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ELECTRONS IN PERIODIC STRUCTURES:
ELECTRONIC BANDSTRUCTURE (E vs. k relation)
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To examine electrons inside a solid we need to use 
quantum mechanics, i.e., the Schrödinger equation

–h2

2mo
2 + V(r)   ψ(r) = E ψ(r)[             ]

ψ(r): electronic state or wavefunction.
E : electronic allowed energy or eigenvalue.
V(r) : background potential which is periodic in crystals.

In general the problem is extremely complex to solve:

There are ~1023 atoms cm–3!

The problem becomes tractable because there is 
periodicity in the system. The entire crystal is produced 
by a repetition of a few atoms. This allows us to rewrite 
the problem in terms of just a unit cell problem.



BLOCH THEOREM:
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The general form of an electronic state (wavefunction) in a periodic structure is:

ψk(r) = uk(r)eik•r

uk(r) = uk(r+R): uk(r) has the same periodicity as the crystal.

ψ(r) = u(r)eik•r

PERIODIC  
POTENTIAL

U(r)

(b) |ψ(r)|2 has the same periodicity as the potential

r

r
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NON-PERIODIC  POTENTIAL
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Note that the wavefunction is not periodic. 
k is called the crystal momentum. 
uk(r) is called the cell periodic part of the wavefunction.



ELECTRONS IN AN ATOM
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Before examinig electrons in a solid, let us examine electronic states in an atom. 
Let us examine the hydrogen atom.
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Electron in an attractive potential of an atom

E = 0 : Vacuum energy

For hydrogen atom
E1 = –13.6 eV
E2 = –3.4 eV
E3 = –1.11 eV

Bound states: Allowed energies separated by "gaps"
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E4
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Allowed energy levels: 

 

Wavefunctions:
ψn  m: n: principle quantum number.

: orbital quantum number; angular momentun 
of the electron =   h,     = 0, 1, 2...

m: magnetic quantum number; projection of the          
angular momentum; m lies between –   and +  .

–me4

2(4πε0)2h2n2
 = –13.6

n2  eVEn =
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NATURE OF ATOMIC FUNCTIONS:

These are important, since the cell periodic part of Block states is often made up of 
atomic-like states

  =0: angular momentum is zero; called s-state
  =1: angular momentum is one (h); called p-state

  = 0

  = 1

  = 2

  = 3

  = 4

m = 0

m = +4 m = +3 m = +2 m = +1 m = +0

m = –1m = +3 m = +2 m = +1 m = +0 m = –2 m = –3

m = +2 m = +1 m = 0 m = –1 m = –2

m = +1 m = 0 m = –1

θ
s-state:
spherically symmetric

p-state:
dumbell-like state along 
x,y,z directions

d-state

f-state

g-state:
only states with 
m    0 are shown

A plot of the probability density function of electronic states in an atom as a 
function of the angle θ for the 
s, p, d, f, g electrons.
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FROM ATOMIC LEVELS TO ENERGY BANDS

As atoms are brought closer and closer to each other to form a crystal, the 
discrete atomic levels start to broaden to form bands of allowed energies 
separated by gaps. The electronic states in the allowed bands are Bloch states, 
i.e., they are plane wave states (~eik•r).

Isolated atoms Crystal: Atomic spacing ~1-2 Å
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Allowed 
bands

.

Bandgaps

• Low lying core levels are relatively unaffected.
• Higher levels are broadened significantly to form bands.

..



SEMICONDUCTOR BANDSTRUCTURE
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In semiconductors we are pimarily interested in the 
valence band and conduction band. Moreover, for 
most applications we are interested in what happens 
near the top of the valence band and the bottom of 
the conduction band. These states originate from the 
atomic levels of the valence shell in the elements 
making up the semiconductor.

