
CN Chapter 6

CT Supplement: Short Pulses

Another case in which the frequency spectrum of the source becomes particularly im-
portant is that of blue-green generation using short infrared pulses, such as those
from mode-locked solid-state lasers or diode lasers emitting picosecond pulses. From
Fourier analysis, we know that a short pulse will contain a wide spread of frequency
components; thus, we cannot consider the input wave to be monochromatic.

We can analyze the case of short pulses using the same approach we applied previ-
ously, which closely follows the treatment given by Glenn[Glenn (1969)] (but see also
the treatment by Ahkmanov and colleagues [Ahkmanov, et al. (1969)]). We take the
Fourier transform of the input pulse to obtain its frequency-domain spectrum, convolve
this spectrum with itself and multiply by the nonlinear susceptibility to obtain the
frequency-domain spectrum of the nonlinear polarization. This frequency-domain
expression for the nonlinear polarization becomes a driving term in the generation of
the second-harmonic wave. Once we find the second-harmonic wave in the frequency
domain, we can obtain the time-domain behavior by taking the inverse Fourier trans-
form.

Suppose that our fundamental input wave consists of a pulse of the form E1(x, t) =
A1f(t − x/vg1) cos(ω1t − k1x), where f(t − x/vg1) is a function giving the envelope of
the applied pulse, which travels at the group velocity:

vg1 =

(
∂k

∂ω

)∣∣∣∣−1

ω=ω1

=
c

n− λ
∂n

∂λ

∣∣∣∣∣∣∣
λ=λ1

(6.1)

We can calculate the group velocity from the Sellmeier equations that give the refractive
index n as a function of wavelength λ, which are given in Chapter 2 of “CBGL” for a
number of important nonlinear materials. We will designate the Fourier transform of

1



CHAPTER 6 — MANUSCRIPT

f(t) as F(ω). The Fourier transform of f(t−x/vg1) = f(t−αx) is then e−jαωxF (ω) ,
where α = 1/vg1. If we take the Fourier transform of E1(x, t), we obtain

E1 (x, ω) =
1

2π
A1e

−jαωxF(ω)∗
[
πe−jk1xδ (ω − ω1) + πejk1xδ (ω + ω1)

]
(6.2)

=
1

2
A1

[
e−jk1xe−jα(ω−ω1)xF (ω − ω1) + ejk1xe−jα(ω+ω1)xF (ω + ω1)

]
(6.3)

Convolving this spectrum with itself, we obtain (Fig. S-6-1):

F {E1 (x, t) · E1 (x, t)} =
1

2π
{E1 (x, ω) ∗ E1 (x, ω)} (6.4)

=
1

2π

(
A1

2

)2 [
e−2jk1xe−jα(ω−2ω1)xH (ω − 2ω1) (6.5)

+e2jk1xe−jα(ω+2ω1)xH (ω + 2ω1) + 2e−jαωxH (ω)
]

(6.6)

We have introduced H (ω) = F(ω) ∗ F(ω) . Note that the Fourier transform of f 2(t)
is thus H (ω) /2π.

The components of the nonlinear polarization near ω = ±2ω1 contribute to genera-
tion of the second-harmonic pulse. Thus, the relevant nonlinear polarization is:

P (x, ω) = 2εodeff

(
1

2π

) (
A1

2

)2 [
e−2jk1xe−jα(ω−2ω1)xH (ω − 2ω1) (6.7)

+e2jk1xe−jα(ω+2ω1)xH (ω + 2ω1)
]

(6.8)

From Eq. 2.11 of “CBGL”, we have

∂Ẽg(x, ω)

∂x
=

−jkg(ω)

2εoε
(1)
zz

PNL(x, ω)ejkg(ω)x (6.9)

=
−jdeff
n2

3

(
A2

1

8π

) [
kg(ω)ejkg(ω)xe−2jk1xe−jα(ω−2ω1)xH (ω − 2ω1) (6.10)

+kg(ω)ejkg(ω)xe2jk1xe−jα(ω+2ω1)xH (ω + 2ω1)
]

