
Solutions to the Tutorial Problems in
the book “Magnetohydrodynamics of the Sun”

by ER Priest (2014)
CHAPTER 11

PROBLEM 11.1. Generalised Kippenhahn-Schlüter Model.
Extend the Kippenhahn-Schlüter model to allow for a small external pressure
by imposing boundary conditions p = pe and Bz = Bze at x = H and linearis-
ing about the resulting Kippenhahn-Schlüter model. Show that the horizon-
tal field strength increases with height over a scale L0 when l1/2 ≫ α > 1.7 (a
thin prominence) or α2 ≫ l < 1 (a thick weak prominence), where l = L0/H ,
α = 2B0x/(2µpe +B2

ze)
1/2.

SOLUTION.
If we impose boundary conditions p = pe and Bz = Bze at x = H , the
Kippenhahn-Schlüter model becomes

B̄0z = tanh x̄,

where B̄0z = B0z/(2µpe+B2
ze)

1/2, x̄ = x/(αH) and α = 2B0x/(2µpe+B2
ze)

1/2.
Then we follow Ballester and Priest (1987) by linearising the magnetohy-

drostatic equations

0 = −∇p− ρgẑ −∇

(

B2

2µ

)

+ (B ·∇)

(

B

µ

)

,

∇ ·B = 0,

p = RρT,

about this solution to give (with e.g., Bx = B0x + ǫB1x, where ǫ ≪ 1)

−B1z
∂B0z

∂x
+B0z

(

∂B1x

∂z
−

∂B1z

∂x

)

− µ
∂p1
∂x

= 0,

B1x
∂B0z

∂x
−B0x

(

∂B1x

∂z
−

∂B1z

∂x

)

− µρ1g − µ
∂p1
∂z

= 0,

∂B1x

∂x
+

∂B1z

∂z
= 0.
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Now assume each of the variables is a function of x̄ times a decaying
function of z̄ in the form B̄1x = B̄1x(x̄) exp(−z̄/l), where z̄ = z/(αH), l =
L0/H and B̄1x = B1x/B0x. Then eliminate p̄1 and B̄1z to give the following
basic equation for B̄1x

l
d3B̄1x

dx̄3
+ 2(l − 1) tanh x̄

d2B̄1x

dx̄2
+

(

α2

l
+ 2l sech2x̄

)

dB̄1x

dx̄

+ 2 tanh x̄

(

α2

l
−

α2

l2
− 2

α

l
sech2x̄

)

B̄1x = 0,

with three boundary conditions, namely, dB̄1x/dx̄(0) = 0 (which implies
B̄1z(0) = 0), B̄1z(1/α) = 1 and p1(1/α) = 1. Then B̄1z follows from∇·B = 0,
namely,

B̄1z =
l

α

dB̄1x

dx̄
,

while p̄1 follows from the z-component of the force balance, namely,

2B̄1x
dB̄0z

dx̄
+

α2

l
B̄1x +

dB̄1z

dx̄
− αp̄1 +

α

l
p̄1 = 0.

Consider first a weak thick prominence for which α2 ≫ l < 1, so that the
equation for B̄1x reduces to

(

α2

l

)

dB̄1x

dx̄
− 2

(

α2

l2

)

tanh x̄ B̄1x = 0,

with solution
B̄1x = C cosh2/l x̄.

The equation for p̄1 reduces to

αB̄1x + p̄1 = 0,

and so the boundary condition p̄1(1/α) = 1 implies that C < 0. This in turn
implies that B̄1x < 0 and therefore the horizontal field B0x[1+ǫB̄1x exp(−z̄/l)]
decreases in magnitude with height.

Consider next a thin prominence for which l ≫ α2 > 1, so that the
equation for B̄1x reduces to

l
d3B̄1x

dx̄3
+ 2l tanh x̄

d2B̄1x

dx̄2
+ 2l sech2x̄

dB̄1x

dx̄
= 0,
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with general solution, after using the boundary condition dB̄1x/dx̄(0) = 0,

B̄1x = 1
2
C(x̄ tanh x̄− 1)−K.