IV Semiconductors

C 1s22s22p2

Si 1s22s22p63s23p2

Ge 1s22s22p63s23p63d104s24p2

III-V Semiconductors

Ga 1s22s22p63s23p63d104s24p1

As 1s22s22p63s23p63d104s24p3

Outermost atomic levels are either s-type or p-type.
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ELECTRONS IN A (SOLID) CRYSTAL

Inside a crystal electrons respond to outer forces as if they have an effective 
momentum hk. Near the bandedges they respond as if they have an effective 

mass m*.

ELECTRON WAVE IN A PERIODIC CRYSTAL 

–

Energy solutions of 
Schrödinger equation: Series of allowed bands and series of 

bandgaps. 

Properties of the bandgap: In the perfect crystal, electrons are 
forbidden from occupying energies in 
the bandgap.

Properties of an 
allowed band: Electrons behave as if they are in free 

space with a certain wavevector k. They 
respond to the outside world as if they 
have a new mass called the effective 
mass.

Response to outside forces:        = Force

E =

hdk
dt

h2k2

2m*



IMPORTANT HIGH SYMMETRY POINTS

Γ point: kx = 0 = ky = kz

X point: kx = 2π ; ky = kz = 0

L point: kx = ky = kz = π

a = lattice constant (cube edge)
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BANDSTRUCTURE OF SEMICONDUCTORS
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The k-vector for the electrons in a crystal is limited to a 
space called the Brillouin zone. The figure shows the 
Brillouin zone for the fcc lattice relevant for most 
semiconductors. The values and notations of certain 
important k-points are also shown. Most semiconductors 
have bandedges of allowed bands at one of these points.

A TYPICAL BANDSTRUCTURE: Si



BANDSTRUCTURE NEAR BANDEDGES
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∆ =  Split-Off Energy
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Behavior of electrons near the bandedges determines most device 
properties. Near the bandedges the electrons can be described by 
simple effective mass pictures, i.e., the electrons behave as if they 
are in free space except their masses are m*.

© Prof. Jasprit Singh www.eecs.umich.edu/~singh© Prof. Jasprit Singh www.eecs.umich.edu/~singh

Schematic of the valence band, direct bandgap, and indirect bandgap 
conduction bands. The conduction band of the direct gap semiconductor is 
shown in the solid line, while the conduction band of the indirect 
semiconductor is shown in the dashed line. The curves I, II, and III in the 
valence band are called heavy hole, light hole, and split-off hole states, 
respectively.



EFFECTIVE MASS DESCRIPTION
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CONDUCTION BAND: Direct bandgap material

Ec(k) = Ec(0) + h2k2

2m*c
with

The smaller the bandgap, the smaller the effective mass.

(  )22pcv
m*c

1
3

2 1+= +1
m0

1

EgΓ EgΓ + ∆m2

SPLIT-OFF BAND:
Eso = –∆ – h2k2

2m*so

HEAVY HOLE; LIGHT HOLE:
In a simple approximation the heavy hole and light hole bands can also be 
represented by masses m*hh and m* h. However, the real picture is more complex.

22pcv
m*so

= +–1
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m
*

m
o

( 
  )

CdS
AlAsAlSb

GaP
ZnSe

ZnTe

CdSe

CdTe
InP
GaAs

GaSb

InAs
InSb

0.2

0.1

0 1.0 2.0 3.0
0

Eg  (eV)

E
F

F
E

C
T

IV
E
 M

A
S

S

BANDGAP

c

0

2pcv ~22 eVm0

2
;

0



  DIRECT INDIRECT
(k = 0) (k = X-point)

Conduction
Band States

s-type states s + p mixture (longitudinal)
      p  (transverse)

Valence
Band States

Heavy Hole: |3/2, ±3/2 >
Light Hole : |3/2, ±1/2 >

Split off Hole  : |1/2, ±1/2 >

CHARACTER OF THE WAVEFUNCTIONS NEAR THE BANDEDGES
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The wavefunction (central cell) determines the nature of optical transistion 
in optoelectronic devices.

Top of the valence band is made from p-type states. Combining 
spin, the total angular momentum of the states is 3/2h.

