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Numbered Figures for
Prospect Theory
for Risk and Ambiguity
by Peter P. Wakker (2010);
provided on internet July 2013 (with permission of CUP)
The figures were made using 2009 software, mainly the drawing facilities of MS-Word.  If no elucidation is added to a figure, then it was made using only facilities of MS Word.  Sometimes there are curves “drawn by hand” which means using the curve-mouse-drawing facilities of MS-Word.
Sometimes I used graphs of functions.  Those graphs I made using the program Scientific Workplace.  I would then turn them into wmf windows metafiles.  Those I introduced as picture in the MS Word drawing program.  (I actually learned over time that it works better to first introduce pictures in Powerpoint, and then transfer them from powerpoint to MS Word, so this is how I did it.)  I would then only take the curve from the wmf file and nothing else, so I would drop all letters, axes, and so on from the wmf file.  Those I would all make using MS Word.
Apart from 3 exceptions (added where relevant), I never kept the Sc. Workplace TeX input file, but I could remake those easily.
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p. 72:

Elucidation: This Figure was made using only MS Word.  I drew the curves by hand.
p. 72:

Elucidation: This Figure was made using only MS Word.  I drew the curves by hand.
p. 75:

p. 79:

Elucidation: This Figure contains a graph of the following function, drawn fat, and indicated in the figure by (=0:

, further the function, also drawn fat, and indicated in the figure by (=1:
u(() = ( ( 1

and further the functions (not drawn fat)
for the other ( values indicated in the figure (( = (20, (5, (2,  (1, (0.5, (0.1, 0.1, 0.5, 2, 5, and 30).
I made the graphs using Scientific Workplace (did not keep input files) as explained above.
p. 81:

Elucidation: This Figure contains graphs of the function:

u(() = ( (indicated in the figure by (=0)

and of the functions
for the other (’s as indicated (( = (2. (0.6, 6, and 2).

I made the graphs using Scientific Workplace (did not keep input files) as explained above.

p. 86:

p. 87:

p. 88:

p. 96:

p. 97:

p. 98:

p. 99:

p. 100:

p. 104:

Elucidation: This Figure was made using only MS Word.  I drew the curves by hand.
p. 104:

p. 109:

Elucidation: This Figure was made using only MS Word.  I drew the curves by hand.

p. 114:

p. 120:

p. 121:

p. 121:

p. 123:

p. 126:

p. 126:

p. 134:

p. 134:

p. 140:

Elucidation: This Figure was made using only MS Word.  I drew the curves by hand.
p. 146:

p. 146:

Elucidation: This Figure was made using only MS Word.  I drew the curves by hand.  The right curve should be obtained from the left one by rotating left and flipping horizontally.

p. 150:

p. 150:

p. 151:

p. 152:

Elucidation: This Figure was made using only MS Word.  I drew the curve by hand.
p. 152:

p. 154:

-

p. 157:

Elucidation: This Figure was made using only MS Word.  I drew the curves by hand.

p. 162:

p. 163:

p. 164:

p. 164:

p. 170:

Elucidation: This Figure was made using only MS Word.  I drew the curve by hand.

p. 173:

p. 173:

Elucidation: Figure 6.3.2a contains the graph of the function:

w(p) = p2 .

Figure 6.3.2b contains the graph of the function:

w(p) = EQ \r(;p) .
I made the graphs using Scientific Workplace as explained above.
p. 178:

Elucidation: Figure 6.4.1b contains the graph of the function:

EQ \r(;p+0.01) ( EQ \r(;p) .
I made the graphs using Scientific Workplace as explained above.  The TeX input file can be obtained here:

http://people.few.eur.nl/wakker/ptbook/figures/texfilesfigs/fig.6.4.1b_pi(0.01)sqrt.tex
Elucidation: Figure 6.4.1c contains the graph of the function:

w(p)  =  (exp(( ((ln(p+0.01))a))b  (  (exp(( ((ln(p))a))b 

with


a = 0.65 and b = 1.0467.
I made the graphs using Scientific Workplace as explained above.  The TeX input file can be obtained here:

http://people.few.eur.nl/wakker/ptbook/figures/texfilesfigs/fig.6.4.1c_pi(0.01)prelec.tex
p. 183:

pp. 186 & 187:

Elucidation: I put here two figures because they belong together.

p. 188:

p. 189:

p. 198:

Elucidation: The figure contains the graph of the function indicated in the legend.

