 1 1 12 
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The economy of the neighboring land of Brobdingnag is described by another input-output table: 

 Interindustry Transactions Total Outputs  A B C 
A 7 4 8 35 
B 1 5 1 15 
C 6 2 7 30 

The economy of the distant land of Houyhnhnms is described by yet another input-output table: 

 Interindustry Transactions Total Outputs  A B C 
A 5.5 33 33 110 
B 22 11 5.5 82.5 
C 22 5.5 5.5 66 

First, we find 
.050 .400 .500
.200 .133 .083
.200 .067 .083

L

 
 =  
  

A  and 
.200 .267 .267
.029 .333 .033
.171 .133 .233

B

 
 =  
  

A . The RAS estimates are 

.264 .199 .395

.052 .343 .068

.134 .059 .204

B L

 
 =  
  

A  and 
.033 .460 .365
.106 .123 .049
.261 .151 .120

L B

 
 =  
  

A . The table of value added, 

intermediate inputs, final demands, and intermediate outputs of the economies are given in the 
following table: 

 Lilliput 
(L) 

Brobdingnag (B) Houyhnhnm (H) 

Value Added ( ′v ) [11   6   4] [21   4   14] [60.5   33.0   22.0] 
Intermediate Inputs ( ′i Z ) [9   9   8] [14   11   16] [49.5   49.5   44.0] 

Final Demands (f) 
7
8
6

 
 
 
  

 
16
8

15

 
 
 
  

 
38.5
44.0
33.0

 
 
 
  

 

Intermediate Outputs (u) 
13
7
6

 
 
 
  

 
19
7

15

 
 
 
  

 
71.5
38.5
33.0

 
 
 
  

 

The mean absolute deviation (MAD) for the L estimate of B is 0.109, while the MAD for 
the B estimate of L is 0.121. The Houyhnhnm estimates of L and B, respectively are 

.050 .400 .500

.200 .133 .083

.200 .067 .083

H L

 
 =  
  

A and 
.033 .460 .365
.106 .123 .049
.261 .151 .120

H B

 
 =  
  

A . Note that in this case that H L=A A , 

i.e., it is the Houyhnhnm and Lilliputian economies that are identical, so the error of the 
Houyhnhnm estimate of the Lilliputian economy, H LA , compared with the true Lilliputian 
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economy, LA  , as measured by the MAD, is 0.0.  The MAD for the Houyhnhnm estimate of the 
Brobdingnagian economy, H BA , compared with the true Brobdingnagian economy, BA , is 
0.109. 

Computational Notes 
We can use exactly the same APL expressions developed in Problem 10.1 for this problem. 

     Z1←3 3⍴1 6 6 4 2 1 4 1 1  
     Z2←3 3⍴7 4 8 1 5 1 6 2 7 
     Z3←5.5×Z1 
     x1←20 15 12 ⋄ x2←35 15 30 ⋄ x3←5.5×x1 

Now we use the same APL expressions developed in Problem 10.1 with the following results: 

A1 
     0.050     0.400     0.500 
     0.200     0.133     0.083 
     0.200     0.067     0.083 
A2 
     0.200     0.267     0.267 
     0.029     0.333     0.033 
     0.171     0.133     0.233 
A3 
     0.050     0.400     0.500 
     0.200     0.133     0.083 
     0.200     0.067     0.083 
A2R1 
     0.033     0.460     0.365 
     0.106     0.122     0.049 
     0.261     0.151     0.120 
MAD1 
0.10915303 
A1R2 
     0.264     0.199     0.395 
     0.052     0.343     0.068 
     0.134     0.059     0.204 
MAD2 
0.12092175 
ARS1 
     0.050     0.400     0.500 
     0.200     0.133     0.083 
     0.200     0.067     0.083 
MADH1 
0 
ARS2 
     0.033     0.460     0.365 
     0.106     0.122     0.049 
     0.261     0.151     0.120 
MADH2 
0.10915303 
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Problem 10.3: Assessing Costs of Regional Estimation 
This exercise illustrates the considerations of analysis costs in estimation and impact analysis. 

Problem 10.3 Overview 
Consider the following input-output transactions and total outputs table for Region 1: 

A B Total 
Output

A 1 2 10
B 3 4 10  

We are interested in determining the impact of a particular final demand in another region 
(Region 2). Suppose we have the following data concerning Region 2. 

Value 
Added

Final 
Demand

Total 
Outputs

A 10 11 15
 B 13 12 20  

The cost of computing an RAS estimate of Region 2’s input-output table using Region 1’s A 
matrix as a base table is given by nc1, where n is the number of RAS iterations, where for 
purposes here one iteration is defined by one row and one column adjustment, that is,

1ˆ ˆk k −=A rA s  (a row adjustment alone as the last iteration would also be counted as an iteration). 

We ultimately wish to compute the impact of a new final demand in Region 2. This 
impact (the total outputs required to support the new final demand) can be computed exactly or 
by using the round-by-round approximation of the inverse. We know that: (1) The cost of 
computing the inverse exactly on a computer is c1 and the cost of using this inverse in impact 
analysis is 2c  (let us assume that 2 110c c= , i.e., the cost of computing the inverse is ten times the 
cost of using it in impact analysis). (2) The cost of a round-by-round approximation of impact 
analysis is mc1, where m is the order of the round-by-round approximation, that is, 

2 m+ + + +f Af A f A f . 

If we assume that a fourth-order round-by-round approximation is sufficiently accurate 
(m = 4), to determine whether the first or second method of impact analysis would minimize 
cost, we observe that the cost of using the first method, i.e., computing the exact inverse, is c1 + 
c2; with c2 = 10c1, and the total cost is 11c1. With m = 4, the cost of using the second method, 
i.e., round-by-round approximation in impact analysis, 4c1, so it is the least cost method in this 
case. 

 To determine the total cost of performing impact analysis, including the cost of the RAS 
approximation (tolerance of 0.01) and of the impact analysis scheme, we first note that, since the 
RAS procedure converges to within a tolerance of 0.01 in 2 iterations, the cost of the RAS 
estimate of region 2’s coefficients matrix is 5c1. Then utilizing the result in a round-by-round 
application, with m = 4, gives a total cost of 6c1. 
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 Finally, if we presume the budget for the entire impact-analysis calculation is 7c1, the 
level of tolerance that is affordable, among the options of 0.01, 0.001, 0.0001, 0.00001, or 
0.000001, is found by in the following table of cost calculations: 

                                                                                  Impact    
                        Number of           Analysis 
    RAS Tolerance Iterations RAS Cost Cost    Total Cost 

 .01       3        3c1    4c1           7c1 

  .001       4        4c1     4c1           8c1 
.0001       5        5c1               4c1           9c1 
.00001           6        6c1      4c1               10c1 
.000001      7        7c1    4c1           11c1 

Therefore, the maximum affordable tolerance is .01. 

Computational Notes 
We define, for the base region, the matrix of transactions Z0 and vector of total outputs x0. For 
the target region we define the vectors of total outputs x1, value-added inputs w1, and final 
demands f1. From this we can compute values necessary to use the function RAS, which, along 
with x1, including the matrix of technical coefficients A0 and the vectors of intermediate outputs 
u1, and intermediate inputs v1.  

     Z0←2 2⍴1 2 3 4 ⋄ x0←10 10 
     x1←15 20 ⋄ w1←10 13 ⋄ f1←11 12 
     u1←x1-f1 ⋄ v1←x1-w1 

Z0 
     1     2 
     3     4 
x0 
    10    10 
A0 
 0.100 0.200 
 0.300 0.400 
x1 
    15    20 
w1 
    10    13 
f1 
    11    12 
u1 
     4     8 
v1 
     5     7 

 For solving this problem, it is helpful to modify the function RAS to show the number of 
iterations needed to reach convergence, which we name RASI. Note also we also remove the 
variable tol from the list of local variables so that it can be set externally as a global variable. 
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[ 0]  A←A0 RASI UVX;lim;n;nn;k;XD;u1;v1;x;r;s                         
[ 1] ⍝Basic function for RAS biproportional scaling                   
[ 2] ⍝that records the number of iterations                           
[ 3] ⍝to converge to tol (set globally)                               
[ 4] ⍝INPUT: A0 and rows of UVX are u1 v1 x                           
[ 5]  nn←2⍴n←1↑⍴A0 ⋄ lim←100                                          
[ 6]  A←A0 ⋄ u1←UVX[1;] ⋄ v1←UVX[2;] ⋄ x←UVX[3;] ⋄ XD←(nn⍴x)×nn⍴1,n⍴0 
[ 7]  u←A+.×x ⋄ v←+⌿A+.×XD ⋄ k←0                                      
[ 8]  →(((⌈/|(v-v1))≤tol)∧((⌈/|(u-u1))≤tol))/CON                      
[ 9] ⍝----ROW ADJUSTMENT                                              
[10] LOOP:A←A×⍉nn⍴r←u1÷u                                              
[11]  u←A+.×x ⋄ v←+⌿A+.×XD ⋄ k←k+1                                    
[12]  →(((⌈/|(v-v1))≤tol)∧((⌈/|(u-u1))≤tol))/CON                      
[13] ⍝----COL ADJUSTMENT                                              
[14]  A←A×nn⍴s←v1÷v                                                   
[15]  u←A+.×x ⋄ v←+⌿A+.×XD ⋄ k←k+1                                    
[16]  →(((⌈/|(v-v1))≤tol)∧((⌈/|(u-u1))≤tol))/CON                      
[17]  →(lim>k)/LOOP                                                   
[18]  →0,0⍴⎕←'**** STOPPED: ',(⍕k),' ITERATIONS ****'                 
[19] CON:→0,0⍴⎕←'**** CONVERGENCE IN ',(⍕k),' ITERATIONS ****'      

Using RASI, with A0 as the left argument and, as the right argument, a matrix with u1, v1, and 
x1 as its rows, we can evaluate the iterations necessary to achieve the candidate levels of 
convergence tolerance. 

⎕←'tol= ',⍕tol←0.01 
A←A0 RASI 3 2⍴u1,v1,x1 
⎕←'tol= ',⍕tol←0.001 
A←A0 RASI 3 2⍴u1,v1,x1 
⎕←'tol= ',⍕tol←0.0001 
A←A0 RASI 3 2⍴u1,v1,x1 
⎕←'tol= ',⍕tol←0.00001 
A←A0 RASI 3 2⍴u1,v1,x1 
⎕←'tol= ',⍕tol←0.000001 
A←A0 RASI 3 2⍴u1,v1,x1 

We could, of course, more efficiently consolidate this sequence of calculations into an APL 
function RASI2. 
[0]  A0 RASI2 UV;k;tol;A        
[1]  k←1                        
[2] L1:⎕←'tol= ',⍕tol←0.1×10*-k 
[3]  A←A0 RASI UV               
[4]  →(5≥k←k+1)/L1    

     A0 RASI2 3 2⍴u1,v1,x1 
tol= 0.01 
**** CONVERGENCE IN 3 ITERATIONS **** 
tol= 0.001 
**** CONVERGENCE IN 4 ITERATIONS **** 
tol= 0.0001 
**** CONVERGENCE IN 5 ITERATIONS **** 
tol= 0.00001 
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**** CONVERGENCE IN 6 ITERATIONS **** 
tol= 0.000001 
**** CONVERGENCE IN 7 ITERATIONS **** 

           

Problem 10.4: Location Quotients  
This exercise explores the behavior of the adjustment term that converts location-quotient Flagg 
Location quotient approach (FLQ) to an “augmented” FLQ, designated AFLQ, which adjusts for 
a measure of regional size.  
 
Problem 10.4 Overview 
First, recall that the FLQ is defined as an adjustment to the cross-industry quotient, CIQ, defined 
by ( )r r

ij ijFLQ CIQλ=  where { }2log [1 ( )] , 0 1r nx x
δ

λ δ= + ≤ < , and the modified technical 

coefficients are defined by 
( ) if 1

if 1

r n r
ij ij ijrr

ij n r
ij ij

FLQ a FLQ
a

a FLQ
 < =  ≥  

.  The AFLQ is defined by 

2log (1 ) if 1

if 1

r r r
j ij jr

ij r r
ij j

LQ FLQ LQ
AFLQ

FLQ LQ

  + >  =  
≤  

 and the modified technical coefficients by 

( ) if 1
( ) if 1

r n r
ij ij jrr

ij r n r
ij ij j

AFLQ a LQ
a

FLQ a LQ
 > =  ≤  

. The adjustment term for AFLQ,

22 {log [1 ( / )]}log (1 ) r nr
j x xLQ δλ = ++ = , varies with the degree of specialization in a region, i.e., 

when 1r
jLQ > , then 2log (1 ) 1r

jLQ + >  , as discussed in Section 10.2.5.  

The following table shows 22 {log [1 ( / )]}log (1 ) r nr
j x xLQ δλ = ++ =  for values of /r nx x =

.01, .1, .25, .5, .75 and 1 cross tabulated with values of δ =  0, .1, .3, .5 and 1.  
 

/r nx x   0.01 0.1 0.25 0.5 0.75 1.0 

2log [1 ( / )]r nx x+   0.0144 0.1375 0.3219 0.5850 0.8074 1 
0

2{log [1 ( / )]}r nx x+   1 1 1 1 1 1 
0.1

2{log [1 ( / )]}r nx x+   0.6542 0.8200 0.8928 0.9478 0.9788 1 
0.3

2{log [1 ( / )]}r nx x+   0.2800 0.5514 0.7118 0.8514 0.9378 1 
0.5

2{log [1 ( / )]}r nx x+   0.1198 0.3708 0.5647 0.7648 0.8985 1 
1

2{log [1 ( / )]}r nx x+   0.0144 0.1375 0.32 0.5850 0.8074 1 

Computational Notes 

First define the values of /r nx x to be evaluated, which in the APL workspace we assign to the 
variable xx, and the values of δ , which in the APL workspace we assign to the variable q. 
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 To solve this problem, we introduce two new primitive functions. The first is the dyadic 
function logarithm, indicated by the character ⍟, which takes as its left argument the logarithm 
base and as its right argument the array for which the logarithm is to be calculated. For example, 

      10⍟1000 10000 
3 4 
      2⍟100 
6.6438562 

As an aside, the monadic form of the primitive function logarithm gives the natural or Naperian 
logarithm of the right argument, as in 

      ⍟1 
0 
      ⍟10 
2.3025851 

 The second new primitive function to introduce is exponential, indicated by the character 
*, which provides as its explicit result the left argument taken to the exponential power indicated 
by the right argument, as in 

      10*1 
10 
      10*⍳3 
10 100 1000 
      2*.5 
1.4142136 

 For this problem we use these new primitive functions to apply the formula 

22 {log [1 ( / )]}log (1 ) r nr
j x xLQ δλ = ++ =  for values of /r nx x = .01, .1, .25, .5, .75 and 1 cross 

tabulated with values of δ =  0, .1, .3, .5 and 1, using the variables xx and q and assign the 
results to the variable TAB. 

     TAB←(6 6⍴2⍟1+xx)*⍉6 6⍴q 

     xx 
0.01 0.1 0.25 0.5 0.75 1 
     q 
1 0 0.1 0.3 0.5 1 
  
     TAB 
0.014355293 0.13750352 0.32192809 0.5849625  0.80735492 1 
1           1          1          1          1          1 
0.65418594  0.8200331  0.89284462 0.94779148 0.97882815 1 
0.27996492  0.55143477 0.71175031 0.85140934 0.9378197  1 
0.11981358  0.37081468 0.56738708 0.76482841 0.89852931 1 
0.014355293 0.13750352 0.32192809 0.5849625  0.80735492 1 
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Problem 10.5: Simple Location Quotients for Estimating Regional Technical 
Coefficients 
This exercise illustrates the use of simple location quotients (SLQ) to estimate the matrix of 
regional technical coefficients.  

Problem 10.5 Overview 
First, we define the matrix of technical coefficients for a national economy, NA , and the vector 
of total outputs, Nx ,  as  

.1830 .0668 .0087 518, 288.6

.1377 .3070 .0707 4,953,700.6

.2084 .2409 .2999 14, 260,843.0

N N= =
   
   
   
      

A x   

as well as the corresponding values for a target region, RA and Rx , as  

.1092 .0324 .0036 8, 262.7

.0899 .0849 .0412   95, 450.8

.1603 .1170 .2349 170,690.3

R R= =
   
   
   
      

A x . 

We calculate the simple location quotients by 
r r

r i
i n n

i

x xLQ
x x

 
=  
 

, but set equal to 1 when 

the calculation of r
iLQ  exceeds 1. In this case, the matrix of simple location quotients is 

1 1 1
1 1 1

.8607 .8607 .8607

 
 =  
  

SLQ . The corresponding estimate of the matrix of regional technical 

coefficients, found by element-by-element multiplication of NA  by SLQ, is 

( )

.1830    .0668    .0087

.1377    .3070    .0707

.1794    .2074    .2581

SLQ

 
 =  
  

A . 

Computational Notes 
First retrieve the national and regional matrices of transactions as ZN and XR, respectively, along 
with the corresponding vectors of total outputs, xn and xr. The we compute the corresponding 
matrices of technical coefficients, AN and AR. 

 ZN←94865.585 331072.05 124609.41 71381.324 1520546.4 
 ZN←3 3⍴ZN,1007903.7 108033.19 1193494.3 4276881.1 
 xn←518288.6 4953700.6 14260843 
 ZR←902.1 3093.8 619.4 743.2 8107.2 
 ZR←3 3⍴ZR,7027.3 1324.2 11167.8 40092.2 
 xr←8262.7 95450.8 170690.3 
 AN←ZN AMAT xn ⋄ AR←ZR AMAT xr 
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AN 
    0.1830    0.0668    0.0087 
    0.1377    0.3070    0.0707 
    0.2084    0.2409    0.2999 
xn 
    518289   4953701  14260843 
AR 
    0.1092    0.0324    0.0036 
    0.0899    0.0849    0.0412 
    0.1603    0.1170    0.2349 
xr 
      8263     95451    170690 

We compute the simple location quotients SLQ and the estimate of the regional technical 
coefficients using SLQ as ASLQ. 

     SLQ←⍉3 3⍴(xr÷+/xr)÷(xn÷+/xn) 
     SLQ←(SLQ≥1)+SLQ×SLQ<1 
     ASLQ←(SLQ×A×SLQ<1)+A×SLQ≥1 

SLQ 
    1.0000    1.0000    1.0000 
    1.0000    1.0000    1.0000 
    0.8607    0.8607    0.8607 
  
ASLQ 
    0.1830    0.0668    0.0087 
    0.1377    0.3070    0.0707 
    0.1794    0.2074    0.2581 

Problem 10.6: Cross Industry Quotients 
This exercise illustrates the calculation of Cross-Industry Quotients (CIQ) using the national and 
regional data. 

Problem 10.6 Overview 
 Consider the data specified in Problem 10.5. We calculate the cross-industry quotients by 

r n
r i i
ij r n

j j

x xCIQ
x x

 
=   
 

, but again set equal to 1 when the calculation of r
ijCIQ exceeds 1, or, in matrix 

terms, the matrix of cross industry quotients in this case is 
1 .8274 1
1 1 1

.7508 .6212 1

 
 =  
  

CIQ . 

The corresponding estimate of the matrix of regional technical coefficients using SLQ, 

found by element-by-element multiplication of NA by CIQ is ( )

.1830    .0553    .0087

.1377    .3070    .0707

.1565    .1497    .2999

CIQ

 
 =  
  

A . 
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Computational Notes 
We use the same data introduced in Problem 10.5 for AN, AR, xn, and xr, but to calculate the 
cross-industry quotients we introduce a new APL primitive function known as outer product.  
This dyadic function takes as its arguments arbitrary numeric vectors and applies a specified 
dyadic primitive function element-by-element for all elements of the left and right arguments. 
For example, to generate a multiplication table, we can write 

      1 2 3∘.×1 2 3 
1 2 3 
2 4 6 
3 6 9 

Note that the two characters preceding the multiplication sign are ∘.which denote the outer 
product. The multiplication character can be replaced by many if not most primitive dyadic 
functions, as in 

      1 2 3∘.+1 2 3 
2 3 4 
3 4 5 
4 5 6 
      1 2 3∘.=1 2 3 
1 0 0 
0 1 0 
0 0 1 

 We use the outer product function to easily calculate the matrix of cross industry 
quotients CIQ and apply it to create the associated estimate of the matrix of regional technical 
coefficients using CIQ, which we name ACIQ. 

     xrn←(xr÷xn)∘.÷(xr÷xn) 
     CIQ←(xrn≥1)+xrn×xrn<1 
     ACIQ←AN×CIQ 

CIQ 
    1.0000    0.8274    1.0000 
    1.0000    1.0000    1.0000 
    0.7508    0.6212    1.0000 
  
ACIQ 
    0.1830    0.0553    0.0087 
    0.1377    0.3070    0.0707 
    0.1565    0.1497    0.2999 

Problem 10.7: Regional Estimation using RAS 
The exercise uses the RAS technique to generate a regional estimate using the national and 
regional data. 

Problem 10.7 Overview 
Consider the economies specified in Problem 10.5 (and used in Problem 10.6). The intermediate 
outputs vector for the regional economy is given by 
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[ ]( ) ( ) ( ) 4,615.3   15,877.7   52,584.2 andR R R ′= =u A x  the vector of intermediate inputs is given 

[ ]( ) ( ) ( )ˆ( ) 2,969.5   22,368.8   47,738.9R R R ′′ ′= =v i A x .  

Applying the RAS technique using NA , ( )Ru , ( )Rv , and ( )Rx , resulting estimate of the 

matrix of regional technical coefficients is ( )

.1241    .0270    .0059

.0712    .0945    .0367

.1640    .1129    .2370

RAS

 
 =  
  

A  . 

Computational Notes 
We again use the data introduced in Problem 10.5, this time for AN, ZR, AR, and xr. Using ZR 
we compute the vectors of regional intermediate outputs and inputs, ur and vr, respectively. 
Then we compute the RAS estimate of AR, which we call ARAS, by using the function RAS 
with AN as the left argument and, as the right argument, a matrix with ur, vr, and xr as its 
rows. 

     ur←+/ZR ⋄ vr←+⌿ZR 
     ARAS←AN RAS 3 3⍴ur,vr,xr 

AN 
     0.183     0.067     0.009 
     0.138     0.307     0.071 
     0.208     0.241     0.300 
AR 
     0.109     0.032     0.004 
     0.090     0.085     0.041 
     0.160     0.117     0.235 
ZR 
       902      3094       619 
       743      8107      7027 
      1324     11168     40092 
xr 
      8263     95451    170690 
  
ur 
    4615.3   15877.7   52584.2 
vr 
    2969.5   22368.8   47738.9 
  
ARAS 
     0.124     0.027     0.006 
     0.071     0.095     0.037 
     0.164     0.113     0.237 

Problem 10.8: Comparing Nonsurvey Estimation Techniques 
This exercise compares the estimates of regional technical coefficients from a matrix of national 
technical coefficients generated by simple location quotients (SLQ), cross industry quotients 
(CIQ), and RAS. 
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Problem 10.8 Overview 
Consider the estimate generate in Problems 10.5, 10.6 and 10.7. In terms of mean absolute 
deviation from the actual regional technical coefficients, the mean absolute deviation (MAD) 

calculations for the three methods are:  
7 7

( ) ( ) ( )

1 1

1( ) .0606
49

SLQ SLQ R
ij ij

i j
MAD a a

= =

= − =∑∑ ; 

7 7
( ) ( ) ( )

1 1

1( ) .0558
49

CIQ CIQ R
ij ij

i j
MAD a a

= =

= − =∑∑ ; and 
7 7

( ) ( ) ( )

1 1

1( ) .0073
49

RAS RAS R
ij ij

i j
MAD a a

= =

= − =∑∑ . 

The RAS technique produces the most accurate estimate in these examples since it shows the 
lowest value for MAD from the actual regional table. 

Computational Notes 
Once again using the data introduced in Problem 10.5 and used in Problems 10.6 and 10.7, 
retrieving AN, xn, AR, xr, ur, and vr.  To facilitate calculations for this problem we create a 
simple dyadic user-defined function MAD to calculate the median absolute deviation comparing 
arrays named as the arguments. 

[  0]  R←A1 MAD A2             
[  1] ⍝Mean absolute deviation 
[  2]  R←(+/+/|A1-A2)÷×/⍴A1    

Using MAD, we can compare the median absolute deviation for AR compared with the nonsurvey 
estimates ASLQ, ACIQ, and ARAS, saving them as variables MADSLQ, MADCIQ, and MADRAS, 
respectively. 

      SLQ←⍉3 3⍴(xr÷+/xr)÷(xn÷+/xn) 
      SLQ←(SLQ≥1)+SLQ×SLQ<1 ⋄ ASLQ←A×SLQ   
      A←AN ⋄ xrn←(xr÷xn)∘.÷(xr÷xn) 
      CIQ←(xrn≥1)+xrn×xrn<1 ⋄ ACIQ←A×CIQ 
      ARAS←AN RAS 3 3⍴ur,vr,xr 
      MADSLQ←AR MAD ASLQ ⋄ MADCIQ←AR MAD ACIQ ⋄ MADRAS←AR MAD ARAS 

AN 
     0.183     0.067     0.009 
     0.138     0.307     0.071 
     0.208     0.241     0.300 
xn 
  518288.6 4953700.614260843.0 
AR 
     0.109     0.032     0.004 
     0.090     0.085     0.041 
     0.160     0.117     0.235 
xr 
    8262.7   95450.8  170690.3 
ur 
    4615.3   15877.7   52584.2 
vr 
    2969.5   22368.8   47738.9 
SLQ,ASLQ 
     1.000     1.000     1.000     0.183     0.067     0.009 
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     1.000     1.000     1.000     0.138     0.307     0.071 
     0.861     0.861     0.861     0.179     0.207     0.258 
CIQ,ACIQ 
     1.000     0.827     1.000     0.183     0.055     0.009 
     1.000     1.000     1.000     0.138     0.307     0.071 
     0.751     0.621     1.000     0.156     0.150     0.300 
ARAS 
     0.124     0.027     0.006 
     0.071     0.095     0.037 
     0.164     0.113     0.237 
  
MADSLQ,MADCIQ,MADRAS 
    0.0606    0.0558    0.0073 

Problem 10.9: More Detailed Comparisons of Nonsurvey Estimation 
Techniques 
This exercise compares the performance of estimates of a variety of nonsurvey estimation 
techniques in estimating the technical coefficients and associate Leontief inverse coefficients for 
a known region from a table of national coefficients.  

Problem 10.9 Overview 
We use the three-sector, three-region Chinese MRIO data for 2000 specified in Problem 3.6 to 
estimate regions 2 (South China) and 3 (Rest of China) from the national data.  

If we adopt the same error metrics used in Table 10.2 and using LQ, CIQ, FLQ, AFLQ, 
and RPC techniques to estimate 2A (for region 2) and 3A (for region 3) from nA  (the national 
table), the results are the following. 

    Results for Region 2 (South China) using 2000 Chinese IRIO data. 

 Intraregional Input Coefficients Leontief Inverse 

Survey 
0.1279    0.1086    0.0340
0.1348    0.4299    0.2191
0.0394    0.0814    0.1255

 
 
 
  

 
1.1889    0.2418    0.1069
0.3130    1.8828    0.4839
0.0827    0.1861    1.1933

 
 
 
  

 

Using nA   

LQ 
0.1252    0.1301    0.0336
0.1517    0.4605    0.2411
0.0411    0.0867    0.1235

 
 
 
  

 
1.2033    0.3113    0.1317
0.3804    2.0378    0.5751
0.0940    0.2161    1.2039

 
 
 
  

 

CIQ 
0.1252    0.1263    0.0351
0.1517    0.4605    0.2411
0.0429    0.0842    0.1235

 
 
 
  

 
1.2019    0.3018    0.1311
0.3806    2.0324    0.5743
0.0953    0.2099    1.2024

 
 
 
  

 

FLQ 
0.1076    0.1085    0.0301
0.1406    0.4076    0.2228
0.0369    0.0723    0.1061

 
 
 
  

 
1.1598    0.2241    0.0950
0.3025    1.7994    0.4587
0.0724    0.1548    1.1598

 
 
 
  
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FLQA 
0.1076    0.1109    0.0301
0.1406    0.4163    0.2228
0.0369    0.0739    0.1061

 
 
 
  

 
1.1613    0.2328    0.0972
0.3077    1.8307    0.4667
0.0734    0.1609    1.1613

 
 
 
  

 

RPC 
0.1155    0.1199    0.0310
0.1350    0.4097    0.2145
0.0396    0.0837    0.1192

 
 
 
  

 
1.1738    0.2531    0.1029
0.2978    1.8187    0.4533
0.0811    0.1841    1.1830

 
 
 
  

 

Using Round’s ˆr n rρ=A A   

LQ 
0.1263    0.1324    0.0346
0.1530    0.4687    0.2483
0.0414    0.0882    0.1272

 
 
 
  

 
1.2080    0.3242    0.1401
0.3933    2.0810    0.6077
0.0971    0.2257    1.2138

 
 
 
  

 

CIQ 
0.1263    0.1285    0.0361 
0.1530    0.4687    0.2483
0.0433    0.0856    0.1272

 
 
 
  

 
1.2066    0.3143    0.1394
0.3935    2.0751    0.6068
0.0984    0.2192    1.2122

 
 
 
  

 

FLQ 
0.1086    0.1105    0.0310
0.1418    0.4148    0.2295
0.0373    0.0736    0.1093

 
 
 
  

 
1.1629    0.2321    0.1003
0.3110    1.8281    0.4819
0.0744    0.1608    1.1668

 
 
 
  

 

FLQA 
0.1086    0.1128    0.0310
0.1418    0.4237    0.2295
0.0373    0.0752    0.1093

 
 
 
  

 
1.1645    0.2413    0.1028
0.3166    1.8611    0.4906
0.0754    0.1672    1.1685

 
 
 
  

 

RPC 
0.1165    0.1221    0.0319
0.1361    0.4169    0.2209
0.0400    0.0851    0.1228

 
 
 
  

 
1.1772    0.2623    0.1089
0.3064    1.8488    0.4768
0.0834    0.1914    1.1912

 
 
 
  

 

 
 Total Intraregional 

Intermediate Inputs Percentage Differencesa 
Average 

Percentage 
Differenceb 

Survey 0.3022  0.6199  0.3786   
Using nA   

   LQ 0.3180  0.6773  0.3982 5.24  9.25  5.17 6.55 
   CIQ 0.3198  0.6710  0.3997 5.84  8.23  5.56 6.55 

   FLQ 0.2852  0.5884  0.3591 -5.63  -5.08  -5.15 -5.29 
   FLQA 0.2852  0.6010  0.3591 -5.62  -3.05  -5.15 -4.61 
   RPC 0.2901  0.6133  0.3646 -4.00  -1.08  -3.69 -2.92 

Using Round’s ˆr n rρ=A A   
   LQ 0.3208  0.6892  0.4102         6.15  11.18  8.34 8.56 
   CIQ 0.3226  0.6829  0.4117         6.76  10.15  8.74 8.55 
   FLQ 0.2876  0.5989  0.3699 -4.81  -3.40  -2.30 -3.50 
   FLQA 0.2876  0.6117  0.3699 -4.81  -1.34  -2.30 -2.82 
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   RPC 0.2926  0.6241  0.3756 -3.17  0.67  -0.79 1.54c 
 

 Intraregional Output 
Multipliers Percentage Differencesd 

Average 
Percentage 
Difference 

Survey 1.5846  2.3108  1.7841   
Using nA   

   LQ 1.6778  2.5651  1.9108 5.88  11.01  7.10 8.00 
   CIQ 1.6779  2.5441  1.9078 5.89  10.10  6.94 7.64 
   FLQ 1.5347  2.1784  1.7135       -3.15  -5.73  -3.96 -4.28 
   FLQA 1.5425  2.2245  1.7252 -2.66  -3.73  -3.30 -3.23 
   RPC 1.5527  2.2559  1.7392 -2.01  -2.37  -2.51 -2.30 

Using Round’s ˆr n rρ=A A       
   LQ 1.6584  2.6309  1.9617 7.18  13.85  9.96 10.33 
   CIQ 1.6985  2.6087  1.9584 7.18  12.89  9.77 9.95 
   FLQ 1.5482  2.2210  1.7419 -2.30  -3.88  -1.96 -2.71 
   FLQA 1.5565  2.2696  1.7619 -1.78  -1.78  -1.24 -1.60 
   RPC 1.5670  2.3025  1.7769 -1.11  -0.36  -0.40 -0.62 

 a This is {[( ) ] 100}′ ′ ′− ×i A i A i A  , where “ ”  indicates element-by-element division. 
b This is a simple, unweighted average. Various kinds of weightings (e.g., using some measure of the size of each 
sector) are frequently used. 
c This is the average of the absolute values of the differences, so that the negatives and positives do not cancel out. 
 dCalculated as {[( ) ] 100}′ ′ ′− ×i L i L i L  . 

    Results for Region 3 (Rest of China) using 2003 Chinese IRIO data. 
 Intraregional Input Coefficients Leontief Inverse 

Survey 
0.1356    0.1494    0.0329
0.1050    0.3176    0.1945
0.0364    0.1016    0.1122

 
 
 
  

 
1.1950    0.2773    0.1050
0.2046    1.5624    0.3498
0.0725    0.1902    1.1707

 
 
 
  

 

Using nA   

LQ 
0.1311    0.1362    0.0352
0.1293    0.3925    0.2055
0.0429    0.0905    0.1290

 
 
 
  

 
1.1992    0.2861    0.1159
0.2853    1.7742    0.4301
0.0887    0.1984    1.1984

 
 
 
  

 

CIQ 
0.1311    0.1362    0.0352
0.1015    0.3925    0.1789
0.0387    0.0905    0.1290

 
 
 
  

 
1.1886    0.2822    0.1059
0.2210    1.7506    0.3684
0.0757    0.1944    1.1910

 
 
 
  

 

FLQ 
0.1057    0.1288    0.0247
0.0643    0.2485    0.1133
0.0245    0.0772    0.0938

 
 
 
  

 
1.1341    0.2001    0.0559
0.1030    1.3661    0.1735
0.0394    0.1218    1.1198

 
 
 
  
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FLQA 
0.1252    0.1288    0.0272
0.0762    0.2485    0.1250
0.0290    0.0772    0.1035

 
 
 
  

 
1.1632    0.2059    0.0640
0.1260    1.3723    0.1951 
0.0485    0.1248    1.1343

 
 
 
  

 

RPC 
0.1223    0.1270    0.0328
0.1263    0.3835    0.2008
0.0397    0.0837    0.1193

 
 
 
  

 
1.1810    0.2572    0.1026
0.2676    1.7322    0.4048
0.0786    0.1762    1.1786

 
 
 
  

 

Using Round’s ˆr n rρ=A A   

LQ 
0.1251    0.1295    0.0335
0.1234    0.3732    0.1957
0.0409    0.0860    0.1228

 
 
 
  

 
1.1844    0.2587    0.1029
0.2583    1.7022    0.3895
0.0806    0.1790    1.1830

 
 
 
  

 

CIQ 
0.1251    0.1295    0.0335
0.0969    0.3732    0.1703
0.0369    0.0860    0.1228

 
 
 
  

 
1.1754    0.2557    0.0945
0.2005    1.6827    0.3344
0.0691    0.1758    1.1768

 
 
 
  

 

FLQ 
0.1009    0.1224    0.0235
0.0614    0.2363    0.1078
0.0234    0.0734    0.0893

 
 
 
  

 
1.1262    0.1855    0.0510
0.0956    1.3402    0.1612
0.0366    0.1128    1.1123

 
 
 
  

 

FLQA 
0.1195    0.1224    0.0259
0.0727    0.2363    0.1190
0.0277    0.0734    0.0985

 
 
 
  

 
1.1533    0.1905    0.0583
0.1168    1.3455    0.1809
0.0449    0.1154    1.1258

 
 
 
  

 

RPC 
0.1167    0.1207    0.0312
0.1206    0.3646    0.1912
0.0379    0.0796    0.1136

 
 
 
  

 
1.1679    0.2334    0.0915
0.2432    1.6661    0.3679
0.0717    0.1596    1.1651

 
 
 
  

 

 
 Total Intraregional 

Intermediate Inputs Percentage Differencesa 
Average 

Percentage 
Differenceb 

Survey 0.2771  0.5687  0.3396   
Using nA   

   LQ 0.3033  0.6192  0.3696  9.47        8.88       8.85 9.07 
   CIQ 0.2713  0.6192  0.3430 -2.07        8.88      1.02 3.99c 

   FLQ 0.1945  0.4545  0.2317 -29.81   -20.08   -31.76 -27.22 
   FLQA 0.2304  0.4545  0.2557 -16.84   -20.08   -24.70 -20.54 
   RPC 0.2883  0.5942  0.3529  4.05         4.49      3.92 4.15 

Using Round’s ˆr n rρ=A A   
   LQ 0.2895  0.5887  0.3519  4.47        3.52      3.64 3.88 
   CIQ 0.2590  0.5887  0.3266 -6.54        3.52     -3.81 4.62 
   FLQ 0.1856  0.4321  0.2206 -33.02    -24.02  -35.03 -30.69 
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   FLQA 0.2199  0.4321  0.2434 -20.63    -24.02  -28.31 -24.32 
   RPC 0.2751  0.5649  0.3360  -0.70      -0.66    -1.05 -0.81 

 
 Intraregional Output 

Multipliers Percentage Differencesd 
Average 

Percentage 
Difference 

Survey 1.4721  2.0299  1.6256   
Using nA   

   LQ 1.5732  2.2587  1.7444   6.87      11.27      7.31 8.48 
   CIQ 1.4853  2.2272  1.6654   0.90       9.72       2.45 4.36 
   FLQ 1.2765  1.6880  1.3492 -13.29   -16.84    -17.00 -15.71 
   FLQA 1.3377  1.7031  1.3934  -9.13    -16.10    -14.28 -13.17 
   RPC 1.5272  2.1656  1.6860   3.75       6.68       3.72 4.72 

Using Round’s ˆr n rρ=A A       
   LQ 1.5233  2.1400  1.6754  3.48         5.42      3.07 3.99 
   CIQ 1.4450  2.1142  1.6057 -1.84        4.15     -1.22 2.41c 

   FLQ 1.2584  1.6384  1.3245 -14.51    -19.29   -18.52 -17.44 
   FLQA 1.3150  1.6514  1.3651 -10.67    -18.65   -16.02 -15.11 
   RPC 1.4828  2.0591  1.6244  0.73         1.44     -0.07 0.75c 

a This is{[( ) ] 100}′ ′ ′− ×i A i A i A  , where “ ”  indicates element-by-element division. 
b This is a simple, unweighted average. Various kinds of weightings (e.g., using some measure of the size of each 
sector) are frequently used. 
c This is the average of the absolute values of the differences, so that the negatives and positives do not cancel out. 
d Calculated as {[( ) ] 100}′ ′ ′− ×i L i L i L  . 

Computational Notes 
We begin by presuming that the full 3-region, 3-sector IRIO table is saved in the APL 

workspace as Z along with the IRIO vector of total outputs x. We generate the matrix S to 
aggregate Z to the national table ZN and x to the vector of national total outputs xn, from which 
we can generate AN, the matrix of national technical coefficients, and the associated Leontief 
inverse LN. 

     S←I,I,I←3 3⍴1,3⍴0 
     xn←S+.×x ⋄ ZN←S+.×Z+.×⍉S ⋄ LN←LINV AN←ZN AMAT xn       

xn 
     56178    151923     47588 
ZN 
      7366     20687      1673 
      8523     69966     11473 
      2409     13749      6137 
AN 
    0.1311    0.1362    0.0352 
    0.1517    0.4605    0.2411 
    0.0429    0.0905    0.1290 
LN 
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    1.2155    0.3304    0.1405 
    0.3865    2.0490    0.5827 
    0.1000    0.2291    1.2155 

For a region r (for this problem either 2 or 3), we can generate the relevant indexes in Z and x to 
retrieve ZR and xr in order to subsequently compute AR and the associated Leontief invers LR. 
Also, for calculations including the “Round adjustment,” we calculate the necessary adjustment 
factor rho and modify AN by it to produce ANR and the associated Leontief inverse LANR. 

     rx←(3×r-1)+⍳3 
     xr←x[rx] ⋄ ZR←Z[rx;rx] ⋄ LR←LINV AR←ZR AMAT xr 
     LANR←LINV ANR←AN+.×DIAG rho←((+⌿Z[;rx])÷xr)÷((+⌿ZN)÷xn) 

Applying these expressions for region 2, 

rx 
4 5 6 
xr 
     27866     81253     23667 
ZR 
      3564      8828       806 
      3757     34931      5186 
      1099      6613      2969 
AR 
    0.1279    0.1086    0.0340 
    0.1348    0.4299    0.2191 
    0.0394    0.0814    0.1255 
LR 
    1.1889    0.2418    0.1069 
    0.3130    1.8828    0.4839 
    0.0827    0.1861    1.1933 
rho 
1.0086662 1.0177012 1.0301156 
LANR 
    1.2206    0.3443    0.1496 
    0.3999    2.0932    0.6162 
    0.1033    0.2395    1.2261 

Applying the expressions for region 3, 

rx 
7 8 9 
xr 
     11661     21107      8910 
ZR 
      1581      3154       293 
      1225      6704      1733 
       425      2145      1000 
AR 
    0.1356    0.1494    0.0329 
    0.1050    0.3176    0.1945 
    0.0364    0.1016    0.1122 
LR 
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    1.1950    0.2773    0.1050 
    0.2046    1.5624    0.3498 
    0.0725    0.1902    1.1707 
rho 
0.95436354 0.95073725 0.95214849 
LANR 
    1.1975    0.2946    0.1228 
    0.3451    1.9380    0.5203 
    0.0897    0.2038    1.1967 

To solve this problem efficiently, for convenience, we can define APL functions to generate 
regional estimates using the LQ, CIQ, FLQ, AFLQ, and RPC methods: 

[  0]  slq←xr fslq xn                              
[  1] ⍝compute vector of simple location quotients 
[  2]  slq←(xr÷+/xr)÷(xn÷+/xn)                     
  
[  0]  CIQ←xr fciqx xn;slq;I;n                                     
[  1] ⍝compute matrix of cross industry quotients CIQ              
[  2] ⍝and matrix of CIQ with slq on diagonal                      
[  3]  CIQX←(xr÷xn)∘.÷(xr÷xn) ⋄ slq←xr fslq xn ⋄ I←(2⍴n)⍴1,(n←3)⍴0 
[  4]  CIQ←(DIAG slq)+CIQX×~I                                      
  
[  0]  FLQ←xr fflq xn;delta;lamda                
[  1] ⍝compute matrix of Flagg quotients         
[  2]  delta←0.3 ⋄ lamda←(2⍟1+(+/xr)÷+/xn)*delta 
[  3]  FLQ←lamda×xr fciqx xn                     
  
[  0]  AFLQ←xr faflq xn;FLQ;slq;slqx;slqxx                      
[  1] ⍝compute matrix of adjusted Flagg quotients (AFLQ)        
[  2]  FLQ←xr fflq xn ⋄ slq←xr fslq xn                          
[  3]  AFLQ←FLQ+.×DIAG slqxx←(slqx≤1)+(slqx>1)×slqx←((2⍟1+slq)) 
  
[  0]  RPC←ZR frpc Z;nn                                       
[  1] ⍝compute vector of regional purchase coefficients (RPC) 
[  2]  nn←⍴ZR                                                 
[  3]  RPC←(⍉nn⍴+/ZR)÷⍉nn⍴+⌿nn⍴+/Z[;rx]                    

We use these functions to compute the nonsurvey estimates using the LQ, CIQ, FLQ, AFLQ, and 
RPC techniques to estimate the regional technical coefficients for each as ALQ, ACQ, AF, AFA, 
and ARPC, respectively, and their associated Leontief inverses as LALQ, LACQ, LAF, LAFA, and 
LARPC. We collect these calculations in the niladic (no arguments) function NSALL that 
assumes AN and xr are defined as global variables.  