(6.11)

In order to simplify the expression further, we expand kg (ω) near ±2ω1 (Fig. S-6-2).
Near +2ω1, we may write kg (ω) = kg (2ω1)+β (ω − 2ω1) = k3 +β (ω − 2ω1)and near

−2ω1, we may write kg (−ω) = −k3 + β (ω + 2ω1) where β =
∂kg
∂ω

∣∣∣∣
ω=2ω1

=
1

vg2
, where
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Figure 6.1: Figure S-6-1. (a) Time-domain representation of a short pulse. (b) Corresponding
frequency-domain representation
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Figure 6.2: Figure S-6-2. Frequency-domain representation of the nonlinear polarization for short pulse
SHG. Only the portions shown with a solid line near ±2ω1contribute to second-harmonic generation.
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vg2 is the group velocity of the second-harmonic pulse. We use this expansion for kg (ω)
in the exponential. Where kg (ω) appears simply as a multiplicative factor, we use
kg (ω) ≈ kg (2ω1) = k3 :

∂Ẽg(x, ω)

∂x
=

−jdeffk3

n2
3

(
A2

1

8π

) [
ejk3xejβ(ω−2ω1)xe−2jk1xe−jα(ω−2ω1)xH (ω − 2ω1)(6.12)

−e−jk3xejβ(ω+2ω1)xe2jk1xe−jα(ω+2ω1)xH (ω + 2ω1)
]

(6.13)

Assuming that phasematching is achieved at the center frequency of the pulse spectrum,
k3 = 2k1, we have:

∂Ẽg(x, ω)

∂x
=

−jdeffk3

n2
3

(
A2

1

8π

) [
ej(β−α)(ω−2ω1)xH (ω − 2ω1) − ej(β−α)(ω+2ω1)xH (ω + 2ω1)

]
(6.14)

Performing the integration over length, we obtain:

Ẽg(l, ω) =
−jdeffk3

n2
3

(
A2

1

8π

)
l

{
ej(β−α)(ω−2ω1)

l
2 sinc

[
(β − α) (ω − 2ω1)

l

2

]
H (ω − 2ω1)

−ej(β−α)(ω+2ω1)
l
2 sinc

[
(β − α) (ω + 2ω1)

l

2

]
H (ω + 2ω1)

}
(6.15)

We can transform this expression back to the time domain to determine the shape
of the second-harmonic pulse emitted by the crystal. For clarity, let us first consider
the case where β = α; that is, where the group velocities for the input pulse at the
fundamental frequency and the output pulse at the second harmonic are the same.
Then we obtain:

Ẽg(l, ω) =
−jdeffk3

n2
3

(
A2

1

8π

)
l {H (ω − 2ω1) −H (ω + 2ω1)} (6.16)

Recall that the frequency spectrum Eg (l, ω) = Ẽg(l, ω)e−jkg(ω)x, so that the expression
which we desire to inverse-Fourier transform is:

Eg(l, ω) =
−jdeffk3

n2
3

(
A2

1

8π

)
l
{
e−jk3le−jβ(ω−2ω1)lH (ω − 2ω1) − e+jk3le−jβ(ω+2ω1)lH (ω + 2ω1)

}
(6.17)
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We could actually perform the integration involved in the inverse Fourier transform,
but a little bit of reflection will enable us to deduce the answer from things we already
know. We can re-write this expression as:

Eg(l, ω) =
deffk3

n2
3

(
A2

1

8π

)
l
{[

e−jβωlH (ω)
]
∗ −j

[
e−jk3lδ (ω − 2ω1) − ejk3lδ (ω + 2ω1)

]}
(6.18)

Since H (ω) /2π is the Fourier transform of f 2(t), then e−jβωlH (ω) must be the
Fourier transform of 2πf 2(t−βl). We can also deduce that −j

[
e−jk3lδ (ω − 2ω1) − ejk3lδ (ω + 2ω1)