Φ3/2,3/2   =    (|px > +i|py >)–1
2

Φ3/2,–3/2   =    (|px > –i|py >)–1
2

Φ3/2,1/2   =    [(|px > +i|py >)   –2|pz >  ]–1
6

Φ3/2,–1/2   =    [(|px > –i|py >)   +2|pz >  ]1
6



Hhh |b| – i|c|
(|b| – i|c|)* Hlh

In most semiconductors with large spin-orbit coupling, the 6 x 6 matric 
equation can be separated into a 4 x 4 and a 2 x 2 equation. The appropriate 
equation defining the HH and LH states is then

6 BAND k•p THEORY FOR THE VALENCE BAND

© Prof. Jasprit Singh www.eecs.umich.edu/~singh

Φ(3/2,3/2)
Φ(3/2,1/2)
Φ(3/2,–1/2)
Φ(3/2,–3/2)

j: 3/2 3/2 3/2 3/2 1/2 1/2
mj: 3/2 1/2 –1/2 –3/2 1/2 –1/2

Hhh b c 0 ib/  2 –i/  2c
b* Hlh 0 c –iq i  3b/  2
c* 0 Hlh –b i  3b*/  2 –iq
0 c* –b* Hhh –i  2c* –ib*/  2
–ib*/  2 iq i  3b/  2 i  2c Hso 0
i/  2c* –i  3b*/  2 iq ib/  2 0 Hso

Hhh b c 0
b* Hlh 0 c
c* 0 Hlh –b
0 c* –b* Hhh

The elements in the Hamiltonian are given by

Hhh = [{(γ1 + γ2)(kx + ky) + (γ1 – 2γ2)kz]

Hlh = [{(γ1 – γ2)(kx + ky) + (γ1 + 2γ2)kz]

h2

2m0

h2

2m0

Hso = (Hhh + Hlh)/2 + ∆0

b =    γ3(kx – iky)kz
–   3ih2

m0

c =    [γ2(kx – ky) – 2iγ3kxky]
  3h2

2m0

q = (Hhh – Hlh)/   2

2 2

2 2 2

22 2

Φ(3/2,3/2)
Φ(3/2,1/2)
Φ(3/2,–1/2)
Φ(3/2,–3/2)

– = E

ψ = Eψ

A further transformation can be done to reduce the problem:

where ψ is a 1 x 2 vector.

H = –

6-band

4-band

2-band



BANDSTRUCTURE: SILICON
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Although the bandstructure of Si is far from ideal, having an indicrect bandgap, hig hhole masses, 
and small spin-orbit splitting, processing related advantages make Si the premier semiconductor 
for consumer electronics. On the right we show constant energy ellipsoids for Si conduction band. 
There are six equivalent valleys in Si at the bandedge.
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Eg = 1.1eV 

k

Eg = 1.17 –
4.37 x 10–4 T2

T – 636
(eV)      T = Temperature in K

• Indirect gap material weak optical transitions, cannot be used to produce lasers.

• Valleys along the x-axis and –x-axis: k0x =     (0.85,0,0) and k0x =     (–0.85,0,0):2π
a

2π
a

(kx – k0x)2    kx + kzh2

2
E(k) = Ec +

2 2
+

ml * mt
*

; ml =  0.98 m0; mt =  0.19 m0

similar E-k relations for other 4 valleys.

• Density of states mass = 1.08 m0  (6 valleys included).

• Heavy hole mass: 0.49 m0 ; light hole mass: 0.16 m0. 

• Intrinsic carrier concentration at 300 K: 1.5 x 1010 cm–3.



BANDSTRUCTURE: GaAs
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The bandgap at 0 K is 1.51 eV and at 300 K it is 1.43 eV. The bottom of the conductionband is at 
k = (0,0,0), i.e., the G-point. The upper conduction band valleys are at the L-point.

Eg = 1.519 –
5.4 x 10–4 T2

T + 204
(eV)      

CONDUCTION BAND: • Electron mass is light. m* = 0.067 m0 
• Upper valley mass is large. m* = 0.25 m0     results in negative 
differential resistance at higher fields.
• Material is direct bandgap and has strong optical transistions    can 
be used for light emission. 