[  0]  NSALL;ARR1;ARR2;n;nn                                          
[  1] ⍝compute A and L for all nonsurvey methods                    
[  2] ⍝Global vars: AN, xn, ZR, xr                                   
[  3]  nn←2⍴n←1↑⍴AN                                                  
[  4] ⍝SLQ                                                           
[  5]  slqx←(slq≥1)+(slq<1)×slq←xr fslq xn                           
[  6]  LQ←⍉nn⍴slq                                                    
[  7]  LALQ←LINV ALQ←(DIAG slqx)+.×AN                                
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[  8] ⍝CIQ                                                           
[  9]  ARR1←(AN×(CQ≥1))+AN×CQ×((CQ←xr fciqx xn)<1)                   
[ 10]  ARR2←(AN×nn⍴slq≥1)+AN×nn⍴slq×slq<1                            
[ 11]  LACQ←LINV ACQ←(ARR2×I)+ARR1×~I←(2⍴n)⍴1,(n←⍴xn)⍴0              
[ 12] ⍝FLQ                                                           
[ 13]  LAF←LINV AF←(AN×(F≥1))+AN×F×((F←xr fflq xn)<1)                
[ 14] ⍝FLQA                                                          
[ 15]  FA←(FF×nn⍴slq≤1)+((FF←xr faflq xn)×nn⍴slq>1)                  
[ 16]  LAFA←LINV AFA←(FF×AN×nn⍴slq≤1)+(AN×(FF←xr faflq xn)×nn⍴slq>1) 
[ 17] ⍝RPC                                                           
[ 18]  LARPC←LINV ARPC←AN×RPC←ZR frpc Z                         

Applying NSALL for region 2. 

ASLQ,LALQ 
    0.1830    0.0668    0.0087    1.2033    0.3113    0.1317 
    0.1377    0.3070    0.0707    0.3804    2.0378    0.5751 
    0.1794    0.2074    0.2581    0.0940    0.2161    1.2039 
ACQ,LACQ 
    0.1252    0.1263    0.0351    1.2019    0.3018    0.1311 
    0.1517    0.4605    0.2411    0.3806    2.0324    0.5743 
    0.0429    0.0842    0.1235    0.0953    0.2099    1.2024 
AF,LAF 
    0.1076    0.1085    0.0301    1.1598    0.2241    0.0950 
    0.1406    0.4076    0.2228    0.3025    1.7994    0.4587 
    0.0369    0.0723    0.1061    0.0724    0.1548    1.1598 
AFA,LAFA 
    0.1076    0.1109    0.0301    1.1613    0.2328    0.0972 
    0.1406    0.4163    0.2228    0.3077    1.8307    0.4667 
    0.0369    0.0739    0.1061    0.0734    0.1609    1.1613 
ARPC,LARPC 
    0.1155    0.1199    0.0310    1.1738    0.2531    0.1029 
    0.1350    0.4097    0.2145    0.2978    1.8187    0.4533 

Applying NSALL for region 2 with the Round adjustment. 

ASLQ,LALQ 
    0.1830    0.0668    0.0087    1.2080    0.3242    0.1401 
    0.1377    0.3070    0.0707    0.3933    2.0810    0.6077 
    0.1794    0.2074    0.2581    0.0971    0.2257    1.2138 
ACQ,LACQ 
    0.1263    0.1285    0.0361    1.2066    0.3143    0.1394 
    0.1530    0.4687    0.2483    0.3935    2.0751    0.6068 
    0.0433    0.0856    0.1272    0.0984    0.2192    1.2122 
AF,LAF 
    0.1086    0.1105    0.0310    1.1629    0.2321    0.1003 
    0.1418    0.4148    0.2295    0.3110    1.8281    0.4819 
    0.0373    0.0736    0.1093    0.0744    0.1608    1.1668 
AFA,LAFA 
    0.1086    0.1128    0.0310    1.1645    0.2413    0.1028 
    0.1418    0.4237    0.2295    0.3166    1.8611    0.4906 
    0.0373    0.0752    0.1093    0.0754    0.1672    1.1685 
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ARPC,LARPC 
    0.1165    0.1221    0.0319    1.1772    0.2623    0.1089 
    0.1361    0.4169    0.2209    0.3064    1.8488    0.4768 
    0.0400    0.0851    0.1228    0.0834    0.1914    1.1912 

Problem 10.10: RAS Estimate of Washington State from US National Data 
This exercise problem applies the RAS technique to generate a matrix of technical coefficients 
for the state of Washington using the U.S. matrix of technical coefficients as a starting point. 

Problem 10.10 Overview 
The following are the 1997 matrix of technical coefficients and vector of total outputs for the 
State of Washington as well as the 2003 matrix of technical coefficients for the United States, 
where the sectors are defined as (1) agriculture, (2) mining, (3) construction, (4) manufacturing, 
(5) trade, transportation and utilities, (6) services, and (7) other: 

.1154    .0012    .0082    .0353    .0019    .0033    .0016

.0008    .0160    .0057    .0014    .0022    .0002    .0001

.0072    .0084    .0066    .0043    .0074    .0196    .0133

.0868    .0287    .0W =A 958    .0766    .0289    .0244    .0205

.0625    .0278    .0540    .0525    .0616    .0317    .0480

.0964    .1207    .0704    .0596    .1637    .1991    .2224

.0020    .0031    .0056    .0019    .0045  

    7,681.0
       581.7
  17,967.1
  77,483.7
  56,967.2
109,557.6

  .0051    .0066     4,165.5

W =

   
   
   
   
   
   
   
   
   
      

x  

.2225    .0000    .0012    .0375    .0001    .0020    .0010

.0021    .1360    .0072    .0453    .0311    .0003    .0053

.0034    .0002    .0012    .0021    .0035    .0071    .0214

.1724    .0945    .US =A 2488    .3204    .0468    .0572    .1004

.0853    .0527    .0912    .0950    .0643    .0314    .0526

.0902    .1676    .1339    .1261    .1655    .2725    .1882

.0101    .0140    .0103    .0214    .0206    .0200    .0247

 
 
 
 
 
 
 
 
 
  

 

To examine application of the RAS technique to estimate the Washington State table 
using the U.S. matrix of technical coefficients as a starting point, we first compute ˆW W W=Z A x  
and then the vectors of total intermediate inputs and outputs for the real Washington State table: 

[ ]

[ ]

(1) 4,245.9   369.4   3,140.1   12,737.6   12,718   38,753.8   1,112.4

(1) ( ) 2,849.7   119.8   4,423   17,945.8   15,384.7   31,052.5   1,301.7

W

W

′= =

′′ ′= =

u Z i

v i Z
  

Applying RAS using USA , u(1), v(1), and Wx , the estimated matrix of technical coefficients for  
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Washington State is 

.2078   .0000   .0013   .0299   .0002   .0027   .0013

.0001   .0099   .0005   .0022   .0031   .0000   .0005

.0061   .0004   .0025   .0032   .0109   .0177   .0571

.0526   .0362   .0883   .0836   .024US W =A 6   .0243   .0456

.0534   .0415   .0664   .0508   .0694   .0273   .0490

.0493   .1151   .0852   .0589   .1561   .2070   .1531

.0016   .0028   .0019   .0029   .0057   .0044   .0059

 
 
 
 
 
 
 
 
 
  

. 

The mean absolute deviation between the estimated and actual Washington State matrices of 

technical coefficients is 
7 7

1 1

1( ) 0.0098
49

US W W
ij ij

i j
MAD a a

= =

= − =∑∑ . 

Computational Notes 
Retrieve the US national matrix of interindustry transactions ZN and vector of total outputs as 
xn.  Also retrieve Washington state matrix of regional interindustry transactions as ZR and 
vector of total outputs as xr. We can then compute the corresponding matrices of technical 
coefficients, AN and AR, and the vectors of regional intermediate outputs and inputs, ur and vr, 
respectively.  Finally, we use the function RAS to produce a nonsurvey estimate of AR using with 
AN specified as the left argument and as the right argument a matrix with ur, vr, and xr as the 
rows. We save explicit result as ARAS and compute the mean absolute deviations of ARAS with 
AR and save the result as MADRAS. 

     AN←ZN AMAT xn ⋄ AR←ZR AMAT xr 
     ur←+/ZR ⋄ vr←+⌿ZR 
     MADRAS←AR MAD ARAS←AN RAS 3 3⍴ur,vr,xr 

AN 
     0.222     0.000     0.001     0.037     0.000     0.002     0.001 
     0.002     0.136     0.007     0.045     0.031     0.000     0.005 
     0.003     0.000     0.001     0.002     0.004     0.007     0.021 
     0.172     0.094     0.249     0.320     0.047     0.057     0.100 
     0.085     0.053     0.091     0.095     0.064     0.031     0.053 
     0.090     0.168     0.134     0.126     0.166     0.272     0.188 
     0.010     0.014     0.010     0.021     0.021     0.020     0.025 
AR 
     0.115     0.001     0.008     0.035     0.002     0.003     0.002 
     0.001     0.016     0.006     0.001     0.002     0.000     0.000 
     0.007     0.008     0.007     0.004     0.007     0.020     0.013 
     0.087     0.029     0.096     0.077     0.029     0.024     0.021 
     0.063     0.028     0.054     0.053     0.062     0.032     0.048 
     0.096     0.121     0.070     0.060     0.164     0.199     0.222 
     0.002     0.003     0.006     0.002     0.004     0.005     0.007 
xr 
    7681.0     581.7   17967.1   77483.7   56967.2  109557.6    4165.5 
ur 
    4245.9     369.4    3140.1   12737.6   12718.0   38753.8    1112.4 
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vr 
    2849.7     119.8    4423.0   17945.8   15384.7   31052.5    1301.7 
ARAS 
     0.208     0.000     0.001     0.030     0.000     0.003     0.001 
     0.000     0.010     0.000     0.002     0.003     0.000     0.000 
     0.006     0.000     0.003     0.003     0.011     0.018     0.057 
     0.053     0.036     0.088     0.084     0.025     0.024     0.046 
     0.053     0.041     0.066     0.051     0.069     0.027     0.049 
     0.049     0.115     0.085     0.059     0.156     0.207     0.153 
     0.002     0.003     0.002     0.003     0.006     0.004     0.006 
  
MADRAS 
0.009841638 

Problem 10.11: Refining Washington State Estimation with Additional 
Information 
This exercise extends the estimation considered in exercise Problem 10.10, but in the case of 
selected additional available information 

Problem 10.11 Overview 
Presuming that while we do not know all the technical coefficients for the Washington State 
economy, WA , we do know several, namely 11 62 65, and W W Wa a a . To use the RAS technique 
incorporating that we know these coefficients, we begin with defining a matrix of the 

exogenously specified technical coefficients: 

.1154 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 .1207 0 0 .1637 0 0
0 0 0 0 0 0 0

 
 
 
 
 =  
 
 
 
  

K . The 

corresponding modified vectors of total intermediate inputs and outputs for the real Washington 
State table are found as: (1) W W W= − − =u x Z i Kx  

[ ]3,359.7   369.4   3,140.1   12,737.6   12,718   29,359.6   1,112.4 ′  and ˆ(1) W W W′ ′= − − =v x i Z i Kx  

[ ]1,963.5   49.6   4,423   17,945.8   6,060.7   31,052.5   1,301.7 ′ .  

Applying RAS using ( )USA , u(1), v(1),  and Wx , and, this time, K, the new estimated 
matrix of technical coefficients for Washington State is 
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.1154   .0001   .0017   .0377   .0002   .0035   .0017

.0002   .0096   .0005   .0023   .0030   .0000   .0005

.0096   .0004   .0025   .0031   .0100   .0180   .0576

.0830   .0337   .0890   .0809   .022US W =A 9   .0248   .0463

.0850   .0389   .0675   .0496   .0649   .0281   .0502

.0752   .1207   .0830   .0551   .1637   .2044   .1502

.0026   .0026   .0020   .0029   .0053   .0046   .0060

 
 
 
 
 
 
 
 
 
  

. The mean absolute deviation 

between the estimated and actual Washington State matrices of technical coefficients is 
7 7

1 1

1( ) 0.0066
49

US W W
ij ij

i j
MAD a a

= =

= − =∑∑ . In this case the constrained RAS procedure 

incorporating exogenous information improves the estimate considerably over the unconstrained 
case in Problem 10.10. 

Computational Notes 
Using the data from Problem 10.10, we retrieve AN, AR, xr, ur, and vr and repeat the 
estimation of AR using the function RAS, which we save for later comparison as ARAS1 along 
with the mean absolution deviation comparing ARAS1 with AR. 

     MADRAS1←AR MAD ARAS1←AN RAS 3 7⍴ur,vr,xr  

AN 
    0.2225    0.0000    0.0012    0.0375    0.0001    0.0020    0.0010 
    0.0021    0.1360    0.0072    0.0453    0.0311    0.0003    0.0053 
    0.0034    0.0002    0.0012    0.0021    0.0035    0.0071    0.0214 
    0.1724    0.0945    0.2488    0.3204    0.0468    0.0572    0.1004 
    0.0853    0.0527    0.0912    0.0950    0.0643    0.0314    0.0526 
    0.0902    0.1676    0.1339    0.1261    0.1655    0.2725    0.1882 
    0.0101    0.0140    0.0103    0.0214    0.0206    0.0200    0.0247 
AR 
    0.1154    0.0012    0.0082    0.0353    0.0019    0.0033    0.0016 
    0.0008    0.0160    0.0057    0.0014    0.0022    0.0002    0.0001 
    0.0072    0.0084    0.0066    0.0043    0.0074    0.0196    0.0133 
    0.0868    0.0287    0.0958    0.0766    0.0289    0.0244    0.0205 
    0.0625    0.0278    0.0540    0.0525    0.0616    0.0317    0.0480 
    0.0964    0.1207    0.0704    0.0596    0.1637    0.1991    0.2224 
    0.0020    0.0031    0.0056    0.0019    0.0045    0.0051    0.0066 
xr 
    7681.0     581.7   17967.1   77483.7   56967.2  109557.6    4165.5 
ur 
    4245.9     369.4    3140.1   12737.6   12718.0   38753.8    1112.4 
vr 
    2849.7     119.8    4423.0   17945.8   15384.7   31052.5    1301.7 
ARAS1 
    0.2078    0.0000    0.0013    0.0299    0.0002    0.0027    0.0013 
    0.0001    0.0099    0.0005    0.0022    0.0031    0.0000    0.0005 
    0.0061    0.0004    0.0025    0.0032    0.0109    0.0177    0.0571 
    0.0526    0.0362    0.0883    0.0836    0.0246    0.0243    0.0456 
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    0.0534    0.0415    0.0664    0.0508    0.0694    0.0273    0.0490 
    0.0493    0.1151    0.0852    0.0589    0.1561    0.2070    0.1531 
    0.0016    0.0028    0.0019    0.0029    0.0057    0.0044    0.0059 
  
MADRAS1 
0.009841638   

We also specify the matrix of the locations of additional exogenous information K and 
replace the corresponding elements of AN with the specified exogenous information, calling the 
result AA, and net out the impact of those coefficients on ur and vr (denoted as ub and vb). 
Then use the RAS function with AA as the left argument and as the right argument a matrix with 
ub, vb, and xb as its rows.  We save the result as ARAS2 and compute mean absolution 
deviation comparing ARAS2 with AR. 

KK←7 7⍴0 ⋄ KK[1;1]←KK[6;2]←KK[6;5]←1 ⋄ K←KK×AR ⋄ AB←(KK≠1)×AN 
      ub←ur-+/K+.×DIAG xr ⋄ vb←vr-+⌿K+.×DIAG xr 
      MADRAS2←AR MAD ARAS2←K+AB RAS 3 7⍴ub,vb,xr 

K 
    0.1154    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.1207    0.0000    0.0000    0.1637    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
ub 
    3359.7     369.4    3140.1   12737.6   12718.0   29359.6    1112.4 
vb 
    1963.5      49.6    4423.0   17945.8    6060.7   31052.5    1301.7 
ARAS2 
    0.1154    0.0001    0.0017    0.0377    0.0002    0.0035    0.0017 
    0.0002    0.0096    0.0005    0.0023    0.0030    0.0000    0.0005 
    0.0096    0.0004    0.0025    0.0031    0.0100    0.0180    0.0576 
    0.0830    0.0337    0.0890    0.0809    0.0229    0.0248    0.0463 
    0.0850    0.0389    0.0675    0.0496    0.0649    0.0281    0.0502 
    0.0752    0.1207    0.0830    0.0551    0.1637    0.2044    0.1502 
    0.0026    0.0026    0.0020    0.0029    0.0053    0.0046    0.0060 
MADRAS2 
0.0066226259     

Problem 10.12: Additional Cases of Exogenous Information 
This exercise further explores use of constrained RAS estimation developed in Problem 10.11, 
this time assuming there is information from exogenous sources providing some alternative 
technical coefficients, namely 67 42 54, and W W Wa a a  , to those provided in Problem 10.11. 

Problem 10.12 Overview 
The procedure is the same as the previous problem, i.e., the new exogenously specified technical 
coefficients are given by 
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 .0287 0 0 0 0 0
0 0 0 .0525 0 0 0
0 0 0 0 0 0 .2224
0 0 0 0 0 0 0

 
 
 
 
 =  
 
 
 
  

K . The revised vectors of total intermediate inputs and 

outputs for the real Washington State table are: 

[ ]

[ ]

(1)

ˆ(1)

4,245.9   369.4   3,140.1   12,720.9   8,649.3   37,827.6   1,112.4

2,849.7   103.1   4,423   13,877.1   15,384.7   31,052.5   375.5

W W W

W W W

′= − − =

′ ′= − − = ′

u x Z i Kx

v x i Z i Kx
  

Applying RAS using USA , u(1), v(1), Wx , and K yields the new estimated matrix of 
technical coefficients for Washington State:

.2088   .0000   .0013   .0298   .0002   .0027   .0007

.0001   .0104   .0005   .0022   .0031   .0000   .0003

.0063   .0005   .0026   .0033   .0113   .0184   .0329

.0530   .0287   .0895   .0834   .025US W =A 1   .0247   .0258

.0527   .0433   .0659   .0525   .0692   .0272   .0271

.0485   .1200   .0844   .0575   .1554   .2059   .2224

.0016   .0030   .0019   .0029   .0058   .0045   .0033

 
 
 
 
 
 
 
 
 
  

. The mean absolute deviation 

between the estimated and actual Washington State matrices of technical coefficients is 
7 7

1 1

1( ) 0.0077
49

US W W
ij ij

i j
MAD a a

= =

= − =∑∑ —not as good an estimate as that obtained in Problem 

10.11, which resulted in 0.0066MAD = .  

Finally, we can presume we can employ the exogenous information used in both Problems 10.10 
and 10.11 in a combined case. For this combined case, the new exogenously specified technical 

coefficients are given by 

.1154 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 .0287 0 0 0 0 0
0 0 0 .0525 0 0 0
0 .1207 0 0 .1637 0 .2224
0 0 0 0 0 0 0

 
 
 
 

=  
 
 
 
 

K . 

We once again compute the vectors of total intermediate inputs and outputs for the real 
Washington State table: 
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[ ]

[ ]

(1)

ˆ(1)

3,359.7   369.4   3,140.1   12,720.9   8,649.3   28,433.4   1,112.4

1,963.5   32.9   4,423   13,877.1   6,060.7   31,052.5   375.5

W W W

W W W

′= − − =

′ ′= − − = ′

u x Z i Kx

v x i Z i Kx
  

Applying RAS using USA , u(1), v(1), Wx , and K , the new estimated matrix of technical 
coefficients for Washington State using both sets of exogenous information is 

.1154   .0001   .0018   .0376   .0002   .0036   .0010

.0002   .0108   .0005   .0022   .0031   .0000   .0003

.0100   .0005   .0026   .0031   .0104   .0187   .0327

.0847   .0287   .0908   .0802   .023US W =A 4   .0254   .0259

.0835   .0423   .0663   .0525   .0639   .0277   .0270

.0746   .1207   .0822   .0531   .1637   .2033   .2224

.0026   .0030   .0020   .0028   .0054   .0047   .0034

 
 
 
 
 
 
 
 
 
  

. The mean absolute deviation 

between the estimated and actual Washington State matrices of technical coefficients is 
7 7

1 1

1( ) 0.0044
49

US W W
ij ij

i j
MAD a a

= =

= − =∑∑ —perhaps not surprisingly better than either of the 

previous cases. 

Computational Notes 
We once again retrieve from Problem 10.10 the basic data AN, AR, ur,  vr, and xr. We also 
retrieve the exogenous information K from Problem 10.11. We also specify a new case of 
exogenous information as K2 and a third case combing K and K2 as K3. We apply the 
expressions developed in Problem 10.11 to the case without exogenous information ARAS0 and 
three exogenous information cases, ARAS1, ARAS2, and ARAS3, and the corresponding 
calculations of the mean absolute deviation of AR compared with ARAS0, ARAS1, ARAS2, and 
ARAS3, saved as MADRAS0, MADRAS1, MADRAS2, and MADRAS3, respectively. 

⍝No addtl informaton 
 MADRAS0←AR MAD ARAS0←AN RAS(3,n)⍴ur,vr,xr 
⍝Case 1 of addtl information 
 KK←7 7⍴0 ⋄ KK[1;1]←KK[6;2]←KK[6;5]←1 ⋄ K←KK×AR ⋄ AB←(KK≠1)×AN 
 ub←ur-+/K+.×DIAG xr ⋄ vb←vr-+⌿K+.×DIAG xr 
 MADRAS1←AR MAD ARAS1←K+AB RAS 3 7⍴ub,vb,xr 
⍝Case 2 of addtl information 
 KK2←7 7⍴0 ⋄ KK2[6;7]←KK2[4;2]←KK2[5;4]←1 ⋄ K2←KK2×AR ⋄ AB←(KK2≠1)×AN 
 ub2←ur-+/K2+.×DIAG xr ⋄ vb2←vr-+⌿K2+.×DIAG xr 
 MADRAS2←AR MAD ARAS2←K2+AB RAS 3 7⍴ub2,vb2,xr 
⍝combined case 
 KK3←7 7⍴0 ⋄ KK3[1;1]←KK3[6;2]←KK3[6;5]←KK3[6;7]←KK3[4;2]←KK3[5;4]←1 
 K3←KK3×AR ⋄ AB←(KK3≠1)×AN 
 ub3←ur-+/K3+.×DIAG xr ⋄ vb3←vr-+⌿K3+.×DIAG xr 
 MADRAS3←AR MAD ARAS3←K3+AB RAS 3 7⍴ub3,vb3,xr   

MADRAS0 
    0.0098 
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K 
    0.1154    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.1207    0.0000    0.0000    0.1637    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
ub 
    3359.7     369.4    3140.1   12737.6   12718.0   29359.6    1112.4 
vr 
    1963.5      49.6    4423.0   17945.8    6060.7   31052.5    1301.7 
ARAS1 
    0.1154    0.0001    0.0017    0.0377    0.0002    0.0035    0.0017 
    0.0002    0.0096    0.0005    0.0023    0.0030    0.0000    0.0005 
    0.0096    0.0004    0.0025    0.0031    0.0100    0.0180    0.0576 
    0.0830    0.0337    0.0890    0.0809    0.0229    0.0248    0.0463 
    0.0850    0.0389    0.0675    0.0496    0.0649    0.0281    0.0502 
    0.0752    0.1207    0.0830    0.0551    0.1637    0.2044    0.1502 
    0.0026    0.0026    0.0020    0.0029    0.0053    0.0046    0.0060 
MADRAS1 
0.0066226259 
  
K2 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0287    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0525    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.2224 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
ub 
    4245.9     369.4    3140.1   12720.9    8649.3   37827.6    1112.4 
vb 
    2849.7     103.1    4423.0   13877.1   15384.7   31052.5     375.5 
ARAS2 
     0.209     0.000     0.001     0.030     0.000     0.003     0.001 
     0.000     0.010     0.000     0.002     0.003     0.000     0.000 
     0.006     0.000     0.003     0.003     0.011     0.018     0.033 
     0.053     0.029     0.090     0.083     0.025     0.025     0.026 
     0.053     0.043     0.066     0.053     0.069     0.027     0.027 
     0.049     0.120     0.084     0.057     0.155     0.206     0.222 
     0.002     0.003     0.002     0.003     0.006     0.005     0.003 
MADRAS2 
0.0077221622 
  
K3 
    0.1154    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0287    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0525    0.0000    0.0000    0.0000 
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    0.0000    0.1207    0.0000    0.0000    0.1637    0.0000    0.2224 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
ub3 
    3359.7     369.4    3140.1   12720.9    8649.3   28433.4    1112.4 
vb3 
    1963.5      32.9    4423.0   13877.1    6060.7   31052.5     375.5 
ARAS2 
     0.115     0.000     0.002     0.038     0.000     0.004     0.001 
     0.000     0.011     0.001     0.002     0.003     0.000     0.000 
     0.010     0.000     0.003     0.003     0.010     0.019     0.033 
     0.085     0.029     0.091     0.080     0.023     0.025     0.026 
     0.084     0.042     0.066     0.053     0.064     0.028     0.027 
     0.075     0.121     0.082     0.053     0.164     0.203     0.222 
     0.003     0.003     0.002     0.003     0.005     0.005     0.003 
MADRAS3 
0.0044082188
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Chapter 11, Social Accounting Matrices 
Chapter 11 expands the input–output framework to a broader class of economic analysis tools 
known as social accounting matrices (SAM) and other so-called “extended” input–output models 
to capture activities of income distribution in the economy in a more comprehensive and 
integrated way, including especially employment and social welfare features of an economy. The 
basic concepts of SAMs are explored and derived from the SNA introduced in Chapters 4 and 5, 
and the relationships between SAMs and input–output accounts are presented. The concept of 
SAM multipliers as well as the decomposition of SAM multipliers into components with specific 
economic interpretations are introduced and illustrated. Finally, techniques for balancing SAM 
accounts for internal accounting consistency are discussed and several illustrative applications of 
the use of SAMs are presented. The exercise problems for this chapter explore the construction 
of SAM accounts and models. 

 

Problem 11.1 Quantifying the Circular Flow of Income and Expenditure  
This exercise illustrates the relationships between a map of the circular flow of income and 
expenditure and a corresponding “macro-SAM.” Consider a macro economy depicted in the 
figure below. Note the missing value, X, showing the exports from the Producers sector to the 
Rest of World sector. We can verify that this value is 45 from either the Producers balance 
equation, (60 600) (400 150 65) 45X = + − + + = , or the Balance of Payment Account’s Rest of 
World balance equation, 25 (10 60) 45X = − + = −  .  

 

 →
65 →
150 →
400 →

 ↓ 400  
↑ 60 ↑ 600  

 
←

  ↓ 150
25 10 -25 40  150  

↓ ↑ ↓ ↑ ↑
←  

↓ 65   
40
←
-25
→ ↓ X  

  
← 10
→ 25
← 60

Rest of World (5)

Producers (1)

600 Consumers (2)

150 Final Consumers  (3)

Capital Markets (4)
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We can express the chart as a basic macro-SAM, where a sector defined as consumption 
combines both intermediate and final consumption as a single sector by the following: 

  Prod Cons Cap ROW   
Producers   550 65 45 660 
Consumers 600 150 -25 25 750 
Capital Markets   40    40 
Rest of World 60 10     70 
  660 750 40 70   

 

If we express consumption as in the figure, i.e., with consumption separated into 
intermediate consumers (2) and final consumers (3), the SAM becomes: 

  Prod Cons Fin Con Cap ROW  
Producers   400 150 65 45 660 
Consumers 600   -25 25 600 
Final Consumers   150     150 
Capital Markets   40     40 
Rest of World 60 10       70 
  660 600 150 40 70   

 

Problem 11.2 Construction of a Fully Articulated SAM 
This exercise illustrates construction of a “fully articulated” SAM, i.e., including the 
interindustry detail provided by input-output accounts. For the economy depicted in Problem 
11.1, suppose the following input-output accounts are collected: 

  
Commodities Industries Final 

Demand Totals Grand 
Total 

Manuf. Services Manuf. Services 

Commodities 
Manuf.    94 96 110 300 

660 
Services     94 117 148 360 

Industries 
Manuf. 295 0       295 

660 
Services 5 360       365 

Value Added     106 152 260     

Totals  300 360 295 365       

Grand Total 660 660       

 To construct a “fully articulated” SAM, i.e., incorporating the interindustry detail 
provided by these input-output accounts, final demand must be allocated as part of consumer 
demand and commodity imports allocated to value added. There is no unique solution, but one 
such balanced fully articulated SAM is the following. 
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Problem 11.3 Expansion of SAM Accounts 
This exercise problem expands SAM accounts to include sectors defined for consumer demand 
and exports, using SAM developed in Problem 11.2. Again, there is no unique solution, but the 
SAM must be balanced, i.e., row and column sums equal. One such SAM is the following: 

Manuf. Services Manuf. Services PCE Cap. Exports
Manuf. 0 0 94 96 64 28 18 300
Services 0 0 94 117 86 37 25 360
Manuf. 284 0 0 0 0 -12 13 285
Services 5 319 0 0 0 -13 4 315

Consumer 0 0 73 77 0 0 0 150
Capital 0 0 20 20 0 0 0 40
Imports 10 41 4 5 0 0 0 60

300 360 285 315 150 40 60

Commodities Industries Total Final Demand
Total

Commodities 660

600

Value Added 250

Total 
660 600 250

Industrieis

 

Problem 11.4: Basic Construction of a Social Accounting Matrix (SAM) 
This problem explores construction of a SAM matrix of total expenditure shares, S , and 
partitioning of S  to specify the SAM coefficient matrix, S, and the “direct effect” multipliers 
using the table of SAM transactions developed in Problem 11.3.  

Problem 11.4 Overview 
First, we define the table of SAM transactions as Z  and the row or column totals of all 
transactions as x . Then we compute the matrix of total expenditure shares as 

  

Production Consumption 
Cap. ROW Total 

Manuf. Services Manuf. Services 

Production 
Manuf. 0 0 158 96 28 18 300 

660 
Services 0 0 94 203 37 25 360 

Consumption 
Manuf. 284 0 0 0 -12 13 285 

600 
Services 5 319 0 0 -13 4 315 

Capital 0 0 20 20 0 0 40 
ROW 10 41 3 5 0 0 60 

Total  300 360 276 324 40 60   
660 600 
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 1

0 0 .331 .305 .427 .7 .3
0 0 .331 .371 .573 .925 .417

.95 0 0 0 0 .3 .217
ˆ .017 .884 0 0 0 .325 .067

0 0 .257 .244 0 0 0
0 0 .07 .063 0 0 0

.033 .116 .011 .016 0 0 0

−

 
 
 
 −
 = = − 
 
 
 
  

S Zx .  

Notice that S is partitioned into interindustry sectors (commodities and industries) and 
sectors exogenous to interindustry activity (final demand and value added). If we assume final 
demand and value-added sectors are considered exogenous transactions to this economy, the 

SAM coefficient matrix, S, is the upper left partition of S , i.e., 

0 0 .331 .305
0 0 .331 .371

.95 0 0 0
.017 .884 0 0

 
 
 =
 
 
 

S . 

The matrix of “direct effect” multipliers is then 1

1.812   .726    .840    .822
 .865   1.835   .894    .945

( )
1.721   .690   1.798   .781
 .794   1.634   .804   1.849

−

 
 
 = − =
 
 
 

M I S . 

Computational Notes 
Define the sector transactions ZZ and normalize by the column sums x to create SBAR. Extract 
the upper left quadrant of SBAR as S and compute the Leontief inverse to generate the matrix of 
total multipliers M1. 

 ZZ←0 0 94 96 64 28 18 0 0 94 117 86 37 25 284 
 ZZ←XX,0 0 0 0 ¯12 13 5 319 0 0 0 ¯13 4 0 0 73 77 
 ZZ←7 7⍴ZZ,0 0 0 0 0 20 20 0 0 0 10 42 3 5 0 0 0 
  
 SBAR←ZZ AMAT x←+⌿ZZ 
 S←4 4↑SBAR 
 M1←LINV S 

ZZ 
         0         0        94        96        64        28        18 
         0         0        94       117        86        37        25 
       284         0         0         0         0       ¯12        13 
         5       319         0         0         0       ¯13         4 
         0         0        73        77         0         0         0 
         0         0        20        20         0         0         0 
        10        42         3         5         0         0         0 
SBAR 
     0.000     0.000     0.331     0.305     0.427     0.700     0.300 
     0.000     0.000     0.331     0.371     0.573     0.925     0.417 
     0.950     0.000     0.000     0.000     0.000    ¯0.300     0.217 
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     0.017     0.884     0.000     0.000     0.000    ¯0.325     0.067 
     0.000     0.000     0.257     0.244     0.000     0.000     0.000 
     0.000     0.000     0.070     0.063     0.000     0.000     0.000 
     0.033     0.116     0.011     0.016     0.000     0.000     0.000 
x 
     299.0     361.0     284.0     315.0     150.0      40.0      60.0 
  
S 
     0.000     0.000     0.331     0.305 
     0.000     0.000     0.331     0.371 
     0.950     0.000     0.000     0.000 
     0.017     0.884     0.000     0.000 
M1 
     1.812     0.726     0.840     0.822 
     0.865     1.835     0.894     0.945 
     1.721     0.690     1.798     0.781 
     0.794     1.634     0.804     1.849 

Problem 11.5: SAM Multipliers 
The exercise illustrates the construction of direct, indirect, cross, and total SAM multipliers in 
the additive and multiplicative forms. 

Problem 11.5 Overview 
Using a highly aggregated SAM for the developing nation of Sri Lanka,5 the basic SAM 
accounts are reflected in the following: 

 

We define the full table of SAM transactions as Z  and the row and/or column totals as x . 
If we consider the sectors, Surplus/Deficit and Rest of World, as external to the SAM, we first 
reorder the table so that the Surplus/Deficit and Rest of World sectors become sectors 5 and 6 in 

the table by ′=Z RZR  and =x Rx  where 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

 
 
 =  
 
  

R .  

 
5 Adapted from Pyatt and Round (1979), pp. 852-853. 

Sri Lanka    
SAM 1970

Value 
Added

Insti-
tutions

Indirect 
Taxes

Surplus/ 
Deficit

Pro-
duction

Rest of 
World Total

Value Added -            -            -            11,473   -            -            11,473   
Institutions 11,360   2,052     1,368     -            -            3           14,783   
Indirect Taxes -            389        -            885        -            94         1,368     
Production -            11,312   -            4,660     -            2,113     18,085   
Surplus/Deficit -            (425)      -            -            -            425        -            
Rest of World 113        1,455     -            1,067     -            -            2,635     
Total 11,473   14,783   1,368     18,085   -            2,635     
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With the reordered sectors, we calculate 1ˆ −=S Zx   and create partitions separating sectors 5 and 6 
as the exogenous sectors. We can use the formulas developed in Section 11.10.4 to compute the 
direct, indirect, cross, and total multipliers, respectively, as the following: 

 1

5.7286 4.7756 4.7756 5.2105 0 0
7.2309 7.3209 7.3209 6.6610 0 0
0.5550 0.5605 1.5605 0.5772 0 0
7.4538 7.5279 7.5279 8.2133 0 0

0 0 0 0 1 0
0 0 0 0 0 1

 
 
 
 

=  
 
 
 
 

N     

2

0 0 0 0 26.9953 5.9390
0 0 0 0 34.7835 7.2176
0 0 0 0 3.2188 0.5400
0 0 0 0 42.5529 9.6888

0.2506 0.2511 0.2511 0.2472 0 0
1.5382 1.5302 1.5302 1.6014 0 0

 
 
 
 

=  
 
 − − − −
 
 

N   

3

1.5617 1.5182 1.5182 1.9068 0 0
1.4871 1.4301 1.4301 1.9388 0 0
0.0168 0.0224 0.0224 0.0271 0 0

2.8569 2.7889 2.7889 3.3954 0 0
0 0 0 0 1 0.2075
0 0 0 0 6.2 1.3405

 
 
 
 − − −

=  
 
 − −
 
 

N  

7.2903 6.2938 6.2938 7.1173 26.9953 5.9390
8.7180 8.7329 8.7329 8.5997 34.7835 7.2176
0.5382 0.5382 1.5382 0.6043 3.2188 0.5400

10.3106 10.3168 10.3168 11.6087 42.5529 9.6888
0.2506 0.2511 0.2511 0.2472 0 0.2075

1.5382 1.53

T =

− − − − −

N

02 1.5302 1.6014 6.2 2.3405

 
 
 
 
 
 
 
 
 

. 

Computational Notes 
We define the SAM transactions matrix as ZS, construct the reordering matrix R using the 
function SCREATE introduced earlier, and applying R to reorder the sectors of the SAM, saving 
the result as Z.  
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ZS←0 0 0 0 11473 0 11360 2052 1368  
 ZS→ZS,0 0 3 0 389 0 0 885 94 0 ¯425 
 ZS←ZS,0 0 0 425 0 11312 0 0 4660  
 ZS←6 6⍴ZS,2113 113 1455 0 0 1067 0 
 Z←R+.×ZS+.×⍉R←SCREATE' ',(⍕6 1⍴1 2 3 5 4 6), 

The dyadic function SMULT (listed below) decomposes a SAM, such as Z into four 
partitions in order to calculate SAM multipliers. First, the left argument is a two-element vector 
nm, the first element of which is the number of sectors in the upper left partition, saved as the 
local variable n, and the second is number of sectors in the lower right partition, saved as the 
variable m. The value nn (the number of rows in endogenous partition of the overall SAM) is 
computed as the sum of n and m. S is then computed as the nn×nn upper left partition of Z 
normalized by its column sums. The upper left n×n partition of S is saved as A; the upper right 
m×n partition of S is saved as C; the lower left m×n partition of S is saved as H and the lower 
right m×m partition of S is saved as O. Also, A comprises the upper left partition of an nn×nn 
matrix Q with the rest of the elements of Q set to 0. C also comprises the upper right partition 
and H the lower left partition of an nn×nn matrix R with the rest of the matrix R set to 0. Then 
compute the matrix T which is subsequently used along with Q to compute the direct, indirect, 
cross, and total additive multipliers M1, M2, M3, and MT, respectively, and the direct, indirect, 
cross, and total multiplicative multipliers, N1, N2, N3, and NT, respectively, all as global 
variables in the APL workspace (the function does not produce an explicit result). 

[ 0]  nm SMULT Z;m;n;nn;S;Q;R;T;O;IQI;C;H;A;I                                              
[ 1] ⍝compute decomposed multipliers for SAM=Z                                             
[ 2] ⍝multiplicative multipliers are global results: M1, M2, M3, and MT                    
[ 3] ⍝additive multipliers are global results: N1, N2, N3, and NT (NT=MT)                  
[ 4] ⍝n=size of first partition; m second, nm total                                        
[ 5]  nn←(n←1↑nm)+m←¯1↑nm ⋄ S←(2⍴nn)↑Z AMAT+⌿Z ⋄ Q←R←(2⍴nn)⍴0 ⋄ I←(2⍴nn)⍴1,nn⍴0            
[ 6]  Q[⍳n;⍳n]←A←S[⍳n;⍳n] ⋄ R[⍳n;n+⍳m]←C←S[⍳n;n+⍳m] 
[ 7]  R[n+⍳m;⍳n]←H←S[n+⍳m;⍳n] ⋄ O←S[⍳m;⍳m] 
[ 8]  T←(IQI←INV Q)+.×R                                                                    
[ 9]  M3←INV T+.×T ⋄ M2←I+T ⋄ M1←INV Q ⋄ MT←M3+.×M2+.×M1                                   
[10]  N1←M1 ⋄ N2←(M2+.×M3+.×M1)-(M3+.×M1) ⋄ N3←(M3+.×M1)-M1 ⋄ NT←N1+N2+N3                  
 
For this problem we apply SMULT with the first four sectors of the economy defining the 
endogenous. 

   4 2 SMULT Z 

N1 
    5.7286    4.7756    4.7756    5.2105    0.0000    0.0000 
    7.2309    7.3029    7.3029    6.6610    0.0000    0.0000 
    0.5550    0.5605    1.5605    0.5772    0.0000    0.0000 
    7.4538    7.5279    7.5279    8.2133    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    1.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    0.0000    1.0000 
N2 
    0.0000    0.0000    0.0000    0.0000   26.9953    5.9390 
    0.0000    0.0000    0.0000    0.0000   34.7835    7.2176 
    0.0000    0.0000    0.0000    0.0000    3.2188    0.5400 
    0.0000    0.0000    0.0000    0.0000   42.5529    9.6888 
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   ¯0.2506   ¯0.2511   ¯0.2511   ¯0.2472    0.0000    0.0000 
    1.5382    1.5302    1.5302    1.6014    0.0000    0.0000 
N3 
    1.5617    1.5182    1.5182    1.9068    0.0000    0.0000 
    1.4871    1.4301    1.4301    1.9388    0.0000    0.0000 
   ¯0.0168   ¯0.0224   ¯0.0224    0.0271    0.0000    0.0000 
    2.8569    2.7889    2.7889    3.3954    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000   ¯1.0000   ¯0.2075 
    0.0000    0.0000    0.0000    0.0000    6.2000    1.3405 
NT 
    7.2903    6.2938    6.2938    7.1173   26.9953    5.9390 
    8.7180    8.7329    8.7329    8.5997   34.7835    7.2176 
    0.5382    0.5382    1.5382    0.6043    3.2188    0.5400 
   10.3106   10.3168   10.3168   11.6087   42.5529    9.6888 
   ¯0.2506   ¯0.2511   ¯0.2511   ¯0.2472    0.0000   ¯0.2075 
    1.5382    1.5302    1.5302    1.6014    6.2000    2.3405 

Problem 11.6: Balancing a SAM 
This problem illustrates use of the RAS technique to balance a SAM, i.e., to iteratively adjust the 
SAM transactions so that the row and column sums of the SAM are the same.  

Problem 11.6 Overview 
Consider the unbalanced SAM given in the table below. Suppose independent analysis indicates 
the total output of each sector; these are given in the additional column specified in the table. 

 

If we use the RAS technique to produce a balanced SAM with rows and columns both summing 
to the independent sector output estimates, the result is the following: 

 
Computational Notes 
We defined the unbalanced SAM as Z2 and the presumed correct row and column totals as u. 
We apply the RAST function with the left argument as Z2 and the right argument a two-row 
matrix with u comprises both rows. We store the result, the balanced SAM, as ZNEW. 