]
is the transform of sin (2ω1t− 2k1l) /π. Putting this all together, we have:

Eg(l, t) =
4πdeffk3

n2
3

(
A2

1

8π

)
l
{
f 2 (t− βx) sin (2ω1t− 2k1x)

}
(6.19)

deffk3A
2
1l

2n2
3

{
f 2 (t− βl) sin (2ω1t− 2k1x)

}
(6.20)

When α �= β, the situation is a little more complicated. Returning to Equation 6.15,
we can write the corresponding Eg(l, ω) in the following form:

Eg(l, ω) =
−jdeffk3

n2
3

(
A2

1

8π

)
l (6.21)

{
e−jk3le−jβ(ω−2ω1)lej(β−α)(ω−2ω1)

l
2 sinc

[
(β − α) (ω − 2ω1)

l

2

]
H (ω − 2ω1)(6.22)

−ejk3le−jβ(ω+2ω1)lej(β−α)(ω+2ω1)
l
2 sinc

[
(β − α) (ω + 2ω1)

l

2

]
H (ω + 2ω1)

}
(6.23)

=
deffk3

n2
3

(
A2

1

8π

)
l

{[
e−jβωlH (ω)

] [
ej(β−α)ω

l
2 sinc

[
(β − α)ω

l

2

]]}
(6.24)

∗ − |
{
e−jk3lδ (ω − 2ω1) − ejk3lδ (ω + 2ω1)

}
(6.25)

Again, by reasoning a little we can determine what function has this Fourier trans-
form. We have already observed that e−jβωlH (ω) is the Fourier transform of 2πf 2 (t− βl)

and that −j
[
e−jk3lδ (ω − 2ω1) − ejk3lδ (ω + 2ω1)

]
is the Fourier transform of

sin (2ω1t− k3l)

π
.

We have saw in the supplemental notes on power and energy that the sinc function
in the frequency-domain corresponds to finite duration in the time-domain. In

this case, ej(β−α)ω
l
2 sinc

[
(β − α)ω

l

2

]
corresponds to a function that has the value
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Figure 6.3: Figure S-6-3. Convolution of the pulse envelope f(t − βl) with the “smearing function”
g(t)

1/ (β − α) l between − (β − α) l and 0 and is zero elsewhere (Fig. S-6-3). The other

pieces of information we need are that F {A (t)B (t)} =
1

2π
{A (ω) ∗ B (ω)} and that

F {A (t) ∗B (t)} = A (ω)B (ω) . Thus, the function that has the expression above as
its Fourier transform must be:

Eg(l, t) =
dk3

n2
3

(
A2

1

8π

)
l {4π}

{
f 2 (t− βl) ∗ g (t)

}
sin (2ω1t− k3l) (6.26)

=
dk3A

2
1l

2n2
3

{
f 2 (t− βl) ∗ g (t)

}
sin (2ω1t− k3l) (6.27)

where g(t)is the function depicted in Fig. S-6-3.
The second-harmonic output pulse has an envelope given by the convolution of f 2

with g. As β − α → 0, g(t) → δ(t) and f 2 (t− βl) ∗ g (t) → f 2 (t− βl) , producing
the same result as in Eq.6.19. For β �= α, the envelope is made longer than f 2 by
the convolution. Consider the case where β > α and (β − α) l � τp, where τp is the
duration of the fundamental pulse. Here, the fundamental pulse travels faster than
the second harmonic pulse, and the difference in their arrival times at the output face
of the crystal is greater than the length of the input pulse. Some blue light is generated
near the input face as the fundamental pulse first enters the crystal. This light
propagates through the crystal and arrives at the output at t ≈ βl. In the meantime,
the fundamental pulse has propagated through the crystal and arrived at the output
face at the earlier time t ≈ αl. Therefore, the first bit of second harmonic light to reach
the output face is that which is generated near the output face of the crystal, and the
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last bit of second harmonic light to emerge from the crystal is that which was generated
near the input face. The envelope of the output pulse is essentially rectangular with
duration (β − α) l.
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