I made the graphs using Scientific Workplace as explained above.  The TeX input file can be obtained here:

http://people.few.eur.nl/wakker/ptbook/figures/texfilesfigs/fig.6.8.1deriv.prelec.tex
p. 200:

p. 201:

p. 205:

Elucidation: This Figure was made using only MS Word.  The curves were drawn by hand.

p. 207:

Elucidation: This Figure contains graphs of the function


with the c's as indicated in the figure.
I made the graphs using Scientific Workplace (did not keep input files) as explained above.

p. 208:

Elucidation: This Figure contains graphs of the function


w(p)  =  (exp(( ((ln(p))a))b
with a and b as indicated in the figures.

I made the graphs using Scientific Workplace (did not keep input files) as explained above.

p. 208:

Elucidation: This Figure contains graphs of the function


with a and b as indicated in the figures.

I made the graphs using Scientific Workplace (did not keep input files) as explained above.

p. 209:

p. 215:

p. 218:

p. 220:

Elucidation: This Figure was made using only MS Word.  The curve in the two figures should be the same and was drawn by hand.

p. 223:

Elucidation: This Figure was made using only MS Word.  The curve was drawn by hand.

p. 224:

Elucidation: This Figure was made using only MS Word.  The curve should be the same as the one in Figure 7.7.1.

p. 226:

Elucidation: This Figure was made using only MS Word.  The curve should be the same as the one in Figure 7.7.1.

p. 227:

Elucidation: This Figure was made using only MS Word.  The curve was drawn by hand.

p. 232:

Elucidation: This Figure was made using only MS Word.  The curves were drawn by hand.

p. 235:

p. 240:

Elucidation: This Figure was made using only MS Word.  The curves were drawn by hand.

p. 242:

p. 249:

p. 255:

p. 269:

Elucidation: This Figure contains graphs of the functions as indicated, being

U(() = (0.3
and

U(() = (0.7.

p. 270:

Elucidation: This Figure contains graphs of the functions as indicated, being

(0.3
and

2.25 x ((0.7).

p. 281:

p. 281:

p. 284:

p. 293:

p. 302:

p. 306:

p. 322:

p. 323:

p. 350:

p. 352:

p. 353:

p. 368:

p. 368:

p. 381:

p. 382:

p. 383:

p. 388:

p. 388:

Figure 1.5.1.  Arbitrage (a Dutch book)
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Figure 1.11.1.  Deriving expected value
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Amplifying�event indicators





Combining prospects
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Decomposing a general prospect





.





.





.





.





.





.





.





.





.





40





20





40





20





.3





.7





.4





.6





(b)





.7





.3





80





60





(c)





1





50





4





0





16





0





.03





.97





.69





.31





(d)





80





60





95





70





.5





.5





.5





.5





(a)





Figure 2.4.1.
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Figure 2.4.2





Figure 2.5.1
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Figure 2.5.2.  Two indifferences and the resulting U curve
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Figure 2.5.3. The SG probability p of (
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Figure 2.6.1.
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Figure 2.6.2
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The mixture x4/5y


can be depicted as
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Figure 2.6.3.
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Figure 2.6.4.  The lottery-equivalent method of McCord & de Neufville (1986) ((> 0)
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Figure 2.6.5.  SG consistency holds if
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for all outcomes (, M, m, all probabilities p and (, and all prospects C.
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Figure 2.7.1.  The sure-thing principle for risk
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Figure 2.8.1
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Figure 2.9.1
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Figure 3.1.1.  Choice between radio-therapy or surgery for a patient with larynx-cancer (stage T3)
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Figure 3.1.2.  The SG question: For which p is the gamble equi-


                                                     valent to the certain outcome?
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For the prospect            , the expected utility, *, is lower than *, the utility of the expected value.
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Figure 3.2.1. Risk aversion
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Figure 3.2.2. Concavity, linearity, and convexity
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Figure 3.3.1.  Aversion to elementary mean-preserving spreads
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qM + (1(q)m = xj, so that the means are the same.





Figure 3.5.1.  Power utility curves, normalized at 1 and 2
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Figure 3.5.2. Exponential utility, normalized at 0 and 1.





$





(2





(1





(1





(2





2





1





2





1





U





1 � exp(((()





1 � exp((()





u(() = 





1(p





(Q,T)





p





(Q,M)





(Q,0)





~





1(p





(H,T)





p





(H,M)





(H,0)





~





(





Figure 3.7.1. SG invariance





p1





(x11,...,x1m)





Figure 3.7.2.  A prospect  with multiattribute outcomes and its expected utility
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marginal for life duration
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Figure 3.7.3.  Two prospects with the same marginals
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Indicate in each Fig. which outcome on the dotted line  ...  makes the two prospects indifferent (the switching value).