Prod. Cons. Capital ROW Totals
 Estimated 

Totals 
Producers 0 600 65 45 710 660
Consumers 700 0 -25 15 690 600
Capital 0 40 0 0 40 40
Rest of World 50 10 0 0 60 60
Totals 750 650 40 60 1,500 1,360

Prod. Cons. Capital ROW Totals
Producers -            560        40         60         660        
Consumers 600        -            -            0           600        
Capital -            40         -            -            40         
Rest of World 60         0           -            -            60         
Totals 660        600        40         60         1,360     
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     Z2←4 4⍴0 600 65 45 700 0 ¯25 15 0 40 0 0 50 10 0 0 
     u←660 600 40 60 
     ZNEW←Z2 RAST 2 4⍴u 

Z2 
         0       600        65        45 
       700         0       ¯25        15 
         0        40         0         0 
        50        10         0         0 
u 
       660       600        40        60 
ZNEW 
         0       560        40        60 
       600         0         0         0 
         0        40         0         0 
        60         0         0         0 

Problem 11.7: Additional Exogenous Information in Balancing SAMs 
This problem explores the use of the RAS technique including additional exogenously specified 
information to balance a SAM using the unbalanced SAM given in Problem 11.6. 

Problem 11.7 Overview 
If, in addition to the estimated totals provided in the unbalanced table, we become aware that the 
elements 23 24 4225, 15, and 10z z z= − = =  in the balanced SAM are fixed, we can use the RAS 
procedure incorporating some fixed exogenous data for these elements (developed in chapter 10) 
to produce a balanced SAM: 

 
Computational Notes 
We define the base SAM transactions matrix as Z2, the vector of target level of total outputs as t, 
and the matrix of known target transactions as ZF, which includes the target transactions and all 
other transactions are 0.  

     Z2←4 4⍴0 600 65 45 700 0 ¯25 15 0 40 0 0 50 10 0 0 
     t←660 600 40 60 
     ZF←4 4⍴0 0 0 0 0 0 ¯25 15 0 0 0 0 0 10 0 0 

Z2 
         0       600        65        45 
       700         0       ¯25        15 
         0        40         0         0 
        50        10         0         0 
t 
       660       600        40        60 
 

Prod. Cons. Capital ROW Totals
Producers 0 550 65 45 660
Consumers 610 0 -25 15 600
Capital 0 40 0 0 40
Rest of Wo 50 10 0 0 60
Totals 660 600 40 60 1,360
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ZF 
         0         0         0         0 
         0         0       ¯25        15 
         0         0         0         0 
         0        10         0         0 

To solve this problem, we modify the RAST function to include the steps for incorporating 
additional information of fixed coefficients in RAS biproportional scaling. The new function, 
RASTRANSF, like RAST developed earlier, takes as its right argument a two-row matrix with, in 
this case, the vector t repeated in the two rows.  The left argument is a 2 x 4 x 4 cube, with Z2 as 
the first “sheet” and ZF as the second. The function returns as its explicit result the 
biproportionately scaled transactions matrix that meets the condition that row and column totals 
are with a specified tolerance, tol, of the target row and column totals (if the RAS process 
successfully converges).   

[ 0]  Z←Z0F RASTRANSF UV;tol;n;k;XD;test;u1;v1;r;s;ZF;Z0 
[ 1] ⍝Basic function for RAS biproportional scaling      
[ 2] ⍝of Transactions with fixed elements                
[ 3] ⍝GLOBAL INPUT: Z0F and rows of UV are u1 v1         
[ 4] ⍝OUTPUT: Z                                          
[ 5]  Z0←Z0F[1;;] ⋄ ZF←Z0F[2;;]                          
[ 6]  nn←2⍴n←1↑⍴Z0 ⋄ tol←0.1 ⋄ lim←500000                
[ 7]  test←'((⌈/|(v-v1))≤tol)∧((⌈/|(u-u1))≤tol)'         
[ 8]  Z←(Z0×ZF=0) ⋄ u1←UV[1;]-+/ZF ⋄ v1←UV[2;]-+⌿ZF      
[ 9] ⍝BEGIN ITERATION                                    
[10]  u←+/Z ⋄ v←+⌿Z ⋄ k←0                                
[11]  →CON×⍳1=⍎test                                      
[12] ⍝----ROW ADJUSTMENT                                 
[13] LOOP:Z←Z×⍉nn⍴r←u1÷u                                 
[14]  u←+/Z ⋄ v←+⌿Z ⋄ k←k+1                              
[15]  →CON×⍳1=⍎test                                      
[16] ⍝----COL ADJUSTMENT                                 
[17]  Z←Z×nn⍴s←v1÷v                                      
[18]  u←+/Z ⋄ v←+⌿Z ⋄ k←k+1                              
[19]  →CON×⍳1=⍎test                                      
[20]  →LOOP×⍳lim>k                                       
[21]  Z←Z+ZF                                             
[22]  →0,0⍴⎕←'**** STOPPED: ',(⍕k),' ITERATIONS ****'    
[23] CON:Z←Z+ZF                                          
[24]  '**** CONVERGENCE: ',(⍕k),' ITERATIONS ****'        

We create the cube including Z2 and ZF as Z0F and present it as the left argument of 
RASTRANSF and reshape t repeating it in two rows as the right argument and the balanced 
matrix (the explicit result) is saved as ZNEW. 

     Z0F←(2,⍴Z2)⍴(,Z2),,ZF 
     ZNEW←Z0F RASTRANSF 2 4⍴t 
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ZNEW 
         0       550        65        45 
       610         0       ¯25        15 
         0        40         0         0 
        50        10         0         0 

Problem 11.8: SAM Multiplier for A U.S. “Macro-SAM”  
The problem explores development of direct, indirect, cross, and total SAM multipliers in their 
multiplicative form using a “macro-SAM” for the U.S. economy for 1988. 

Problem 11.8 Overview 
The US SAM (as reported in Reinert and Roland-Holst, 1992, pp. 173-187) is the following:  

 
 If we consider the first five sectors as the endogenous sectors, the direct, indirect, 
cross, and total multipliers in their multiplicative form, respectively, are given by: 

1

1 .897 0 0 0
0 1 0 0 0

.602 .54 1 0 0

.322 .289 0 1 0

.306 .274 0 .95 1

 
 
 
 =
 
 
 
 

0
M

0 I

, 

US SAM 1988 Prod. Comm. Labor Prop.
Enter-
prises

House-
holds Govt. Capital ROW Taxes Errors Total

Production  4831          4831
Commodities      3235 970 750 431   5386
Labor 2908           2908
Property 1556        117   1673
Enterprises    1589  95 93     1777
Households   2463  1045  556     4064
Government 377  445  138 587  96  18  1661
Capital     594 145   117  -10 846
Rest of World  537  84  2 42     665
Taxes  18          18
Errors & Omissions -10           -10
Total 4831 5386 2908 1673 1777 4064 1661 846 665 18 -10
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2

.714 .524 .795 .581 0 0

.796 .584 .887 .648 0 0
.43 .315 .479 .35 0 0
.23 .169 .256 .363 0 0
.24 .216 .243 .345 0 0

0 0 .847 0 .588 0
.078 0 .153 0 .078 0

0 0 0 0 .334 0
0 .10 0 .05 0 0
0 .003 0 0 0 0

.002 0 0 0 0 0

 
 
 
 
 
 
 =  
 
 
 
 
 
−  

I

M

I

, 

3

1.206 .331 3.296 .167 3.455
.23 1.369 3.675 .186 3.851

.124 .199 2.984 .1 2.079

.071 .132 1.136 1.066 1.191

.078 .135 1.2 .068 2.246
3.469 1.931 2.669 2.488 0 0
.677 1.526 .734 .67 0 0
.413 .333 1.441 .452 0 0
.439 .339 .477 1.436 0 0
.013 .01 .0

=

0

M

0

14 .012 1 0
.007 .005 .008 .007 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 

− − − −  

 and  

 4.301  4.189   3.296   3.448  3.455 3.415    2.640
 3.68    4.67     3.675   3.844  3.851
 2.589  2.521   2.984   2.075  2.079
 1.463  1.444   1.136   2.197  1.191
 1.509  1.488   1.2       2.201  2.246

=M

    3.713    3.321    0   0
3.807    2.943     4.14     3.703    0   0
2.056    1.589    2.235    1.999    0   0   
1.177     .91        1.28     1.322    0   0
1.237    .995      1.319    1.352    0   0

 3.080  3.011   3.233   3.052   3.082
  .849    .828     .807     .758     .762
  .504    .497     .401     .736     .751
    .44    .538     .423     .494     .444
  .012    .016     .012     .013     .01

3.469    1.931    2.669    2.488    0   0   
 .677     1.526     .734      .67       0   0
 .413     .333      1.441    .452      0   0
 .439     .339       .477  

3
 -.009   -.009   -.007    -.007   -.007

  1.436     0   0
 .013      .01        .014     .012      1   0
-0.007  -0.005  -0.008  -0.007     0   1

 
 
 
 
 
 
 
 
 
 
 
  

 

Computational Notes 
We define SAM transactions table ZZ and provide it as the right argument to the function 
SMULT develop earlier. The left argument is a two-element vector, the first of which defines the 
number of endogenous sectors and the second the number of exogenous sectors in the SAM. 
SMULT computes the direct, indirect, cross, and total additive multipliers are M1, M2, M3, and MT 
as global variables.  

 ZZ←0 4831 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3235 970 750 431 0 0 
 ZZ←ZZ,2908 0 0 0 0 0 0 0 0 0 0 1556 0 0 0 0 0 0 0 117 0 0 
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 ZZ←ZZ,0 0 0 1589 0 95 93 0 0 0 0 0 0 2463 0 1045 0 556 0 0 0 0 
 ZZ←ZZ,377 0 445 0 138 587 0 96 0 18 0 0 0 0 0 594 145 0 0 117 
 ZZ←ZZ,0 ¯10 0 537 0 84 0 2 42 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 
 ZZ←11 11⍴ZZ, ¯10 0 0 0 0 0 0 0 0 0 0 
 5 6 SMULT ZZ 

ZZ 
      0   4831      0      0      0      0      0      0      0      0      0 
      0      0      0      0      0   3235    970    750    431      0      0 
   2908      0      0      0      0      0      0      0      0      0      0 
   1556      0      0      0      0      0      0      0    117      0      0 
      0      0      0   1589      0     95     93      0      0      0      0 
      0      0   2463      0   1045      0    556      0      0      0      0 
    377      0    445      0    138    587      0     96      0     18      0 
      0      0      0      0    594    145      0      0    117      0    ¯10 
      0    537      0     84      0      2     42      0      0      0      0 
      0     18      0      0      0      0      0      0      0      0      0 
    ¯10      0      0      0      0      0      0      0      0      0      0 
 M1 
  1.000  0.897  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
  0.000  1.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
  0.602  0.540  1.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
  0.322  0.289  0.000  1.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
  0.306  0.274  0.000  0.950  1.000  0.000  0.000  0.000  0.000  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  1.000  0.000  0.000  0.000  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.000  1.000  0.000  0.000  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.000  0.000  1.000  0.000  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  1.000  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  1.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  1.000 
M2 
  1.000  0.000  0.000  0.000  0.000  0.714  0.524  0.795  0.581  0.000  0.000 
  0.000  1.000  0.000  0.000  0.000  0.796  0.584  0.887  0.648  0.000  0.000 
  0.000  0.000  1.000  0.000  0.000  0.430  0.315  0.479  0.350  0.000  0.000 
  0.000  0.000  0.000  1.000  0.000  0.230  0.169  0.256  0.363  0.000  0.000 
  0.000  0.000  0.000  0.000  1.000  0.242  0.216  0.243  0.345  0.000  0.000 
  0.000  0.000  0.847  0.000  0.588  1.000  0.000  0.000  0.000  0.000  0.000 
  0.078  0.000  0.153  0.000  0.078  0.000  1.000  0.000  0.000  0.000  0.000 
  0.000  0.000  0.000  0.000  0.334  0.000  0.000  1.000  0.000  0.000  0.000 
  0.000  0.100  0.000  0.050  0.000  0.000  0.000  0.000  1.000  0.000  0.000 
  0.000  0.003  0.000  0.000  0.000  0.000  0.000  0.000  0.000  1.000  0.000 
 ¯0.002  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  1.000 
M3 
  1.206  0.331  3.296  0.167  3.455  0.000  0.000  0.000  0.000  0.000  0.000 
  0.230  1.369  3.675  0.186  3.851  0.000  0.000  0.000  0.000  0.000  0.000 
  0.124  0.199  2.984  0.100  2.079  0.000  0.000  0.000  0.000  0.000  0.000 
  0.071  0.132  1.136  1.066  1.191  0.000  0.000  0.000  0.000  0.000  0.000 
  0.078  0.135  1.200  0.068  2.246  0.000  0.000  0.000  0.000  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  3.469  1.931  2.669  2.488  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.677  1.526  0.734  0.670  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.413  0.333  1.441  0.452  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.439  0.339  0.477  1.436  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.013  0.010  0.014  0.012  1.000  0.000 
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  0.000  0.000  0.000  0.000  0.000 ¯0.007 ¯0.005 ¯0.008 ¯0.007  0.000  1.000 
MT 
  4.301  4.189  3.296  3.448  3.455  3.415  2.640  3.713  3.321  0.000  0.000 
  3.680  4.670  3.675  3.844  3.851  3.807  2.943  4.140  3.703  0.000  0.000 
  2.589  2.521  2.984  2.075  2.079  2.056  1.589  2.235  1.999  0.000  0.000 
  1.463  1.444  1.136  2.197  1.191  1.177  0.910  1.280  1.322  0.000  0.000 
  1.509  1.488  1.200  2.201  2.246  1.237  0.995  1.319  1.352  0.000  0.000 
  3.080  3.011  3.233  3.052  3.082  3.469  1.931  2.669  2.488  0.000  0.000 
  0.849  0.828  0.807  0.758  0.762  0.677  1.526  0.734  0.670  0.000  0.000 
  0.504  0.497  0.401  0.736  0.751  0.413  0.333  1.441  0.452  0.000  0.000 
  0.440  0.538  0.423  0.494  0.444  0.439  0.339  0.477  1.436  0.000  0.000 
  0.012  0.016  0.012  0.013  0.013  0.013  0.010  0.014  0.012  1.000  0.000 
 ¯0.009 ¯0.009 ¯0.007 ¯0.007 ¯0.007 ¯0.007 ¯0.005 ¯0.008 ¯0.007  0.000  1.000 
N1 
  1.000  0.897  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
  0.000  1.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
  0.602  0.540  1.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
  0.322  0.289  0.000  1.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
  0.306  0.274  0.000  0.950  1.000  0.000  0.000  0.000  0.000  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  1.000  0.000  0.000  0.000  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.000  1.000  0.000  0.000  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.000  0.000  1.000  0.000  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  1.000  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  1.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  1.000 
N2 
  0.000  0.000  0.000  0.000  0.000  3.415  2.640  3.713  3.321  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  3.807  2.943  4.140  3.703  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  2.056  1.589  2.235  1.999  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  1.177  0.910  1.280  1.322  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  1.237  0.995  1.319  1.352  0.000  0.000 
  3.080  3.011  3.233  3.052  3.082  0.000  0.000  0.000  0.000  0.000  0.000 
  0.849  0.828  0.807  0.758  0.762  0.000  0.000  0.000  0.000  0.000  0.000 
  0.504  0.497  0.401  0.736  0.751  0.000  0.000  0.000  0.000  0.000  0.000 
  0.440  0.538  0.423  0.494  0.444  0.000  0.000  0.000  0.000  0.000  0.000 
  0.012  0.016  0.012  0.013  0.013  0.000  0.000  0.000  0.000  0.000  0.000 
 ¯0.009 ¯0.009 ¯0.007 ¯0.007 ¯0.007  0.000  0.000  0.000  0.000  0.000  0.000 
N3 
  3.301  3.292  3.296  3.448  3.455  0.000  0.000  0.000  0.000  0.000  0.000 
  3.680  3.670  3.675  3.844  3.851  0.000  0.000  0.000  0.000  0.000  0.000 
  1.987  1.981  1.984  2.075  2.079  0.000  0.000  0.000  0.000  0.000  0.000 
  1.141  1.155  1.136  1.197  1.191  0.000  0.000  0.000  0.000  0.000  0.000 
  1.203  1.214  1.200  1.251  1.246  0.000  0.000  0.000  0.000  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  2.469  1.931  2.669  2.488  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.677  0.526  0.734  0.670  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.413  0.333  0.441  0.452  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.439  0.339  0.477  0.436  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.013  0.010  0.014  0.012  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000 ¯0.007 ¯0.005 ¯0.008 ¯0.007  0.000  0.000 
NT 
  4.301  4.189  3.296  3.448  3.455  3.415  2.640  3.713  3.321  0.000  0.000 
  3.680  4.670  3.675  3.844  3.851  3.807  2.943  4.140  3.703  0.000  0.000 
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  2.589  2.521  2.984  2.075  2.079  2.056  1.589  2.235  1.999  0.000  0.000 
  1.463  1.444  1.136  2.197  1.191  1.177  0.910  1.280  1.322  0.000  0.000 
  1.509  1.488  1.200  2.201  2.246  1.237  0.995  1.319  1.352  0.000  0.000 
  3.080  3.011  3.233  3.052  3.082  3.469  1.931  2.669  2.488  0.000  0.000 
  0.849  0.828  0.807  0.758  0.762  0.677  1.526  0.734  0.670  0.000  0.000 
  0.504  0.497  0.401  0.736  0.751  0.413  0.333  1.441  0.452  0.000  0.000 
  0.440  0.538  0.423  0.494  0.444  0.439  0.339  0.477  1.436  0.000  0.000 
  0.012  0.016  0.012  0.013  0.013  0.013  0.010  0.014  0.012  1.000  0.000 
 ¯0.009 ¯0.009 ¯0.007 ¯0.007 ¯0.007 ¯0.007 ¯0.005 ¯0.008 ¯0.007  0.000  1.000 

Problem 11.9: Equivalence of Additive and Multiplicative Direct Multipliers 
This exercise expands the development of SAM multipliers to the multiplicative form using once 
again the macro-SAM specified in Problem 11.8.  

Problem 11.9 Overview 
If we compute the direct multipliers in their additive form, we discover that they are the same as 
those in the multiplicative form, i.e., 1 1=M N , which turns out to be always the case as discussed 
in Section 11.10.5.  

Computational Notes 
The function SMULT as applied in Problem 11.8 also produces the direct, indirect, cross, and 
total multiplicative multipliers, N1, N2, N3, and NT, respectively, all as APL global variables. 

N1 
  1.000  0.897  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
  0.000  1.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
  0.602  0.540  1.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
  0.322  0.289  0.000  1.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
  0.306  0.274  0.000  0.950  1.000  0.000  0.000  0.000  0.000  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  1.000  0.000  0.000  0.000  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.000  1.000  0.000  0.000  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.000  0.000  1.000  0.000  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  1.000  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  1.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  1.000 
N2 
  0.000  0.000  0.000  0.000  0.000  3.415  2.640  3.713  3.321  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  3.807  2.943  4.140  3.703  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  2.056  1.589  2.235  1.999  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  1.177  0.910  1.280  1.322  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  1.237  0.995  1.319  1.352  0.000  0.000 
  3.080  3.011  3.233  3.052  3.082  0.000  0.000  0.000  0.000  0.000  0.000 
  0.849  0.828  0.807  0.758  0.762  0.000  0.000  0.000  0.000  0.000  0.000 
  0.504  0.497  0.401  0.736  0.751  0.000  0.000  0.000  0.000  0.000  0.000 
  0.440  0.538  0.423  0.494  0.444  0.000  0.000  0.000  0.000  0.000  0.000 
  0.012  0.016  0.012  0.013  0.013  0.000  0.000  0.000  0.000  0.000  0.000 
 ¯0.009 ¯0.009 ¯0.007 ¯0.007 ¯0.007  0.000  0.000  0.000  0.000  0.000  0.000 
N3 
  3.301  3.292  3.296  3.448  3.455  0.000  0.000  0.000  0.000  0.000  0.000 
  3.680  3.670  3.675  3.844  3.851  0.000  0.000  0.000  0.000  0.000  0.000 
  1.987  1.981  1.984  2.075  2.079  0.000  0.000  0.000  0.000  0.000  0.000 
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  1.141  1.155  1.136  1.197  1.191  0.000  0.000  0.000  0.000  0.000  0.000 
  1.203  1.214  1.200  1.251  1.246  0.000  0.000  0.000  0.000  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  2.469  1.931  2.669  2.488  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.677  0.526  0.734  0.670  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.413  0.333  0.441  0.452  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.439  0.339  0.477  0.436  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.013  0.010  0.014  0.012  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000 ¯0.007 ¯0.005 ¯0.008 ¯0.007  0.000  0.000 
NT 
  4.301  4.189  3.296  3.448  3.455  3.415  2.640  3.713  3.321  0.000  0.000 
  3.680  4.670  3.675  3.844  3.851  3.807  2.943  4.140  3.703  0.000  0.000 
  2.589  2.521  2.984  2.075  2.079  2.056  1.589  2.235  1.999  0.000  0.000 
  1.463  1.444  1.136  2.197  1.191  1.177  0.910  1.280  1.322  0.000  0.000 
  1.509  1.488  1.200  2.201  2.246  1.237  0.995  1.319  1.352  0.000  0.000 
  3.080  3.011  3.233  3.052  3.082  3.469  1.931  2.669  2.488  0.000  0.000 
  0.849  0.828  0.807  0.758  0.762  0.677  1.526  0.734  0.670  0.000  0.000 
  0.504  0.497  0.401  0.736  0.751  0.413  0.333  1.441  0.452  0.000  0.000 
  0.440  0.538  0.423  0.494  0.444  0.439  0.339  0.477  1.436  0.000  0.000 
  0.012  0.016  0.012  0.013  0.013  0.013  0.010  0.014  0.012  1.000  0.000 
 ¯0.009 ¯0.009 ¯0.007 ¯0.007 ¯0.007 ¯0.007 ¯0.005 ¯0.008 ¯0.007  0.000  1.000 

Problem 11.10: Expanded Interindustry Detail of US SAM 
This problem explores development of multipliers for a SAM expanded with interindustry detail 
using the SAM for the U.S. (1988) introduced in Problem 11.8, which is expanded with the 
interindustry detail shown in Table P11.10.  

Table P11.10 SAM with Expanded Interindustry Detail for United States, 19886 

 

 
6 As reported in Reinert and Roland-Holst (1992).   

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Agric. Mining Const.

Nondur.  
Manuf

Durable 
Manuf.

Transp. & 
Util Trade Finance Services Labor Propty

Enter- 
prises

House- 
holds Govt. Capital

Rest of 
World Tariffs Errors

1 Agriculture 42 0 2 98 8 0 3 8 7 0 0 0 18 7 1 22 0 0 214
2 Mining 0 10 2 82 8 35 0 0 0 0 0 0 1 0 2 8 0 0 148
3 Construction 2 12 1 7 9 21 6 36 18 0 0 0 0 134 358 0 0 0 602
4 Nondurable Manuf. 30 1 35 370 83 37 24 14 149 0 0 0 453 38 4 93 0 0 1332
5 Durable Manuf. 4 3 175 55 480 19 7 4 81 0 0 0 236 97 296 187 0 0 1643
6 Transport & Utilities 5 1 17 66 65 78 46 31 84 0 0 0 310 34 13 26 0 0 774
7 Trade 8 1 72 57 73 11 14 7 50 0 0 0 529 11 56 43 0 0 932
8 Finance 10 3 10 18 25 14 52 20 79 0 0 0 771 16 22 25 0 0 1065
9 Services 5 1 53 68 74 31 124 93 214 0 0 0 917 632 0 27 0 0 2240

10 Labor 33 18 197 218 430 212 385 217 1198 0 0 0 0 0 0 0 0 0 2908
11 Property 60 56 32 142 69 207 147 511 332 0 0 0 0 0 0 117 0 0 1673
12 Enterprise 0 0 0 0 0 0 0 0 0 0 1589 0 96 92 0 0 0 0 1778
13 Households 0 0 0 0 0 0 0 0 0 2463 0 1046 0 556 0 0 0 0 4064
14 Government 8 12 7 28 18 35 127 113 30 445 0 138 587 0 96 0 16 0 1659
15 Capital 0 0 0 0 0 0 0 0 0 0 0 594 145 0 0 117 0 -10 846
16 Rest of World 8 31 0 115 295 75 0 12 2 0 83 0 2 42 0 0 0 0 665
17 Tariffs 0 0 0 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 16
18 Errors & Omissions 0 0 -1 -1 -1 -1 -1 -2 -2 0 0 0 0 0 0 0 0 0 -10

214 148 602 1332 1643 774 932 1065 2240 2908 1673 1778 4064 1659 846 665 16 -10  

US SAM 1988   ($ billions) Total

Total
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Problem 11.10 Overview 
If we consider the first nine sectors as the endogenous sectors, the resulting total multipliers are 
the following:  

[3.245 3.053 3.380 3.647 3.581 2.949 2.769 2.588 2.645 1.000 1.000 1.000 3.302 2.691 4.000 3.160 1.000 1.000]′ =i M   

Computational Notes 
We retrieve the US 1988 SAM from Appendix and define it as ZZ in the APL workspace. We 
then provide ZZ as the right argument to the function SMULT and, as the left argument, specify 
that all sectors the first 9 sectors are endogenous and the remaining 9 are endogenous, i.e., 
provide a two-element vector for which both elements are 9. SMULT delivers the matrix of total 
multipliers MT as a global variable and we compute the vector of total output multipliers mt. 

     9 9 SMULT ZZ 
     mt←+⌿MT 
ZZ 
     42      0      2     98      8      0      3      8      7      0      0      0     18      7      1     22      0      0 
      0     10      2     82      8     35      0      0      0      0      0      0      1      0      2      8      0      0 
      2     12      1      7      9     21      6     36     18      0      0      0      0    134    358      0      0      0 
     30      1     35    370     83     37     24     14    149      0      0      0    453     38      4     93      0      0 
      4      3    175     55    480     19      7      4     81      0      0      0    236     97    296    187      0      0 
      5      1     17     66     65     78     46     31     84      0      0      0    310     34     13     26      0      0 
      8      1     72     57     73     11     14      7     50      0      0      0    529     11     56     43      0      0 
     10      3     10     18     25     14     52     20     79      0      0      0    771     16     22     25      0      0 
      5      1     53     68     74     31    124     93    214      0      0      0    917    632      0     27      0      0 
     33     18    197    218    430    212    385    217   1198      0      0      0      0      0      0      0      0      0 
     60     56     32    142     69    207    147    511    332      0      0      0      0      0      0    117      0      0 
      0      0      0      0      0      0      0      0      0      0   1589      0     96     92      0      0      0      0 
      0      0      0      0      0      0      0      0      0   2463      0   1046      0    556      0      0      0      0 
      8     12      7     28     18     35    127    113     30    445      0    138    587      0     96      0     16      0 
      0      0      0      0      0      0      0      0      0      0      0    594    145      0      0    117      0    ¯10 
      8     31      0    115    295     75      0     12      2      0     83      0      2     42      0      0      0      0 
      0      0      0      8      8      0      0      0      0      0      0      0      0      0      0      0      0      0 
      0      0     ¯1     ¯1     ¯1     ¯1     ¯1     ¯2     ¯2      0      0      0      0      0      0      0      0      0 
MT 
  1.278  0.025  0.031  0.150  0.044  0.023  0.017  0.019  0.020  0.000  0.000  0.000  0.037  0.022  0.033  0.079  0.000  0.000 
  0.026  1.087  0.024  0.109  0.032  0.068  0.011  0.008  0.013  0.000  0.000  0.000  0.025  0.013  0.026  0.042  0.000  0.000 
  0.029  0.103  1.019  0.033  0.024  0.047  0.028  0.049  0.019  0.000  0.000  0.000  0.026  0.093  0.443  0.020  0.000  0.000 
  0.303  0.112  0.180  1.504  0.213  0.144  0.088  0.063  0.134  0.000  0.000  0.000  0.246  0.118  0.168  0.301  0.000  0.000 
  0.125  0.209  0.499  0.212  1.583  0.150  0.070  0.066  0.097  0.000  0.000  0.000  0.171  0.179  0.773  0.498  0.000  0.000 
  0.075  0.051  0.091  0.124  0.113  1.147  0.084  0.055  0.068  0.000  0.000  0.000  0.145  0.067  0.103  0.107  0.000  0.000 
  0.083  0.058  0.170  0.106  0.113  0.051  1.037  0.027  0.044  0.000  0.000  0.000  0.173  0.048  0.182  0.122  0.000  0.000 
  0.083  0.050  0.053  0.057  0.058  0.043  0.076  1.034  0.052  0.000  0.000  0.000  0.231  0.040  0.076  0.075  0.000  0.000 
  0.123  0.111  0.200  0.172  0.159  0.123  0.244  0.172  1.152  0.000  0.000  0.000  0.362  0.474  0.164  0.148  0.000  0.000 
  0.428  0.349  0.714  0.530  0.642  0.500  0.642  0.376  0.721  1.000  0.000  0.000  0.454  0.402  0.589  0.377  0.000  0.000 
  0.497  0.505  0.218  0.357  0.214  0.410  0.281  0.561  0.250  0.000  1.000  0.000  0.285  0.151  0.210  0.198  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  1.000  0.000  0.000  0.000  0.000  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  1.000  0.000  0.000  0.000  0.000  0.000 
  0.083  0.111  0.060  0.077  0.055  0.077  0.161  0.122  0.036  0.000  0.000  0.000  0.070  1.028  0.060  0.050  0.000  0.000 
  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  1.000  0.000  0.000  0.000 
  0.110  0.280  0.121  0.209  0.323  0.166  0.032  0.037  0.041  0.000  0.000  0.000  0.076  0.053  0.171  1.139  0.000  0.000 
  0.002  0.002  0.004  0.010  0.009  0.002  0.001  0.001  0.001  0.000  0.000  0.000  0.002  0.002  0.005  0.004  1.000  0.000 
 ¯0.001 ¯0.001 ¯0.003 ¯0.002 ¯0.002 ¯0.002 ¯0.002 ¯0.002 ¯0.001  0.000  0.000  0.000 ¯0.001 ¯0.001 ¯0.002 ¯0.001  0.000  1.000 
mt 
  3.245  3.053  3.380  3.647  3.581  2.949  2.769  2.588  2.645  1.000  1.000  1.000  3.302  2.691  4.000  3.160  1.000  1.000 
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Chapter 12, Energy Input-Output Analysis 
Chapter 12 explores the extension of the input–output framework to more detailed analysis of 
energy consumption associated with industrial production, including some of the complications 
that can arise when measuring input–output transactions in physical units of production rather 
than in monetary terms of the value of production.  

The chapter reviews early efforts to develop energy input–output analysis and compares 
them with contemporary approaches and examines the strengths and limitations of the 
alternatives commonly used today. Special methodological considerations such as adjusting for 
energy conversion efficiencies are developed along with several illustrative applications, 
including estimation of the energy costs of goods and services, impacts of new energy 
technologies, and energy taxes.  

Energy input-output analysis is increasingly being applied to global scale issues, such as 
the energy embodied in international trade of goods and services. Finally, the role of structural 
change of an input–output economy associated with changing patterns of energy use is 
illustrated, building on the more general approaches developed in Chapter 8.  

The exercise problems for this chapter explore the use of input-output analysis to analyze 
the special case of energy production and use. 

Problem 12.1: Basic Formulations of Energy Input-Output Analysis  
This exercise problem develops two formulations of the energy input-output model from basic 
economic input-output accounts and supplemental information for tracking the flow of energy 
throughout an economy measured in physical units.  

Problem 12. Overview 
Consider the following three-sector input-output economy; two sectors are energy sectors (oil is 
the primary energy sector and refined petroleum is the secondary energy sector): 

Interindustry 
Transactions 

($106) 
Oil Refined 

Petroleum Manuf. Final 
Demand 

Total 
Output 

Crude Oil 0 20 0 0 20 
Refined Petroleum 2 2 2 24 30 
Manufacturing 0 0 0 20 20 

The energy sector transactions are also measured in quadrillions of Btus in the following table: 

Energy Sector 
Transactions 
(1015 Btus) 

Oil Refined 
Petroleum Manuf. Final 

Demand 
Total 

Output 

Crude Oil 0 20 0 0 20 
Refined Petroleum 1 1 1 17 20 
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To formulate an energy input-output model from these data, we first define the customary 
Leontief economic transactions matrix, vector of final demands, and vector of total outputs, 

respectively, all measured in millions of dollars as: 
0 20 0
2 2 2
0 0 0

 
 =  
  

Z  ,
0
24
20

 
 =  
  

f  
20
30
20

 
 =  
  

x . We 

can now compute the economic matrix of technical coefficients as 1

0 .667 0
ˆ .10 .067 .1

0 0 0

−

 
 = =  
  

A Zx  

and the corresponding matrix of total requirements as 1

1.077  .769    .077
( ) .115   1.154   .115

   0         0         1

−

 
 = − ==  
  

L I A .  

The matrix of energy transactions in physical units (quadrillions of Btus) is 
0 20 0
1 1 1
 

=  
 

E ; the vector of energy consumption in final demand, 
0

17
 

=  
 

q , and total energy 

consumption, 
20
20
 

=  
 

g , are also measured in quadrillions of Btus (often referred to as Quads). 

The matrix of implied energy prices, defined as the element-by-element division of E by the 
corresponding elements in the energy rows of Z where transactions are nonzero and zero 

otherwise, is 
0 1 0
2 2 2
 

=  
 

P .  

The traditional energy input-output formulation specifies the direct energy requirements 

as 1( )−= − +ε D I A Q   where 1 0 .667 0
ˆ

.05 .033 .05
−  

= =  
 

D Ex   and the elements of Q  are defined 

as /k kq f  for energy sectors and zero otherwise. In this case, 
0 0 0
0 .708 0
 

=  
 

Q , so we find 

1 .077  .769  .077
( )

.058  .785  .058
−  

= − + =  
 

ε D I A Q . Note that this suggests a million dollars’ worth of final 

demand for manufacturing in this economy would require production of 0.785 Quads of refined 
petroleum but only 0.769 Quads of crude oil, which is not sensible since the structure of this 
economy is that refined petroleum is a secondary energy sector receiving all its energy input 
from the primary energy sector, Crude Oil, so the primary and secondary energy consumption 
(aside from any energy conversion efficiencies) should be the same, often referred to as an 
energy conservation condition. 

To formulate these data instead as a hybrid units energy input output model, we first 
define the matrix of transactions in hybrid units, the vector of final demands, and the vector of 
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total outputs, respectively, as *

0  20  0
1   1   1
0   0   0

 
 =  
  

Z , *

0
17
20

 
 =  
  

f , and *

20
20
20

 
 =  
  

x  where energy rows are 

measured in Quads and nonenergy rows are measured in millions of dollars. We can now 

compute *

0 1 0
.05 .05 .05
0 0 0

 
 =  
  

A  and * * 1

1.056  1.111  0.056
( ) 0.056  1.111  0.056

    0         0        1 

=

 
 = − ==  
  

L I A which is easy to see 

conforms to the energy conservation condition. 

Computational Notes 
We define the matrix of interindustry transactions Z, the vectors of total outputs x and of total 
final demands f, the matrix of energy transactions E, the vector of energy deliveries to final 
demand q, and the vector of total energy outputs g. 

     Z←3 3⍴0 20 0 2 2 2 0 0 0 ⋄ x←20 30 20 ⋄ f←0 24 20 
     E←2 3⍴0 20 0 1 1 1 ⋄ q←0 17 ⋄ g←20 20   

For the first two sectors of this economy which are defined as energy sectors, we compute the 
matrix of implied energy prices Q, the matrix of direct energy requirements D, and the matrix of 
final demand energy coefficients QT. We also compute the matrix of technical coefficients A and 
the associated Leontief inverse L so that we can compute the matrix of total energy requirements 
e, using the traditional form of energy input-output analysis. 

⍝-- implied energy prices 
 Q←(Z[⍳2;]≠0)×E÷Z[⍳2;] 
⍝-- direct energy requirements 
 D←E+.×DIAG ÷x 
 QT←2 3↑DIAG (q≠0)×q÷2↑f 
⍝--  total energy requirements 
 e←QT+D+.×L←LINV A←Z AMAT x 

Q 
     0.000     1.000     0.000 
     0.500     0.500     0.500 
D 
     0.000     0.667     0.000 
     0.050     0.033     0.050 
QT 
     0.000     0.000     0.000 
     0.000     0.708     0.000 
L 
     1.077     0.769     0.077 
     0.115     1.154     0.115 
     0.000     0.000     1.000 
e 
     0.077     0.769     0.077 
     0.058     0.785     0.058 
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To create the hybrid-units transactions matrix ZS we replace the energy rows of Z with E. For 
the vectors expressed in hybrid units of total outputs xs and of final demands fs we replace the 
energy sector elements of x and f, respectively, with g and q. Finally, we can compute hybrid-
units direct requirements matrix AS and the associated hybrid-units total requirements matrix LS, 
the first two rows of which (the energy sectors) comprise the hybrid units total energy 
requirements matrix. 

           ZS←E,[1]Z[3;] ⋄ xs←g,x[3] ⋄ fs←q,f[3] 
      LS←LINV AS←ZS AMAT xs 

      ZS 
0 20 0 
1  1 1 
0  0 0 
      fs 
0 17 20 
      xs 
20 20 20 
      AS 
0.000     1.000     0.000 
0.050     0.050     0.050 
0.000     0.000     0.000 
      LS 
1.056     1.111     0.056 
0.056     1.111     0.056 
0.000     0.000     1.000 

Problem 12.2: Energy Input-Output Analysis in Policy Analysis 
The problem illustrates the typical use of the traditional energy input-output model in public 
policy analysis.  

Problem 12.2 Overview 
Consider the following input-output transactions table in value terms (millions of dollars) for two 
industries—A and B: 

 A B Total Output 
A 2 4 100 
B 6 8 100 

Suppose we have a direct energy requirements matrix for this economy that is given by: 

15

15

.2 .3 10  Btus of oil per million dollars of output
 

.1 .4 10  Btus of coal per million dollars of output
=
 
  

D   

If for simplicity we ignore energy consumption by final demand, we compute the total energy 

requirements matrix, 
.225   .336
.129   .440
 

= =  
 

ε DL where the matrices of technical requirements and 

total requirements are, respectively, 
.02   .04
.06   .08
 

=  
 

A  and 1 1.023   .044
( )

 .067    1.09
−  

= − =  
 

L I A . 
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Suppose further that the final demands for industries A and B are projected to be $200 
million and $100 million respectively for the next year. The net increase in energy (both oil and 
gas) required to support this new final demand (again, neglecting energy consumed directly by 

final demand) is found by 
28.5
19.8
 

∆ = ∆ =  
 

g DL f . We can determine how much of the total energy 

produced to supply this net increase in final demand is direct energy consumption
25.4
16.2

direct  
∆ = ∆ =  

 
g D f  where 

200 94 106
100 86 14

new      
∆ = − = − =     

     
f f f . The amount of indirect 

energy consumption can be found as 
3.1
3.6

indirect direct  
∆ = ∆ −∆ =  

 
g g g .  

Finally, suppose an energy conservation measure in industry B causes the direct energy 
requirement of that industry for coal to be reduced from 0.4 to 0.3 (1015 Btus of coal per dollar of 
output of industry B). The resulting changes in direct and total energy requirements matrices are 

.2 .3

.1 .3
 

=  
 

D and 
.225   .336
.122   .331
 

=  
 

DL , respectively. Hence the new change in total energy to 

support final demand, ∆f , is 
28.5
17.6
 

∆ = ∆ =  
 

g DL f . The direct portion is, once again, 

25.4
14.8

direct  
∆ = ∆ =  

 
g D f  so the indirect portion is 

3.1
2.8

indirect direct  
∆ = ∆ −∆ =  

 
g g g .  

Hence, the differences in total energy consumption before and after the energy 

conservation measure are given by
28.5 28.5 0
19.8 17.6 2.2
     

− =     
     

; the differences in direct energy 

consumption are given by 
25.4 25.4 0
16.2 14.8 1.4
     

− =     
     

; and the differences in indirect energy 

consumption are given by 
3.1 3.1 0
3.6 2.8 0.8
     

− =     
     

. 

Computational Notes 
We define the matrix of interindustry transactions Z, the vectors of total outputs x and of final 
demands f, as well as the matrix of direct energy coefficients D, and a vector of new final 
demands presented to the economy fn. 

     Z←2 2⍴2 4 6 8 ⋄ x←100 100 ⋄ f←94 86 
     D←2 2⍴0.2 0.3 0.1 0.4 ⋄ fn←200 100 

We can then compute the matrix of technical requirements A and the Leontief inverse L in order 
to compute the matrix of total energy requirements e using the traditional energy input-output 
formulation. We can then generate the vector of changes in final demand ∆f and the associated 
interindustry energy consumption attributed to those changes in terms of the vector of direct 
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energy consumption DX and the vector of indirect energy consumption IX, which if summed is 
the total interindustry energy consumption TX. 

     e←D+.×L←LINV A←Z AMAT x 
     IX←(TX←e+.×∆f)-DX←D+.×∆f←fn-f 

     Z 
15 20 
     f 
94 86 
     x 
100 100 
  
     D 
0.200     0.300 
0.100     0.400 
     A 
0.020     0.040 
0.060     0.080 
     L 
1.023     0.044 
0.067     1.090 
     e 
0.225     0.336 
0.129     0.440 
     ∆f 
106 14 
     DX 
25.400    16.200 
     TX 
28.514    19.840 
     IX 
3.114     3.640 

We specify the modified matrix of direct requirements as D2 and compute the revised total 
energy requirements matrix e2. For the same vector of changes in final demand ∆f, we compute 
the vector of total interindustry consumption TX2, which is the sum of the vector of the direct 
energy consumption DX2 and the vector of indirect energy consumptions IX2. Finally, we 
compute the change in energy consumption associated with the change for D to D2 as ∆TX, 
which is the sum the direct and indirect components ∆DX and ∆IX. 

     D2←2 2⍴0.2 0.3 0.1 0.3 
     e2←D2+.×L 
     IX2←(TX2←e2+.×∆f)-DX2←D2+.×∆f 
     ∆DX←DX-DX2 ⋄ ∆IX←IX-IX2 ⋄ ∆TX←TX-TX2   

     D2 
0.2 0.3 
0.1 0.3 
     DX2 
25.400    14.800 
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     TX2 
28.514    17.607 
     IX2 
3.114     2.807 
     ∆DX 
0.000     1.400 
     ∆IX 
0.000     0.833 
     ∆TX 
0.000     2.233 

Problem 12.3: Total Energy Impacts of Changes in Nonenergy Final Demand 
This problem uses the energy input-output formulation to illustrate computation of the total 
energy impacts of a change in nonenergy final demand.  

Problem 12.3 Overview 
Consider the following input-output table ($106): 

 Transactions Total Output Autos Oil Electricity 
Autos 2 6 1 10 

Oil 0 0 20 20 
Electricity 3 2 1 30 

Assume that there is a matrix of implied inverse energy prices for this economy given by the 
following (inverse because the measure is millions of dollars per billion Btu rather than vice 
versa): 

 Autos Oil Electricity Final 
Demand 

Oil 0 0 0.4082 0 
Electricity 0.3333 0.2857 0.5 1.2912 

 

We define the basic economic data of the matrix transactions and vectors of total outputs 

and final demands, respectively, as 
2 6 1
0 0 20
3 2 1

 
 =  
  

Z , 
10
20
30

 
 =  
  

x , and

10 9 1
20 20 0
30 6 24

     
     = − = − =     
          

f x Zi . 