VALENCE BAND: • Heavy hole mass: 0.45 m0; light hole mass = 0.08 m0. 

Intrinsic carrier concentration at 300 = 1.84 x 106 cm–3.
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BANDSTRUCTURE: Ge AlAs, InAs, InP
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(a) Bandstructure of Ge. (b) Bandstructure of AlAs. (c) Bandstructure of InAs. Since no adequate 
substitute matches InAs directly, it is often used as an alloy (InGaAs, InAlAs, etc.,) for devices. 
(d) Bandstructure of InP. InP is a very important material for high speed devices as well as a 
substrate and barrier layer material for semiconductor lasers.
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Material Electron Hole 
Mass Mass
(m0) (m0)

  AlAs 0.1

  AlSb 0.12 mdos = 0.98

  GaN 0.19 mdos = 0.60

  GaP 0.82 mdos = 0.60

  GaAs 0.067 mlh = 0.082
mhh = 0.45

  GaSb 0.042 mdos = 0.40

   Ge ml = 1.64 mlh = 0.044
mt = 0.082 mhh = 0.28
mdos= 0.56

  InP 0.073 mdos = 0.64

  InAs 0.027 mdos = 0.4

  InSb 0.13 mdos = 0.4

   Si ml = 0.98 mlh = 0.16
mt = 0.19 mhh = 0.49 

mdos= 1.08

Material Bandgap Relative
(eV) Dielectric

Constant

C 5.5, I 5.57

Si 1.124, I 11.9

Ge 0.664, I 16.2

SiC 2.416, I 9.72

GaAs 1.424, D 13.18

AlAs 2.153, I 10.06

InAs 0.354, D 15.15

GaP 2.272, I 11.11

InP 1.344, D 12.56

InSb 0.230, D 16.8

CdTe 1.475, D 10.2

AlN 6.2, D 9.14

GaN 3.44, D 10.0

ZnSe 2.822, D 9.1

ZnTe 2.394, D 8.7

*

*

*

*
*

*

*
*

*

*

*

*
*

ELECTRONIC PROPERTIES OF SOME SEMICONDUCTORS
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Properties of some semiconductors. D and I stand for direct and indirect gap, 
respectively. The data are at 300 K. Note that Si has six conducton band 
valleys, while Ge has four.



BANDSTRUCTURE OF InN, GaN, AlN
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Bandstructure of InN, GaN, and AlN. Also shown is the Brillioun zone.

These materials are important for blue light emission and high power/high 
temperature electronics.
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PROPERTY SI GAAS

Electron m*l = 0.98 m* = 0.067
effective mass m*t = 0.19

(m0) m*dos = 1.08
m*σ = 0.26

Hole m*hh = 0.49 m*hh = 0.45
effective mass m*lh = 0.16 m*lh = 0.08

(m0) m*dos = 0.55 m*dos = 0.47

Bandgap 1.17 – 4.37 x 10–4 T2 1.519 – 5.4 x 10–4 T2

(eV)           T + 636           T + 204

Electron affinity 4.01 4.07
(eV)

For Si: m*dos: To be used in calculating density of states, position of Fermi level
            m*σ: To be used in calculating response to electric field, e.g., in mobility

SOME IMPORTANT PROPERTIES OF Si AND GaAs
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HOLES IN SEMICONDUCTORS: WHAT ARE HOLES?
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E

Conduction 
band

kh

Wavevector associated 
with the missing electron 

k

VALENCE 
BAND

ke

Electron
removed

+

Missing electron = hole

In a filled band (valence band) no current can flow, since electrons are 
normally Fermi particles and obey the Pauli exclusion principle. The 
electrons can “move” if there is an empty state available. The empty states 
in the valence band are called holes.

Diagram illustrating the wavevector of the missing electron ke. The 
wavevector of the system with the missing electron is –ke, which is 
associated with the hole.