Figure 4.1.1 [TO Upwards]. Eliciting (1 … (4 for�unknown probabilities





(a) Your switching value on the dotted line is (1.
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(b) Your switching value on the dotted line is (2.
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(c) Your switching value on the dotted line is (3.
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(d) Your switching value on the dotted line is (4.
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Indicate in each fig. which outcome on the dotted line  ...  makes the two prospects indifferent (the switching value).





Figure 4.1.2 [2nd TO Upwards]. Eliciting (2, (3, (4





(a) Your switching value on the dotted line is G.
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(b) Your switching value on the dotted line is (2.
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(c) Your switching value on the dotted line is (3.
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(d) Your switching value on the dotted line is (4.
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(a) Elicitation of γ2.
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(b) Elicitation of γ1.
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(c) Elicitation of γ3.
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Figure 4.1.3 [CEs]. Eliciting 2,1,3








Indicate in each Fig. which outcome on the dotted line  ...,  if received with certainty, is indifferent to the prospect.








Indicate in each fig. which outcome on the dotted line  ...  makes the two prospects indifferent (the switching value).





Figure 4.1.4 [TO Downwards]. Eliciting (3 … (0





(a) Your switching value on the dotted line is (3.
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(b) Your switching value on the dotted line is (2.
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(c) Your switching value on the dotted line is (1.
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(d) Your switching value on the dotted line is (0.
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(a) Elicitation of PE1.
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Figure 4.1.5 [PEs]. Eliciting�PE1, PE2, PE3








Indicate in each Fig. which probability on the dotted lines ... makes the prospect indifferent to receiving the sure amount to the left.
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(c) Elicitation of PE3.
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outcome�under cand1





Curves designate indifference.
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Figure 4.3.1.  Your indifferences in Figure 4.1.1
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Figure 4.3.2. Utility graph derived from Figure 4.1.1
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Figure 4.5.1.  ((( ~t ((
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Fig. 4.7.1a. ((( ~t ((( for uncertainty
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and





E2, …, Em: outcome events of x beyond E;


B2, …, Bn: outcome events of y beyond E.


E is nonnull.





Fig. 4.7.1b. ((( ~t ((( for risk
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and





p2, …, pm: outcome probabilities of x beyond p;


q2, …, qn: outcome probabilities of y beyond p.


p > 0.
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Figure 4.9.1.  Matching proba-bility of all rain (tomorrow) is 0.3.
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For additivity to hold, the bold probability 0.4 should have been 0.3 + 0.2 = 0.5.
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Figure 4.9.2.  Violation of additivity (Raiffa 1968 §4)
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Figure 4.9.3. Probabilistic matching
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The first three indifferences imply the fourth for all x1, x2, x3, and thus transfer EU from risk to uncertainty.
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Fig. 4.9.4a. An analog of the mul-tiattribute utility prospect of Figure 3.7.2
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Fig. 4.9.4b. Anscombe & Aumann’s model as mostly used today
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Fig. 4.9.4c. A step in the evalua-tion of prospects in Anscombe & Aumann's model
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(�EQ \o(j=1;n  )�pj((�EQ \o(i=1;m  )�qiu(xji)): the evaluation by Eq. 3.7.7.





       (
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Figure 4.9.4.  Different presentations and evaluations of multi-stage prospects
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Fig. 4.9.5. (p1:x1, …, pnxn) in the roulette-horse Example 4.9.6
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Fig. 4.9.6. (p1:x1, …, pnxn) in the horse-roulette Example 4.9.7
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Figure 4.12.1.  An example of the Allais paradox for risk
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Figure 4.12.2.  The certainty effect (Allais paradox) for uncertainty
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Figure 4.15.1.  Illustration of standard sequences
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Figure 5.1.1. Five SG observations
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Fig. a. A display of the data
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Fig. b. An alternative way to display the same data





Figure 5.1.2. Two pictures to summarize the data of Figure 5.1.1





Under expected utility, the curve can be interpreted as the utility function, normalized at the extreme amounts.