We can compute the energy transactions physical units (billions of Btus) by, first, defining the 

matrix of implied inverse energy prices from the table as 
0 0 0.408

0.333 0.286 0.5
 

=  
 

Q . If we 
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multiply, element by element, Q and the energy rows of Z, the energy transactions matrix 

measured in physical units is 
0 0 49
9 7 2
 

=  
 

E .  

Using the energy sector elements of the computed economic final demands, 
0
24
 
 
 

, 

multiplied, element by element, by the inverse energy prices for final demand from the table, 
0

1.2912
 
 
 

, yields the vector of energy consumption in final demand measured in physical units, 

0
31
 

=  
 

q , from which we can now compute the total energy consumption as 
49
49
 

= + =  
 

g Ei q . 

We can express the energy flows as the energy rows in a hybrid units transactions matrix and 
corresponding vectors of final demands and total outputs: 

* * *

2 6 1 1 10
0 0 49  , 0  and 49
9 7 2 31 49

     
     = = =     
          

Z f x and * * * 1

.2 .122 .02
ˆ( ) 0 0 1

.9 .143 .041

−

 
 = =  
  

A Z x . The direct 

energy requirements matrix is then defined as the energy rows of *A . For this economy 
0 49 0
0 0 49
 

=  
 

G  so the direct energy coefficients can be computed as 

* 1 * 0 0 1
ˆ( )

.9 .143 .041
−  

=  
 

G x A  . 

If a final demand vector of $2 million worth of autos and 18 quadrillion Btus of 
electricity is presented to this economy, the total amount of energy (of each type) required to 
support this final demand is found by first retrieving the energy rows of *L , 

* * 1

1.556  0.229  0.272
( ) 1.716  1.428  1.526

1.716  0.428  1.526

−

 
 = − =  
  

L I A ,which defines the total energy requirements matrix, 

* 1 * 1.716  1.428  1.526
ˆ( )

1.716  0.428  1.526
−  

= =  
 

α G x L . Then, for *

2
0

18

 
 ∆ =  
  

f  we compute the total energy 

consumption as *  30.887
 30.887
 

∆ = ∆ =  
 

g α f . 
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If we alternatively use the traditional energy input-output formulation, using the energy 

prices defined above for final demand we can first compute 
   2
   0
23.2

 
 ∆ =  
  

f  and then 

48.2
450.9
 

∆ = ∆ =  
 

g ε f  for 
.2 .3 .033
0 0 .667
.3 .1 .033

 
 =  
  

A , 
1.385   .451     .359
.308    1.174    .821
.462     .262    1.231

 
 =  
  

L  and 

.754    .427   2.010
1.385  .835   19.280
 

= + =  
 

ε DL Q  where 
0 0 0
0 0 18.587
 

=  
 

Q is the matrix of implied inverse 

energy prices for final demand. The elements of [ ]kq=Q  are defined by
when energy sector  and industry sector are the same sec1 ,

0,
tor

otherwise
kf

k

k jp
q 

= 


  

Computational Notes 
Define the economic interindustry transactions table Z and the vectors of total outputs x and of 
total final demands f. Also define the implied energy price matrices for interindustry transactions 
P and for final demands Q. 

      Z←3 3⍴2 6 1 0 0 20 3 2 1 ⋄ x←10 20 30 ⋄ f←1 0 24 
      P←2 3⍴0 0 0.4082 0.3333 0.2857 0.5 ⋄ Q←2 3⍴0 0 0 0 0 1.2912 

Z 
         2         6         1 
         0         0        20 
         3         2         1 
f 
         1         0        24 
x 
        10        20        30 
P 
    0.0000    0.0000    0.4082 
    0.3333    0.2857    0.5000 
 

Q 
    0.0000    0.0000    0.0000 
    0.0000    0.0000    1.2912 

Compute the energy transactions matrix E and, using Q, compute the energy deliveries to 
final demand q. Then, compute the vector of total energy outputs g and the hybrid-units matrix 
of transactions ZS and the vectors expressed in hybrid units of total final demand fs and of total 
outputs xs. Finally, compute the hybrid-units matrix of direct requirements AS.  

E←(P≠0)×Z[2 3;]÷P+(P=0) 
q←Q+.×f 
g←q++/E 
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ZS←Z[1;],[1]E ⋄ fs←f[1],q ⋄ xs←x[1],g 
AS←ZS AMAT xs 

E 
       0.0       0.0      49.0 
       9.0       7.0       2.0 
q 
       0.0      31.0 
g 
      49.0      49.0 
ZS 
       2.0       6.0       1.0 
       0.0       0.0      49.0 
       9.0       7.0       2.0 
fs 
       1.0       0.0      31.0 
xs 
      10.0      49.0      49.0 
 

AS 
     0.200     0.122     0.020 
     0.000     0.000     1.000 
     0.900     0.143     0.041 

From the elements of g, construct the matrix to G to enable computing the matrix GS for 
extracting the energy rows from hybrid-units matrices AS, defining the hybrid-units matrix of 
direct energy requirements DS, and extracting the energy rows the hybrid units matrix of total 
requirements LS, defining the matrix of total energy requirements ALPHA. 

      G←2 3⍴0,g[1],0 0 0 g[2] 
      GS←G+.×DIAG ÷xs 
      DS←GS+.×AS 
      ALPHA←GS+.×LS←LINV AS 
       
G 
         0        49         0 
         0         0        49 
GS 
         0         1         0 
         0         0         1 
DS 
     0.000     0.000     1.000 
     0.900     0.143     0.041 
LS 
     1.557     0.230     0.272 
     1.717     1.428     1.526 
     1.716     0.428     1.526 
ALPHA 
     1.717     1.428     1.526 
     1.716     0.428     1.526 
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Define the new vector of final demands in hybrid units ∆f and use ALPHA to compute 
the vector of total energy consumption ∆gs necessary to deliver the new final demands. 

      ∆gs←ALPHA+.×∆fs←2 0 18 

∆fs 
2 0 18 
∆gs 
30.898167 30.898167 

 For the traditional energy input-output formulation we must express the new vector of 
final demands in economic units rather than hybrid units, which we call ∆f. From Z and x we 
can compute the matrix of technical coefficients in economic rather than hybrid-units A and the 
Leontief inverse L. From E and x we can compute the matrix of direct energy coefficients D and 
the energy coefficients for deliveries to final demand Gf from which we finally compute the total 
energy coefficients EPS and use EPS to compute the total energy consumption supporting ∆f, 
which we label ∆g. 

∆f←∆fs×1 1 1.2912 
L←LINV A←Z AMAT x 
D←E÷2 3⍴x 
Gf←2 3⍴0 ⋄ Gf[2;3]←f[3]÷Q[2;3] 
EPS←Gf+D+.×L 
∆g←EPS+.×∆f 

∆f 
       2.0       0.0      23.2 
A 
     0.200     0.300     0.033 
     0.000     0.000     0.667 
     0.300     0.100     0.033 
L 
     1.385     0.451     0.359 
     0.308     1.174     0.821 
     0.462     0.262     1.231 
D 
     0.000     0.000     1.633 
     0.900     0.350     0.067 
Gf 
     0.000     0.000     0.000 
     0.000     0.000    18.587 
EPS 
     0.754     0.427     2.010 
     1.385     0.835    19.280 
∆g 
      48.2     450.9 

Problem 12.4: Energy Conservation Conditions 
This problem explores the conditions for energy conservation in an input-output model. The 
energy conservation conditions in an input-output model can be expressed as ˆ = +αx αZ G  where 
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α  is the matrix of total energy coefficients, Z is the matrix of interindustry transactions, x is the 
vector of total outputs, and G is the matrix of primary energy outputs.  

We can show that the hybrid-units formulation of the energy input-output model—that is, 
where x is replaced by *x and Z is replaced by *Z —satisfies these conditions in general: 

* * * * * * * *ˆ ˆ ˆ ˆ and ,  so  = + = = +αx αZ G Z A x αx αA x G .  Rearranging, this becomes * *ˆ( )− =α I A x G    
or * 1 * 1ˆ( ) ( )− −= −α G x I A , which is the definition of the total energy requirements matrix in the 
hybrid-units energy input-output formulation.  

 Given the following two tables of total energy coefficients, we adopt the convention that 
crude oil is a primary energy sector while refined petroleum and electricity are both secondary 
energy sectors. 

Case 1 Crude Oil Refined Petroleum Electricity Autos 
Crude Oil 0 .6 .5 .3 

Refined Petroleum 0 .4 .5 .2 
Electricity 0 .2 0 .1 

 
Case 2 Crude Oil Refined Petroleum Electricity Autos 

Crude Oil 0 .6 .5 .3 
Refined Petroleum 0 .4 .2 .1 

Electricity 0 .2 0 .1 
Case 1 satisfies the energy conservation conditions, since [ ]. . .6 .5 .3ref pet elec crude+ = =α α α   i.e., 
the sum of all secondary energy consumed for energy type in the economy equals the total 
primary energy consumed by each energy sector.  Case 2 fails to satisfy the energy conservation 
conditions, since [ ]. . .6 .2 .2 [.6 .5 .3]ref pet elec crude+ = ≠ =α α α  

Problem 12.5: Comparison of Total Energy Requirements 
This problem compares the total energy requirements matrices for the traditional and 
contemporary energy input-output formulations. 

Problem 12.5 Overview 

Consider an input-output economy defined (in $106 units) by 
0 10 0
5 5 5 ,
0 0 0

=
 
 
 
  

Z
0
25
20

=
 
 
 
  

f , and 

10
40
20

=
 
 
 
  

x . The first two of the three industries are energy industries with patterns of output 

allocation expressed in energy terms (1015 Btus) for interindustry transactions, 
0 40 0
5 5 15

=
 
  

E , 
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and for final demand, 
0

15
=
 
  

g . First, we compute the direct and total requirements as 

0 .25 0 1.17 .33 .08
.5 .13 .25  and .67 1.33 .33 .
0 0 0 0 0 1

   
   = =   
      

A L   

 With the traditional energy input-output analysis formulation we have  

.67 1.33 .33

.67 .94 .83
 

= + =  
 

ε DL Q  where 1 0 1 0
ˆ

.5 .13 .75
−  

= =  
 

D Ex  and 
0 0 0
0 0.6 0
 

=  
 

Q . 

 With the hybrid-units formulation we have *

0 40 0
5 5 15
0 0 0

 
 =  
  

Z , *

40
40
20

 
 =  
  

x , 

40 0 0
0 40 0

 
=  
 

G  and *

0 1 0
.13 .13 .75
0 0 0

 
 =  
  

A , so * 1 * 1 1.167 1.333 1.0
ˆ( ) ( )

.167 1.333 1.0
− −  

= − =  
 

α G x I A . 

Computational Notes 
Define the matrix of interindustry transactions Z and the vector of total outputs x. Also, define 
the matrix of energy transactions E and the vector of energy deliveries to final demand q. We 
compute the vector of final demands f and the vector of total energy consumption g.  

     Z←3 3⍴0 10 0 5 5 5 0 0 0 ⋄ x←10 40 20 
     E←2 3⍴0 40 0 5 5 15 ⋄ q←0 15 
     f←x-+/Z ⋄ g←q++/E 

Z 
         0        10         0 
         5         5         5 
         0         0         0 
f 
         0        25        20 
x 
        10        40        20 
E 
         0        40         0 
         5         5        15 
q 
         0        15 
g 
        40        40 

For the traditional method, we compute the matrix of technical coefficients A, the Leontief 
inverse L, the direct energy requirements D, the matrix of coefficients for energy deliveries to 
final demand QT, and finally the total energy coefficients, EPS. 
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     L←INV A←Z AMAT x ⋄ D←E+.×DIAG ÷x ⋄ QT←(DIAG 0 0.6),2 1⍴0 
     EPS←QT+D+.×L 

A 
     0.000     0.250     0.000 
     0.500     0.125     0.250 
     0.000     0.000     0.000 
L 
     1.167     0.333     0.083 
     0.667     1.333     0.333 
     0.000     0.000     1.000 
D 
     0.000     1.000     0.000 
     0.500     0.125     0.750 
QT 
     0.000     0.000     0.000 
     0.000     0.600     0.000 
EPS 
     0.667     1.333     0.333 
     0.667     0.933     0.833 

For the hybrid-units formulation, we assemble the hybrid units transactions table ZS with 
the energy rows from E and the other rows from Z. Similarly, the hybrid-units vector of total 
final demands fs is assembled from the q for the energy sectors and f for the other sectors. With 
ZS and fs we can compute the hybrid-units vector of total outputs xs and the we can then we 
can compute the hybrid-units matrices of direct requirements AS and the hybrid units matrix of 
total requirements LS. From the elements of g, we construct the matrix G to enable computing 
the matrix GS for extracting the energy rows from LS, defining the matrix of total energy 
requirements ALPHA. 

     ZS←E,[1]Z[3;] ⋄ fs←q,f[3] ⋄ xs←fs++/ZS 
     LS←LINV AS←ZS AMAT xs 
     G←(DIAG g),2 1⍴0 ⋄ GS←G+.×(DIAG ÷xs) 
     ALPHA←GS+.×LS 

ZS 
         0        40         0 
         5         5        15 
         0         0         0 
fs 
         0        15        20 
xs 
        40        40        20 
AS 
     0.000     1.000     0.000 
     0.125     0.125     0.750 
     0.000     0.000     0.000 
LS 
     1.167     1.333     1.000 
     0.167     1.333     1.000 
     0.000     0.000     1.000 
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G 
    40.000     0.000     0.000 
     0.000    40.000     0.000 
GS 
     1.000     0.000     0.000 
     0.000     1.000     0.000 
ALPHA 
     1.167     1.333     1.000 
     0.167     1.333     1.000 

Problem 12.6: Hybrid-Units Energy Input-Output Model and Impact Analysis 
This problem illustrates use of the hybrid-units energy input-output model in impact analysis. 

Problem 12.6 Overview 
Consider the following hybrid units transactions matrix and vector of total outputs, i.e., the first 
three rows of the energy sectors (oil, coal, and electricity) are measured in millions of Btu and 

the last row, manufacturing, is measured in millions of dollars: *

0 0 40 0
0 0 60 0
2 3 12 48

15 20 30 40

=

 
 
 
 
  

Z  and 

*

40
60

100
200

=

 
 
 
 
  

x . Using * * * 1ˆ( )−=A Z x  we can compute *

0 0 .4 0
0 0 .6 0

.05 .05 .12 .24
.375 .333 .3 .24

 
 
 =
 
 
 

A  and 

* * 1

1.1024    .0945     .6299      .1890
 .1535    1.1417    .9449      .2835

( )
 .2559     .2362    1.5748     .4724
 .6767     .6086    1.2795    1.6339

−

 
 
 = − =
 
 
 

L I A .  

If we project a final demand for manufactured goods will increase by $200 billion, the 
change in final demand can be written as [ ]*( ) 0 0 0 200′∆ =f  so the corresponding change 

in total energy consumption can be expressed as * 1 * *

37.7953
ˆ( ) 56.6929

0

−

 
 ∆ = ∆ =  
  

g G x L f  where 

* 1

1 0 0 0
ˆ( ) 0 1 0 0

0 0 0 0

−

 
 =  
  

G x .  The total primary energy intensity is 94.4882′ =i Δg . 

Computational Notes 
We everything assumed in hybrid units, we define the interindustry transactions matrix Z and 
vector of total outputs x, and the vector of expected changes in final demand ∆f.  We compute 
the matrix of technical coefficients A and the Leontief inverse L. 
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     Z←4 4⍴0 0 40 0 0 0 60 0 2 3 12 48 15 20 30 40 
     x←40 60 100 200 ⋄ ∆f←0 0 0 200 
     L←INV A←Z AMAT x 

Z 
         0         0        40         0 
         0         0        60         0 
         2         3        12        48 
        15        20        30        40 
 

x 
        40        60       100       200 
A 
    0.0000    0.0000    0.4000    0.0000 
    0.0000    0.0000    0.6000    0.0000 
    0.0500    0.0500    0.1200    0.2400 
    0.3750    0.3333    0.3000    0.2000 
L 
    1.1024    0.0945    0.6299    0.1890 
    0.1535    1.1417    0.9449    0.2835 
    0.2559    0.2362    1.5748    0.4724 
    0.6767    0.6086    1.2795    1.6339 

We construct the matrix GS to extract only the primary energy sectors from hybrid-units matrices 
and compute the total primary energy coefficients ALPHA and subsequently the value for 
primary energy intensity pei. 

     GS←3 4⍴1 0 0 0 0 1 0 0 0 0 0 0 
     ALPHA←GS+.×L 
     pei←+⌿∆g←ALPHA+.×∆f 

GXI 
         1         0         0         0 
         0         1         0         0 
         0         0         0         0 
ALPHA 
    1.1024    0.0945    0.6299    0.1890 
    0.1535    1.1417    0.9449    0.2835 
    0.0000    0.0000    0.0000    0.0000 
∆f 
         0         0         0       200 
∆g 
   37.7953   56.6929    0.0000 
  
pei 
   94.4882 

Problem 12.7: Impacts of New Energy Technologies 
This problem illustrates the use of energy input-output analysis to evaluate the relative impact of 
alternative energy technologies on total energy consumption.  
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Problem 12.7 Overview 
For the economy specified in Problem 12.6, two alternative technologies are proposed for 
generating electric power, which involve alternative new specifications for the matrix of 
technical coefficients depicting different “recipes” for electric power production in the economy, 

*( )IA and *( )IIA . For the original electric power generation column of the technical coefficients 

matrix is given by *A , suppose the two alternative changed columns of the technical coefficients 

matrix corresponding to the alternative technologies are given by *( )
3

.2

.7

.1

.4

I
• =

 
 
 
 
  

A  and *( )
3

.5

.4
.12
.4

II
• =

 
 
 
 
  

A  

as well as a vector of new final demands of *

0
0
20
30

∆ =

 
 
 
 
  

f  is presented to the economy.  

To determine which economy [matrix incorporating the specifications *A , *( )IA  or *( )IIA
] reflects the most energy intensive manufacturing, i.e., which one of the two new technologies 
consumes the least primary energy per unit of final demand of manufacturing and how much less 
primary energy does that technology consume than the other to support final demand *∆f , first 
using * * * 1ˆ( )−=A Z x  for the alternative power generation technologies, I and II, we can specify 
the corresponding matrices of technical coefficients and total requirements as 

*( )

0 0 .2 0
0 0 .7 0

.05 .05 .1 .24
.375 .333 .4 .20

I

 
 
 =
 
 
 

A , *( ) 1

1.0506    .0467      .3113      .0934
 .1770    1.1634    1.0895     .3268

( )
 .2529     .2335     1.5564     .4669
 .6927     .6234     1.3781    1.6634

I −

 
 
 − =
 
 
 

I A , 

*( )

0 0 .5 0
0 0 .4 0

.05 .05 .12 .24
.375 .333 .4 .2

II

 
 
 =
 
 
 

A  and *( ) 1

1.1313    .1212     .8081      .2424
 .1051    1.0970    .6465      .1939

( )
 .2626     .2424    1.6162     .4848
 .7054     .6351    1.4562    1.6869

II −

 
 
 − =
 
 
 

I A . 

If we designate the technical coefficients of original economy by *(0)A , the total energy 
consumption associate with the new final demand, *∆f , is (0) * 1 *(0) 1ˆ( ) ( )− −= −Δg G x I A Δf  and for 
the technical coefficients modified by the two alternative technologies, 

( ) * 1 *( ) 1ˆ( ) ( )I I− −= −Δg G x I A Δf  and ( ) * 1 *( ) 1ˆ( ) ( )II II− −= −Δg G x I A Δf , respectively where 



2021 August 7 

-269- 
 

* 1

1 0 0 0
ˆ( ) 0 1 0 0

0 0 0 0

−

 
 =  
  

G x  and *

0
0
20
30

 
 
 ∆ =
 
 
 

f , we can write 

(0) ( ) ( )

18.2677   9.0272 23.4343
27.4016 31.5953 18.7475
      0      0      0

I II

 
  ∆ = ∆ ∆ ∆ =   
  

g g g g  which provides the total energy of 

each fuel type to support *∆f .  

The total primary energy intensity is given by [ ]( ) 45.6693   40.6226   42.1818′ ∆ =i g , so 
employment of technology I consumes 1.5592 less primary energy than employment of 
technology II.  Both new technologies I and II are more efficient than the base technology. 

Computational Notes 
We define the matrix of interindustry transactions Z and the vector of total outputs x. We also 
define the new final demand ∆f. Now we compute the matrix of technical coefficients for the 
original economy A0 and the associated Leontief inverse L0. We also construct the two 
modified matrices of technical coefficients reflected the new technologies A1 and A2 along with 
their respective Leontief inverses, L1 and L2. 

 Z←4 4⍴0 0 40 0 0 0 60 0 2 3 12 48 15 20 30 40 
 x←40 60 100 200 ⋄ ∆f←0 0 20 30  
 L0←LINV A2←A1←A0←Z AMAT x 
 A1[;3]←0.2 0.7 0.1 0.4 ⋄ A2[;3]←0.5 0.4 0.12 0.4 
 L1←LINV A1 ⋄ L2←LINV A2 

A0 
    0.0000    0.0000    0.4000    0.0000 
    0.0000    0.0000    0.6000    0.0000 
    0.0500    0.0500    0.1200    0.2400 
    0.3750    0.3333    0.3000    0.2000 
L0 
    1.1024    0.0945    0.6299    0.1890 
    0.1535    1.1417    0.9449    0.2835 
    0.2559    0.2362    1.5748    0.4724 
    0.6767    0.6086    1.2795    1.6339 
A1 
    0.0000    0.0000    0.2000    0.0000 
    0.0000    0.0000    0.7000    0.0000 
    0.0500    0.0500    0.1000    0.2400 
    0.3750    0.3333    0.4000    0.2000 
L1 
    1.0506    0.0467    0.3113    0.0934 
    0.1770    1.1634    1.0895    0.3268 
    0.2529    0.2335    1.5564    0.4669 
    0.6927    0.6234    1.3781    1.6634 
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A2 
    0.0000    0.0000    0.5000    0.0000 
    0.0000    0.0000    0.4000    0.0000 
    0.0500    0.0500    0.1200    0.2400 
    0.3750    0.3333    0.4000    0.2000 
L2  
    1.1313    0.1212    0.8081    0.2424 
    0.1051    1.0970    0.6465    0.1939 
    0.2626    0.2424    1.6162    0.4848 
    0.7054    0.6351    1.4562    1.6869 

A0 
    0.0000    0.0000    0.4000    0.0000 
    0.0000    0.0000    0.6000    0.0000 
    0.0500    0.0500    0.1200    0.2400 
    0.3750    0.3333    0.3000    0.2000 
L0 
    1.1024    0.0945    0.6299    0.1890 
    0.1535    1.1417    0.9449    0.2835 
    0.2559    0.2362    1.5748    0.4724 
    0.6767    0.6086    1.2795    1.6339 
  
A1 
    0.0000    0.0000    0.2000    0.0000 
    0.0000    0.0000    0.7000    0.0000 
    0.0500    0.0500    0.1000    0.2400 
    0.3750    0.3333    0.4000    0.2000 
L1 
    1.0506    0.0467    0.3113    0.0934 
    0.1770    1.1634    1.0895    0.3268 
    0.2529    0.2335    1.5564    0.4669 
    0.6927    0.6234    1.3781    1.6634 
A2 
    0.0000    0.0000    0.5000    0.0000 
    0.0000    0.0000    0.4000    0.0000 
    0.0500    0.0500    0.1200    0.2400 
    0.3750    0.3333    0.4000    0.2000 
L2  
    1.1313    0.1212    0.8081    0.2424 
    0.1051    1.0970    0.6465    0.1939 
    0.2626    0.2424    1.6162    0.4848 
    0.7054    0.6351    1.4562    1.6869x 

We now compute the vectors total outputs needed to support the new final demand for the base 
case and the two cases of alternative technologies as columns of a matrix ∆x. Using the matrix to 
extract only the primary energy rows GXI, compute the matrix of total energy consumption ∆g 
corresponding to ∆f and compute the column sums to generate the thee-element vector of 
primary energy intensities for the three cases pei. 

     ∆x1←L1+.×∆f ⋄ ∆x2←L2+.×∆f ⋄ ∆x0←L+.×∆f 
     ∆x←⍉3 4⍴∆x0,∆x1,∆x2 
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     GXI←3 4⍴1 0 0 0 0 1 0 0 0 0 0 0 
     pei←+⌿∆g←GXI+.×∆x 

GXI 
         1         0         0         0 
         0         1         0         0 
         0         0         0         0 
 

∆f 
         0         0        20        30 
∆x0 
      18.3       9.0      23.4 
      27.4      31.6      18.7 
      45.7      45.1      46.9 
      74.6      77.5      79.7 
∆g 
   18.2677    9.0272   23.4343 
   27.4016   31.5953   18.7475 
    0.0000    0.0000    0.0000 
pei  
   45.6693   40.6226   42.1818 

Problem 12.8: Technical Change and Total Energy Consumption 
This problem explores calculation of the total energy consumption in an economy associated 
with an energy saving manufacturing process technology. 

Problem 12.8 Overview 
Using the original energy-economy defined in Problem 12.6, for the direct requirements matrix, 

*A , suppose an energy conserving manufacturing process is developed that can be depicted as a 

new column of the matrix of technical coefficients for manufacturing, given by *( )
4

0
0

.12

.20

new =

 
 
 
 
  

A


. 

The technical coefficient matrix incorporating the new manufacturing technology is  

*( )

0 0 .2 0
0 0 .7 0

.05 .05 .1 .12
.375 .333 .4 .2

new

 
 
 =
 
 
 

A  and *( )

1.0580     .0546    .5461      .0819
 .0870    1.0819    .8191      .1229
 .1451     .1365    1.3652     .2048
 .5866     .5276    1.1092    1.4164

new

 
 
 =
 
 
 

L . So, for 

(0) * 1 *(0) 1ˆ( ) ( )− −= −Δg G x I A Δf  and ( ) * 1 *( ) 1ˆ( ) ( )new new− −= −Δg G x I A Δf  we can write 

[ ](0 ( )

18.2677  13.3788
1

( ) 27.4016  20.0683 45.6693   33.4471
1

  0.0000    0.0000

new

 
  ′ ′  ∆ = ∆ ∆ = =        

i g i g g .  Hence the primary 

energy saved by adopting the new technology is 45.6693 33.4471−  = 12.2222. 
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Computational Notes 
Retrieve the data for the economy defined in Problem 12.6, including Z, x, and ∆f.  Now we 
compute the matrix of technical coefficients for the original economy A0 and the associated 
Leontief inverse L0, as well the modified matrix of technical coefficients reflecting the new 
technologies A1 and the associated Leontief inverse L1. 

A0 
    0.0000    0.0000    0.4000    0.0000 
    0.0000    0.0000    0.6000    0.0000 
    0.0500    0.0500    0.1200    0.2400 
    0.3750    0.3333    0.3000    0.2000 
L0 
    1.1024    0.0945    0.6299    0.1890 
    0.1535    1.1417    0.9449    0.2835 
    0.2559    0.2362    1.5748    0.4724 
    0.6767    0.6086    1.2795    1.6339 
A1 
    0.0000    0.0000    0.4000    0.0000 
    0.0000    0.0000    0.6000    0.0000 
    0.0500    0.0500    0.1200    0.1200 
    0.3750    0.3333    0.3000    0.2000 
L1 
    1.0506    0.0467    0.3113    0.0934 
    0.1770    1.1634    1.0895    0.3268 
    0.2529    0.2335    1.5564    0.4669 
    0.6927    0.6234    1.3781    1.6634 

We now compute the vectors total outputs needed to support the new final demand for the base 
case and the alternative technology case as columns of a matrix ∆x. Using the matrix to extract 
only the primary energy rows GXI, compute the matrix of total energy consumption ∆g 
corresponding to ∆f and compute the column sums to generate the two-element vector of 
primary energy intensities for the two cases pei, and compute the difference in primary energy 
consumption npei. 

 ∆x 
      18.3      13.4 
      27.4      20.1 
      45.7      33.4 
      74.6      64.7 
GXI  
         1         0         0         0 
         0         1         0         0 
         0         0         0         0 
∆g  
   18.2677   13.3788 
   27.4016   20.0683 
    0.0000    0.0000 
pei  
   45.6693   33.4471 
npei  
   12.2222 
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Problem 12.9: Analyzing Impacts of and Oil Supply Reduction 
This problem explores the use of an energy input-output model in analyzing the implications of 
an oil supply reduction. 

Problem 12.9 Overview 
Again using the original energy economy introduced in Problem 12.6 but with the added 

information that the energy prices to final demand are given by 
2

[ ] 1
3

f kfp= =
 
 
 
  

p , from the 

original matrix of technical coefficients, *(0)A , we can compute  

*(0)

1 0 .4 0
0 1 .6 0

( )
.05 .05 .88 .24
.375 .333 .3 .8

− 
 − − =
 − − −
 − − − 

I A .  The GDP for the original economy can be found by 

* *(0) *( ) 105GDP ′ ′= = − =i Qf i Q I A x   where 
2 0 0 0
0 1 0 0
0 0 3 0

 
 =  
  

Q and  

[ ]*( ) 40 60 100 200′ =x .  

For a 10 percent reduction in availability of oil supply, the vector of total outputs 
becomes [ ]*( ) 36 60 100 200′ =x .  Hence, we can compute the GDP as the sum of the 
corresponding final demand (measured in dollars) which we determine once again by 

* *(0) *( ) 97.6GDP ′ ′= = − =i Qf i Q I A x  . The reduction in GDP due to the oil shortage is 
105 97.6 7.4− = .  When the new technologies are incorporated into the technical coefficients 

matrix it becomes *( )

0 0 .2 0
0 0 .7 0

.05 .05 .1 .12
.375 .333 .4 .2

new

 
 
 =
 
 
 

A  and  

*( )

1 0 .2 0
0 1 .7 0

( )
.05 .05 .9 .12
.375 .333 .4 .8

new

− 
 − − =
 − − −
 − − − 

I A  and, as before, we compute GDP by 

* *( ) *( ) 205.6newGDP ′ ′= = − =i Qf i Q I A x  . This turns out to be not a reduction at all but an 
increase in GDP of 100.6. 

Computational Notes 
Retrieve the data for the economy defined in Problem 12.6, including Z, x, and ∆f.  Now we 
compute the matrix of technical coefficients for the original economy A0 as well as the matrix I 
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minus A0 (with a suitable identity matrix I), which we call IA0.  We do the same for the 
modified matrix of technical coefficients reflecting the new technologies A2 to produce IA2. 

Z←4 4⍴0 0 40 0 0 0 60 0 2 3 12 48 15 20 30 40 
x←40 60 100 200 ⋄ I←4 4⍴1,4⍴0 
A0←A2←Z AMAT x 
A2[;4]←0 0 0.12 0.2 
A2[;3]←0.2 0.7 0.1 0.4 
IA2←I-A2 

A0 
    0.0000    0.0000    0.4000    0.0000 
    0.0000    0.0000    0.6000    0.0000 
    0.0500    0.0500    0.1200    0.2400 
    0.3750    0.3333    0.3000    0.2000 
IAO 
    1.0000    0.0000   ¯0.4000    0.0000 
    0.0000    1.0000   ¯0.6000    0.0000 
   ¯0.0500   ¯0.0500    0.8800   ¯0.2400 
   ¯0.3750   ¯0.3333   ¯0.3000    0.8000 
A2 
    0.0000    0.0000    0.2000    0.0000 
    0.0000    0.0000    0.7000    0.0000 
    0.0500    0.0500    0.1000    0.1200 
    0.3750    0.3333    0.4000    0.2000 
IA2 
    1.0000    0.0000   ¯0.2000    0.0000 
    0.0000    1.0000   ¯0.7000    0.0000 
   ¯0.0500   ¯0.0500    0.9000   ¯0.1200 
   ¯0.3750   ¯0.3333   ¯0.4000    0.8000 

We use a matrix of energy prices QT, IAO, and x to compute the GDP for the original economy, 
which we call GDP0.  We compute a new vector of total outputs reflection a 10% reduction in oil 
availability x1, and use it with QT to create the changed GDP for the original economy GDP1 
and for the economy incorporating new technologies GDP2. Compute a vector of the differences 
in GDP with GDP1 and GDP2 compared with GDP0, which comprise a vector we call ∆GDP. 

 GDP0←+/QT+.×(IA0←I-A0)+.×x 
 x1←x-x×0.1 0 0 0 
 GDP1←+/QT+.×(IA1←I-A0)+.×x1 
 GDP2←+/QT+.×(IA2←I-A2)+.×x1 
 ∆GDP←(GDP1,GDP2)-GDP0 

QT 
     2.000     0.000     0.000     0.000 
     0.000     1.000     0.000     0.000 
     0.000     0.000     3.000     0.000 
GDP0 
     105.0 
x1 
      36.0      60.0     100.0     200.0 
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GDP1 
      97.6 
GDP2 
     205.6 
∆GDP 
      ¯7.4     100.6 

Problem 12.10: Structural Change and Energy Input-Output Analysis 
This problem uses energy input-output analysis to examine structural change using US input-
output tables for two years.   

Problem 12.10 Overview 
Below are 9-sector 1963 and 1980 input-output tables for the United States expressed in hybrid 
units (quadrillions of Btus for energy sectors and millions of dollars for non-energy sectors). The 
first five sectors are energy sectors: (1) coal, (2) oil, (3) refined petroleum products, (4) 
electricity, and (5) natural gas. The remaining four sectors are non-energy sectors: (6) natural 
resources, (7) manufacturing, (8) transportation, and (9) services.  

1980 1 2 3 4 5 6 7 8 9
Total 

Output
1 0.0012 0.0000 0.0007 1.5464 0.0000 0.0000 0.0002 0.0000 0.0000 18,597
2 0.0001 0.0319 0.8960 0.0001 0.8707 0.0000 0.0001 0.0000 0.0000 36,842
3 0.0063 0.0024 0.0612 0.3344 0.0008 0.0005 0.0002 0.0023 0.0002 31,215
4 0.0026 0.0021 0.0035 0.0822 0.0020 0.0000 0.0001 0.0000 0.0001 7,827
5 0.0006 0.0461 0.0301 0.4856 0.0720 0.0001 0.0003 0.0000 0.0001 19,244
6 0.2092 1.4027 0.5040 7.8254 0.4350 0.0896 0.0628 0.0355 0.0289 6,194,571
7 2.6323 0.8480 2.4090 3.5155 0.1804 0.2672 0.3780 0.0493 0.0626 18,081,173
8 0.1773 0.0806 2.1831 4.8195 0.0794 0.0199 0.0251 0.1289 0.0141 2,240,904
9 1.8576 2.6159 2.7945 8.5173 1.2302 0.1831 0.1238 0.1224 0.2027 23,803,723

1963 1 2 3 4 5 6 7 8 9
Total 

Output
1 0.0019 0.0000 0.0008 1.7415 0.0010 0.0000 0.0004 0.0001 0.0000 12,476
2 0.0000 0.0423 0.7996 0.0007 0.9308 0.0000 0.0003 0.0000 0.0000 30,384
3 0.0015 0.0011 0.0600 0.1973 0.0031 0.0004 0.0003 0.0021 0.0002 19,878
4 0.0015 0.0007 0.0018 0.0963 0.0002 0.0000 0.0001 0.0000 0.0000 3,128
5 0.0001 0.0035 0.0330 0.7046 0.0919 0.0000 0.0003 0.0001 0.0001 13,194
6 0.0456 0.4582 0.5926 7.9623 0.6565 0.1111 0.0835 0.0415 0.0426 4,865,092
7 0.8684 0.4081 1.1700 1.0933 0.0937 0.2340 0.4035 0.0498 0.0496 11,333,710
8 0.1105 0.0655 1.1964 4.5632 0.3965 0.0231 0.0256 0.0863 0.0121 1,131,226
9 0.4794 2.2388 1.9461 8.0643 1.1016 0.1121 0.0881 0.1203 0.1721 10,588,385  

 To determine the amounts of the change in total energy use of each energy type between 
1963 and 1980 and the components of that change that are attributable to change in production 
functions, to change in final demand, and to the interaction between the changes in production 
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functions and final demand between the two years, we begin by calculating the total 
requirements matrices *(80) *(80) 1( )−= −L I A   and *(63) *(63) 1( )−= −L I A . From the available data we 
must calculate final demands as *(80) *(80) * *(80)= −f x A x and *(63) *(63) * *(63)= −f x A x . The total 
requirements matrices and vectors of final demand are the following: 

 

1980 1 2 3 4 5 6 7 8 9
Final 

Demand
1 1.0081 0.0059 0.016 1.718 0.0099 0.0003 0.0007 0.0002 0.0002 3,258
2 0.0164 1.0923 1.0933 1.0115 1.0301 0.0014 0.0015 0.0032 0.0006 -10,684
3 0.0115 0.0076 1.0851 0.4513 0.0106 0.001 0.0007 0.003 0.0004 10,461
4 0.0038 0.0035 0.0089 1.1062 0.006 0.0002 0.0003 0.0001 0.0001 3,155
5 0.0058 0.0578 0.098 0.6569 1.1341 0.0005 0.0008 0.0004 0.0003 4,066
6 0.7803 2.1173 3.4665 15.249 2.6707 1.154 0.1361 0.0722 0.0559 3,596,887
7 5.0854 2.9969 8.6363 27.246 3.696 0.5453 1.7127 0.1654 0.1614 7,804,130
8 0.479 0.3575 3.3772 9.3886 0.5332 0.0517 0.0613 1.1667 0.0288 925,557
9 3.5349 4.7573 10.33 30.909 6.5227 0.369 0.3197 0.2444 1.3022 15,022,410

1963 1 2 3 4 5 6 7 8 9
Final 

Demand
1 1.0058 0.0026 0.0094 1.9521 0.0049 0.0004 0.0011 0.0002 0.0002 2,199
2 0.0056 1.0532 0.9444 1.0968 1.0861 0.0012 0.0021 0.0026 0.0007 -2,359
3 0.0032 0.0033 1.0732 0.2727 0.0094 0.0008 0.0008 0.0026 0.0004 8,630
4 0.0019 0.0011 0.0037 1.1145 0.0016 0.0001 0.0002 0.0001 0.0001 1,037
5 0.0025 0.0061 0.0483 0.8888 1.1087 0.0004 0.0009 0.0004 0.0003 3,540
6 0.2843 0.8465 2.0483 14.209 1.88 1.1866 0.1853 0.0793 0.0749 2,820,771
7 1.6793 1.3446 4.2429 14.296 2.1657 0.4915 1.7788 0.1478 0.1362 4,989,750
8 0.2025 0.1894 1.7661 7.6651 0.7549 0.0485 0.0604 1.1074 0.0233 456,425
9 0.8733 3.1616 6.1679 21.334 5.0473 0.2267 0.2346 0.202 1.2401 6,933,979  

If we denote the energy rows of *(80)L  as 80α , the vector of total energy output as 80g , 
and final demand as 80f  (now in all cases dropping the * for simplicity) with the analogous 
designations for 1963, we can compute the changes in energy consumption as

80 63 63 80 63 80 63 63 80 63 80 63

  6,121.4
  6,457.3

( ) ( ) ( )( ) 11,337.2
  4,698.8
  6,049.6

 
 
 
 − = − + − + − − =
 
 
  

g g α f f α α f α α f f   
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where the effect caused by changing final demand is 63 80 63

10,467.2
  9,433.3

( )   9,967.9
  3,738.7
  8,021.1

 
 
 
 − =
 
 
  

α f f ; 

the effect caused by changes in production functions is 80 63 63

-2460.4
-1257.5

( )   756.8
  613.3
 -502.4

 
 
 
 − =
 
 
  

α α f ;  

and the effect of interaction of final demand and production function changes is 

80 63 80 63

-1885.4
-1718.5

( )( )  612.5
  346.8

-1469.1

 
 
 
 − − =
 
 
  

α α f f . 

Computational Notes 
We presume that the matrices of technical coefficients for 1963 and 1980, A1 and A2, 
respectively, and the corresponding vectors of total commodity outputs, q1 and q2, are in the 
APL workspace. We compute the matrices of total requirements, L1 and L2, as well as the 
vectors of commodity final demands, e1 and e2. We define the matrix QTI to extract the energy 
rows from L1 and L2, and compute the matrices of total energy coefficients, ei1 and ei2. 

     L1←LINV A1 ⋄ L2←LINV A2 ⋄ e1←q1-A1+.×q1 ⋄ e2←q2-A2+.×q2 
     QTI←(5 5⍴1,5⍴0),5 4⍴0 
     ei1←QTI+.×L1 
     ei2←QTI+.×L2 

L1 
    1.0058    0.0026    0.0094    1.9521    0.0049    0.0004    0.0011    0.0002    0.0002 
    0.0056    1.0532    0.9444    1.0968    1.0861    0.0012    0.0021    0.0026    0.0007 
    0.0032    0.0033    1.0732    0.2727    0.0094    0.0008    0.0008    0.0026    0.0004 
    0.0019    0.0011    0.0037    1.1145    0.0016    0.0001    0.0002    0.0001    0.0001 
    0.0025    0.0061    0.0483    0.8888    1.1087    0.0004    0.0009    0.0004    0.0003 
    0.2843    0.8465    2.0483   14.2093    1.8800    1.1866    0.1853    0.0793    0.0749 
    1.6793    1.3446    4.2429   14.2964    2.1657    0.4915    1.7788    0.1478    0.1362 
    0.2025    0.1894    1.7661    7.6651    0.7549    0.0485    0.0604    1.1074    0.0233 
    0.8733    3.1616    6.1679   21.3339    5.0473    0.2267    0.2346    0.2020    1.2401 
L2 
    1.0081    0.0059    0.0160    1.7180    0.0099    0.0003    0.0007    0.0002    0.0002 
    0.0164    1.0923    1.0933    1.0115    1.0301    0.0014    0.0015    0.0032    0.0006 
    0.0115    0.0076    1.0851    0.4513    0.0106    0.0010    0.0007    0.0030    0.0004 
    0.0038    0.0035    0.0089    1.1062    0.0060    0.0002    0.0003    0.0001    0.0001 
    0.0058    0.0578    0.0980    0.6569    1.1341    0.0005    0.0008    0.0004    0.0003 
    0.7803    2.1173    3.4665   15.2493    2.6707    1.1540    0.1361    0.0722    0.0559 
    5.0854    2.9969    8.6363   27.2464    3.6960    0.5453    1.7127    0.1654    0.1614 
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    0.4790    0.3575    3.3772    9.3886    0.5332    0.0517    0.0613    1.1667    0.0288 
    3.5349    4.7573   10.3297   30.9091    6.5227    0.3690    0.3197    0.2444    1.3022 
e1 
    2199.4   ¯2359.0    8630.4    1037.0    3540.0 2820771.1 4989750.4  456424.6 6933978.6 
e2 
    3257.6  ¯10683.6   10461.1    3154.7    4066.4 3596886.9 7804129.8  925557.215022409.9 

QTI 
    1    0    0    0    0    0    0    0    0 
    0    1    0    0    0    0    0    0    0 
    0    0    1    0    0    0    0    0    0 
    0    0    0    1    0    0    0    0    0 
    0    0    0    0    1    0    0    0    0 
ei1 
    1.0058    0.0026    0.0094    1.9521    0.0049    0.0004    0.0011    0.0002    0.0002 
    0.0056    1.0532    0.9444    1.0968    1.0861    0.0012    0.0021    0.0026    0.0007 
    0.0032    0.0033    1.0732    0.2727    0.0094    0.0008    0.0008    0.0026    0.0004 
    0.0019    0.0011    0.0037    1.1145    0.0016    0.0001    0.0002    0.0001    0.0001 
    0.0025    0.0061    0.0483    0.8888    1.1087    0.0004    0.0009    0.0004    0.0003 
ei2 
    1.0081    0.0059    0.0160    1.7180    0.0099    0.0003    0.0007    0.0002    0.0002 
    0.0164    1.0923    1.0933    1.0115    1.0301    0.0014    0.0015    0.0032    0.0006 
    0.0115    0.0076    1.0851    0.4513    0.0106    0.0010    0.0007    0.0030    0.0004 
    0.0038    0.0035    0.0089    1.1062    0.0060    0.0002    0.0003    0.0001    0.0001 
    0.0058    0.0578    0.0980    0.6569    1.1341    0.0005    0.0008    0.0004    0.0003 

Now we use the total energy coefficients matrices and commodity final demand vectors to 
compute the structural decomposition components for the final demand effect t1, the production 
effect t2, and the interaction effect t3, summing the three for the total t. 

     t1←ei1+.×e2-e1 
     t2←(ei2-ei1)+.×e1 
     t3←(ei2-ei1)+.×e2-e1 
     t←t1+t2+t3 

t1 
   10467.2    9433.3    9967.9    3738.7    8021.1 
t2 
   ¯2460.4   ¯1257.5     756.8     613.3    ¯502.4 
t3 
   ¯1885.4   ¯1718.5     612.5     346.8   ¯1469.1 
t 
    6121.4    6457.3   11337.2    4698.8    6049.6 
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Chapter 13, Environmental Input–Output Analysis 
Chapter 13 reviews the extension of the input–output framework to incorporate activities of 
environmental pollution generation and elimination associated with economic activities as well 
as the linkages of input–output to models of ecosystems. The chapter begins with the augmented 
Leontief model for incorporating pollution generation and elimination, from which many 
subsequent approaches have been developed.  

The chapter then describes the now widespread application of input-output analysis to 
environmental life cycle assessment and establishing a “pollution footprint” for industrial 
activity. Environmental input-output is also now widely used to evaluate global environmental 
issues. The special case of a analyzing the relationship between global climate change and 
industrial activity with a carbon footprint is then explored along with using input-output to 
attribute pollution generation to the demands driving consumption compared with the more 
traditional attribution of pollution generation to the sectors of industrial production necessary to 
meet that demand.  

The exercise problems for this chapter explore the features of environmentally extended 
input-output models and their applications. 

Problem 13.1: Generalized Input-Output Model  
This problem explores the basic features of a generalized input-output model configuration 
applied to assessing energy, pollution, and employment associated with industrial activity. 

Problem 13.1 Overview  
Assume that we have the following direct coefficient matrices for energy, air pollution, and 

employment ( eD , vD  and lD , respectively) for two industries, 1 and 2: 
0.1 0.2
0.2 0.3

e =
 
  

D  , 

0.2 0.5
0.2 0.3

v =
 
  

D and [ ]0.2 0.5l =D . Notice that industry 2 is both a high-polluting and high-

employment industry.  

Suppose that the local government has an opportunity to spend a total of $10 million on a 
regional development project. Two projects are candidates: (1) Project 1 would spend 
appropriated dollars in the ratio of 60 percent to industry 1 and 40 percent to industry 2; the 
minimum size of this project is $4 million; (2) Project 2 would spend appropriated dollars in the 
ratio of 30 percent to industry 1 and 70 percent to industry 2; the minimum size of this project is 
$2 million. The government can adopt either project or a combination of the two projects (as 
long as the minimum size of each project is at least maintained and that the total budget is not 
overrun). In other words, we might describe the options available to the government as: 

1 2
0.6 0.3
0.4 0.7

a

b

β
α α

β
= +

     
         
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where 1 2 and α α  are budgets allocated to projects 1 and 2, respectively. aβ  and bβ  are the 
total final demands presented to the regional economy by the combination of projects for 
industries A and B, respectively.  

Suppose that four alternative compositions of these projects are being considered 
1 1 1 1

2 2 2 2

4 5 10 0
(1) , (2) , (3) and (4) 

2 5 0 10
   

α α α α

α α α α

= = = =

= = = =

   
   
   

 . The following table of constraints 

describes the local regulation on energy consumption and environmental pollution in the region: 

 Maximum Allowable Changes 
Collectively by All Industries 

Oil Consumption (1015 Btus) 3.0 
Coal Consumption (1015 Btus) no limit 

SO2 Emissions (tons) 14.5 
NOx Emissions (tons) 10 

 
Finally, suppose that the regional economy is currently described by the following input-

output transactions table (in millions of dollars): 

 A B Total Output 
A 1 3 10 
B 5 1 10 

If we are interested in determining which of the proposed combinations of projects (1), (2), (3) or 
(4) permit the region to operate within the above constraints on energy consumption and air 
pollution emission and within the established budget constraint, we begin by retrieving the 

matrix of economic transactions, 
1 3
5 1
 

=  
 

Z , and the vector of total outputs, 
10
10
 

=  
 

x ,  from the 

table to calculate the economic direct and total requirements matrices: 1 .1 .3
ˆ  

.5 .1
−  

= =  
 

A Zx and

1 1.364 .455
 ( )

.758 1.364
−  

= − =  
 

L I A .  

Then we define the direct impact matrix as a concatenation of the three individual impact 

matrices, eD , vD  and lD , as: 

.1 .2

.2 .3

.2 .5

.2 .3

.2 .5

 

e

v

l

=

 
  
  =   
     
  

D
D
D

D  from which we can compute the total impact 
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coefficients matrix, 

.288 .318
.5 .5

.652 .773

.500 .500

.652 .773

 
 
 
 =
 
 
 
 

DL . We can represent the four candidate projects by the 

following matrix, the columns of which are the final demand change vectors: 

3 4.5 6 3
3 5.5 4 7

Projects

 
∆ =  

 
F



.  

Total allocated budgets can be represented by the column sums of ∆F , found as  
[ ][ ] 6 10 10 10 ;′ ∆ =i F  that is, all four candidate projects satisfy the budget constraint of $10 

million. We can compute matrix of total impacts as 

1 2 3 4

1.8 3.0 3.0 3.1
3.0 5.0 5.0 5.0
4.3 7.2 7.0 7.4
3.0 5.0 5.0 5.0
4.3 7.2 7.0 7.4

 
 
 

   ∆ = = =   
 
  

X DLΔF x x x x  where the columns are the vectors of 

total impacts for each scenario 1, 2, 3, and 4, respectively. Note that Project 4, using 3.1 ×  1015 
Btus of oil, exceeds the established consumption limit of 3.0 ×  1015 Btus.  

If our goal is to maximize employment, Project 2 should be chosen since it produces the 
highest level of employment among the three feasible projects, i.e., from among the first three 
scenarios that comply with established energy or environmental constraints (from the bottom row 
of ∆X ). 

Computational Notes 
For the regional economy specified, we define the interindustry transactions matrix Z, the vector 
of total outputs x, the matrix of direct impact coefficients D, and the matrix of project costs C. 
We compute the matrix of technical coefficients A, the Leontief inverse L, and the matrix of 
total impact coefficients T.  

 D←5 2⍴0.1×1 2 2 3 2 5 2 3 2 5 
 Z←2 2⍴1 3 5 1 ⋄ x←10 10 ⋄ C←2 2⍴0.6 0.3 0.4 0.7 
 L←LINV A←Z AMAT x 
 T←D+.×L 

Z 
         1         3 
         5         1 
x 
        10        10 
A 
     0.100     0.300 
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     0.500     0.100 
L 
     1.364     0.455 
     0.758     1.364 
D 
     0.100     0.200 
     0.200     0.300 
     0.200     0.500 
     0.200     0.300 
     0.200     0.500 
C 
     0.600     0.300 
     0.400     0.700 
T 
     0.288     0.318 
     0.500     0.500 
     0.652     0.773 
     0.500     0.500 
     0.652     0.773 

We construct a matrix of the four candidate project combinations with the costs for each of the 
and compute a matrix ∆F the columns of which are the final demand change vectors associated 
with the four scenarios of combinations of candidate projects, and the column sums of which are 
the total costs of the scenarios TC. Finally using T and ∆F we can compute total impacts of the 
scenarios ∆X, the columns of which are total impacts of each scenario. 

 ALPHA←8 2⍴ALPHA1,ALPHA1←4 2⍴4 2 5 5 10 0 0 10 
 PC←ALPHA×CC←8 2⍴C 
 TC←+⌿∆F←⍉4 2⍴+/PC 
 ∆X←T+.×∆F 

∆F 
     3.000     4.500     6.000     3.000 
     3.000     5.500     4.000     7.000 
TC 
     6.000    10.000    10.000    10.000 
∆X 
     1.818     3.045     3.000     3.091 
     3.000     5.000     5.000     5.000 
     4.273     7.182     7.000     7.364 
     3.000     5.000     5.000     5.000 
     4.273     7.182     7.000     7.364 

Problem 13.2: Generalized Impact Assessment 
This problem illustrates construction of a generalized impact assessment model from available 
data.  

Problem 13.2 Overview 
Consider a regional economy that has two primary industries, A and B. In producing these two 
products it was observed that in the previous year air pollution emissions associated with this 
industrial activity included 3 pounds of SO2 and 1 pound of NOx emitted per dollars’ worth of 



2021 August 7 

-283- 
 

output of industry A, and 5 pounds of SO2 and 2 pounds of NOx emitted per dollars’ worth of 
output of industry B.  

 It was also observed that industries A and B consumed 61 10×  tons and 66 10×  tons of 
coal, respectively, during that year. Industry A also consumed 62 10×  barrels of oil. Total 
employment in the region was 100,000 (40 percent of which were employed by industry A and 
the rest by industry B) and the regional planning agency constructed the following input-output 
table of interindustry activity and total output in the region (in $106): 

 A B Total Output 
A 2 6 20 
B 6 12 30 

If the projected vector of final demands for the next year is 
15
25

new  
=  
 

f  , we can estimate 

for the next year the total consumption of each energy type (coal and oil), the total pollution 
emission (of each type), and the level of total employment by first by retrieving the matrix of 

economic transactions, 
2 6
6 12
 

=  
 

Z , and the vector of total outputs, 
20
30
 

=  
 

x ,  from the table to 

calculate the economic direct and total requirements matrices: 1 .1 .2
ˆ  

.3 .4
−  

= =  
 

A Zx and

1 1.250 .417
 ( )

.625 1.875
−  

= − =  
 

L I A . From the available data we assemble the direct impact 

coefficient matrices for energy, emissions, and employment impact and concatenate them to 

yield an overall matrix of direct impact coefficients, 

1 0
.05 .2
3 5
1 2

.002 .002

 
 
 
 ==
 
 
 
 

D .   

Now we can compute the total impacts as 

*

* *

*

29.167
12.708
368.75

141.667
.171

e

new v

l

 
       = = =       
 
 

x
x DLf x

x
. That is, 

* 29.167
12.708

e  
=  
 

x  shows 29,167,000 tons of coal and 12,708,000 barrels of oil will be consumed in 

production next year; * 368.75
141.667

V  
=  
 

x  shows that 368,750,000 pounds of SO2 and 141,667,000 

pounds of NOx will be emitted in the course of that industrial production; and * [0.171]l =x    
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shows that 171,000 workers will be employed. Total economic output is found as 
29.167
56.25

new new  
= =  

 
x Lf ; that is, 1 $29,167,000newx =  and 2 $56,250,000.newx =   

Computational Notes 
We define the matrix of direct impact coefficients D, the matrix of industry transactions Z, the 
vector of total outputs x, and the projected new final demand f2. The compute the matrix of 
technical coefficients A, the Leontief inverse L, and the matrix of total impact coefficients T. For 
the new vector of final demands f2, we compute the vector of total outputs x2 and the vector of 
total impacts xs2. 

 D←5 2⍴1 0 0.05 0.2 3 5 1 2 0.002 0.002 
 Z←2 2⍴2 6 6 12 ⋄ x←20 30 ⋄ f2←15 25⍝ 
 T←D+.×L←LINV A←Z AMAT x ⍝ 
 x2←L+.×f2 ⋄ xs2←T+.×f2 

D 
     1.000     0.000 
     0.050     0.200 
     3.000     5.000 
     1.000     2.000 
     0.002     0.002 
Z 
         2         6 
         6        12 
x 
        20        30 
A 
     0.100     0.200 
     0.300     0.400 

 
L 
     1.250     0.417 
     0.625     1.875 
T 
     1.250     0.417 
     0.188     0.396 
     6.875    10.625 
     2.500     4.167 
     0.004     0.005   

f2 
      15.0      25.0 
x2 
      29.2      56.3 
xs2 
      29.2      12.7     368.8     141.7       0.2 
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Problem 13.3: Generalized Input-Output Analysis for Regional Planning 
This problem explores typical regional planning consideration in application of a generalized 
input-output impact model.  

Problem 13.3 Overview 
Suppose a regional planning agency initiates a regional development planning effort. Four 
projects are being considered that would represent government purchases of regionally produced 
products of the output of three industries, A, B, and C, which would appear as final demands 
presented to the regional economy, as depicted in the following table. 

Regional Industry 
Project Expenditure (millions of dollars) 

Project 1 Project 2 Project 3 Project 4 
A 2 4 2 2 
B 2 0 0 2 
C 2 2 4 3 

Additional information is available, including the matrix of technical coefficients, 
0.04 0.23 0.38
0.33 0.52 0.47

0 0 0.1
=
 
 
 
  

A , and relationships between the following quantities and total output 

given by the following:  

  
Industry 

A B C 
Pollution emission (grams/$ output) 4.2 7 9.1 
Energy Consumption (bbls oil/$ output) 7.6 2.6 0.5 
Employment (workers/ $ output) 0.73 0.33 0.63 

To determine which of the four projects contributes most to gross regional output, we 

begin by computing the total economic requirements matrix, 
1.247 .598 .839
.857 2.494 1.665

0 0 1.111

 
 =  
  

L , and 

from the table we can assemble the direct impact matrix as 
4.2 7 9.1

 7.6 2.6 .5
.73 .33 .63

 
 =  
  

D . The table of 

prospective project expenditures retrieved directly from the table is 
2 4 2 2
2 0 0 2
2 2 4 3

 
 ∆ =  
  

F  from 

which we can compute *

112.986 95.527 123.618 138.27
67.98 69.341 68.44 79.236
8.628 8.496 9.832 10.49

 
 ∆ = ∆ =  
  

X DL F , the 

corresponding total impacts where each column shows the total impacts of the corresponding 
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column in ΔF for each project. Since the sum of final demands equals the contribution to gross 
regional product (GRP), we can also note that Project 4 contributes most to GRP, i.e., that 
project shows the largest column sum of ΔF , [ ][ ] 6 6 6 7 .′ ∆ =i F  Project 4 also consumes 
the most energy (79.236 ×  106 bbls of oil) and contributes the most to regional employment 
(10.490 ×  106 workers). 

Computational Notes 
We define a matrix ∆Y that includes the list of project expenditures for each project as its 
columns, the matrix of technical coefficients A, and the matrix of direct impact coefficients D. 
We then compute the Leontief inverse L, and the matrix of total impact coefficients T. We 
compute the vector of contributions to gross regional product for the three projects GRP which is 
simply a vector comprising the column sums of ∆Y. Finally we compute the matrix XS, the 
columns of which are total impacts of the each of the three projects. 

 ∆Y←3 4⍴2 4 2 2 2 0 0 2 2 2 4 3 
 A←3 3⍴0.04 0.23 0.38 0.33 0.52 0.47 0 0 0.1 
 D←3 3⍴4.2 7 9.1 7.6 2.6 0.5 0.73 0.33 0.63 
 T←D+.×L←LINV A 
 GRP←+⌿∆Y 
 XS←T+.×∆Y 

A 
     0.040     0.230     0.380 
     0.330     0.520     0.470 
     0.000     0.000     0.100 
L 
     1.247     0.598     0.839 
     0.857     2.494     1.665 
     0.000     0.000     1.111 
D 
     4.200     7.000     9.100 
     7.600     2.600     0.500 
     0.730     0.330     0.630 
∆Y 
         2         4         2         2 
         2         0         0         2 
         2         2         4         3 
GRP 
         6         6         6         7 
T 
    11.239    19.969    25.285 
    11.707    11.026    11.257 
     1.193     1.259     1.861 
XS 
     113.0      95.5     123.6     138.3 
      68.0      69.3      68.4      79.2 
       8.6       8.5       9.8      10.5 



2021 August 7 

-287- 
 

Problem 13.4: Illustrating Environmental-Employment Tradeoffs 
This problem explores the potential tradeoffs between environmental and employment 
considerations using input-output analysis.  

Problem 13.4 Overview 
Consider an input-output economy defined by interindustry transactions and total outputs, 

140 350
800 50
 

=  
 

Z and 
1,000
1,000
 

=  
 

x .  

Suppose this is an economy in deep economic trouble. The federal government has at its 
disposal policy tools that can be implemented to stimulate demand for goods from one sector or 
the other. Also suppose that the plants in sector 1 discharge 0.3 lbs. of airborne particulate 
substances for every dollar of output (0.3 lbs/$ output), while sector 2 pollutes at 0.5 lbs/$ 
output. Finally, let labor input coefficients be 0.005 and 0.07 for sectors 1 and 2, respectively.  

To assess whether or not a conflict of interest would arise between unions and 
environmentalists in determining the sector toward which the government should direct its policy 

effort, first, from Z and x we compute 1 .14 .35
ˆ

.8 .05
−  

= =  
 

A Zx and 
1.769 .652
1.49 1.601

 
=  
 

L . Since 

from the data provided,
.3 .5

.005 .07
 

=  
 

D  we can compute 1 1.276 .996
( ) .

.113 .115
−  

− =  
 

D I A  

Therefore, for *
1.2761

,  .1130
new   

= =   
   

f x , meaning that for each new dollar's worth of final 

demand for the output of sector 1, there will be 1.276 pounds of pollutant emitted and 0.113 new 

workers. Similarly, with 
0

,  
1

new  
=  
 

f we find *
.996
.115
 

=  
 

x , meaning that for each new dollar's 

worth of final demand for the output of sector 2, there will be 0.996 pounds of pollutant emitted 
and 0.115 new workers. Thus, there would not be a conflict between unions and 
environmentalists in this case; each dollar’s worth of new demand for sector 2 generates less 
pollution and also generates more employment (notice that this is true despite the fact that sector 
2’s direct-pollution coefficient per dollar of output is larger than sector 1’s direct-pollution 
coefficient). 

Computational Notes 
We define the transactions matrix Z, the vector of total outputs x, the matrix of direct impact 
coefficients D, and the vectors of increases in final demand growth for sectors 1 or 2, 
respectively as f1 and f2. Now we compute the matrix of technical coefficients A, the Leontief 
inverse L, and the matrix of total impact coefficients T from which we can compute the vectors 
of total impacts, xs1 and xs2, resulting from the changes in final demand f1 and f2, 
respectively.  
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 Z←2 2⍴140 350 800 50 ⋄ x←1000 1000 
 D←2 2⍴0.3 0.5 0.005 0.07 ⋄ f1←1 0 ⋄ f2←0 1 
 T←D+.×L←LINV A←Z AMAT x 
 xs1←T+.×f1 ⋄ xs2←T+.×f2 

Z 
       140       350 
       800        50 
x 
      1000      1000 
A 
     0.140     0.350 
     0.800     0.050 
L 
     1.769     0.652 
     1.490     1.601 
D 
     0.300     0.500 
     0.005     0.070 
T 
     1.276     0.996 
     0.113     0.115 
f1 
         1         0 
xs1 
     1.276     0.113 
f2 
         0         1 
xs2 
     0.996     0.115 

Problem 13.5: The Augmented Leontief Input-Output Model 
This problem explores the basic features of the pollution-activity augmented Leontief input-
output formulation.  

Problem 13.5 Overview 
Consider the following table of interindustry transactions and total industry outputs (the same 
transactions as in Problem 13.4 but with different total outputs): 

  Purchasing Sector Total 
Output 1 2 

Selling 
Sector 

1 140 350 2,000 
2 800 50 1,850 

An amount of pollution generated by sector 1 is 10 units and by sector 2 is 25 units. 
Pollution abatement reduced pollution by 5 units in sector 1 and 12 units in sector 2. Total 
pollution permitted by local regulation is 12 units. if final demands for both sectors increase by 
100, we can use the pollution-activity-augmented Leontief formulation to determine is the level 
of output for each industry by first augmenting the basic economic transactions matrix, 
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140 350
800 50
 

=  
 

Z   with the pollution abatement and elimination data to yield 

140 350 5
800 50 12
10 25 0

 
 =  
  

Z .   

Total pollution output is found by adding pollution generation in the interindustry matrix 
to the pollution tolerated (reflected as a negative value in final demand), i.e., we define 

10 25 12 23px = + − = , which we can augment to the total industry outputs vector to yield 

[ ]2,000 1,850 23 ′=x .  The vector of final demands is [ ]1,505 988 12 ′= − = −f x Zi  and 

the matrix of technical coefficients is 1
.07 .189 .217

ˆ .4 .027 .522
.005 .014 0

−
 
 = =
 
 

A Zx , from which we can 

compute 1
1.178 .234 .378

( ) .491 1.133 .698
.013 .016 1.011

−
 
 = − =
 
 

L I A .  

For an increase in final demand of both sectors by 100, [ ]100 100 0 ′∆ =f , the 

changes in total outputs and pollution are found as [ ]141.2 162.4 2.9 ′∆ =x . Hence, the new 

levels of outputs and pollution are [ ]2,141.2 2,012.4 25.9new ′=x . 

Computational Notes 
We define the transactions matrix Z, the vector of total outputs x, and the vector of specified new 
final demands ∆f. We the compute the vector of current final demands f, the matrix of technical 
coefficients A, and the Leontief inverse L, from which we can compute the vector of the changes 
in total outputs ∆x and the vector of new total outputs x2. 

 Z←3 3⍴140 350 5 800 50 12 10 25 0 
 x←2000 1850 23 ⋄ ∆f←100 100 0 
 f←x-+/Z 
 L←INV A←Z AMAT x 
 ∆x←L+.×∆f ⋄ x2←x+∆x 

Z 
       140       350         5 
       800        50        12 
        10        25         0 
f 
      1505       988       ¯12 
x 
      2000      1850        23 
A 
     0.070     0.189     0.217 
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     0.400     0.027     0.522 
     0.005     0.014     0.000 
L 
     1.178     0.234     0.378 
     0.491     1.133     0.698 
     0.013     0.016     1.011 
 

∆f 
       100       100         0 
∆x 
     141.2     162.4       2.9 
x2 
    2141.2    2012.4      25.9 

Problem 13.6: Regional and National Impacts of Public Works Initiatives 
This problem compares regional and national pollution, energy consumption, and employment 
impacts of a public works initiative.  

Problem 13.6 Overview 
In Problems 10.5 and 10.6 national and regional input-output tables are defined with three 
sectors (natural resources, manufacturing, and services) with the following matrices of technical 
coefficients and vectors of total outputs, respectively,  

 
.1830 .0668 .0087
.1377 .3070 .0707
.1603 .2409 .2999

N =
 
 
 
  

A , 
518, 288.6

4,953,700.6
14, 260,843.0

N =
 
 
 
  

x , 
.1092 .0324 .0036
.0899 .0849 .0412
.1603 .1170 .2349

R =
 
 
 
  

A  and

8, 262.7
95, 450.8

170,690.3

R =
 
 
 
  

x . We define the energy use, pollution, and employment coefficients that apply to 

both the regional and national economies in the following table: 

           Environmental, Energy, and Employment Impact Coefficients 

  
Industry 

Nat. Res. Manuf. Services 
Pollution emission (grams/$ output) 4.2 7 9.1 
Energy Consumption (bbls oil/$ output) 7.6 2.6 0.5 
Employment (workers/ $ output) 7.3 3.3 6.3 

Suppose a major new public works initiative by the federal government is characterized 
by the following vector of increases in federal spending: [ ]250 3,000 7,000′∆ =f , of which 20 
percent will be spent in the region (assume the 20 percent applies linearly to all expenditures). 
We can determine the percentage changes in total impacts on pollution, energy use, employment, 
and total industrial output of each industry sector for the region compared with those of the 
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nation as a whole by first defining, from the table, the common direct impact coefficients as 
4.2   7    9.1
7.6  2.6   .5
7.3  3.3  6.3

 
 =  
  

D .  

The baseline environmental, energy, and employment impacts for the nation and the 

region, respectively, are found by [ ]* 166,626,387.6   23,949,036.4  109,974,029.7 N N ′= =x Dx  

and [ ]* 2,256,140.7     396,313.8    1,450,654.2 R R ′= =x Dx . Then the total impacts, including 
the economic impacts of the new public works project for the nation and the region, respectively, 
are 

* 1

1

10.7832   16.2768   14.7759
10.4543    5.2368    1.3729
12.5176    9.4836   10.1120( )
1.2516    0.1306    0.0287( )
0.2881    1.5256    0.1576
0.3857    0.5549    1.4892

N N
N N

N

−

−




 −

∆ = ∆ =  −  



D I A
x f

I A

154,957.3
27,934.5

250 102,364.1
3,000  906.1
7,000  5,752.2

 12,185.3

  
  
       =           

   
     

 

* 1

1

  7.9150    9.5207  12.4438
9.0188    3.2720    0.8721

10.2453    5.0627    8.5550( )
 1.1281    0.0409    0.0075( )
 0.1223    1.1048    0.0601
 0.2550    0.1775    1.3178

R R
R R

R

−

−





 −
∆ = ∆ = −  



D I A
x f

I A

23,529.5
3,635.2

   50 15,527.0
  600  91.5

 1,400  753.1
 1,964.2

  
  
        =            

   
     

 

where .2R N=Δf Δf . Hence, the comparative percentage changes from *( ) *( )andN Rx x  are: 

  Nation Region 
Nat. Res. 0.09 1.04 
Manuf. 0.12 0.92 
Services 0.09 1.07 
Pollution 0.17 1.11 
Energy 0.12 0.79 
Employ. 0.09 1.15 

Computational Notes 
We define the matrices of technical coefficients for the national and regional economies, AN and 
AR, respectively along with the corresponding vectors of total outputs, xn and xr. In addition, 
we define the matrix of direct impact coefficients D and the vector of planned new federal 
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expenditures ∆f. We can compute the vector of total impacts of current industrial activity as 
xsn for the national economy and xsr for the regional economy. 

 AN←3 3⍴0.183 0.0668 0.0087 0.1377 0.307 0.0707 0.1603 0.2409 0.2999 
 xn←518288.6 4953700.6 14260843 
 AR←3 3⍴0.1092 0.0324 0.0036 0.0899 0.0849 0.0412 0.1603 0.117 0.2349 
 xr←8262.7 95450.8 170690.3 
 D←3 3⍴4.2 7 9.1 7.6 2.6 0.5 7.3 3.3 6.3 
 ∆f←250 3000 7000 ⋄ 
 xsn←(D+.×xn),xn ⋄ xsr←(D+.×xr),xr 

AN 
    0.1830    0.0668    0.0087 
    0.1377    0.3070    0.0707 
    0.1603    0.2409    0.2999 
xn 
  518288.6 4953700.614260843.0 
AR 
    0.1092    0.0324    0.0036 
    0.0899    0.0849    0.0412 
    0.1603    0.1170    0.2349 
xr 
    8262.7   95450.8  170690.3 
D 
     4.200     7.000     9.100 
     7.600     2.600     0.500 
     7.300     3.300     6.300 
∆f 
     250.0    3000.0    7000.0 
xsn 
 166626387.6  23949036.4 109974029.7    518288.6   4953700.6  14260843.0 
xsr 
   2256140.7    396313.8   1450654.2      8262.7     95450.8    170690. 

 We compute the vector of planned new federal expenditures for the regional economy 
∆fr, the matrices of technical requirements for the nation and the region, AN and AR, 
respectively and the corresponding Leontief inverses, LN and LR, along with the corresponding 
matrices of total impact coefficients, TN and TR. We then compute the vectors of total national 
impacts ∆xsn and total regional impacts ∆xsr, respectively, and the percentage changes from 
current levels in the matrix PC. 

LN 
    1.2516    0.1306    0.0287 
    0.2881    1.5256    0.1576 
    0.3857    0.5549    1.4892 
LR 
    1.1281    0.0409    0.0075 
    0.1223    1.1048    0.0601 
    0.2550    0.1775    1.3178 
TN 
   10.7832   16.2768   14.7759 
   10.4543    5.2368    1.3729 
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   12.5176    9.4836   10.1120 
    1.2516    0.1306    0.0287 
    0.2881    1.5256    0.1576 
    0.3857    0.5549    1.4892 
TR 
    7.9150    9.5207   12.4438 
    9.0188    3.2720    0.8721 
   10.2453    5.0627    8.5550 
    1.1281    0.0409    0.0075 
    0.1223    1.1048    0.0601 
    0.2550    0.1775    1.3178 
∆xsn 
  154957.3   27934.5  102364.1     906.1    5752.2   12185.3 
∆fr 
      50.0     600.0    1400.0 
∆xsr 
   23529.5    3635.2   15527.0      91.5     753.1    1964.2 
  
PC 
      0.09      1.04 
      0.12      0.92 
      0.09      1.07 
      0.17      1.11 
      0.12      0.79 
      0.09      1.15 

Problem 13.7: Analyzing Implications of an Energy Shortage 
This problem explores the implications of an energy shortage on economic performance using 
the regional economy specified in Problem 13.6 prior to the projected final demand for that 
problem.   

Problem 13.7 Overview 
Recall for the economy specified in Problem 13.6, the matrix of technical coefficients and vector 

of total outputs, respectively, were 
.1092 .0324 .0036
.0899 .0849 .0412
.1603 .1170 .2349

R =
 
 
 
  

A  and 
8,262.7

95,450.8
170,690.3

R =
 
 
 
  

x . The 

matrix of direct impact coefficients was specified as 
4.2   7    9.1
7.6  2.6   .5
7.3  3.3  6.3

 
 =  
  

D .  

The levels of pollution, energy consumption, and employment accompanying the baseline 
levels of total industry output are found by 

 *

4.2 7 9.1     8,262.7 2,256,140.7
7.6 2.6 .5  95,450.8   396,313.8
7.3 3.3 6.3 170,690.3 1,450,654.2

R R

     
     = = =     
          

x Dx .  

We can show a ten percent reduction in energy availability defined by 
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*

1 0 0  2,256,140.7  2,256,140.7
0 .9 0   396,313.8   356,682.4
0 0 1  1,450,654.2  1,450,654.2

new

     
     = =     
          

x .  

The corresponding limits on total industry output can be found conveniently as 

1 *

-0.0766    0.0732    0.1049 2,256,140.7  5,362.0
0.2301    0.2079   -0.3488   356,682.4  87,210.5

-0.0317   -0.1937    0.2199 1,450,654.2 178,367.8

new new−

     
     = = =     
          

x D x , which in turn means 

 0.8908   -0.0324   -0.0036  5,362.0 1,308.7
( ) -0.0899    0.9151   -0.0412 87,210.5 71,975.5

-0.1603   -0.1170    0.7651 178,367.8 125,406.0

new new

     
     = − = =     
          

f I A x .   

Finally, the change in GDP is 2,637.7new′ ′− = −i f i f  or a 1.31 percent reduction in GDP, 

where the original final demand is 
  3,653.3

 79,571.8
118,102.9

 
 = − =  
  

f x Ax .  

Computational Notes 
We define the matrix of technical coefficients A, the vector of total outputs x, and the matrix of 
direct impact coefficients D. We then compute the matrix inverse of D, which we call DI, the 
matrix found by subtracting A from a suitably size identity matrix, which we call IA. Finally, we 
can compute the vector of current final demands f, and the vector of current total impacts x, and 
the vector of direct impacts xs. 

 A←3 3⍴0.1092 0.0324 0.0036 0.0899 0.0849 0.0412 0.1603 0.117 0.2349 
 x←8262.7 95450.8 170690.3 ⋄ D←3 3⍴4.2 7 9.1 7.6 2.6 0.5 7.3 3.3 6.3 
 DI←⌹D ⋄ I←3 3⍴1,3⍴0 ⋄ IA←I-A ⋄ f←x-A+.×x ⋄ xs←D+.×x 

A 
    0.1092    0.0324    0.0036 
    0.0899    0.0849    0.0412 
    0.1603    0.1170    0.2349 
D 
    4.2000    7.0000    9.1000 
    7.6000    2.6000    0.5000 
    7.3000    3.3000    6.3000 
DI 
   ¯0.0766    0.0732    0.1049 
    0.2301    0.2079   ¯0.3488 
   ¯0.0317   ¯0.1937    0.2199 
IA 
    0.8908   ¯0.0324   ¯0.0036 
   ¯0.0899    0.9151   ¯0.0412 
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   ¯0.1603   ¯0.1170    0.7651 
f 
    3653.3   79571.8  118102.9 
x 
    8262.7   95450.8  170690.3 
xs 
 2256140.7  396313.8 1450654.2 

 We compute the vector of total impacts reflecting at shortfall in energy availability xs2 
and the corresponding vector of total outputs x2 and using IA we can then compute the 
corresponding vector of final demands f2. Knowing f2 we can compute the GNP change 
∆GNP, also expressed in percentage terms PCGNP. 

 x2←DI+.×xs2←1 0.9 1×xs 
 f2←IA+.×x2 
 ∆GNP←(+/f2)-+/f 
 PCGNP←100×((+/f2)-+/f)÷+/f 

xs2 
 2256140.7  356682.4 1450654.2 
x2 
    5362.0   87210.5  178367.8 
f2 
    1308.7   71975.5  125406.0 
∆GNP 
  ¯2637.70 
PCGNP 
     ¯1.31 

Problem 13.8: Input-Output and Linear Programming 
This problem explores input-output analysis configured as a linear programming (LP) problem 
using alternative objective functions.  

Problem 13.8 Overview 
Consider a traditional input-output economy is specified by the technical requirements matrix 

and vector of final demands, respectively, as 
.3 .1
.2 .5

=
 
  

A and 
4
5

=
 
  

f , for which the vector of 

total outputs is found by 1 7.575
( )

10.03
−  

= − =  
 

x I A f . The vector of value-added coefficients for this 

economy are found as 
.5
.4
 ′= − =  
 

v x i A .  

To specify this model as an equivalent LP formulation, we can write 
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1 2

1 2

1 2

1 2

.5 .4
.7 .1 4
.2 .5 5

, 0

Min x x
x x
x x
x x

+
− ≥

− + ≥
≥

 

which we can interpret as minimizing the gross domestic product (the sum of all value added) 
subject to total industry production that at least satisfies all industry final demands. In matrix 
terms this is expressed as 

( )
0

Min ′

− ≥
≥

v x
I A x f

x

 

The graphical solution is  

 

Note that it turns out that the solution to this LP problem has a “dual” formulation (discussed in 
Chapter 13) of maximizing the value of total final demand (or maximizing gross domestic 
product) subject to the technical coefficients and supply availability of value-added factors, 
which may seem more intuitive. These dual LP problems have the same result such that 
maximized value of final demand equals the minimized cost of value-added factors and that 
value is the gross domestic product, or the familiar equality of national product to national 
income.   

Now, suppose that for this economy pollution is generated at a rate of 2.5 units per dollar 
of output of industry 1 and 2 units per dollar of output of industry 2 for this economy. If we 
replace the objective function for the LP problem with minimizing pollution emissions instead of 
maximizing GDP, we can express this as  
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1 2

1 2

1 2

1 2

2.5 2
.7 .1 4
.2 .5 5

, 0

Min x x
x x
x x
x x

+
− ≥

− + ≥
≥

 

Note that the solution to this LP problem is the same as with the original objective function, 
which should not be surprising, in this particular case, since the minimum production levels 
defined in the constraint equations are already determined uniquely by the input-output 
relationships ( )− ≥I A f . 

Computational Notes 
Methods for solving LP problems computationally are beyond the scope of this text, but for 
convenience we use the monadic APL function LINPROG (listed in the appendix for this 
volume) for this purpose in this Workbook. The function argument is a matrix D with partitions 
defined by the following: 

⍝------C,u,0                                                                                                          
⍝------A,S,b                                                                                                          
⍝-----C is row vector of objective function coefficients (nm←⍴C)                                                      
⍝-----u is scalar u=1 for maximization u=¯1 for minimization                                                          
⍝-----A is matrix of constraint equation coefficients (nn×nm)                                                         
⍝-----S is col vector of signs: ¯1 for ≤; 0 for =; 1 for ≥' for 
⍝-----   constraint equations;(nn←⍴S=⍴b) the no. of const eqns 
⍝-----b is col vector of rhs terms of constraint equations (nn)    

The explicit result of applying LINPROG is a vector including (1) a scalar code indicating 
solution status (see the documentation of the function), (2) the final value of the objective 
function, and (3) the final values of the decision variables.  

 For this problem, we define the matrix in the format needed to use LINPROG specifying 
the first LP problem as D1 and for the second problem D2, with the corresponding results r1 and 
r2, respectively. 
     r1←1↓LINPROG D1←3 4⍴0.5 0.4 ¯1 0 0.7 ¯0.1 1 4 ¯0.2 0.5 1 5 
     r2←1↓LINPROG D2←3 4⍴2.5 2 ¯1 0 0.7 ¯0.1 1 4 ¯0.2 0.5 1 5 
D1 
 0.5  0.4 ¯1 0 
 0.7 ¯0.1  1 4 
¯0.2  0.5  1 5 
r1 
9.000005 7.5757576 13.030303 
D2 
 2.5  2   ¯1 0 
 0.7 ¯0.1  1 4 
¯0.2  0.5  1 5 
r2 
45.000005 7.5757576 13.030303 
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Problem 13.9: Goal Programming 
This problem expands the LP formulation for the economy specified in Problem 13.8 to a goal 
programming (GP) formulation which can accommodate multiple objective functions.   

Problem 13.9 Overview 
Suppose that, in addition to the environmental criteria specified in Problem 13.8, we also know 
that employment is generated at a rate of 6 and 3 units per dollars’ worth of output for industries 
1 and 2, respectively, and that there is high priority employment target of 7.5 units for industry 2. 

To formulate this situation as finding the vector of total outputs that meets the 
employment target for industry 2 as the highest priority, then meets final demand requirements 
for both industries as the next highest priority, and minimizes total pollution generation to the 
extent possible as the next priority, and, if possible, limiting pollution to a total level of 10 units 
between the two industries, we specify the following GP problem: 

1 3 2 1 2 3 4( ) ( ) ( )Min P d P d d P d− − − ++ + +   

1 2 1 1.7 .1 4x x d d+ −− + + =   

1 2 2 2.2 .5 5x x d d+ −− + + + =   

2 3 3.5 7.5x d d+ −+ + =   

1 2 4 42.5 2 10x x d d+ −+ + + =   

The graphical solution to this GP problem is shown below with the preferred vector of 
total outputs computed as * (7.857, 15)=x . 

 



2021 August 7 

-299- 
 

Computational Notes 
Computational methods for solving goal programming problems are beyond the scope of this 
textbook, but one useful feature of linear goal programming problems is that they can be 
formulated as a linear programming problem with different order magnitude weights on variables 
in pre-emptive priority levels, in which we can use the function LINPROG developed earlier. 

 For this problem, we define the goal programming problem in the format for LINPROG 
by specifying the weight for the first priority goal as 1,000, for the second priority goal as 100, 
and the third priority goal as 10 in the objective function specified in the first row of the matrix D 
(see the earlier description of LINPROG for additional details), which for this GP problem we 
define as DGP. Except for the first row, the first two columns of DGP are the constraint equation 
coefficients, the next four columns are initial coefficients for the positive deviational variables 
(all with the value -1), the next four columns are the initial coefficients for the negative 
deviational variables (all with a value of 1), the next to last column specifying equality 
constraints (value of 0), and the last column includes the right-hand-side values of the constraint 
equations.  DGP is then used as the right argument in applying LINPROG and the second and 
third elements of the explicit result are the values of the x1 and x2. which are extracted in the 
vector xs. 

 I←4 4⍴1,4⍴0 
 D←(⍉2 4⍴0.7 ¯0.2 0 2.5 ¯0.1 0.5 0.5 2) 
 D←D,(-I),I,⍉2 4⍴(4⍴0),4 5 7.5 10 
 DGP←(1 12⍴0 0 0 0 0 10 100 100 1000 0 ¯1 0),[1]D 
 xs←2↑2↓r←LINPROG DGP 

       DGP 
 0    0    0  0  0 10 100 100 1000 0 ¯1  0   
 0.7 ¯0.1 ¯1  0  0  0   1   0    0 0  0  4   
¯0.2  0.5  0 ¯1  0  0   0   1    0 0  0  5   
 0    0.5  0  0 ¯1  0   0   0    1 0  0  7.5 
 2.5  2    0  0  0 ¯1   0   0    0 1  0 10   
       xs 
7.8571429 15   

 We can streamline the formulation of the GP problem with the dyadic APL Function 
GOALPROG which takes a left argument that specifies the goal programming objective function 
and a right argument that specifies the constraint matrix.  

[  0]  r←P GOALPROG C;np;nv;nd;I;k;OBJ;W;i;j;obj;R       
[  1] ⍝GP with pre-emptive priority levels                
[  2] ⍝P--row 1 specifies pre-emptive level (weight)      
[  3] ⍝---row 2 neg dev var (minus#) or pos dev var(Pos#) 
[  4] ⍝C--const and obj fn equations, last col is RHS     
[  5] ⍝P is 2×np ; C is nv×(nd+1)                         
[  6]  np←¯1↑⍴P ⋄ nv←1↑⍴C ⋄ nd←¯1+¯1↑⍴C ⋄ W←⊖10*⍳5        
[  7]  I←(2⍴nv)⍴1,nv⍴0 ⋄ OBJ←(np,(2×nv))⍴0 ⋄ k←1          
[  8] L1:i←P[1;k] ⋄ j←(|P[2;k])+nv×P[2;k]<0               
[  9]  OBJ[i;j]←W[P[1;k]]                                 
[ 10]  →(np≥k←k+1)/L1                                     
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[ 11]  R←C[;⍳nd],(-I),I,((nv,1)⍴0),C[;nd+1]               
[ 12]  obj←(nd⍴0),(+⌿OBJ),¯1 0                            
[ 13]  R←((1,⍴obj)⍴obj),[1]R                              
[ 14]  r←LINPROG R                             

The left argument P is a two-row matrix.  An element in the first row specifies the preemptive 
priority level for a deviational variable specified in the same column in the second row.  A 
negative number in the second row indicates a negative deviational variable, e.g., ¯3 would 
indicate 3d −  , and a positive number indicates a positive deviational variable, e.g., 2 would 

indicate 2d + .  Hence, a goal programming objective function specified as  

1 3 2 1 2 3 4( ) ( ) ( )Min P d P d d P d− − − ++ + +  would be specified in the left argument of GOALPROG as 

      P←2 4⍴1 2 2 3 ¯3 ¯1 ¯2 4 
      P 
 1  2  2 3 
¯3 ¯1 ¯2 4       

The right argument to GOALPROG is the matrix of constraint equations C with all but the last 
column specifying the constraint equation coefficients and the last column specifying the right-
hand-side values of the constraint equations.  Hence, a set of goal programming constraint 
equations specified as  

1 2 1 1.7 .1 4x x d d+ −− + + =   

1 2 2 2.2 .5 5x x d d+ −− + + + =   

2 3 3.5 7.5x d d+ −+ + =   

1 2 4 42.5 2 10x x d d+ −+ + + =    

would be specified in the right argument of GOALPROG as 

      C←4 3⍴.7 ¯.1 4 ¯.2 .5 5 0 .5 7.5 2.5 2 10 
      C 
 0.7 ¯0.1  4   
¯0.2  0.5  5   
 0    0.5  7.5 
 2.5  2   10   

The function GOALPROG converts these left and right arguments into a tableau that is then 
solved with the function LINPROG defined earlier.  