Under Eq. 5.1.2, the curve can be interpreted as the probability weighting function w, to be normalized at the extreme amounts�(w = 0 at $0 and w = 1 at $100).
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Figure 5.2.1.  Expected value
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Fig. 5.2.2b.  Expected value after (rotating left and) flipping horizontally
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Fig. 5.2.2a.  Expected value after rotating left





The area shaded by       is the expected value.
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To calculate expected utility, the distance from xj (“all the way”) down to the x-axis has been transformed into the distance U(xj), for all j.
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Figure 5.2.3.  Expected utility
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Figure 5.2.4. A probability weighting function
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Figure 5.2.5. Transforming probabilities of fixed outcomes (the “old” model)
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Fig. 5.3.1a. Reducing x1 somewhat.
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Figure 5.3.1. Eq. 5.2.1 violates stochastic dominance





Fig. 5.3.1b. Reducing x1 further.





w(p1)x1 + w(p2)x2 +  ... + w(pn)xn is the area      .





 .   .





.





w(pn)





w(p2)





.   .   .   .





.   .   .   .





.   .   .   .





.   .   .   .





.       .        .








.   .   .   .





w(p3)





. . .





x2





w(p1)





x3





xn





0





x1





 .   .





.





w(pn)





w(p2)





.   .   .   .





.   .   .   .





.   .   .   .





.   .   .   .





.       .        .








.   .   .   .





w(p3)





. . .





  x2 = x1





w(p1)





x3





xn





0





Fig. 5.3.1c. x1 hits x2.
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Figure 5.4.1. The usefulness of ranks
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Fig. a. Probability densities, the continuous analogs of outcome probabilities
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Fig. b. Ranks, being 1 minus the distribution function





Fig. b displays the same prospects as Fig. a, but now in terms of ranks, i.e., the probability of receiving a strictly better outcome, which is 1 minus the usual “distribution function.”
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Figure 5.5.1.  Combination of preceding figures, with rank dependence as an application of an economic technique to a psychological dimension.
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Figure 5.5.2.  Rank-dependent utility with linear utility





The area shaded by      is the value of the prospect.  Distances of endpoints of layers (“all the way”) down to the x-axis are transformed, similar to Figure 5.2.3.  The endpoint of the last layer now remains at a distance of 1 from the x-axis, reflecting normalization of the bounded probability scale.
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U(xn)





U(x3)





(





...





Figure 5.5.3.  Rank-dependent utility with general utility
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Figure 5.5.4.  Another illustration of general rank-dependent utility
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Relative to Figure 5.5.3, this figure has been rotated left and flipped horizontally.
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Figure 6.1.1.  Decision weight of ranked probability pr as marginal w-contribution
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Figure 6.3.1. Rank dependence of decision weight for w(p) = p2
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Fig. b. w(p) = �EQ \r(;p)� generates optimism.
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Figure 6.3.2. Decision weights ((() of outcomes ( from graphs of weighting functions
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Fig. a. w(p) = p2 generates pessimism.
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Figure 6.4.1. Dependence of decision weight on rank
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Fig. c. ( for w(p) of Eqs. 6.4.1 & 6.4.2 and Fig. 6.1.1.
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Figure 6.5.1. ((( ~� EQ \o(c;t)� ((( for risk
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We have p > 0.  The superscript r indicates the rank of p, which is the same for all prospects.
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Figure 6.5.2. Four indifferences
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Figure 6.5.3. Four indifferences
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Figure 6.5.4. Probability weighting graph derived from Figures 4.1.1 and 4.1.5.





1





1





p





¼





½





¾





w





PE2





.





.





.





.





.





.





p2





pm





x2





xm





pr





(








q2





qn





y2





yn





.





.





.





pr





(





(





p2





pm





x2





xm





pr











q2





qn





y2





yn





.





.





.





pr











(





implies





Figure 6.5.5.  The rank-sure-thing principle for risk
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Figure 6.8.1. The derivative of the weighting function
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Figure 6.9.1.  RDU of a prospect with positive and negative utilities
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Figure 6.9.2.  An illustration alternative to Figure 6.9.1
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This figure has resulted from Figure 6.9.1 by rotating left and flipping horizontally.
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Fig. 7.1.2b. Common finding
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Fig. 7.1.3a.�Extreme insensitivity: 3 degrees of belief
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Fig. 7.1.1a. Expected utility: linearity
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Fig. 7.1.1b. Pessimism:


convexity
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Figure 7.2.1.  Tversky & Kahne�man’s (1992) family (Eq. 7.2.1).
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Figure 7.2.2. Prelec’s compounding invariance family (Eq. 6.4.1)





w





b and pessimism increase





a = 0.60 (inverse-S)





a = 1 (power functions)








a = 1.5 (S-shape)





a = 0.35 (strong inv-S)





p





a decreases; likelihood insensitivity increases





0.5





1





0





0.5





1





0





0.5





1





0





0.5





1





0





0.5





1





0





b = 1





b decreases; pessimism increases





b = 0.3





b = 1.5





a = 1





a = 1.5 (S-shape)