 0    0    0  0  0 1000 10000 10000 100000 0 ¯1  0   
 0.7 ¯0.1 ¯1  0  0    0     1     0      0 0  0  4   
¯0.2  0.5  0 ¯1  0    0     0     1      0 0  0  5   
 0    0.5  0  0 ¯1    0     0     0      1 0  0  7.5 
 2.5  2    0  0  0   ¯1     0     0      0 1  0 10    

      P GOALPROG C 
0 39642.85714 7.857142857 15 0 0.9285714286 0 39.64285714 0 0 0 0 
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Recall the format of the result: the first element, which is reported as 0, indicates an optimal LP 
solution was reached; the second element is the final value of the LP objective function (not 
important for the GP solution); and the next two values are the values of the decision variables 
for the GP solution, so the solution is more precisely specified as  

      2↑2↓ P GOALPROG C 
7.857142857 15 
 

Problem 13.10: Estimating Changes in Carbon Dioxide Emissions 
This problem illustrates the estimation of the change in U.S. carbon dioxide emissions between 
two reference years.  

Problem 13.10 Overview 
We use highly aggregated (seven industry sectors) versions of the 1997 and 2007 U.S. input-
output tables (industry-by-industry and assume industry-based technology, after redefinitions) 
provided in text’s Appendix SD1.  

First, we retrieve the supply and use matrices and, recalling that the supply matrix is the 
transpose of the use matrix, we can specify: 

1997

258,234 0 0 45 0 796 0
0 162,842 0 9,119 0 0 0
0 0 762,267 0 0 0 0
0 1,007 0 3,752,428 0 28,347 3,789

126 381 0 0 2,262,980 259 742
0 240 0 0 11 6,577,434 1,866

1,002 0 0 0 76,744 165,709 1,326,951

 
 
 
 

=  
 
 
 
 

V   

2007

347,665 0 0 12 0 1,559 0
0 437,065 0 24,850 0 0 0
0 0 1,436,071 0 0 0 0
0 828 0 5,176,967 0 33,134 5,050

439 15 0 0 3,784,910 2,194 1,382
0 149 0 0 10 12,218,068 1,377

1,413 0 0 0 120,309 296,914 2,348,118

 
 
 
 

=  
 
 
 
 

V   

1997

48,986 86 1,067 155,059 1,282 3,447 1,306
1,195 17,051 7,663 126,256 32, 295 1,439 10,910

879 1,958 189 15,114 6,110 38,589 33,763
44,105 19,986 205,959 1,532,339 97,639 333,465 165,270
25,240 12,589 85,547 335,127 210,522 198,2

=U
33 61,843

28,584 29,237 68,715 320,296 413,007 1,774,829 203,053
720 808 4,873 25,755 43,718 52,333 17,330

 
 
 
 
 
 
 
 
 
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2007

64,432 127 1,841 206,823 1,524 5,602 3,832
1,995 41,923 13,422 428,689 83,277 4,020 24,343
1,764 3,806 188 16,102 12,568 129,186 58,171

62,374 40,138 343,216 1,954,459 210,331 542, 427 327,316
37,563 18,993 150,821 489,276 393,

=U
027 363,846 112,297

34,714 54,852 118,577 386,380 745,794 3,643,107 433,804
823 1,401 1,611 38,698 59,939 90,726 26,504

 
 
 
 
 
 
 
 
 

  

We can compute the vectors of total industry outputs, =x Vi , total commodity outputs, 
′=q i V  for both years as: 

[ ]1997 1997 259,362 164,470 762,267 3,761,592 2,339,735 6,772,545 1,333,348 ′= =x V i  

[ ]1997 1997 259,075 171,961 762,267 3,785,571 2,264,488 6,579,551 1,570,406 ′′=q i V   

[ ]2007 2007 349,517 438,057 1,436,071 5,201,829 3,905,229 12,551,869 2,355,927 ′= =x V i   

[ ]2007 2007 349,236 461,915  1,436,071  5,215,979  3,788,940  12,219,604 2,766,754 ′′= =q i V   
We can the compute the matrix of industry commodity requirements, B, and the matrix of 

commodity output proportions, D, for both years and under the assumption of an industry-by-
industry model assuming industry-based technology we can specify the direct requirements 
matrix as =A DB  for each of the two years as:  

1997

0.188273 0.000544 0.001409 0.041103 0.000568 0.000540 0.000996
0.004773 0.098467 0.010171 0.032766 0.013171 0.000320 0.008047
0.003389 0.011905 0.000248 0.004018 0.002611 0.005698 0.025322
0.169072 0.121839 0.268290 0.=A 404378 0.042252 0.049956 0.123601
0.097359 0.076731 0.112182 0.089133 0.089964 0.029265 0.046382
0.110184 0.177859 0.090139 0.085177 0.176504 0.261988 0.152266
0.009150 0.011224 0.011481 0.011109 0.023286 0.014123 0.016394






 
 
 
 
 
 
 



  

2007

0.183530 0.000305 0.001287 0.039591 0.000413 0.000481 0.001643
0.006251 0.090990 0.009982 0.079768 0.020434 0.000509 0.010439
0.005047 0.008688 0.000131 0.003095 0.003218 0.010292 0.024691
0.177407 0.091459 0.237452 0.=A 373278 0.054040 0.043692 0.138432
0.107608 0.043339 0.104929 0.094028 0.100577 0.029013 0.047656
0.099311 0.125233 0.082564 0.074299 0.190964 0.290211 0.184119
0.008570 0.007135 0.006298 0.011266 0.020864 0.014109 0.015542






 
 
 
 
 
 
 



 

The corresponding matrices of total requirements, 1( )−= −L I A , for the two years are: 
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1997 1997 1

1.252977 0.015617 0.027750 0.089978 0.007161 0.007798 0.014963
0.024627 1.122265 0.032976 0.068182 0.021330 0.006615 0.020653
0.008970 0.017526 1.005313 0.011175 0.006220 0.009337 0.029176
0.4077( ) 44 0.2858−= − =L I A 96 0.506676 1.768336 0.120680 0.133877 0.264423
0.187822 0.138849 0.188470 0.200829 1.125215 0.061665 0.094020
0.291291 0.346223 0.243804 0.289671 0.296740 1.393885 0.275576
0.025275 0.024644 0.026054 0.030630 0.032644 0.023243 1.026551

 
 
 
 
 
 
 
 
 

 

2007 2007 1

1.244908 0.010357 0.022731 0.082327 0.007667 0.006880 0.015992
0.049530 1.120132 0.053254 0.154067 0.038688 0.013456 0.039350
0.012215 0.013642 1.005408 0.011260 0.008746 0.016252 0.030428
0.4075( ) 43 0.1999−= − =L I A 23 0.430289 1.689458 0.140185 0.121968 0.280757
0.205969 0.086585 0.175881 0.205806 1.142868 0.064162 0.101938
0.288758 0.249039 0.226796 0.279912 0.339136 1.450302 0.335832
0.024442 0.015987 0.018918 0.029612 0.031088 0.023802 1.026593

 
 
 
 
 
 
 
 
 

 

Finally, we specify the vector of units of carbon dioxide emissions generated per dollar of 
total output in 1997 as 1997 3 7 10 5[2 4 4]′=d . If we presume that the availability of new 
technology reduces the emissions per dollar of output in the year 2007 for the manufacturing 
sector by 10 percent and the construction sector by 15 percent, then we can specify the new 
emissions coefficients for 2007 as 2007 3 3.4 6.3 10 5[2 4]′=d . Hence the total pollution 
impacts are 2007 2007 19997 1997][ ] 57,916,899p ′∆ = − =i T f T f   where 2007 2007 2007[ ]′=T d L  and 

1997 1997 1997[ ]′=T d L  or equivalently 2007 2007 1997 1997[ ] [ ]′ ′−d x d x . In this case the improvement in 
pollution coefficients (reduction pollution generation per dollar of total output) was offset by 
growth in output levels so the net result was an increase in pollution impacts.  

Computational Notes 
We define the vector of emissions coefficients for 1997 as DC1. We presume the Make and Use 
matrices for 1997 and 2007 are retrieved in the APL workspace as V1 and U1, respectively, for 
1997 and V2 and U2 for 2007. Applying the specified reductions in emissions due to new 
technology we compute the vector of emissions coefficients for 2007 DC2. From V1 and V2 we 
compute the total commodity outputs and industry outputs q1, q2, x1, and x2. We compute the 
matrices of industry commodity requirements, B1 and B2, and the matrices of commodity output 
proportions, D1 and D2. Finally, assuming industry-based technology we compute A1 and A2, 
the corresponding Leontief inverses, L1 and L2, and vectors of final demand f1 and f2. 

 DC1←1 7⍴2 3 4 7 10 5 4 ⋄ DC2←DC1×1 7⍴1 1 0.85 0.9 1 1 1 
 q1←+/V1 ⋄ x1←+⌿V1 ⋄ q2←+/V2 ⋄ x2←+⌿V2 
 D1←V1 AMAT q1 ⋄ B1←U1 AMAT x1 ⋄ D2←V2 AMAT q2 ⋄ B2←U2 AMAT x2 
 L1←LINV A1←D1+.×B1 ⋄ L2←LINV A2←D2+.×B2 

       f1←x1-+/Z1←A1+.×DIAG x1 ⋄ f2←x2-Z2←+/A2+.×DIAG x2   
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DC1 
    0.9968    0.0000    0.0000    0.0000    0.0000    0.0001    0.0000 
    0.0000    0.9470    0.0000    0.0024    0.0000    0.0000    0.0000 
    0.0000    0.0000    1.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0059    0.0000    0.9912    0.0000    0.0043    0.0024 
    0.0005    0.0022    0.0000    0.0000    0.9993    0.0000    0.0005 
    0.0000    0.0014    0.0000    0.0000    0.0000    0.9997    0.0012 
    0.0039    0.0000    0.0000    0.0000    0.0339    0.0252    0.8450 
DC2 
    0.9955    0.0000    0.0000    0.0000    0.0000    0.0001    0.0000 
    0.0000    0.9462    0.0000    0.0048    0.0000    0.0000    0.0000 
    0.0000    0.0000    1.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0018    0.0000    0.9925    0.0000    0.0027    0.0018 
    0.0013    0.0000    0.0000    0.0000    0.9989    0.0002    0.0005 
    0.0000    0.0003    0.0000    0.0000    0.0000    0.9999    0.0005 
    0.0040    0.0000    0.0000    0.0000    0.0318    0.0243    0.8487 
V1 
    258234         0         0        45         0       796         0 
         0    162842         0      9119         0         0         0 
         0         0    762267         0         0         0         0 
         0      1007         0   3752428         0     28347      3789 
       126       381         0         0   2262980       259       742 
         0       240         0         0        11   6577434      1866 
      1002         0         0         0     76744    165709   1326951 
q1 
    259075    171961    762267   3785571   2264488   6579551   1570406 
x1 
    259362    164470    762267   3761592   2339735   6772545   1333348 
V2 
    347665         0         0        12         0      1559         0 
         0    437065         0     24850         0         0         0 
         0         0   1436071         0         0         0         0 
         0       828         0   5176967         0     33134      5050 
       439        15         0         0   3784910      2194      1382 
         0       149         0         0        10  12218068      1377 
      1413         0         0         0    120309    296914   2348118 
q2 
    349236    461915   1436071   5215979   3788940  12219604   2766754 
x2 
    349517    438057   1436071   5201829   3905229  12551869   2355927 
A1 
    0.1883    0.0005    0.0014    0.0411    0.0006    0.0005    0.0010 
    0.0048    0.0985    0.0102    0.0328    0.0132    0.0003    0.0080 
    0.0034    0.0119    0.0002    0.0040    0.0026    0.0057    0.0253 
    0.1691    0.1218    0.2683    0.4044    0.0423    0.0500    0.1236 
    0.0974    0.0767    0.1122    0.0891    0.0900    0.0293    0.0464 
    0.1102    0.1779    0.0901    0.0852    0.1765    0.2620    0.1523 
    0.0091    0.0112    0.0115    0.0111    0.0233    0.0141    0.0164 
L1 
    1.2530    0.0156    0.0277    0.0900    0.0072    0.0078    0.0150 
    0.0246    1.1223    0.0330    0.0682    0.0213    0.0066    0.0207 
    0.0090    0.0175    1.0053    0.0112    0.0062    0.0093    0.0292 



2021 August 7 

-305- 
 

    0.4077    0.2859    0.5067    1.7683    0.1207    0.1339    0.2644 
    0.1878    0.1388    0.1885    0.2008    1.1252    0.0617    0.0940 
    0.2913    0.3462    0.2438    0.2897    0.2967    1.3939    0.2756 
    0.0253    0.0246    0.0261    0.0306    0.0326    0.0232    1.0266 
A2 
    0.1835    0.0003    0.0013    0.0396    0.0004    0.0005    0.0016 
    0.0063    0.0910    0.0100    0.0798    0.0204    0.0005    0.0104 
    0.0050    0.0087    0.0001    0.0031    0.0032    0.0103    0.0247 
    0.1774    0.0915    0.2375    0.3733    0.0540    0.0437    0.1384 
    0.1076    0.0433    0.1049    0.0940    0.1006    0.0290    0.0477 
    0.0993    0.1252    0.0826    0.0743    0.1910    0.2902    0.1841 
    0.0086    0.0071    0.0063    0.0113    0.0209    0.0141    0.0155 
L2 
    1.2449    0.0104    0.0227    0.0823    0.0077    0.0069    0.0160 
    0.0495    1.1201    0.0533    0.1541    0.0387    0.0135    0.0393 
    0.0122    0.0136    1.0054    0.0113    0.0087    0.0163    0.0304 
    0.4075    0.1999    0.4303    1.6895    0.1402    0.1220    0.2808 
    0.2060    0.0866    0.1759    0.2058    1.1429    0.0642    0.1019 
    0.2888    0.2490    0.2268    0.2799    0.3391    1.4503    0.3358 
    0.0244    0.0160    0.0189    0.0296    0.0311    0.0238    1.0266 

We compute the total emissions coefficients matrices T1 and T2, compute the total emissions for 
each year as E1 and E2, and compute the change in total emissions ∆E. 

       T1←DC1+.×L1 ⋄ T2←DC2+.×L2 
       E1←T1+.×f1 ⋄ E2←T2+.×f2 
       ∆E←+/E2-E1 

T1 
    8.9057    8.6876   10.9303   16.3867   13.8144    8.6890    8.4838 
E1 
  92985813.0 
T2 
    8.8487    6.8620    9.3029   14.8848   14.2930    8.8661    8.8272 
E2 
 150902712.1 
∆E 
57916899 

Problem 13.11: Attribution of Pollution Production or Consumption 
This problem illustrates the attribution of pollution emissions, in this case CO2 emissions, to 
either consumption or production using an interregional input-output (IRIO) model.  

Problem 13.11 Overview 
Consider the 3 region 2 sector IRIO interindustry technical coefficients matrix defined by 
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.222 .121 .027 .023 .007 .014

.217 .028 .014 .015 .021 .012
.02 .025 .126 .088 .019 .019
.002 .025 .06 .141 .002 .019
.012 .02 .019 .005 .192 .179
.022 .017 .005 .013 .195 .164

 
 
 
 =
 
 
 
 

A .  The corresponding Leontief inverse is then 

1

1.335 .17 .048 .045 .025 .033
.3 .1069 .029 .031 .039 .03

.043 .04 1.155 .125 .038 .039( ) .018 .037 .085 1.217 .015 .034
.04 .038 .033 .018 1.308 .282
.051 .036 .019 .025 .307 1.265

−

 
 
 
 = − =
 
 
 
 

L I A . We define a vector of CO2 

emission coefficients as [ ].9 .4 .3 1.0 .2 .7′ =g .  

For a new vector of final demands presented to this IRIO economy, defined by 
1500
2000
55
40
5
3

new

 
 
 
 =
 
 
 
 

f , we can calculate the vector of the total CO2 emissions associated with the total 

economic production for each sector in each region attributed to where the pollution is generated 

as 

2112.0
1036.7

63.9ˆ
153.9
29.1

109.1

D new

 
 
 
 = =
 
 
 
 

e gLf . To attribute the emissions to consumption rather than production, i.e., 

where the consumption occurs that generates the demand for the production that generates the 

emissions, we specify the impacts as 

2091.7
1320.2
27.64ˆ
51.33
2.7
3.1

C new

 
 
 
 = =
 
 
 
 

e gLf .  

Note that both vectors sum to the same level of total CO2 emissions, i.e., 34,967D C′ ′= =i e i e , 
but De attributes the pollution generated to the sectors where the emissions were generated 
during production while Ce attributes the emissions to final consumers, i.e., final demand sectors 
that generated the demand for that industrial production and associate emissions.  Since this 
economy is dominated by region 1, as is evident by total GDP in regions 1, 2, and 3 of 3500, 95, 
and 8, respectively (the sum of final demands in each region), the total emissions when 
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attributable to final demand are 9 percent higher for region 1 and 63 and 96 percent lower in 
regions 2 and 3, respectively, when emissions are attributed to final consumption rather than the 
source of production. 

Computational Notes 
We first define technical coefficients matrix A, the vector of final demands f, and the emissions 
coefficients g. We then compute the Leontief inverse in order to compute the vector of total 
emissions attributed to production ed, the vector of total emissions attributed to consumption 
ec, and the sum of total emissions tec. 

 A←0.222 0.121 0.027 0.023 0.007 0.014 0.217 0.028 0.014 
 A←A,0.015 0.021 0.012 0.02 0.025 0.126 0.088 0.019 0.019 
 A←A,0.002 0.025 0.06 0.141 0.002 0.019 0.012 0.02 0.019 
 A←6 6⍴A,0.005 0.192 0.179 0.022 0.017 0.005 0.013 0.195 0.164 
 g←0.9 0.4 0.3 1 0.2 0.7 
 f←1500 2000 55 40 5 3 
  
 L←LINV A 
 ed←(DIAG g)+.×L+.×f 
 ec←g+.×L+.×DIAG f 
 tec←+/ec 

A 
   0.222    0.121   0.027   0.023   0.007   0.014 
   0.217    0.028   0.014   0.015   0.021   0.012 
   0.020    0.025   0.126   0.088   0.019   0.019 
   0.002    0.025   0.060   0.141   0.002   0.019 
   0.012    0.020   0.019   0.005   0.192   0.179 
   0.022    0.017   0.005   0.013   0.195   0.164 
f 
1500.000 2000.000  55.000  40.000   5.000   3.000 
g 
   0.900    0.400   0.300   1.000   0.200   0.700 
L 
   1.335    0.170   0.048   0.044   0.025   0.032 
   0.300    1.069   0.030   0.030   0.038   0.030 
   0.043    0.040   1.155   0.121   0.038   0.038 
   0.016    0.035   0.082   1.174   0.014   0.032 
   0.040    0.038   0.033   0.017   1.308   0.282 
   0.051    0.036   0.018   0.025   0.307   1.264 
ed 
2112.229 1036.775  63.608 146.054  29.110 108.882 
ec 
2091.726 1320.187  27.642  51.327   2.697   3.079 
tec 
3496.658 

Problem 13.12: Attribution of Global Emissions  
This problem explores the same issues regarding attribution of CO2 emissions attributed to 
consumption versus production as in Problem 13.11, but for a 3-region, 3-sector global IRIO 
model.  



2021 August 7 

-308- 
 

Problem 13.12 Overview 
Consider the Global IRIO transactions tables aggregated to 3 regions (the US, China, and Rest of 
World) and 3-Sector industry sectors (Agriculture and Mining, Manufacturing, and Services & 
Utilities) for the years 2005 and 2015 given in the text’s Appendix SD2.  

First, we retrieve the matrices of IRIO transactions, Z, and total outputs, x, and specify 
for the two years: 

2005

355 247 155 2 1 0 18 11 7
114 1,173 1,199 1 17 3 19 195 80
263 810 4,985 1 5 4 21 87 159

1 1 0 237 208 71 7 8 4
2 42 35 85 1,149 388 9 158 71
0 3 4 57 236 368 2 13 14

42 197 32 10 59 4 1,800 1,352 702
18 264 190 10 213 42 573 6123 3,449
12 60 132 7 45 31 1,052 3,100 10,903



=Z


 
 
 
 
 
 
 
 
 
  

 2005

1,346
4,568

17,168
846

2,675
1,867
6,760

16,816
37,192

 
 
 
 
 
 =
 
 
 
 
  

x   

2015

503 269 224 10 5 2 35 20 13
108 1,180 1,228 3 57 14 27 250 122
374 974 7,023 6 22 19 39 133 304

2 0 1 1,336 905 325 18 5 9
6 108 121 423 5,879 2,001 39 502 283
1 9 12 413 1,563 2,519 6 43 42

39 148 33 52 254 16 3,415 1,968 1,096
19 280 225 25 533 119 868 7,857 4,71

=Z

4
15 63 196 18 111 69 1,635 3,981 15,278

,

 
 
 
 
 
 
 
 
 
 
  

2015

1,838
5,284

23,699
3,937

12,429
10,818
11,465
22,489
52,297

 
 
 
 
 
 =
 
 
 
 
  

x  

From 2005Z , 2005x , 2015Z , and 2015x , we can calculate the associated vectors of final 
demand: 

2005 2005 2005 551   1,768   10,835  |  310   736   1,171  |  2,563   5,934   2 1][ 1,85= − =f x Z i   

2015 2015 2015 757   2,296   14,805  |  1,335   3,069   6,211  |  4,446   7,849   3 1][ 0,93= − =f x Z i . 
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Also, we can compute the matrices of technical coefficients, 1ˆ −=A Zx , and total 
requirements, 1( )−= −L I A  for each year as:  

2005

0.2634 0.0541 0.0090 0.0025 0.0003 0.0002 0.0026 0.0006 0.0002
0.0849 0.2567 0.0698 0.0011 0.0062 0.0018 0.0027 0.0116 0.0021
0.1953 0.1772 0.2903 0.0014 0.0020 0.0019 0.0031 0.0051 0.0043
0.0006 0.0001 0.0000 0.2796 0.0778 0.

=A
0379 0.0010 0.0005 0.0001

0.0018 0.0093 0.0020 0.1006 0.4294 0.2078 0.0013 0.0094 0.0019
0.0002 0.0007 0.0002 0.0668 0.0881 0.1973 0.0003 0.0008 0.0004
0.0308 0.0432 0.0018 0.0116 0.0221 0.0022 0.2663 0.0804 0.0189
0.0135 0.0578 0.0111 0.0116 0.0796 0.0225 0.0847 0.3641 0.0927
0.0090 0.0131 0.0077 0.0078 0.0168 0.0168 0.1556 0.1844 0.2931

 
 
 
 
 
 
 
 
 
 
  

 

2015

0.2736 0.0510 0.0094 0.0026 0.0004 0.0002 0.0030 0.0009 0.0002
0.0586 0.2232 0.0518 0.0008 0.0046 0.0013 0.0023 0.0111 0.0023
0.2034 0.1842 0.2964 0.0015 0.0017 0.0018 0.0034 0.0059 0.0058
0.0013 0.0000 0.0001 0.3394 0.0728 0.

=A
0301 0.0016 0.0002 0.0002

0.0034 0.0203 0.0051 0.1074 0.4730 0.1849 0.0034 0.0223 0.0054
0.0004 0.0017 0.0005 0.1048 0.1257 0.2329 0.0005 0.0019 0.0008
0.0210 0.0280 0.0014 0.0132 0.0204 0.0014 0.2978 0.0875 0.0209
0.0102 0.0529 0.0095 0.0063 0.0429 0.0110 0.0757 0.3494 0.0901
0.0082 0.0119 0.0083 0.0045 0.0089 0.0064 0.1426 0.1770 0.2921

 
 
 
 
 
 
 
 
 
 
  

 

2005

1.3780 0.1078 0.0282 0.0059 0.0041 0.0022 0.0064 0.0050 0.0017
0.1996 1.3971 0.1407 0.0083 0.0239 0.0113 0.0123 0.0316 0.0097
0.4304 0.3810 1.4527 0.0090 0.0167 0.0103 0.0149 0.0253 0.0138
0.0027 0.0042 0.0013 1.4298 0.2151 0.

=L
1233 0.0035 0.0054 0.0017

0.0120 0.0305 0.0093 0.3099 1.8781 0.5020 0.0101 0.0335 0.0102
0.0023 0.0053 0.0017 0.1532 0.2245 1.3114 0.0023 0.0061 0.0022
0.0812 0.1098 0.0196 0.0441 0.0971 0.0383 1.4006 0.1995 0.0643
0.0767 0.1692 0.0478 0.0858 0.2842 0.1306 0.2440 1.6776 0.2283
0.0642 0.1005 0.0358 0.0591 0.1484 0.0873 0.3728 0.4834 1.4891

 
 
 
 
 
 
 
 
 
 
  

 

2015

1.3923 0.0984 0.0261 0.0069 0.0041 0.0019 0.0075 0.0055 0.0020
0.1357 1.3229 0.0999 0.0070 0.0176 0.0076 0.0105 0.0282 0.0093
0.4393 0.3773 1.4556 0.0100 0.0151 0.0087 0.0169 0.0279 0.0175
0.0060 0.0090 0.0030 1.5737 0.2478 0.

=L
1216 0.0070 0.0116 0.0041

0.0252 0.0702 0.0226 0.4243 2.0900 0.5222 0.0270 0.0863 0.0289
0.0065 0.0164 0.0055 0.2847 0.3770 1.4060 0.0073 0.0205 0.0075
0.0571 0.0785 0.0140 0.0519 0.0912 0.0308 1.4639 0.2215 0.0727
0.0545 0.1398 0.0374 0.0610 0.1719 0.0699 0.2221 1.6349 0.2169
0.0491 0.0796 0.0315 0.0440 0.0933 0.0440 0.3513 0.4557 1.4824

 
 
 
 
 
 
 
 
 
 
  
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If we estimate CO2 emission indices as  [.2 .3 .1 .3 .5 .2 .1 .2 .1]=g  per million US 
dollars and, for simplicity, we assume these indices do not change between 2005 and 2015, we 
have all we need to compute the vectors of generated emissions from producing sectors as  

2005 2005 2005 269   1,370   1,717  |    254    1,337      373  |    676    3,363 ˆ   3[ ,719]p = =e gL f     
2015 2015 2015 368   1,585   2,370  |  1,181   6,214   2,164  |  1,147   4,498 ˆ   5[ ,230]p = =e gL f . 

The corresponding vectors of generated emissions attributed to consuming sectors are  
2005 2005 2005 229     974   2,314  |     200      838      695  |    613   2,590   4,626ˆ ][c = =e gL f      
2015 2015 2015 303   1,238   3,050  |  1,025   3,852   3,750  |  1,108   3,593   6,836ˆ ][c = =e gL f .  

For convenience we compute the sums of emissions for all sectors in each region, 
defining the vectors of total regional emissions (from producing sectors) for the two years as 

2005 [3,356 1,965 7,758]rp =e  and 2015 [4,323 9,558 10,874]rp =e .  

The vectors of total regional emissions (attributed to consuming sectors) for the two years are 
2005 [3,518 1,733 7,828]rc =e  and 2015 [4,591 8,627 11,538]rc =e .  

The percentage shifts for each region for attributing emissions to consumption rather than 
production are, for 2005 a 5 and 1 percent increase in the US and ROW, respectively, and a 12 
percent decrease in China. For 2015 there is a 6 percent increase in both the US and ROW and a 
10 percent decrease in China. 

Computational Notes 
We presume the matrices of global IRIO transactions for 2005 and 2015 are present in the APL 
workspace as Z1 and Z2, respectively, along with the corresponding vectors of total outputs x1 
and x2. We define the vector of global emissions coefficients g and compute the vectors of total 
final demands, f1 and f2. We compute the matrices of total pollution flows GP1 and GP2 and 
compute the rows sums of each to yield total emissions attributed to production, ep1 and ep2, 
as well as the column sums of each to yield total emissions attributed to consumption, ec1 and 
ec2.  

 f1←x1-+/Z1  ⋄ f2←x2-+/Z2 
 g←0.2 0.3 0.1 0.3 0.5 0.2 0.1 0.2 0.1 
 L1←INV A1←Z1 AMAT x1 ⋄ L2←INV A2←Z2 AMAT x2 
 GP1←(DIAG g)+.×L1+.×DIAG f1 ⋄ GP2←(DIAG g)+.×L2+.×DIAG f2 
 ep1←+/GP1 ⋄ ep2←+/GP2 ⋄ ec1←+⌿GP1 ⋄ ec2←+⌿GP2 

f1 
       551      1768     10835       310       736      1171      2563      5934     21851 
f2 
       757      2296     14805      1335      3069      6211      4446      7849     30931 
A1 
    0.2634    0.0541    0.0090    0.0025    0.0003    0.0002    0.0026    0.0006    0.0002 
    0.0849    0.2567    0.0698    0.0011    0.0062    0.0018    0.0027    0.0116    0.0021 
    0.1953    0.1772    0.2903    0.0014    0.0020    0.0019    0.0031    0.0051    0.0043 
    0.0006    0.0001    0.0000    0.2796    0.0778    0.0379    0.0010    0.0005    0.0001 
    0.0018    0.0093    0.0020    0.1006    0.4294    0.2078    0.0013    0.0094    0.0019 
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    0.0002    0.0007    0.0002    0.0668    0.0881    0.1973    0.0003    0.0008    0.0004 
    0.0308    0.0432    0.0018    0.0116    0.0221    0.0022    0.2663    0.0804    0.0189 
    0.0135    0.0578    0.0111    0.0116    0.0796    0.0225    0.0847    0.3641    0.0927 
    0.0090    0.0131    0.0077    0.0078    0.0168    0.0168    0.1556    0.1844    0.2931 
A2 
    0.2736    0.0510    0.0094    0.0026    0.0004    0.0002    0.0030    0.0009    0.0002 
    0.0586    0.2232    0.0518    0.0008    0.0046    0.0013    0.0023    0.0111    0.0023 
    0.2034    0.1842    0.2964    0.0015    0.0017    0.0018    0.0034    0.0059    0.0058 
    0.0013    0.0000    0.0001    0.3394    0.0728    0.0301    0.0016    0.0002    0.0002 
    0.0034    0.0203    0.0051    0.1074    0.4730    0.1849    0.0034    0.0223    0.0054 
    0.0004    0.0017    0.0005    0.1048    0.1257    0.2329    0.0005    0.0019    0.0008 
    0.0210    0.0280    0.0014    0.0132    0.0204    0.0014    0.2978    0.0875    0.0209 
    0.0102    0.0529    0.0095    0.0063    0.0429    0.0110    0.0757    0.3494    0.0901 
    0.0082    0.0119    0.0083    0.0045    0.0089    0.0064    0.1426    0.1770    0.2921 
 

L1 
    1.3780    0.1078    0.0282    0.0059    0.0041    0.0022    0.0064    0.0050    0.0017 
    0.1996    1.3971    0.1407    0.0083    0.0239    0.0113    0.0123    0.0316    0.0097 
    0.4304    0.3810    1.4527    0.0090    0.0167    0.0103    0.0149    0.0253    0.0138 
    0.0027    0.0042    0.0013    1.4298    0.2151    0.1233    0.0035    0.0054    0.0017 
    0.0120    0.0305    0.0093    0.3099    1.8781    0.5020    0.0101    0.0335    0.0102 
    0.0023    0.0053    0.0017    0.1532    0.2245    1.3114    0.0023    0.0061    0.0022 
    0.0812    0.1098    0.0196    0.0441    0.0971    0.0383    1.4006    0.1995    0.0643 
    0.0767    0.1692    0.0478    0.0858    0.2842    0.1306    0.2440    1.6776    0.2283 
    0.0642    0.1005    0.0358    0.0591    0.1484    0.0873    0.3728    0.4834    1.4891 
L2 
    1.3923    0.0984    0.0261    0.0069    0.0041    0.0019    0.0075    0.0055    0.0020 
    0.1357    1.3229    0.0999    0.0070    0.0176    0.0076    0.0105    0.0282    0.0093 
    0.4393    0.3773    1.4556    0.0100    0.0151    0.0087    0.0169    0.0279    0.0175 
    0.0060    0.0090    0.0030    1.5737    0.2478    0.1216    0.0070    0.0116    0.0041 
    0.0252    0.0702    0.0226    0.4243    2.0900    0.5222    0.0270    0.0863    0.0289 
    0.0065    0.0164    0.0055    0.2847    0.3770    1.4060    0.0073    0.0205    0.0075 
    0.0571    0.0785    0.0140    0.0519    0.0912    0.0308    1.4639    0.2215    0.0727 
    0.0545    0.1398    0.0374    0.0610    0.1719    0.0699    0.2221    1.6349    0.2169 
    0.0491    0.0796    0.0315    0.0440    0.0933    0.0440    0.3513    0.4557    1.4824 
GP1 
       152        38        61         0         1         1         3         6         7 
        33       741       457         1         5         4         9        56        63 
        24        67      1574         0         1         1         4        15        30 
         0         2         4       133        47        43         3        10        11 
         3        27        51        48       691       294        13       100       112 
         0         2         4         9        33       307         1         7        10 
         4        19        21         1         7         4       359       118       141 
         8        60       103         5        42        31       125      1991       998 
         4        18        39         2        11        10        96       287      3254 
GP2 
       211        45        77         2         3         2         7         9        12 
        31       911       444         3        16        14        14        67        86 
        33        87      2155         1         5         5         8        22        54 
         1         6        13       630       228       227         9        27        38 
        10        81       167       283      3207      1622        60       339       447 
         1         8        16        76       231      1746         6        32        46 
         4        18        21         7        28        19       651       174       225 
         8        64       111        16       105        87       198      2567      1342 
         4        18        47         6        29        27       156       358      4585 
  
ep1 
       269      1370      1717       254      1337       373       676      3363      3719 
ep2 
       368      1585      2370      1181      6214      2164      1147      4498      5230 
ec1 
       229       974      2314       200       838       695       613      2590      4626 
ec2 
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Finally, compute the vectors of total emissions by region attributed to production for the two 
years, respectively, erp1 and erp2, along with vectors of total emissions by region attributed 
to consumption, erc1 and erc2. Finally compute the percentage difference between the two 
years for production and consumption, respectively, as perc1 and perc2.   

 erp1←+/3 3⍴ep1 ⋄ erp2←+/3 3⍴ep2 
 erc1←+/3 3⍴ec1 ⋄ erc2←+/3 3⍴ec2 
 perc1←100×(erc1-erp1)÷erp1 
 perc2←100×(erc2-erp2)÷erp2 

erp1 
      3356      1965      7758 
 

erp2 
      4323      9559     10874 
erc1 
      3518      1733      7828 
erc2: 
      4591      8627     11538 
  
perc1 
         5       ¯12         1 
perc2 
         6       ¯10         6s 
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Chapter 14, Mixed and Dynamic Models  
Chapter 14 describes so called mixed input-output models that are driven by a mix of output and 
final demand specifications rather than driven either solely by specification by final demand or 
total output. This chapter also introduces dynamic input–output models that more explicitly 
capture the role of capital investment and utilization in the production process. The exercise 
problems for this chapter illustrate key features of several mixed and dynamic model 
configurations. 

Dynamic Models 

Problem 14.1: Basic Characteristics of the Dynamic Input-Output Model 
This problem illustrates the basic structure of a dynamic input-output model.  

Problem 14.1 Overview 

Consider an input-output economy with technical coefficients defined as 
0.3 0.1
0.2 0.5

=
 
  

A  and 

capital coefficients defined as 
.01 .003

.005 .020
=
 
 
 

B . Current final demand is 0 100
100

=
 
 
 

f  and the 

projections for the next three years for final demand are given by 1 125
160

=
 
 
 

f , 2 150
175

=
 
 
 

f  and 

3 185
200

=
 
 
 

f .  

For A and B as defined we specify the dynamic model as 1 ( –)–t t t+ = +Bx I A B x f   or 
–1 1( ) ( )–t t t+= + +x I A B Bx f , which we can write as –1 1( )t t t+= +x G Bx f  where ( )= − +G I A B . 

For this case we compute 
.69 .103

( )
.205 .48

− 
= − + =  − 

G I A B  and 1 1.548   .332
 .661   2.225

−  
=  
 

G . The 

“dynamic multipliers” are defined as 1 .017   .011
.018   .046

−  
= =  

 
R G B , 2 1 .001   .002

.003   .006
−  
=  
 

R G  and 

3 1 .00006   .00009
.00018   .00029

−  
=  
 

R G .   

Then we can construct the difference equations in matrix terms as 
1 1 1 2 1 3 1

1 1 2 1

1 1

1

− − − − −

− − −

− −

−

−   
  −   = =
  −
  

   

G B 0 0 G RG R G R G
0 G B 0 0 G RG R G

D
0 0 G B 0 0 G RG
0 0 0 G 0 0 0 G

so that 

0 0

1 1

2 2

3 3

   
   
   =   
   
      

x f
x f

D
x f
x f

 or, for the 
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base year and the three projected years, 0 197.7
315

 
=  
 

x , 1 257.7
468.3
 

=  
 

x , 2 302.8
521.2
 

=  
 

x and 

3 352.8
567.3
 

=  
 

x . 

Computational Notes 
Define the matrices of technical coefficients A and of capital coefficients B as well as the final 
demands for the current and future three years, f0, f1, f2 and f3. For convenience define a 
three-sector identity matrix I and matrix of zeroes O. Compute the matrix forming the dynamic 
model G and its matrix inverse GI. Compute the dynamic multipliers R, RGI, and R2GI and 
construct matrix of difference equations LD. Assemble a vector ff which catenates the four final 
demand vectors as its columns. Finally compute the corresponding vector of total outputs xx. 

 A←2 2⍴0.3 0.1 0.2 0.5 ⋄ B←2 2⍴0.01 0.003 0.005 0.02 
 f0←100 100 ⋄ f1←125 160 ⋄ f2←150 175 ⋄ f3←185 200 
 I←2 2⍴1 0 0 ⋄ O←2 2⍴0 
 
 GI←⌹G←I-A+B  
 R←GI+.×B ⋄ R2GI←R+.×RGI←R+.×GI 
 LD←GI,RGI,R2GI,R3GI←R+.×R2GI 
 LD←LD,[1]O,GI,RGI,R2GI 
 LD←LD,[1]O,O,GI,RGI 
 LD←LD,[1]O,O,O,GI 
 ff←f0,f1,f2,f3 
 xx←LD+.×ff    

A 
   0.30000   0.10000 
   0.20000   0.50000 
B 
   0.01000   0.00300 
   0.00500   0.02000 
G 
   0.69000  ¯0.10300 
  ¯0.20500   0.48000 
GI 
   1.54796   0.33217 
   0.66111   2.22520 
R 
   0.01714   0.01129 
   0.01774   0.04649 
R2GI 
   0.00124   0.00176 
   0.00331   0.00563 
LD 
   1.54796   0.33217   0.03399   0.03081   0.00124   0.00176   0.00006   0.00009 
   0.66111   2.22520   0.05819   0.10933   0.00331   0.00563   0.00018   0.00029 
   0.00000   0.00000   1.54796   0.33217   0.03399   0.03081   0.00124   0.00176 
   0.00000   0.00000   0.66111   2.22520   0.05819   0.10933   0.00331   0.00563 
   0.00000   0.00000   0.00000   0.00000   1.54796   0.33217   0.03399   0.03081 
   0.00000   0.00000   0.00000   0.00000   0.66111   2.22520   0.05819   0.10933 
   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   1.54796   0.33217 
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b   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.66111   2.22520 
ff 
       100       100       125       160       150       175       185       200 
xx 
     197.7     315.0     257.7     468.3     302.8     521.2     352.8     567.3 
 

Problem 14.2: Turnpike Growth in Dynamic Input-Output Models 
This problem illustrates the basic concepts of turnpike growth in a dynamic input-output model.  

Problems 14.2 Overview 
Consider the following closed dynamic input-output model, ( )t+ − =Ax B x x x  where 

tx  and x are the vectors of future total outputs and current total outputs, respectively 
0.5 0.1
0.1 0.5

=
 
  

A  and 
0 0.1

0.1 0
=
 
  

B are the matrices of technical and capital coefficients, 

respectively.  

Assume that t λ=x x , where λ is some scalar (called the turnpike growth rate), the 
dynamic input-output model is expressed as (λ )+ − =Ax B x x x . Rearranging terms, this 
becomes λ ( )= − +B x I A B x  or 1( ) λ− − + =B I A B x x , which we write more succinctly as 

λt t=Qx x  where –1( )–= +Q B I A B .  

In this case we compute 1 0 10
10 0

−  
=  
 

B and then 
0 5
5 0
 

=  
 

Q . To calculate the turnpike 

growth, we solve the characteristic equation 0− =Q I , and we find max 5λ = . 

Computational Notes 
We define the matrices of technical and capital coefficients, A and B, respectively, and for 
convenience we compute an appropriately sized identity matrix I and the matrix inverse of B, 
which we name BI, from which we construct the dynamic model coefficients Q. 

 A←2 2⍴0.5 0.1 0.1 0.5 
 B←2 2⍴0 0.1 0.1 0 
 I←2 2⍴1 0 0 1 ⋄ BI←⌹B 
 Q←BI+.×((I-A)+B) 

 To solve this problem, we introduce the monadic function EIG. Computing eigenvalues 
for all but the simplest matrices with the methods defining eigenvalues covered in Appendix A 
of the text is tedious and impractical. Computational methods for computing eigenvalues are 
beyond the scope of this text but we use one such method (the so-called power method for the 
finding dominant eigenvalue and eigenvector) in the function EIG (listed in the appendix to this 
volume) which takes as the right argument as square matrix and produces as the explicit result 
the dominant eigenvalue catenated with the corresponding eigenvector. 

 For this problem, we can use EIG to compute the turnpike growth rate Lambda. 



2021 August 7 

-316- 
 

      Lambda←1↑EIG Q 

A 
     0.500     0.100 
     0.100     0.500 
B 
     0.000     0.100 
     0.100     0.000 
BI 
     0.000    10.000 
    10.000     0.000 
Q 
     0.000     5.000 
     5.000     0.000 
Lambda 
5 

Problem 14.3: Implications of Changes in Capital Coefficeints 
This problem illustrates the implications of changes in capital coefficients on the turnpike growth 
formulation of a dynamic input-output model.   