a = 0.35 (strong inv-S)





b = 1





a = 0.69 (inverse-S)





b = 0.77





b = 0.3





b = 0.3





b = 0.3





b = 0.77





b = 0.77





b = 0.77





b = 1.5





b = 1.5





b = 1.5





b = 1





b = 1





0.5





1





0





0.5





1





0





0.5





1





0





0.5





1





0





p





a decreases; likelihood insensitivity increases





w





0.5





1





0





Figure 7.2.3.  The family of Eq. 7.2.4
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Figure 7.2.4. The neo-additive family
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Figure 7.4.1. Testing the sure-thing principle
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Figure 7.5.1.





The superscript r indicates the rank of p, and is the same in the first and third prospect.  The superscript r´ indicates the rank of q, and is the same in the second and fourth prospect.





Figure 7.6.1. w, z, and (
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Fig. a. The relation between w and its dual z.
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Fig. b. Deriving ( from w and from z.� r + p + ( = 1.
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Figure 7.7.1.  Likelihood insensitivity (inverse-S)





insensitivity region





1. Insensitivity region is middle, fat, part.


2. Middle weight (solid left fat brace) is small.


3. Left lower dashed brace is not compared�    to left upper dashed brace.





right region;�worst ranks





p








p








w





w





((pw)





((pr)





((pb)





1–p








left region;�(best rank�region)





w





1





probability





Figure 7.7.1´.  Figure 7.7.1 with notation added
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Figure 7.7.2.  Likelihood insensitivity (inverse-S) for a large outcome probability p
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Figure 7.8.1.  Finding brb and wrb
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Figure 7.12.1. Cavex functions with different levels of inflection points
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Fig. 8.1.1b.  A choice between loss-prospects.
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Fig. 8.1.1c.  A choice between loss-prospects, but with an external side-payment.
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Fig. 8.1.1a. A choice between gain-prospects.





Figure 8.1.1.
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Fig. b.  Utility U, obtained by “pulling u down” by a factor ( > 1 for losses.
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Fig. a.  The basic utility u, differentiable at x = 0.





Figure 8.4.1.  Loss aversion
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Figure 8.6.1.  Rabin’s preference
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Figure 8.9.1. Decompositions of final wealth





Bold printing indicates a fundamental breakaway from the classical model.
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Figure 9.3.1. x+ and x�





If we replace the scaling u(1) = (u((1) = 1 by the scaling u(0.01) = (u((0.01), then we have to multiply the loss aversion parameter by 0.040/0.251; ( = 2.25 then turns into (* = 0.36.
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Figure 9.6.1.  Dependence of loss aversion on scaling of money


.





2.25(2.5





0





0.5





1





0





1





2





Figure 9.6.2.  Anomaly for loss aversion
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Figure 10.1.1. Ellsberg paradox





Arrows indicate majority preferences.
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Figure 10.1.2. Home Bias





Arrows indicate majority preferences in the United States.
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Figure 10.2.1.  Rank-dependent utility for uncertainty
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This figure extends Figure 5.5.4 to uncertainty.
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Figure 10.4.1. Testing the sure-thing principle
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Figure 10.7.1.  An implication of Anscombe & Aumann (1963) that is implausible under ambiguity aversion
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Fig. a.  Ambiguity aversion works against the right prospect.
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Fig. b.  Ambiguity aversion works against the left prospect.
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Figure 10.9.1.





The superscript R indicates the rank of E, and is the same in the first and third prospect.  The superscript R´ indicates the rank of F, and is the same in the second and fourth prospect.
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Figure 11.3.1.  Various components contributing to risk premium
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Figure 11.3.2.  Various components contributing to risk premium
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Figure 12.5.1. Ambiguity aversion versus loss aversion
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Fig. b. Prior endowment with ambiguous prospect, followed by choice to keep or exchange for unambiguous.





Arrows indicate majority preferences.





keep





exch-�ange





Ra





Ba





0





100





Fig. a. A straight choice between ambiguous and unambiguous prospect.
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Figure 12.6.1.  Two prospects x, y
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Figure 12.6.2.  Six prospects
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Figure B.1. Decision tree for job offer
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Figure B.2. Determining utility of 2nd-best job
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Figure C.1. A dynamic decision tree





Figure C.2. A multistage prospect
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Figure C.3. A dynamic decision tree
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Figure E.1. A dynamic illustration of multisymmetry
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Figure E.2. A dynamic illustration of act-independence
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