Problem 14.3 Overview 
Consider the closed dynamic input-output model ( )t+ − =Ax B x x x , where 

0.1 0
 and 

0 0.1
0.1 0.2
0.3 0.4

=
   =      

BA . Under the assumption of turnpike growth, we calculate 

–1 10
( )

7
–

2
3

− 
=  − 

+


=Q B I A B  and solving the characteristic question 0− =Q I find that the 

turnpike growth rate is max 11.37λ = .  

If both the capital coefficients for the first industry (the first column of B) are changed to 

0.1, then 
.1 0
.1 .1
 

=  
 

B . Hence, we find 
10 2
12 9

− 
=  − 

Q  and max 14.42λ = , which is an increase 

associated with the change in capital coefficients and indicates an improvement in the apparent 
overall “health” of the economy.  

Computational Notes 
Once again, we define the matrices of technical and capital coefficients, A and B, respectively, 
and for convenience we compute an appropriately sized identity matrix I and the matrix inverse 
of B, which we name BI, from which we construct the dynamic model coefficients Q.  

 A←2 2⍴0.1 0.2 0.3 0.4 ⋄ B←2 2⍴0.1 0 0 0.1 
 I←2 2⍴1 0 0 1 ⋄ BI←⌹B 

       Q←BI+.×((I-A)+B) 
A 
     0.100     0.200 
     0.300     0.400 
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B 
     0.100     0.000 
     0.000     0.100 
BI 
    10.000     0.000 
     0.000    10.000 
Q 
    10.000    ¯2.000 
    ¯3.000     7.000 
We compute the revised matrix of capital coefficients B2 as specified (and its matrix inverse 
B2I) in order to compute the corresponding dynamic model coefficients Q2. Then we use the 
function EIG to compute the turnpike growth rates for Q1 and Q2, which we denote as 
Lambda1 and Lambda2. 

 B2←B ⋄ B2[;1]←0.1 ⋄ B2I←⌹B2 
 Q2←B2I+.×((I-A)+B2) 
 Lambda1←1↑EIG Q ⋄ Lambda2←1↑EIG Q2 

B2 
     0.100     0.000 
     0.100     0.100 
B2I 
    10.000     0.000 
   ¯10.000    10.000 
Q2 
    10.000    ¯2.000 
   ¯12.000     9.000 
Lambda1 
11.372281 
Lambda2 
14.424429 

Problem 14.4: Dynamic Multipliers 
This problem illustrates the basic concepts of dynamic multipliers in dynamic input-output 

models.  

Problem 14.4 Overview 

Consider an input-output economy with technical coefficients defined as 
0.2 0.1
0.3 0.5
 

=  
 

A   and 

capital coefficients defined as 
.02 .002
.003 .01

=
 
 
 

B .  

As in earlier problems, for A and B we specify the dynamic model as 1 ( –)–t t t+ = +Bx I A B x f   

or –1 1( ) ( )–t t t+= + +x I A B Bx f , which we can write as –1 1( )t t t+= +x G Bx f  where 
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( )= − +G I A B . For this case, we compute 
.78 .102

( )
.303 .49

− 
= − + =  − 

G I A B  and 

1 1.395 .29
.863 2.220

−  
=  
 

G , so the “dynamic multipliers” are 1 .029 .006
.024 .024

−  
= =  

 
R G B , 

2 1 .002 .001
.002 .002

−  
=  
 

R G  and 3 1 .00006    .00004
.00010    .00007

−  
=  
 

R G  such that 

3 3 1 0 2 2 1 0,  − − − −∆ = ∆ ∆ = ∆x R G f x R G f  and 1 1 0− −∆ = ∆x RG f  or, in expanded matrix terms, 

3 1 1 2 1 3 1 3

2 1 1 2 1 2

1 1 1 1

0 1 0

− − − − − −

− − − − −

− − − −

−

     
     
     =
     
     
     

x G RG R G R G f
x 0 G RG R G f
x 0 0 G RG f
x 0 0 0 G f

.    

If we assume the current vector of final demands is 0 185
200

=
 
 
 

f  and the vectors for final 

demand for the previous three years are given by 1 150
175

− =
 
 
 

f , 2 125
160

− =
 
 
 

f , and 3 100
100

− =
 
 
 

f , we 

can specify [ ]100 100 125 160 150 175 185 200 ′=Δf  and compute 

[ ]177.9 325.4 231.7 482.5 272.6 539.9 316.1 603.6 ′=Δx . 

Computational Notes 
Define the matrices of technical coefficients A and of capital coefficients B as well as the final 
demands for the current and three previous years, f0, f1, f2 and f3. For convenience define a 
three-sector identity matrix I and matrix of zeroes O. Compute the matrix forming the dynamic 
model G and its matrix inverse GI. Compute the dynamic multipliers R, RGI, and R2GI and 
construct matrix of difference equations LD. Assemble a vector ff which catenates the four 
final demand vectors as its columns. Finally compute the corresponding vector of total outputs 
xx. 

 A←2 2⍴0.2 0.1 0.3 0.5 ⋄ B←2 2⍴0.02 0.002 0.003 0.01 
 f3←100 100 ⋄ f2←125 160 ⋄ f1←150 175 ⋄ f0←185 200 
 I←2 2⍴1 0 0 ⋄ O←2 2⍴0 
  
 GI←⌹G←I-A+B  
 R←GI+.×B ⋄ R2GI←R+.×RGI←R+.×GI 
 LD←GI,RGI,R2GI,R3GI←R+.×R2GI 
 LD←LD,[1]O,GI,RGI,R2GI 
 LD←LD,[1]O,O,GI,RGI 
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 LD←LD,[1]O,O,O,GI 
 ff←f3,f2,f1,f0 
 xx←LD+.×ff 

A 
   0.20000   0.10000 
   0.30000   0.50000 
B 
   0.02000   0.00200 
   0.00300   0.01000 
G 
   0.78000  ¯0.10200 
  ¯0.30300   0.49000 
GI 
   1.39484   0.29036 
   0.86253   2.22036 
R 
   0.02877   0.00569 
   0.02391   0.02393 
R2GI 
   0.00160   0.00095 
   0.00237   0.00194 
R3GI 
   0.00006   0.00004 
   0.00010   0.00007 
LD 
   1.39484   0.29036   0.04504   0.02099   0.00160   0.00095   0.00006   0.00004 
   0.86253   2.22036   0.05399   0.06007   0.00237   0.00194   0.00010   0.00007 
   0.00000   0.00000   1.39484   0.29036   0.04504   0.02099   0.00160   0.00095 
   0.00000   0.00000   0.86253   2.22036   0.05399   0.06007   0.00237   0.00194 
   0.00000   0.00000   0.00000   0.00000   1.39484   0.29036   0.04504   0.02099 
   0.00000   0.00000   0.00000   0.00000   0.86253   2.22036   0.05399   0.06007 
   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   1.39484   0.29036 
   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.86253   2.22036 
ff 
       100       100       125       160       150       175       185       200 
xx 
     177.9     325.4     231.7     482.5     272.6     539.9     316.1     603.6 

 

Mixed Models 
Problem 14.5: Basic Characteristics of a Mixed Input-Output Model 
This exercise problem illustrates the basic characteristics of a mixed input-output model. 

Problem 14.5 Overview 
Consider an input-output economy specified by an interindustry transactions matrix, 

14 76 46
54 22 5
68 71 94

 
 =  
  

Z  and vector of final demands, 
100
200
175

 
 =  
  

f  where the three industrial sectors are 

manufacturing, oil, and electricity.  
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Suppose the economic forecasts determine that total domestic output for oil and 
electricity will remain unchanged in the next year and final demand for manufactured goods will 
increase by 30 percent. That is, the projection is a mixture of total outputs and final demands 
rather than only final demands (or total outputs). In such a situation, we can construct a mixed 

input-output model by first determining the economy’s total outputs as 
236
281
408

 
 = + =  
  

x f Zi  so 

that we can compute the matrix of technical coefficients, 1

.059   .270   .113
ˆ( ) .229   .078   .012

.288   .253   .230

−

 
 = =  
  

A Z x . For 

sector 1 (manufactured goods), the level of final demand is exogenously specified and for sectors 
2 and 3 (oil and electricity), levels of total output are specified for each sector, so we partition A 

as 11 12

21 22

.059 .27 .113

.229 .078 .012

.288 .253 .23

 
   = =   
    

A A
A A A , and with a vector of exogenously specified values 

 
 
  

f
x

 

and the vector of endogenously determined values designated by 
 
 
 

x
f  we write 

  
=   

    

x f
M Nf x

 

where 11

21

.941 0 0( )
.229 1 0
.288 0 1

 −   = = − −   − −   − − 

I A 0
M A I  and 12

22

1 .270 .113
0 .922 .012( )
0 .253 .770

 
   = = −   − −   − 

I A
N 0 I A . 

It follows that 1

1.063 0 0
.243 1 0
.306 0 1

−

 
 = − − 
 − − 

M .   

For the case where the economic forecasts determine that total domestic output for oil 
and electricity will remain unchanged in the next year and final demand for manufactured goods 

will increase by 30 percent, we specify 
130
281
408

    =        

f
x

 and find 1

267.9
192.7
165.8

−

     = =           

x f
M Nf x

. That is, 

total output of manufactured goods will be 267.9, and final demands presented to the economy 
for oil and electricity are 192.7 and 165.8, respectively.  

 If instead the final demand for manufactured goods increased by 50 percent instead of 30 
percent, we find the new projections of final demand for oil and electricity and the total output of 

manufacturing as 
150
281
408

    =        

f
x

 we find 1

289.2
187.8
159.7

−

     = =           

x f
M Nf x

.  
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Computational Notes 
We first specify the matrix of interindustry transactions Z and the vector of total final demands f. 
Then compute the corresponding vector of total outputs x and matrix of technical coefficients A. 

      Z←3 3⍴14 76 46 54 22 5 68 71 94 
      f←100 200 175 
      A←Z AMAT x←f++/Z 

Z 
        14        76        46 
        54        22         5 
        68        71        94 
f 
       100       200       175 
A 
    0.0593    0.2705    0.1127 
    0.2288    0.0783    0.0123 
    0.2881    0.2527    0.2304 

To help facilitate solving this problem we introduce the dyadic function MIXED which 
configures a mixed input output model. The function takes as its left argument the technical 
coefficients matrix A. The right argument is a two-row vector yx, the first row of which 
specifies the known exogenous values for final demand and zero otherwise and the second row 
specifies the known values for total outputs and zero otherwise. The function returns as the 
explicit result a vector xy which include the computed values for the unknown values indicated 
by zeroes in yx. The function also computes global variables M (and its inverse MI) and N used 
in configuring the mixed model. 

[  0]  xy←A MIXED yx;P;Q;R;S                                                       
[  1] ⍝mixed model yx[1;]=yexog,0 for endog; yx[2;]xexog,0 for endog               
[  2]  nmx←+/nyx←yx≠0 ⋄ nm←1↑⍴A ⋄ n←nmx[1] ⋄ m←nmx[2]                              
[  3]  Inm←(2⍴nm)⍴1,nm⍴0 ⋄ In←(2⍴n)↑Inm ⋄ Im←(2⍴m)↑Inm ⋄ Onm←(n,m)⍴0 ⋄ Omn←(m,n)⍴0 
[  4] ⍝reorder A to AR                                                             
[  5]  qx←nyx×(2,nm)⍴⍳nm ⋄ q←((qx[1;]≠0)/qx[1;]),(qx[2;]≠0)/qx[2;]                 
[  6]  AR←q REORDER A                                                              
[  7] ⍝construct mixed exogenous-endogenous model (y exog first)                   
[  8]  IAR←Inm-A                                                                   
[  9]  P←(n,n)↑IAR ⋄ R←IAR[n+⍳m;⍳n] ⋄ Q←-IAR[⍳n;n+⍳m] ⋄ S←-IAR[n+⍳m;n+⍳m]          
[ 10]  M←(P,Onm),[1]R,-Im ⋄ N←(In,Q),[1]Omn,S                                      
[ 11]  xy←(MI←⌹M)+.×N+.×(+⌿yx)[q]               

As somewhat of an aside, note that with this problem the order of the sectors for the exogenously 
specified quantities is that the exogenous element of final demand is specified first with the 
exogenously specified elements to total outputs following.  In general, this may not be case so it 
is helpful (although not necessary) generally to reorder the sectors so that it is the case, which in 
the function MIXED is accomplished with another function named REORDER. The function 
REORDER takes A as the right argument and the left argument is a vector specifying the order of 
indexes to accomplish this (computed in MIXED, but, of course, could be specified in other 
ways) and returns, as the explicit result, the matrix AR, which is comprised of elements of A 
reordered as specified. 
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For example, consider the matrix 

      Q← 3 3⍴⍳9 
      Q 
1 2 3 
4 5 6 
7 8 9 

To exchange the 2nd and 3rd rows and columns, we would use REORDER: 

      1 3 2 REORDER Q 
1 3 2 
7 9 8 
4 6 5 

For this problem, to apply MIXED, we configure the known and unknown values of 
projected final demands and total outputs in the matrix YX1, which is in the format expected by 
MIXED noted above.  The vector of exogenously specified variables yx1, is computed as the 
column sums of YX1. Again, as an aside, it is import to remember that if the sectors are not 
ordered with the exogenously specified final demands listed first, MIXED will reorder the sectors 
so that they are (not necessary for this problem since sectors are already in this order). MIXED 
will return the computed values in the variable xy1 and we preserve the working matrices M, N, 
NI as M1, N1, and MI, respectively.  

      xy1←A MIXED YX1←2 3⍴(1.3×f[1]),0 0 0,x[2 3] 
YX1 
     130.0       0.0       0.0 
       0.0     281.0     408.0 
yx1 
     130.0     281.0     408.0 
xy1 
     267.9     192.7     165.8 
M1 
     0.941     0.000     0.000 
    ¯0.229    ¯1.000     0.000 
    ¯0.288     0.000    ¯1.000 
N1 
     0.941     0.000     0.000 
    ¯0.229    ¯1.000     0.000 
    ¯0.288     0.000    ¯1.000 
MI1 
     1.063     0.000     0.000 
    ¯0.243    ¯1.000     0.000 
    ¯0.306     0.000    ¯1.000  

For the modified case where the final demand for manufactured goods increased by 50 percent 
instead of 30 percent, we compute 

      xy2←A MIXED YX2←2 3⍴(1.5×f[1]),0 0 0,x[2 3]      

YX2 
     150.0       0.0       0.0 
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       0.0     281.0     408.0 
yx2 
     150.0     281.0     408.0 
 

xy2 
     289.2     187.8     159.7 
M2 
     0.941     0.000     0.000 
    ¯0.229    ¯1.000     0.000 
    ¯0.288     0.000    ¯1.000 
N2 
     1.000     0.270     0.113 
     0.000    ¯0.922     0.012 
     0.000     0.253    ¯0.770 
MI2 
     1.063     0.000     0.000 
    ¯0.243    ¯1.000     0.000 
    ¯0.306     0.000    ¯1.000 

Problem 14.6: Modeling New Economic Sector Additions  
This problem explores modeling establishment of a new economic sector using input-output 
analysis. 

Problem 14.6 Overview 
Revisiting the economy of Problem 2.1, consider the prospect of adding a new sector, finance 
and insurance (sector 3), to this economy. First, we can recall from Problem 2.1 that, for this 

economy, the interindustry transactions matrix,
500 350
320 360

=
 
 
 

Z , and the vector of total outputs, 

1, 000
800

=
 
 
 

x , from which we can compute the matrix of technical coefficients,

1 .500 .438
ˆ

.320 .450
−  

= =  
 

A Zx , and the total requirements matrix, 1 4.074 3.241
( )

2.370 3.704
−  

= − =  
 

L I A . 

Initially we know that the total output of this new sector will be 3 $900x =  during the 
current year (its first year of operation), and that its needs for agricultural and manufactured 
goods are captured by technical coefficients 13 0.001a =  and 23 0.07a = . In the absence of any 
further information, we can estimate to be the impact of this new sector on the economy by first 
constructing a final demand vector by multiplying each of the new technical coefficients by the 

associated known total output to yield 13 3

23 3

(.001)(900) 0.9
(.07)(900) 63.0

a x
a x
     

∆ = = =     
    

f . The impact of the 

new sector is found by 
207.8

235.47
 

∆ = ∆ =  
 

x L f .  

Suppose we learn subsequently that: (1) that the agriculture and manufacturing sectors 
bought $20 and $40 in finance and insurance services last year from foreign firms (i.e., that they 
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imported these inputs), and (2) that sector 3 will use $15 of its own product for each $100 worth 
of its output. We now have enough information to endogenize the sector into the interindustry 
transactions matrix, including specifying 33 15 /100 0.15a = = , 

31 120 / 20 /1000 0.02a x= = = , 

and 32 240 / 40 / 800 0.05a x= = =  so the new, expanded technical coefficient matrix becomes 

.500 .438 .001

.320 .450 .070

.020 .050 .150

 
 =  
  

A  so the new total requirements matrix is 
4.130 3.310 .277
2.433 3.782 .314
.240 .300 1.201

 
 =  
  

L .  

Hence, the new, expanded total outputs vector is 
1,000
800
900

 
 =
 
 

x  so the new interindustry 

transactions matrix is found as 
500 350 .9

ˆ 320 360 63
20 40 135

 
 = =
 
 

Z Ax . The third column of Z describes the 

interindustry purchases of the three sectors’ outputs by the new finance and insurances services 
sector, which we can also describe as a new (at least in the first year) final demand to the 

expanded regional economy, 
0.9

63.0
135.0

 
 ∆ =  
  

f . We can now use the new expanded total 

requirements matrix, L, to compute the total output in the economy to support introduction 

of the new economic sector, 
249.7
282.9
181.3

 
 ∆ = ∆ =  
  

x L f . 

Computational Notes 
We first define the two-sector transactions matrix Z and the vector of total outputs x. We then 
compute the corresponding vector of total final demands f and the matrices of technical 
coefficients and the Leontief inverse, A and L, respectively.  

      Z←2 2⍴500 350 320 360 ⋄ x←1000 800 
      f←x-+/Z ⋄ L←LINV A←Z AMAT x 

f 
     150.0     120.0 
A 
    0.5000    0.4375 
    0.3200    0.4500 
L 
    4.0741    3.2407 
    2.3704    3.7037 

We compute the impact of the new sector specified as ∆f in terms of total outputs ∆x. 
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      ∆x←L+.×∆f←0.001 0.07×900 

∆f 
       0.9      63.0 
∆x 
     207.8     235.5 

We specify the expanded matrix of technical coefficients as A2 and compute the corresponding 
Leontief inverse L2 and corresponding vectors of total outputs and total final demands as x2 and 
f2, respectively, as well as the associated matrix of interindustry transactions Z2. 

      A2←3 3⍴0 ⋄ A2[⍳2;⍳2]←A ⋄ A2[;3]←0.001 0.07 0.15 ⋄ A2[3;1 2]←20 40÷x 
      L2←LINV A2 ⋄ x2←x,900 ⋄ f2←f,¯1↑A2+.×x2 ⋄ Z2←A2+.×DIAG x2 

A2 
    0.5000    0.4375    0.0010 
    0.3200    0.4500    0.0700 
    0.0200    0.0500    0.1500 
L2 
    4.1296    3.3101    0.2775 
    2.4332    3.7823    0.3143 
    0.2403    0.3004    1.2015 
f2 
     150.0     120.0     195.0 
x2 
    1000.0     800.0     900.0 

Z2 
     500.0     350.0       0.9 
     320.0     360.0      63.0 
      20.0      40.0     135.0 

Finally, we specify the new third column of Z2 reduced by the specified level of imports as a 
new final demand ∆f2 and compute the corresponding vector of total outputs ∆x2. 

      ∆f2←∆f,f2[3]-(20+40) 
      ∆x2←L2+.×∆f2 

∆f2 
       0.9      63.0     135.0 
∆x2 
     249.7     282.9     181.3 

 

Problem 14.7: Uses of Mixed Input-Output Models 
This problem illustrates use of a mixed input-output model applied to planning with availability 
of variable data, e.g., some estimated final demands for products of some sectors and some 
projected total outputs the balance of sectors in the economy.  
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Problem 14.7 Overview 
We revisit the Czaria economy from Problem 7.1, recalling that 

0.168 0.155 0.213 0.212
0.194 0.193 0.168 0.115
0.105 0.025 0.126 0.124
0.178 0.101 0.219 0.186

 
 

=  
 
  

A . Next year’s projected total outputs in millions of dollars for 

agriculture, mining, and civilian manufacturing in Czaria are 4,558, 5,665 and 5,079, 
respectively, and final demand of military manufactured products is projected to be $2,050 
million.  

To compute the GDP and total gross production of the economy next year, we can 
fashion a mixed model by first reordering the industry sectors so that those with exogenously 
specified final demands are listed first (in this case only sector 3) and those with exogenously 
specified total outputs are listed second (in this case sectors 1, 2, and 4). With the reordered 

sectors, we can compute 11

21

.832 0 0 0
( ) .194 1 0 0

.105 0 1 0

.178 0 0 1

 
 −  − − = = − −  − −   − − 

I A 0
M A I  and 

12

22

1 .155 .213 .212
0 .807 .168 .115

( ) 0 .025 .874 .124
0 .101 .219 .814

 
   − = = − −  −   − 

I A
N 0 I A , which satisfies the condition 

  
=   

    

x f
M Nf x

 

or 1−
  

=   
    

x f
M Nf x

 where 
 
 
  

f
x

 is the vector of exogenously specified values and 
 
 
 

x
f is the 

vector of endogenously determined values.  

To compute the endogenously determined values we first compute 

1

1.202 0 0 0
.233 1 0 0
.126 0 1 0
.214 0 0 1

−

 
 − − =
 − −
 − − 

M and then 1

1.202 .186 .256 .255
.233 .771 .218 .164
.126 .045 .847 .151
.214 .134 .265 .769

−

 
 − − − =
 − − −
 − − − 

M N so that 

1

6,058
967

3,572
1,355

−

 
     = =          
 

x f
M Nf x

for 

2,050
4,558
5,665
5,079

 
    =       
 

f
x

 . Total output of sector 3 will be 6055, and 

amounts of sector 1, 2, and 4 production that are available for final demand are 969, 3573, and 
1347, respectively.  GDP is the sum of all final demands (7,944) and total gross production is the 
sum of all total outputs (21,360). 
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Computational Notes 
We revisit from Problem 7.1 the matrix of technical coefficients A and specify the projected 
values for final demands and total outputs yx, but in a matrix YX, which is in the format 
expected by the function MIXED.  

 A←0.168 0.155 0.213 0.212 0.194 0.193 0.168 0.115 
 A←4 4⍴A,0.105 0.025 0.126 0.124 0.178 0.101 0.219 0.186 
 yx←+⌿YX←2 4⍴2050 0 0 0 0 4558 5665 5079 

A 
     0.168     0.155     0.213     0.212 
     0.194     0.193     0.168     0.115 
     0.105     0.025     0.126     0.124 
     0.178     0.101     0.219     0.186 
YX 
      2050         0         0         0 
         0      4558      5665      5079 
yx 
      2050      4558      5665      5079 

The result of applying MIXED is the vector xy. To compute the gross domestic product GDP, we 
select and sum the final demand elements from xy and yx and, to compute the total gross 
production GX, we select and sum the total outputs elements. 

      xy←A MIXED YX 
      GDP←+/yx[1],xy[2 3 4] 
      GX←+/yx[2 3 4],xy[1]  

xy 
    6057.6     967.3    3571.4    1355.1 
GDP 
    7943.8 
GX 
   21359.6 

Problem 14.8: Mixed Model Application with the U.S. Input-Output Data 
This problem illustrates use of a mixed input-output model applied to planning with availability 
of variable data, e.g., some estimated final demands for products of some sectors and some 
projected total outputs the balance of sectors in the economy.  

Problem 14.8 Overview 
To illustrate the mixed-modeling process, we use a highly aggregated industry by industry, 
industry technology-based input-output model for the 2005 U.S. economy specified as a 
technical coefficients matrix, A, and make matrix, V, given for 7 industries: (1) agriculture, (2) 
mining, (3) construction, (4) manufacturing, (5) trade, transportation, and utility services, (6) 
services, and (7) other industries. We first compute the baseline vector of total outputs as 
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312,754
396,563

1,302,388
4,485,529
3,355,944

10,477,640
2,526,325

 
 
 
 

= =  
 
 
 
 

x Vi  and vector of total final demands as 

47,244
118,692

1,150,094
1,574,473
2,026,508
5,697,200
2,079,011

 
 
 
 

= − =  
 
 
 
 

−

f x Ax . Note 

that the negative final demand for mining indicates net importation of products such as 
petroleum. 

 

 

Suppose our economic forecast projects, for 2010, a 10 percent growth in final demand 
for agriculture, mining, and construction, a 5 percent growth in final demand for manufactured 
goods, and a 6 percent growth in total output for the trade, transportation, utilities, services and 

other industries. So, the vector of exogenously specified data is 

51,968
130,561

1,265,103
1,653,196
3,557,300

11,106,299
2,677,904

 
 
 
 

   =   
    

 
 
  

−

f
x

. The sectors 

are already conveniently ordered such that the four sectors with exogenously specified final 
demands are listed first and the remaining three with exogenously specified total outputs follow, 
so we can compute 

A 1 2 3 4 5 6 7
1 0.2258 0.0000 0.0015 0.0384 0.0001 0.0017 0.0007
2 0.0027 0.1432 0.0075 0.0675 0.0367 0.0004 0.0070
3 0.0051 0.0002 0.0010 0.0018 0.0037 0.0071 0.0215
4 0.1955 0.0877 0.2591 0.3222 0.0547 0.0566 0.1010
5 0.0819 0.0422 0.1011 0.0994 0.0704 0.0334 0.0487
6 0.0843 0.1276 0.1225 0.1172 0.1760 0.2783 0.2026
7 0.0099 0.0095 0.0093 0.0219 0.0215 0.0188 0.0240

V 1 2 3 4 5 6 7
1 310,868 0 0 65 0 1,821 0
2 0 373,811 0 22,752 0 0 0
3 0 0 1,302,388 0 0 0 0
4 0 0 0 4,454,957 0 26,106 4,467
5 0 808 0 0 3,354,043 47 1,046
6 0 556 0 0 152 10,473,161 3,771
7 4,657 1,410 0 4,111 115,428 339,582 2,061,136
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11

21

0.7742 0.0000 0.0015 0.0384 0 0 0
0.0027 0.8568 0.0075 0.0675 0 0 0
0.0051 0.0002 0.9990 0.0018 0 0 0
0.1955 0.0877 0.2591 0.6778 0 0 0
0.0819 0.0422 0.1011 0.0994 1 0 0
0.0843 0.1276 0.1225 0.11

( )− 
= =

− −
− − −
− − −
− − −
− −

 − − − −
− − − −

 −

I A 0
M A I

72 0 1 0
0.0099 0.0095 0.0093 0.0219 0 0 1

 
 
 
 
 
 
 
 
 
  

−
− − − − −

 and 

12

22

1 0 0 0 0.0001 0.0017 0.0007
0 1 0 0 0.0367 0.0004 0.0070
0 0 1 0 0.0037 0.0071 0.0215
0 0 0 1 0.0547 0.0566 0.1010
0 0 0 0 0.9296 0.0334 0.0487
0 0 0 0 0.1760 0.7217 0.2026
0 0 0 0 0.0215 0.0188 0.9760

( )

 
 
 
 

   = =   − −   
 
 
 − 

−
−

I A
N 0 I A



, which satisfies the 

condition 
  

=   
    

x f
M Nf x

  or 1−
  

=   
    

x f
M Nf x

 where 
 
 
  

f
x

 and 
 
 
 

x
f are the vectors of exogenously 

specified values and the vector of endogenously determined values, respectively. To compute the 
endogenously determined values we first compute 

1

1.3109 0.0077 0.0215 0.0752 0 0 0
0.0345 1.1794 0.0398 0.1195 0 0 0
0.0074 0.0005 1.0018 0.0031 0 0 0
0.3855 0.1551 0.3943 1.5138 0 0 0
0.1479 0.0659 0.1439 0.1619 1 0 0
0.1610 0.1694 0.1759 0.1994 0 1 0
0.0218 0.0147 0.0185 0.

−

− − − − −
− − − − −
− − − −

=M

0351 0 0 1

 
 
 
 
 
 


−


 
 
  

and then 

1

1.3109 0.0077 0.0215 0.0752 0.0046 0.0067 0.0090
0.0345 1.1794 0.0398 0.1195 0.0500 0.0076 0.0212
0.0074 0.0005 1.0018 0.0031 0.0039 0.0073 0.0218
0.3855 0.1551 0.3943 1.5138 0.0900 0.0893 0.1628
0.1479 0.0659 0.1439 0.161

−

− −
=

− −
M N

9 0.9178 0.0439 0.0687
0.1610 0.1694 0.1759 0.1994 0.1938 0.7088 0.2279
0.0218 0.0147 0.0185 0.0351 0.0241 0.0210 0.9719

− −
− − − − − −
−

 
 
 
 
 
 
 


− − −


 
  − −

so that 
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1

333,767
414,773

1,426,583
4,748,959
2,144,061
6,034,580
2,203,480

−

 
 
 
 

    = =    
      

 
 
  

x f
M Nf x

for 

51,968
130,561

1,265,103
1,653,196
3,557,300

11,106,299
2,677,904

 
 
 
 

   =   
    

 
 
  

−

f
x

, specified above. 

Computational Notes  
We presume the specified make matrix V and the matrix of technical coefficients A are defined 
in the APL workspace and we compute the vector of total outputs x and the vector of final 
demands f. We compute the forecasted levels of final demand leaving unknown levels with a 
value of zero in a vector f2 and the forecasted levels of total outputs leaving unknown levels 
with a value of zero in a vector x2.  From f2 and x2 we assemble the matrix YX (the format 
expected by the function MIXED, developed earlier) with the column sums defining the vector of 
exogenous inputs yx and compute the endogenous vector of total outputs and final demands in 
the vector xy. 

 x←+/V ⋄ f←x-A+.×x 
 f2←1.1 1.1 1.1 1.05 0 0 0×f 
 x2←0 0 0 0 1.06 1.06 1.06×x 
 yx←+⌿YX←2 7⍴f2,x2 
 xy←A MIXED YX 

x 
     312754     396563    1302388    4485529    3355944   10477640    2526325 
f 
      47244    ¯118692    1150094    1574473    2026508    5697200    2079011 
 

f2 
    51968.2  ¯130561.0  1265103.2  1653196.3        0.0        0.0        0.0 
x2 
        0.0        0.0        0.0        0.0  3557300.3 11106298.5  2677904.4 
YX 
    51968.2  ¯130561.0  1265103.2  1653196.3        0.0        0.0        0.0 
        0.0        0.0        0.0        0.0  3557300.3 11106298.5  2677904.4 
yx 
    51968.2  ¯130561.0  1265103.2  1653196.3  3557300.3 11106298.5  2677904.4 
xy 
   333767.0   414773.5  1426582.7  4748959.3  2144060.8  6034580.2  2203479.9 
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Chapter 15, Selected Larger Scale Illustrations 
In this section we use the APL functions developed so far supplemented with several more to 
work with larger scale examples of selected problems explored in previous chapters.   

15.1 National Carbon Footprints Using the Larger Scale Databases  
In Problem 13.12 we used a global IRIO transactions tables aggregated to 3 regions (the US, 
China, and Rest of World) and 3-Sector industry sectors (Agriculture and Mining, 
Manufacturing, and Services & Utilities) for the years 2005 and 2015 given in Appendix SD2 of 
the text. The highly aggregated version used in that problem is actually a spatial and sectoral 
aggregation of the OECD Inter-Country Input-Output (ICIO) Tables for those two years 
(https://www.oecd.org/sti/ind/inter-country-input-output-tables.htm).7 These tables are available 
in several different formats, but one convenient for downloading to work in APL is the so-called 
CSV format. CSV which is the acronym for Comma Separated Values which is widely-used data 
exchange format that is simply a file of values using a comma (or other designated character) to 
separate values.  The file downloaded in this format can then be saved as a normal Excel 
spreadsheet. 

The OECD data can be downloaded via Microsoft Excel and easily converted to a Dyalog 
APL workspace with a user-defined APL function shown below, XLFROM, that utilizes a utility 
function provided by Dyalog APL for interfacing with Excel named LoadXL, which is provided 
in one of the library workspaces provided with Dyalog APL, loaddata.dws. 

[  0]  R←mn XLFROM Range                                             
[  1] ⍝ Retrieve specified Range (assumed numeric array of shape mn) 
[  2] ⍝ from open Excel spreadsheet (format: 'a1:c2'                 
[  3] ⍝ Convert to APL numeric array and provide as explict result R     
[  4]  ⍎'R←LoadXL ⍬ ⍬ ''',Range,''''                                 
[  5]  R←mn⍴⍎,⍕R                       

There is a new character in this function, ⍬ , which is simply a keyboard character for an empty 
vector. The function LoadXL provides for a variety of additional features as well, but for present 
purposes it is important that the format of the specified Excel range of cells be all numeric 
(without additional formatting, e.g., comma delimiters for thousands). 

Depending upon the computing resources available, especially the system memory, it 
may be convenient to download this large array (2484 x 2484 elements for the transactions 
matrix) in blocks, as in the function, READDATA, specified below. 

 

 
7 The OCED IRIO tables are configured as 38 OECD member nations (but including Mexico 
split out as two regions [domestic production and global manufacturing] and 31 non-OECD 
regions. China is also split out as two regions [domestic production and global manufacturing] 
and there is a rest-of-world (ROW) region, each of which are provided for 36 industry sectors, so 
overall there are 69×36=2,484 interregional sectors. 

https://www.oecd.org/sti/ind/inter-country-input-output-tables.htm
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[  0]  m READDATA n;IDX;mn;i;j;D;R;ul;lr                          
[  1] ⍝ Read m regions by n sectors from Excel (block by block)   
[  2] ⍝ m is no. of regions; n number of industry sectors                  
[  3] ⍝ CreateIDX creates Excel col range label from col number   
[  4] ⍝ Excel must be open to sheet with array to be read at 'A1' 
[  5] ⍝ Result in Global T                                        
[  6]  mn←m×n ⋄ i←j←1 ⋄ T←(2⍴mn)⍴0                                
[  7]  IDX←CreateIDX mn                                           
[  8] ⍝ Read blocks by rows                                              
[  9] L:ul←(ul≠' ')/ul←IDX[j;],⍕i                                 
[ 10]  lr←(lr≠' ')/lr←IDX[j+n-1;],⍕i+n-1                          
[ 11]  ⍎'D←LoadXL ⍬ ⍬ ','''',ul,':',lr,''''                       
[ 12]  R←(n,n)⍴⍎,(⍕D),' '                                         
[ 13]  T[(i-1)+⍳n;(j-1)+⍳n]←R                                     
[ 14]  →(mn≥j←j+n)/L                                              
[ 15]  j←1                                                        
[ 16]  →(mn≥i←i+n)/L              

The function CreateIDX converts column index numbers (1,2, …) to the corresponding 
Microsoft Excel column code format (A, B, … ,Z, AA, BB, …). 

[  0]  R←CreateIDX N;x;xx;n;A;B;C                                         
[  1] ⍝Excel column indices from number indices up to number N (≤18,278)) 
[  2]  n←⍴x←'ABCDEFGHIJKLMNOPQRSTUVWXYZ'                                  
[  3]  xx←(n,n)⍴x                                                         
[  4]  A←(3,¯1↑⍴A)⍴(3×¯1↑⍴A)↑A←(1,n)⍴x                                    
[  5]  B←(3,¯1↑⍴B)⍴(3×¯1↑⍴B)↑B←(2,n×n)⍴(,⍉xx),,xx                         
[  6]  C←(3,(n×n×n))⍴(,⍉((n×n),n)⍴x),(,(⍉(n×n),n)⍴,⍉xx),,(n×n×n)⍴x        
[  7]  R←(N,3)↑⍉A,B,C                  

Utilizing READDATA, we now have the full global IRIO transactions table (2484 × 2484) as a 
global variable T in the active workspace.  We can also use XLFROM to download the 
corresponding vector of total outputs XC. With sufficient computer memory available, we can 
now use the APL functions developed throughout this volume to compute the matrix of technical 
coefficients AR and the corresponding Leontief inverse LR. 

LR←INV AR←T AMAT XC 

Let us now aggregate the global IRIO model by region and industry sector to focus on 
carbon-emitting industry for three regions: the US, China, and the Rest-of-World. These are the 
same three regions defined in Problem 13.12 but we retain more sectoral detail (15 sectors) for 
this illustration. We can use the APL function, SCREATE, defined earlier to create the sectoral 
aggregation matrix SI from the aggregation code SICODE, and to create the spatial aggregation 
matrix SR from the aggregation code SRCODE: 

      SRCODE 
36                                     
42 68 69                               
(⍳35),(36+⍳5),(42+⍳25)                 
      SICODE 
1                                          
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2 3 4                                      
5                                          
6 7 8                                      
9                                          
10                                         
11 12                                      
13 14                                      
15 16 17                                   
18 19 20                                   
21                                         
22                                         
23 24                                      
25 26 27 28 29 30 31 32 33 34 35           
36                             

In the following APL function, IRIOAGG, we call on SCREATE to create the relevant 
aggregation matrices SR and SI and utilize three additional functions, TO3D, AGGZ, and TO3D, 
to aggregate the 69 region, 36 sector table (2484 × 2484) to 3 regions, 15 sectors (45 × 45). 

[  0]  Z←MNmn IRIOAGG T;I;O;sx;k;ZZZ;ZZT;ZZ;nm;n;m;k;M;N;NM;Mn;SR;SI;S       
[  1] ⍝ Aggregate (MN×MN) IRIO Transactions to mn×mn                         
[  2] ⍝ --M=# of unagg regs; N=# and unagg industry secs;                    
[  3] ⍝ --m and n=# of agg regs and secs                                     
[  4] ⍝ --T is unaggregated (MN×MN) IRIO transactions matrix                 
[  5] ⍝ --SICODE=ind agg code (text mtx), SRCODE-= reg agg code (txt mtx)    
[  6] ⍝ --Aggregations matrices: SI, SR, S                                   
[  7] ⍝ --calls functions SCREATE, AGGZ                                      
[  8]  M←MNmn[1] ⋄ N←MNmn[2] ⋄ m←MNmn[3] ⋄ n←MNmn[4]                         
[  9]  nm←n×m ⋄ NM←N×M ⋄ Mn←M×n                                              
[ 10] ⍝ AGGREGATE BY INDUSTRY                                                
[ 11] ⍝ reshape T to 3D array -- (MN×N×N) to use aggregation by sheet (AGGZ) 
[ 12]  ZZZ←(M,N)TO3D T                                                       
[ 13]  ZZT←(SI←SCREATE SICODE)AGGZ ZZZ                                       
[ 14] ⍝ RESHAPE to IRIO FORMAT                                               
[ 15] ⍝ZZ is (MN×n×n)--reshape to (M×n) x (M×n)IRIO format                   
[ 16]  ZZ←TO2D ZZT                                                           
[ 17] ⍝ AGGREGATE Sector-Aggregated ZZ BY REGION k=1,2...m                   
[ 18] ⍝--SRCODE is region agg code (text mtx)                                
[ 19]  O←0×I←(n,n)⍴1,n⍴0 ⋄ S←(0,Mn)⍴0 ⋄ k←1                                  
[ 20] ⍝Build Aggregation Matrix S                                            
[ 21]  SR←SCREATE SRCODE                                                     
[ 22] L:sx←M⍴'O'                                                             
[ 23]  ⍎'sx[',SRCODE[k;],']←''I'''                                           
[ 24]  sx←¯1↓,⍉(2,M)⍴sx,M⍴','                                                
[ 25]  ⍎'S←S,[1]',sx                                                         
[ 26]  →(m≥k←k+1)/L                                                          
[ 27] ⍝Aggregate ZZ using aggregation matrix S                               
[ 28]  Z←S+.×ZZ+.×⍉S                          

[  0]  M←mn TO3D R;n;m;mn;i;j;k;nm;r                                         
[  1] ⍝ Create 3d array of sheets from IRIO format (sequence blocks by rows) 
[  2] ⍝ r=no. of sheets; m=no of row and col blocks; n=no. of sectors        
[  3]  m←mn[1] ⋄ n←mn[2] ⋄ nm←1↑⍴R ⋄ r←m×m ⋄ M←(r,2⍴n)⍴0 ⋄ i←j←1 ⋄ k←0       
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[  4] L1:M[k←k+1;;]←R[(i-1)+⍳n;(j-1)+⍳n]                                     
[  5]  →(nm≥j←j+n)/L1                                                        
[  6]  j←1                                                                   
[  7]  →(nm≥i←i+n)/L1          
 
[  0]  ZZM←S AGGZ ZZQ;i;n                            
[  1] ⍝AGGREGATE ROWS AND COLS OF SHEETS IN 3D ARRAY 
[  2]  ZZM←((n←1↑⍴ZZQ),2⍴1↑⍴S)⍴0×i←1                 
[  3] L1:ZZM[i;;]←S+.×ZZQ[i;;]+.×⍉S                  
[  4]  →(n≥i←i+1)/L1     

[  0]  R←TO2D M;n;m;r;mn;i;j;k                                        
[  1] ⍝ 3d array of sheets to IRIO format                             
[  2] ⍝ r=no. of sheets; m=no of row and col blocks; n=no. of sectors 
[  3]  r←1↑⍴M ⋄ m←r*0.5 ⋄ n←¯1↑⍴M ⋄ mn←m×n ⋄ R←(2⍴mn)⍴0 ⋄ i←j←1 ⋄ k←0 
[  4] L1:R[(i-1)+⍳n;(j-1)+⍳n]←M[k←k+1;;]                               
[  5]  →(mn≥j←j+n)/L1                                                  
[  6]  j←1                                                            
[  7]  →(mn≥i←i+n)/L1                      

Finally, we also need a function similar to IRIOAGG, defined as IRIOAGGX below, to 
aggregate the vector of total outputs to the same regional and sectoral aggregation as the matix of 
interindustry transactions. 

[  0]  x←MNmn IRIOAGGX X;I;O;sx;k;XX;XXX;nm;n;m;k;M;N;NM;Mn;S;SI               
[  1] ⍝ Aggregate (MN×MN) IRIO Total Outputs to mn×mn                          
[  2] ⍝ --M and N=no. of unagg regs and secs; m and n=no. of agg regs and secs 
[  3] ⍝ --X is unaggregated (⍴=MN) IRIO total outputs vector                   
[  4] ⍝ --Global SICODE, SRCODE, SI, SR, S; call functions SCREATE             
[  5]  M←MNmn[1] ⋄ N←MNmn[2] ⋄ m←MNmn[3] ⋄ n←MNmn[4]                           
[  6]  nm←n×m ⋄ NM←N×M ⋄ Mn←M×n                                                
[  7] ⍝ AGGREGATE BY INDUSTRY                                                  
[  8] ⍝ --SICODEis industry agg code (text mtx)                                
[  9] ⍝ reshape X to N×M table, aggregate and then reshape back to vector      
[ 10]  XX←⍉(M,N)⍴X                                                             
[ 11]  SI←SCREATE SICODE                                                       
[ 12]  XXX←,⍉SI+.×XX                                                           
[ 13] ⍝ AGGREGATE Sector-Aggregated XXX BY REGION k=1,2...m                    
[ 14] ⍝--SRCODE is region agg code (text mtx)                                  
[ 15]  O←0×I←(n,n)⍴1,n⍴0 ⋄ S←(0,Mn)⍴0 ⋄ k←1                                    
[ 16] ⍝Build Aggregation Matrix S                                              
[ 17] L:sx←M⍴'O'                                                               
[ 18]  ⍎'sx[',SRCODE[k;],']←''I'''                                             
[ 19]  sx←¯1↓,⍉(2,M)⍴sx,M⍴','                                                  
[ 20]  ⍎'S←S,[1]',sx                                                           
[ 21]  →(m≥k←k+1)/L                                                            
[ 22] ⍝Aggregate ZZ using aggregation matrix S                                 
[ 23]  x←S+.×XXX                                  
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 We presume that the matrices of interindustry transactions for 2005 and 2015 are defined 
as global variables Z1 and Z2 in the APL workspace along with the corresponding vectors of 
total outputs x1 and x2. 

 Finally, we now define the carbon-dioxide intensity coefficients. As an illustrative proxy 
we use the fraction of total global emissions by industry aggregated for 2005 and 20015 (OECD, 
2021): 
      e2005 
0.021 0.029 0.012 0.014 0.031 0.029 0.059 0.076 0.006 0.02 0.381 0.014 0.112 0.046 0.15 

      e2015 
0.02 0.031 0.01 0.01 0.028 0.032 0.06 0.097 0.005 0.02 0.385 0.015 0.11 0.04 0.138 

As an illustration, if we apply the fractional shares to the global total industrial emissions for 
2005 and 2015, we obtain the vectors of total global emissions by industry, e1 and e2, which, in 
turn if divided by total global outputs by industry, X1 and X2, we generate vectors of emissions 
per dollar of industry output, g1 and g2. 

      X1←+/⍉3 15⍴x1 ⋄ X2←+/⍉3 15⍴x2 
      e1←27070×e2005 ⋄ e2←32277×e2015  
      g1←e1÷X1 ⋄ g2←e2÷X2 

We now have all we need to compute the values of total embodied emissions attributed to 
production, ep1 and ep2, and attributed to consumption, ec1 and ec2: 

f1←x1-+/Z1  ⋄ f2←x2-+/Z2 
L1←INV A1←Z1 AMAT x1 ⋄ L2←INV A2←Z2 AMAT x2 
GP1←(DIAG 45⍴g1)+.×L1+.×DIAG f1 ⋄ GP2←(DIAG 45⍴g2)+.×L2+.×DIAG f2 
ep1←+/GP1 ⋄ ep2←+/GP2 ⋄ ec1←+⌿GP1 ⋄ ec2←+⌿GP2  

      7 0⍕3 15⍴ep1 
     67    112     59     67    196    179    269    316     27    124   1848     78    699    434    459 
     77     60     25     52     53     76    224    267     25     37    865     24    120     32      0 
    425    612    241    260    590    530   1104   1474    111    381   7601    277   2212    779   3601 
      7 0⍕3 15⍴ec1 
     47     10    233     70    129    178     69     59    175    366    730    560    636   1669    459 
     66      5     95     98      5     63     20     46    313    176    130    423    106    311      0 
    441     72    844    401    374    467    245    361   1016   1213   3240   2028   2026   3492   3601 
      7 0⍕3 15⍴ep2 
   1011   2406   1704    989   2828   9477   1881   8483    922   9285 100054  10257 151915 109471    415 
   3865   4350   2527   3616   3437  16991   6400  31135   3394  10106 162017  18357 100847  34113      0 
   8509  18786   7546   5242  11356  30929   8916  41116   4328  29635 602670  47237 486090 196849   3703 
      7 0⍕3 15⍴ec2 
   2355    376  14184   3518   3653  10994   1993   2360   5510  29424  49228  29870 101348 173985    415 
   9984    523  16861  11428    999  12714   2076   7560  54848  35945  27815  99616  41340  70386      0 
  30966   5570  67140  28419  17779  34884   9370  17023  57024  82144 253913 151885 316241 417793   3703 

Perhaps of more interest are these results aggregated by region, i.e., summing all the emissions in 
each region as EP1 or EC1 for 2005 and EP1or EC2 for 2015 in each case for production or 
consumption, respectively.  Note that, as expected, the sum of total emissions for all regions 
across for each year are the same for each year, found by summing the elements of EP1 or EC1 
for 2005 and EP2 or EC2 for 2015. 

      8 0⍕, (+/EP1),EP1←+/3 15⍴ep1 
   27070    4934    1936   20200 
      8 0⍕, (+/EC1),EC1←+/3 15⍴ec1 
   27070    5390    1858   19822 
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      8 0⍕, (+/EP2),EP2←+/3 15⍴ep2 
 2315162  411097  401154 1502912 
      8 0⍕, (+/EC2),EC2←+/3 15⍴ec2 
 2315162  429213  392095 1493854 

15.2 The U.S. National Input-Output Model  
The U.S. National Input-Output Tables are available from the Bureau of Economic Analysis of 
the U.S. Department of Commerce at a variety of sectoral aggregations up to 405 industry 
sectors. The tables are presented in the form of supply and use tables for benchmark years and 
are available as Microsoft Excel spreadsheets (https://www.bea.gov/data/economic-
accounts/industry). We can download and open the 2012 405-sector Supply and Use table 
spreadsheets and use the APL function XLFROM defined earlier to define S and U in the APL 
workspace. With the Supply spreadsheet open, it is helpful to delete the row and column 
headings so that the (1,1) entry of the Supply table is located at A1 in the spreadsheet and 
remove the formatting from the cells to be downloaded. 

      S←405 405 XLFROM 'A1:OO405' 

With the Use spreadsheet open, again, it is helpful to delete the row and column headings so that 
the (1,1) entry of the Use table is located at A1 in the spreadsheet and remove the formatting 
from the cells to be downloaded. 

      U←405 405 XLFROM 'A1:OO405' 

We can now assemble any of the commodity-by-industry model configurations, such as 
an industry-by-industry based model under the assumption of industry-based technology defined 
by =A DB  and 1( )−= −L I A  where 1ˆ −=D Vq  with ( )′=q V i  and 1ˆ −=B Ux  with =x Vi  , 
recalling that ′=S V (the supply matrix S is the transpose of the make matrix V).  In APL terms, 
this is 

      V←⍉S ⋄ D←V+.×DIAG ÷q←+⌿V ⋄ B←U+.×DIAG ÷x←+/V 
      L←INV A←D+.×B 
 

15.3 RAS Estimation Regional Tables from National Data 
In Problem 10.10 we explored RAS estimation of an input-output table for the state of 
Washington using the U.S. national input-output table and estimates of regional intermediate 
inputs and outputs for Washington at a level of 7 industry sectors. In the following we use the 
same technique, but we retain the survey-based 2012 Washington State 52-sector industry 
aggregation (https://ofm.wa.gov/washington-data-research/economy-and-labor-
force/washington-input-output-model/2012-washington-input-output-model)  and aggregate the 
405-sector U.S. 2012 transactions table to that level of aggregation before testing RAS 
performance. 

 We start with a concordance table C, which in this case is a two-column table, the first 
column of for each row specifies the industry index of the Washington table corresponding to the 
US table industry index listed in the second column. Hence C is of shape 405 × 2 and we can use 

https://www.bea.gov/data/economic-accounts/industry
https://www.bea.gov/data/economic-accounts/industry
https://ofm.wa.gov/washington-data-research/economy-and-labor-force/washington-input-output-model/2012-washington-input-output-model
https://ofm.wa.gov/washington-data-research/economy-and-labor-force/washington-input-output-model/2012-washington-input-output-model
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it in the APL function SCREATEC (listed below) to generate the aggregation matrix necessary 
for aggregating the national table to the regional table’s level of industry aggregation. 

[  0]  S←SCREATEC C;n;m;k               
[  1] ⍝--Create Aggregation mtx S       
[  2] ⍝--from concordance matrix C      
[  3] ⍝--C[;1]=agg idx; C[;2]=unagg idx 
[  4]  n←1↑⍴C ⋄ m←⌈/C[;1]               
[  5]  S←(m,n)⍴0 ⋄ k←1                  
[  6] L1:S[C[k;1];k]←1                  
[  7]  →(n≥k←k+1)/L1            

We retrieve C and apply SCREATEC to generate the relevant aggregation matrix. 

      S←SCREATEC C←405 2 XLFROM 'A7:b411' 

We presume the Washington State tables for 2007 and 2012 (downloaded from the website noted 
above) are resident in the APL Workspace as global variables Z1 and Z2, respectively, along 
with their corresponding vectors of total outputs, x1 and x2. 

Using the aggregation matrix S, we can create the aggregated national matrix of 
interindustry transactions ZN and aggregated vector of total outputs XN to compute the 
corresponding matrix of technical coefficients AN that we will use to estimate the regional table 
by RAS. 

      ZN←S+.×ZZN+.×⍉S 
      XN←S+.×XXN 
      AN←ZN AMAT XN 
 

Finally, we generate two RAS estimates. The first is updating the 2007 Washington State 
table to 2012 with RAS using the vectors of intermediate outputs, intermediate inputs, and total 
outputs from the survey-based 2012 table. The second is estimating the 2012 Washington State 
table from the 2012 US national table, using the vectors of intermediate outputs, intermediate 
inputs, and total outputs from the survey-based 2012 table. First, we compute the matrix of 
technical coefficients for the 2007 Washington State table A1 and define the interindustry 
outputs and inputs for the 2012 Washington State table as u2 and v2, respectively. 
  
      A1←Z1 AMAT x1 
      u2←+/Z2 ⋄ v2←+⌿Z2 
 
We can now compute the RAS estimates of A2 from A1 and AN, which we define as AE1 and 
AE2, respectively, and compute the mean absolute deviation of each compared with A2. 
      A2 MAD AE1←A1 RAS 3 52⍴u2, v2, x2 
0.000004684813586 
      A2 MAD AE2←AN RAS 3 52⍴u2, v2, x2 
0.005583551083 

As might easily be predicted, the updating of the 2007 regional table is a far better estimate of 
the 2012 state table than is modifying the national table. 



2021 August 7 

-338- 
 

 
15.4 Generalized Input-Output Analysis and Goal Programming 
In Chapter 13, we illustrated a goal programming (GP) solution for the planning form of the 
generalized input-output formulation.  Problem 13.9 illustrated a small-scale problem that could 
be solved graphically as well as analytically by formulating the problem as a linear programming 
problem using the APL function LINPROG. Now we revisit the slightly larger scale planning 
problem posed in Problem 13.3, but reconfigure it as a GP problem. Recall that the matrix of 

technical coefficients, 
0.04 0.23 0.38
0.33 0.52 0.47

0 0 0.1

 
 
 
 
 

=A , and the direct impact coefficients matrix as, 

4.2 7 9.1
7.6 2.6 .5
.73 .33 .63

 
 =  
  

D with the environmental, energy, and employment coefficients as the three 

rows respectively. We also assemble 
2 4 2 2
2 0 0 2
2 2 4 3

 
 ∆ =  
  

F , the table of prospective project 

expenditures, and compute the total economic requirements matrix, 
1.247 .598 .839
.857 2.494 1.665

0 0 1.111

 
 =  
  

L .  

In Problem 13.3 we determined that Project 4 among the four projects depicted in ∆F contributed 
the most to GRP, which can be easily seen as the column sums of ∆F. Consequently (not 
surprisingly) Project 4 also consumed the most energy and contributed the most to employment. 
We configure the planning form as   

( )
*

4.2 7 9.1 138.27
7.6 2.6 0.5 79.246.210.73 0.33 0.63 10.4911.70.96 0.23 0.38 2.03.330.33 0.48 0.47 2.0
0 0 0.9 3.0

   
   

           = = = = =   − − −             − −
   
   

D xx Gx xI A f
 . 

Suppose we now consider imposing an environmental emissions constraint (specified by the first 
row of coefficients of D) for total emissions less than 120. This would limit project 3 and 4 since 
emissions for those projects pursued independently would be than 123.62 and138.27, 
respectively. If we want to maximize employment (specified by the third row of coefficients of 
D) but we have set the emissions constraint at 120, we can pose this as a GP problem as the 
following: 

1 1 2 4 5 6 3 3( )Min Pd P d d d P d+ − − − −+ + + +   
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[ ] +

−

 
 − = 
  

x
G I I d x

d
  where 1 2 3 4 5 6d d d d d d+ + + + + + + ′ =  d  and 

1 2 3 4 5 6d d d d d d− − − − − − − ′ =  d  are the vectors of positive and negative deviational 

variables, respectively, or 

 

1 1 2 4 5 6 3 3( )Min Pd P d d d P d+ − − − −+ + + +  

1

2

3

1

2

3

4

5

6

1

2

3

4

5

6

4.2 7 9.1 1 0 0 0 0 0 1 0 0 0 0 0
7.6 2.6 0.5 0 1 0 0 0 0 0 1 0 0 0 0
0.73 0.33 0.63 0 0 1 0 0 0 0 0 1 0 0 0
0.96 0.23 0.38 0 0 0 1 0 0 0 0 0 1 0 0
0.33 0.48 0.47 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0.9 0 0 0 0 0 1 0 0 0 0 0 1

x
x
x
d
d
d
d
d
d
d
d
d
d
d
d

+

+

+

+

+

+

−

−

−

−

−

−



− 
 −
 −  =

− − − 
 − − −
 − 



120
79.24
10.49

2.0
2.0
3.0


 
 
 
 
 
 

  
  
  
  
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  
    

 
 
 
 
 
 



.  

The optimal solution is [ ]* 5.6 10.49 2.53 ′=x  with impacts of [ ]* 120 71.1 9.14 ′=Dx  and a 

diminished GRP of [ ]*

2
( ) 1 1 1 2 6.28

2.28

 
 ′ − = = 
  

i I A x  compared with the corresponding values 

for Project 4 alone of is [ ]4 6.2 11.7 3.33 ′=x  with impacts of [ ]4 138.27 79.24 10.49 ′=Dx  

and a diminished GRP of [ ]4

2
( ) 1 1 1 2 7.0

3

 
 ′ − = = 
  

i I A x . 

We can use the APL tools developed already to configure this goal programming 
problem as a linear programming problem by assigning pre-emptive priority levels to (1) limiting 
emissions (minimizing positive deviation from 120), (2) preserving interindustry relationships 



2021 August 7 

-340- 
 

(minimizing negative deviation from achieving the target levels of final demand[ ]2 2 3 ′ , and 
(3) maximizing employment (minimizing negative deviation from the target of 10.49) with 
objective function weights of 1000, 100, and 100, respectively. The resulting tableau for using 
LINPROG is: 

       MGP 
 0     0     0    1000  0  0  0  0  0 0 0 10 100 100 100 ¯1   0    
 4.2   7     9.1    ¯1  0  0  0  0  0 1 0  0   0   0   0  0 120    
 7.6   2.6   0.5     0 ¯1  0  0  0  0 0 1  0   0   0   0  0  79.24 
 0.73  0.33  0.63    0  0 ¯1  0  0  0 0 0  1   0   0   0  0  10.49 
 0.96 ¯0.23 ¯0.38    0  0  0 ¯1  0  0 0 0  0   1   0   0  0   2    
¯0.33  0.48 ¯0.47    0  0  0  0 ¯1  0 0 0  0   0   1   0  0   2    
 0     0     0.9     0  0  0  0  0 ¯1 0 0  0   0   0   1  0   3    

Using LINPROG, the result is r found by  

      r←LINPROG MGP 
      r 
0 85.714004 5.5991113 10.493795 2.5304576 0 0 0 0 0 0 0 8.1376571 1.3455079 0 0 0.72258814 

Recall the first value is the code indicating that status of the solution (0 indicating an optimal 
solution), the second values is the final value of the objective function, and the next three 
elements (in this case) are the values of x*, the goal programming solution 

      r[3 4 5] 
5.5991113 10.493795 2.5304576 

The next six values comprise the values of the negative deviational variables, all of which are 0 
indicating no under achievement of the targets, and the final six values are the values of the 
positive deviational variables: 

      ¯6↑r 
0 8.1376571 1.3455079 0 0 0.72258814  

This shows that the highest priority of limiting emissions was tight against its constraint value, 
the values of energy consumption and employment were short of their targets by 8.138 and 
1.346, respectively, and of the values of total final demand (the last three values of the vector of 
results) sector three’s final demand was short of its target by 0.723. We can verify this by 
computing the total outputs corresponding to the shortfalls in final demand, which should be the 
same as the optimal solution. 

      L+.×2 2 3-¯3↑r 
5.5991113 10.493795 2.5304576 

15.5 The Contemporary Approach to Hypothetical Extraction 
From Chapter 7, recall that the hypothetical extraction approach was originally conceived to 
quantify how much the total output of an n-sector economy would change (decrease) if a 
particular sector, say the jth, were completely removed from that economy. Problem 7.7 showed 
this approach, modeled in an input-output context by deleting row and column j from the A 
matrix.  Recall that, for convenience, we adopted an alternative notation in which j−A  is defined 
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as the ( )n n×  coefficients matrix in which row and column j have been nullified (replaced by 

zeros; sector j’s “removal”), with j−L  as its associated Leontief inverse and j−f  as the final 
demand vector with 0jf = . Then the output vector for this reduced economy is given by 

j j j− − −=x L f  and, hence, the result in terms of reduction in total outputs is ( )j
j

−′∆ = −i x x  and 

the percentage decrease is ( )100[( ) / ]j j′ ′ ′∆ = −i x i x i x .  

 In Chapter 7 we showed Temursho’s much simpler and more contemporary approach to 
computing the results for hypothetical extraction which eliminates many of the tedious 

calculations as the following: 1( )j j j
jjl

′ ′∆ = i Le e x  where je is the jth column of the ( )n n× identity 

matrix—all zeros except for a 1 in location j. Note that j j′e e  results in an ( )n n× matrix of all 0’s 
except for a 1 on the main diagonal at location j.  

We can reconfigure Problem 7.7 to use Temursho’s approach with the following dyadic 
APL Function HEXTRACT which takes a matrix of technical coefficients A as the left argument 
and the corresponding vector of total outputs x as the right argument. The function applies 
Temurhso’s formula and returns, as the explicit result, a matrix where each column includes the 
index of the hypothetically extracted sector, the reduction of the total outputs, and the percentage 
reduction of total outputs. 

[  0]  R←A HEXTRACT x;L;f;T;j;n;IJ;Aj;fj         
[  1] ⍝ Temursho’s Hypothetical Extraction       
[  2]  L←LINV A ⋄ f←x-A+.×x ⋄ n←⍴x ⋄ T←n⍴0 ⋄ j←1 
[  3] L1:Aj←A ⋄ fj←f ⋄ IJ←(2⍴n)⍴0                
[  4]  fj[j]←0 ⋄ Aj[j;]←0 ⋄ Aj[;j]←0 ⋄ IJ[j;j]←1 
[  5]  T[j]←(÷L[j;j])×+⌿L+.×IJ+.×x               
[  6]  →(n≥j←j+1)/L1                             
[  7]  R←(3,n)⍴(⍳n),T,100×T÷+/x    

Applying HEXTRACT to the data in Problem 7.7 we can reproduce the results much more 
efficiently as 

          A HEXTRACT x 
     1              2               3             4              5               6              7        
547449.46      591737.58      2632898.3     6814684.2      5036387.3      12526318        4307032.5      
     2.3950914      2.5888519      11.51893      29.814244      22.034195       54.802643      18.843267 

 We can illustrate the use of HEXTRACT with a larger set of input-output data.  For 
example, we apply it to the 52-sector Washington State input-output table for 2012 used in 
Problem 15.3 (the technical coefficients matrix was defined as A1 and the vector of total outputs 
as x1), so, in APL as with the earlier example, 

      R1←A1 HEXTRACT x1 

 For convenience we can use another APL primitive function known as “grade down” 
(designated with the character ⍒) which is a monadic function for sorting data that returns the indices 
of a vector that would put the elements of that vector in descending order, as in  
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      q←3 6 8 5 2 
      ⍒q 
3 2 4 1 5 
      q[⍒q] 
8 6 5 3 2 

As an aside, there is a companion primitive function “grade up” (designated with the character 
⍋) which is a monadic function that returns the indices of a vector that would put the elements of that 
vector in ascending order. 

 We can use “grade down” to modify the result of HEXTRACT applied to the Washington 
State table to return the ten sectors with the highest values of hypothetically extracted total 
output in descending order (sector 10 is construction and sector 24 is aircraft manufacturing): 

      R1←A1 HEXTRACT x1 
      10 3↑⍉R1[;⍒R1[2;]] 
10 90869.998 15.052685  
24 44180.124  7.3184716 
37 39871.259  6.6047047 
40 38940.138  6.4504638 
52 37815.12   6.2641038 
29 37639.707  6.2350465 
31 35825.854  5.9345803 
16 30135.748  4.9920098 
11 28672.03   4.7495438 
46 26884.182  4.4533854 
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Appendix:  Additional Sampling of Basic APL Features 

  
Configuring Dyalog APL for IOA 
For non-commercial use, the latest version of Dyalog APL, one of the most accessible versions 
of APL, can be downloaded from the corporate website, http://www.dyalog.com. The system is 
available for various operating systems (Windows, MacOS, Linux, and others). Upon selection 
of the relevant operating system, the relevant version is downloaded as a compressed zip file 
which, when decompressed, will include the application that installs the APL system, the font, 
and a number of supporting files and APL libraries. A full introduction to the Dyalog APL 
implementation of the language is provided in Legrand (2009) available at 
https://www.dyalog.com/mastering-dyalog-apl.htm.    

APL Fonts 
Many fonts are available for working in APL and APL fonts can be used in other applications as 
well, as in, for example, this workbook, in which most of the text is written in the Times New 
Roman 12-point font while APL expressions and results are written in the Dyalog APL Unicode 
Font. Some APL font is used by default in most modern APL systems. 

The APL Keyboard 
Interacting with an APL interpreter begins with a standard personal computer keyboard, but 
various key combinations enable access to the special characters designating primitive functions, 
operators and other APL-specific features.  

The specific key combinations that produce APL characters vary somewhat with APL 
systems, but, as an example, in one of the most commonly used APL systems today (Dyalog 
APL), the key combination of CTRL (or CTRL+SHIFT) and other keys designate most APL 
characters, as illustrated in the keyboard map shown below as Figure A1.  Note, in the map for 
each key, the left lower character is the standard lower case character; the upper left character is 
the standard upper case character; the lower right character (produced by depressing CTRL and 
that key simultaneously) are the most common APL characters; and the upper right character  
(produced by depressing CTRL, SHIFT, and that key simultaneously) are additional, usually less 
commonly-used APL characters if they are defined. 

So, for example, depressing the upper right key to the left of the backspace key, produces 
the = character, depressing SHIFT plus that key simultaneously produces the + character, 
depressing the CTRL plus the that key simultaneously produces the ÷ character, and depressing 
CTRL plus SHIFT plus that key simultaneously produces the ⌹ character. Dyalog APL also 
provides a “ribbon” accompanying the empty workspace when initially loaded that can be used 
to generate APL characters instead of using a keyboard combination by moving the cursor to the 
relevant character on the ribbon and depressing the left mouse button.  

 

http://www.dyalog.com/
https://www.dyalog.com/mastering-dyalog-apl.htm
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Figure A1.  The APL Keyboard.  Source: Legrand (2009), p. 36. 

System Commands, Functions, and Variables 
There are a variety of ways in which APL users interact with the system environment from 
within APL. Mechanisms for controlling specific features of the environment in which APL 
functions execute, or to query information about this environment are possible through a 
collection of so-called system interfaces of which there are three types: (1) system commands, 
several of which have already been introduced, (2) system functions, and (3) system variables. 

System Commands 
A number of the most important system commands have already been introduced.  A complete 
description of available commands for Dyalog APL is included in Legrand (2009), especially 
Appendix 8. Additional system commands worth noting here (others are identified later) are 
described in the following. 

APL initially loads in a clear workspace, i.e., one in which not no global variables or user-
defined functions (or other objects discussed later) are yet defined—the system commands, 
)vars and )fns , will return no entries.   

)CLEAR will return APL to an empty workspace.  

)WSID will return the name of the active workspace or if the active workspace is an empty 
workspace will return the message “is CLEAR WS”.  If an argument is provided then )WSID 
will change the name of the active workspace to the specified name, e.g., )WSID WORK, which 
change the name of the active workspace to WORK. 

)SAVE will save the active workspace in the workspace library under the current name or under 
a new name if one is specified as an argument, e.g., )SAVE WORK2. 

)LIB lists the names of saved workspaces. 

)LOAD replaces the active workspace with a copy of one from the library specified by the 
argument, e.g., )LOAD WORK2. 
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)ERASE will delete specified objects, e.g., global variables or user-defined functions, from the 
active workspace. 

)COPY copies all or selected objects from a saved workspace into the active workspace, e.g., 
)COPY WORK2 copies all of the objects in the workspace WORK2 into the active workspace or 
)COPY WORK2 FUN1 FUN2 VAR1 VAR2 copies the functions FUN1 and FUN2 and the 
variables VAR1 and VAR2 from the workspace WORK2 into the active workspace. 

)OFF quits APL. 

)ED invokes the built-in APL function editor for the function specified as the right argument, 
e.g., )ED FUN1 will open the APL function editor in a separate window for the editing function 
FUN1.  If FUN1 is being created anew, it will open the editor to a new line [0] indicating only 
the name FUN1.  If the specified function already exists the entire collection of statements 
comprising the function will be opened in the editor. The editor itself has many word-processing-
like features. Exiting the editor saves the edited function under the name specified in line [0]. 

)SI known as state indicator returns the names of all functions whose operations have been 
suspended due to an error or other condition and the line numbers where the function is 
suspended.  When a function is suspended all objects are suspended, including, for example, all 
local variables within the suspended function at the time of the suspension are accessible.  

)RESET resets the state indicator and removes suspensions on all variables and functions. 

System Functions 
The system commands just described can only be entered at the keyboard as a user interacts with 
the APL interpreter.  One other important limitation of system commands is that when they 
require specifying a folder path and/or workspace name as an argument when the path or name 
contains blanks, the entire file specification must be enclosed between a pair of double quotes 
since, unless specified within double quotes, spaces are interpreted as delimiters between objects.  
So, for example, the command to load a workspace located at the file location, c:\my 
documents\November work2, would be written as )LOAD “c:\my documents\November 
work2” rather than )LOAD c:\my documents\November work2.  

System functions provide many of the same features system commands and many more as 
well, but can be executed within an APL function. System functions begin with the character ⎕ 
known as quad.  For example, ⎕LOAD, ⎕WSID, ⎕CLEAR, ⎕SAVE, all accomplish the same 
as their system command counterparts, but their arguments are specified as character arrays.  For 
example, ⎕LOAD ‘WORK2’ would load a copy of the saved APL library workspace WORK2.  
The system function ⎕CY is the analog to )COPY but with the format OBJECTS ⎕CY 'wsid' 
where  OBJECTS is a character array specifying a list of objects and wsid is the workspace 
containing those objects. Several other useful system functions, detailed in Legrand (2009) along 
with many others as well, include: 
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⎕LX known as latent expression executes an APL expression specified as the argument when the 
workspace is loaded, e.g., specifying ⎕LX←’FUN1’, would execute the user-defined function 
FUN1 when the workspace is initially loaded.  

⎕EX known as expunge erases the objects listed in a character array as the argument. 

⎕TS known as time stamp chronicles the exact date and time. 

⎕PP known as print precision specifies the maximum number of significant digits used to display 
numeric values when no particular format is specified; the argument is an integer between 1 and 
17 with the default set to 10. 

System Variables 
Many characteristics of an APL session are stored in system variables. All system variables have 
default values that can be changes for specific needs.  Some of the most commonly used system 
variables are the following. 

⎕IO,known as index origin, specifies whether index sequences between with 0 or 1 (the default 
is 1). For example with ⎕IO←1, the expression ⍳3 would yield the vector 1 2 3 but with ⎕IO←0 
would yield the vector 0 1 2. For the defined vector R←1 2 3, With ⎕IO←0, the expression 
R[0] would yield 1 but with ⎕IO←1 the result would be an index error. 

⎕PW, known as page width, specifies the display width used in the current APL workspace.  The 
default is 200 characters, but can be re-specified by assigning a new value, e.g., ⎕PW←400.  

⎕CT, known as comparison tolerance, specifies the threshold for equality between two numbers, 
e.g., to compensate for inaccuracies due to the limited precision of numbers. That is APL 
considers two numbers to be equal if the difference between them is within a specified tolerance 
which in Dyalog APL can be any value between 0 and 16*¯8 (2.3283064E¯10). 

⎕RL, known as random link, is the initial seed value for the random number generator built into 
APL.  The default value for a clear workspace is 16807 (, i.e., 7*5), but changes with any use of 
the random number generator.  Hence, if an expression using pseudo-random values is executed 
immediately after APL has been started, the expression will yield the same result on each such 
occasion, which can be helpful for reproducing the same experimental conditions, but it can also 
be a disadvantage in some circumstances as well. The APL random number generator is invoked 
with the monadic or dyadic function roll designated with the character ?, discussed in the next 
section. 

There many other additional system interface features (see Legrand, 2009, for a complete 
collection and descriptions). 

Additional  Useful Functions and Operators 
Primitive Functions and Operators 
In this workbook we have used only a small number of the primitive functions and operators 
built into modern APL systems that are especially useful for IOA.  Other sources, such as 
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LeGrand (2009), provide comprehensive descriptions of the additional primitive functions and 
operators available in modern APL implementations.  Below is a sampling: 

? The monadic form is known as roll, which is APL’s built in pseudo-random number generator. 
The argument is an array of positive integer values and the result is a pseudo-random value 
between the index origin (the setting of ⎕IO) and the value(s) in the array. Hence the array of 
pseudo-random integers is produced with replacement. The dyadic version, known as deal, 
produces as many pseudo-random integer values as specified by the left argument, all between 
the index origin and the value of the right argument and all different. That is the array of 
pseudo- random integers is generated without replacement. Also recall that the initial random 
number generator seed is specified by ⎕RL. 

| The monadic version of this primitive function, known as magnitude, returns the absolute 
value of the argument.  The dyadic version, know as residue, produces the remainder of right 
argument divided by the left argument. Note that this is the opposite of the division function ÷ 
which computes the left argument divided by the right argument. 

⌽ ⍉ ⊖ This family of primitive functions, known as rotate, transpose, and reverse, are used to 
pivot arrays on an axis, as their names suggest.  

Additional User-Defined Functions Helpful for IOA 
Throughout this volume most user defined functions were listed when they were introduced.  
Some, however, involved concepts beyond the scope of the text or this volume, such as 
computational methods for computing matrix determinants (beyond the method of cofactors), 
linear programming, computing eigenvalues, or functions that involve more advanced APL 
features not covered in this volume.  Those functions are listed here.  

DETER, Computing the Determinant of a Square Matrix 
[  0]  ANS←DETER M;I;N;K;A;eps                                               
[  1] ⍝ 3/18/77 EVALUATES DETERMINANT OF SQ MX                               
[  2] ⍝THE DET. IS SET TO 0 WHEN A DIAGONAL ELEMENT BECOMES <eps.            
[  3]  eps←1E¯10                                                             
[  4]  ANS←¯1+I←1                                                            
[  5]  ⍎(2≠⍴⍴M)/'→0,0↑⎕←''NOT A MATRIX'''                                    
[  6]  ⍎(≠/⍴M)/'→0,0↑⎕←''NOT A SQUARE MATRIX'''                              
[  7]  ⍎(0=N←''⍴⍴M)/'→0,0↑⎕←''ORDER IS 0'''                                  
[  8] L:→(I=K←(I-1)+A⍳⌈/A←|(I-1)↓M[;I])/SKP                                  
[  9]  M[I,K;]←M[K,I;]                                                       
[ 10]  M[I;]←-M[I;]                                                          
[ 11] SKP:→(eps>|M[I;I])/0                                                   
[ 12]  M[I+⍳N-I;]←M[I+⍳N-I;]-M[(N-I)⍴I;]×⍉(N,N-I)⍴(I↓M[;I])÷M[I;I]           
[ 13]  →(N≥I←I+1)/L                                                          
[ 14]  ANS←1 1⍉M                                                             
[ 15]  ⍎(75<+/10⍟|ANS)/'ANS←⌊/⍳0,0↑⎕←''VALUE EXCEEDS COMPUTER CAPABILITY.''' 
[ 16]  ANS←×/ANS               
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EIG, Computing the Dominant Eigenvalue of a Square Matrix  
[0]  R←EIG A;B;P;LAM;n                   
[1] ⍝Principal Eigenvalue and Eigenvector 
[2]  R←R÷+/R←+/B←A+(2⍴n)⍴1,(n←1↑⍴A)⍴0     
[3] L1:P←R                                
[4]  R←R÷+/(R←B+.×R)                      
[5]  →(1E¯13≤+/|R-P)/L1                   
[6]  LAM←(A+.×R)÷R                        
[7]  R←(1↑LAM),R    

                       

LINPROG Linear Programming via the Revised Simplex Method 
[0]R←LINPROGD;u;nr;I;i;j;na;ns;nc;nt;x;n;no;J;V;L;pr;MX;MO;BM;nn;nm;si;S;B;C;A;M;N;Z0;Z;b;z;rnd;k 
[ 1] ⍝--Linear Programming via Simplex Method (Agnew code)                                            
[ 2] ⍝RETURNS solution code, k, final val of obj fun, OBJ, and first optimal soln,                    
[ 3] ⍝   and PRIMAL[1;] if it exists; other results in global variables PRIMAL, DUAL and OBJ          
[ 4] ⍝Solution Code: k (Explicit Result) is 0 for opt soln; 1 no soln exists; 2 unbounded;            
[ 5] ⍝    and 3 iteration limit)                                                                      
[ 6] ⍝⍝--usesh direct definition of rnd function                                                      
[ 7] ⍝--D is Partitioned Array of Input Data                                                          
[ 8] ⍝------C,u,0                                                                                     
[ 9] ⍝------A,S,b                                                                                     
[10] ⍝-----C is row vector of objective function coefficients (nm←⍴C)                                 
[11] ⍝-----u is scalar u=1 for maximization u=¯1 for minimization                                     
[12] ⍝-----A is matrix of constraint equation coefficients (nn×nm)                                    
[13] ⍝-----S is col vector of signs: ¯1 for ≤; 0 for =; 1 for ≥' for constraint equations;            
[14] ⍝       (nn←⍴S=⍴b) the no. of const eqns                                                         
[15] ⍝-----b is col vector of rhs terms of constraint equations (nn)                                  
[16] ⍝--BM is pos number signifcantly larger than ⌈/|C                                                
[17] ⍝--MAXITER is max number of simplex iterations                                                   
[18] ⍝--MAXOPT is max number of alternative optimal solutions                                         
[19] ⍝--pr is rounding paramter (typically 10 or 12), called by rnd function                          
[20] ⍝----SPECIFY CONSTANTS AND EXTRACT DATA FROM D                                                   
[21]  pr←12 ⋄ MX←3000 ⋄ MO←100 ⋄ BM←1000000                                                           
[22]  nn←(1↑⍴D)-1 ⋄ nm←(¯1↑⍴D)-2 ⋄ C←,D[1;⍳nm] ⋄ A←D[1+⍳nn;⍳nm] ⋄ b←,D[1+⍳nn;nm+2] ⋄ u←D[1;nm+1]      
[23]  S←nn⍴' ' ⋄ si←,D[1+⍳nn;nm+1] ⋄ S[(si=¯1)/⍳nn]←'≤' ⋄ S[(si=0)/⍳nn]←'=' ⋄ S[(si=1)/⍳nn]←'≥'       
[24] ⍝--Z is pivot criterion vector (Z0 is initial vector)                                            
[25] ⍝--M is augmented constraint matrix (the tableau)                                                
[26] ⍝-----OUTPUTS                                                                                    
[27] ⍝---------k (Explicit Result) is 0 for opt soln;                                                 
[28] ⍝1 no soln exists; 2 unbounded; and 3 iteration limit)                                           
[29] ⍝---------GLOBAL VARIABLE OTUPUTS                                                                
[30] ⍝------------PRIMAL is provisional primal solution                                               
[31] ⍝------------DUAL is provisional dual solution                                                   
[32] ⍝------------OBJ is optimal value of objective function                                          
[33]  rnd←{(10*-⍺)×⌊0.5+(10*⍺)×⍵}                                                                     
[34]  I←(⍳nr)∘.=⍳nr←⍴b ⋄ b[i]←b[i←(b<0)/⍳nr] ⋄ A[i;]←-A[i;]                                           
[35]  S[j,k]←((⍴j←(S[i]='≥')/i)⍴'≤'),(⍴k←(S[i]='≤')/i)⍴'≥'                                            
[36]  M←A,((S='≤')/I),(-(S='≥')/I),((S≠'≤')/I),b                                                      
[37]  Z0←(u×C),((ns←+/S≠'=')⍴0),((na←+/S≠'≤')⍴-BM),0                                                  
[38]  Z←pr rnd-Z0+BM×+⌿(S≠'≤')⌿M                                                                      
[39]  B←(nc+⍳+/S='≤'),(nc←⍴C)+ns+⍳na                                                                  
[40]  B←B[J←⍋((S='≤')/⍳nr),((S='≥')/⍳nr),(S='=')/⍳nr]                                                 
[41]  PRIMAL←(0,nc)⍴0 ⋄ DUAL←(0,nr)⍴0                                                                 
[42]  nt←nc+ns+na+n←no←k←1                                                                            
[43] L1:→(0>V←⌊/¯1↓z←(pr-2)rnd Z[N←(~(⍳nt)∊B)/⍳nt])/L3                                                
[44]  →(∨/0<,M[(B∊(-na)↑⍳nt-1)/⍳nr;nt])/END,x←(i←B≤nc)/,M[;nt]                                        
[45]  →((V=0)∧1=∨/(x←((⍳nc)∊i)\x[⍋i←i/B])∧.=⍉PRIMAL)/L2                                               
[46]  PRIMAL←PRIMAL,[1]x                                                                              
[47]  i←(nc+⍳ns),nc+ns+(+/S='≥')+⍳+/S='='                                                             
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[48]  DUAL←DUAL,[1]pr rnd((i∊N)\(Z+Z0)[(N∊i)/N])[J]                                                   
[49] L2:→((V>0)∨MO<no←no+1)/END,(k←0),OBJ←u×¯1↑z                                                      
[50] L3:L←0<⌈⌿(M[;N])[;j←(V=¯1↓z)/⍳nt-nr+1]                                                           
[51]  →((0>V),(∨/L),1)/L4,L5,END                                                                      
[52] L4:→(∧/L)/L5                                                                                     
[53]  →END,k←2                                                                                        
[54] L5:j←j[?⍴j←L/j]                                                                                  
[55]  V←⌊/x←(,M[L;nt])÷,M[L←(0<,M[;N[j]])/⍳nr;N[j]]                                                   
[56]  B[i←i[?⍴i←(V=x)/L]]←N[j]                                                                        
[57]  M←pr rnd M-(,M[;N[j]])∘.×V←(,M[i;])÷,M[i;N[j]]                                                  
[58]  Z←pr rnd Z-Z[N[j]]×,M[i;]←pr rnd V                                                              
[59]  →(MX≥n←n+1)/L1                                                                                  
[60]  →END,k←3                                                                                        
[61] END:R←k,OBJ                                                                                      
[62]  ⍎(k=0)/'R←R,PRIMAL[1;]'                         

 

PINV, Matrix Inverse by Successive Partitioning 
[0]  R←NM PINV MAT;N;M;X;ALPHA;BETA;DELTA;GAMMA;DELTAI;FORM;A;B;C;D                   
[1] ⍝FUNCTION TO SOLVE INV BY PARTITIONING                                            
[2] ⍝CREATES GLOBAL A,B,C,D                                                           
[3]  N←NM[1] ⋄ M←NM[2]                                                                
[4]  ⍎(0==/⍴MAT)/'→0,0⍴⎕←''*** MAT MUST BE A SQUARE MATRIX ***'''                     
[5]  ⍎((N+M)≠1↑⍴MAT)/'→0,0⍴⎕←''*** N+M MUST SUM TO NO OF ROWS IN MAT ***'''           
[6]  ⍎(0=DETER2 MAT)/'→0,0⍴⎕←''*** MAT IS SINGULAR ***'''                             
[7]  ALPHA←MAT[⍳N;⍳N] ⋄ BETA←MAT[⍳N;N+⍳M] ⋄ GAMMA←MAT[N+⍳M;⍳N] ⋄ DELTA←MAT[N+⍳M;N+⍳M] 
[8]  'PARTITIONED MATRIX:'                                                            
[9]  X←¯1↑⍴⎕←(FORM⍕ALPHA),' ','|',(FORM←10 3)⍕BETA                                    
[10]  X⍴'-'                                                                            
[11]  (FORM⍕GAMMA),' ','|',FORM⍕DELTA                                                  
[12]  ⍎(0=DETER2 DELTA)/'→0,0⍴⎕←''*** DELTA IS A SINGULAR MATRIX ***'''                
[13]  DELTAI←⌹DELTA ⋄ X←⎕EX'DELTA'                                                     
[14] ⍝CREATE INV PARTITION A                                                           
[15]  A←DELTAI+.×GAMMA ⋄ A←BETA+.×A ⋄ A←ALPHA-A ⋄ X←⎕EX'ALPHA' ⋄ A←⌹A                  
[16] ⍝CREATE INV PARTITION B                                                           
[17]  B←BETA+.×DELTAI ⋄ X←⎕EX'BETA' ⋄ B←A+.×B ⋄ B←-B                                   
[18] ⍝CREATE INV PARTITION C                                                           
[19]  C←GAMMA+.×A ⋄ C←DELTAI+.×C ⋄ C←-C                                                
[20] ⍝CREATE INV PARTITION D                                                           
[21]  D←GAMMA+.×B ⋄ D←((M,M)⍴1,M⍴0)-D ⋄ D←DELTAI+.×D ⋄ X←⎕EX 2 6⍴'GAMMA DELTAI'        
[22]  'PARTITIONED INVERSE IS:'                                                        
[23]  X←¯1↑⍴⎕←(FORM⍕A),' ','|',FORM⍕B                                                  
[24]  X⍴'-'                                                                            
[25]  (FORM⍕C),' ','|',FORM⍕D                                                          
[26]  R←(A,B),[1]C,D                    

Overview of Additional APL Features 
As mentioned in the introduction to this volume, the APL features used in this workbook only 
scratch the surface of those available in modern implementations of APL, as detailed in Legrand 
(2009) and many other sources.  Additional primitive functions for sorting and searching, nested 
arrays for combining various data types, direct definition functions (writing a function within a 
function), more advanced data interface mechanisms, more sophisticated methods for identifying 
and tracing errors, defining local namespaces within APL workspaces, recursive programming 
features, and more advanced and powerful primitive operators and functions are all built in to 
modern APL implementations.  
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