This has two constants of integration determined by the other two boundary
conditions, with p̄1 and B̄1x following in this limit (l ≫ α2) from

2B̄1x
dB̄0z

dx̄
+

dB̄1z

dx̄
− αp̄1 = 0

and
B̄1z =

1
2
Cl(x̄ sech2x̄+ tanh x̄).

Thus, the boundary condition B̄1z(1/α) = 1 implies

Cl

2

[(

1

α

)

sech2

(

1

α

)

+ tanh

(

1

α

)]

= 1,

which determines Cl and implies that C ≪ 1 since l ≫ 1.
Next, the boundary condition p̄1(1/α) = 1 implies

2B̄1x(1/α)
dB̄0z(1/α)

dx̄
+

dB̄1z(1/α)

dx̄
− α = 0,

where
B̄1x(1/α) =

1
2
C[(1/α) tanh(1/α)− 1]−K ∼ −K,

since C ≪ 1,
dB̄0z(1/α)

dx̄
= sech2(1/α),

and

dB̄1z(1/α)

dx̄
= Cl sech2(1/α)− Cl(1/α)sech2(1/α) tanh(1/α).

Thus, after substituting for Cl, the equation for K becomes

−K sech2(1/α) +
sech2(1/α)− (1/α) sech2(1/α) + tanh(1/α)

(1/α) sech2(1/α) + tanh(1/α)
−

α

2
= 0,

or

−K = cosh2(1/α)

(

tanh(1/α)− α

1 + α sinh(1/α) cosh(1/α)
+

α

2

)

.

3



Thus, we note that (for positive α), as α → 0 this behaves like

cosh(1/α)

α sinh(1/α)
,

which is positive, whereas, as α → ∞, it behaves like−α/2, which is negative.
Indeed, for α > 1.7, we find K > 0.

However, the value of B̄1x at x̄ = 0 is −C/2 − K ∼ −K and so is
negative when α > 1.7. Thus, we have established as required that the
horizontal field B0x[1 + ǫB̄1x exp(−z̄/l)] decreases in magnitude with height
when l ≫ α2 > 1.7.

PROBLEM 11.2. Nonisothermal Kippenhahn-Schlüter Model.
For an isothermal Kippenhahn-Schlüter model, rewrite the standard solution
in terms of β1 = 2µp1/B

2
x, H1 = kBT1/(mg) and p0 = B2

z∞/(2µ). Next ob-
tain the corresponding solution when the temperature is a given function
T (x) and the boundary conditions are imposed to be p = p1 and T = T1 at
x = ±x1. Deduce that there exists a maximum allowable plasma beta (β1)
for the equilibrium to exist.

SOLUTION. The isothermal solution is

Bz = Bz∞ tanh
Bz∞x

2BxH
, p =

B2
z∞

2µ
sech2 Bz∞x

2BxH
,

which may be written in terms of β1 = 2µp1/B
2
x and p0 = B2

z∞/(2µ) as

Bz = (2µp0)
1/2 tanh

[

(

β1p0
p1

)1/2
l(x)

2

]

, p = p0sech
2

[

(

β1p0
p1

)1/2
l(x)

2

]

,

where l(x) = (T1/T )(x/H1) and H1 = kBT1/(mg).
When the temperature is instead imposed to be a given function T (x),

the above solution remains the same except that now l(x) is defined to be

l(x) =
T1

H1

∫ x

0

dx

T (x)
.

Then substitution of the boundary condition p = p1 at x = ±x1 gives

p
1/2
0 = p

1/2
1 cosh

[

(

β1p0
p1

)1/2
l1
2

]

.
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If p1, β1 and l1 are imposed, then, by sketching the left- and right-hand
sides as functions of p

1/2
0 , this equation determines two values for p0 provided

β1 is less than a certain maximum value (approximately 1.7 l−2
1 ). Otherwise

there is no solution.

PROBLEM 11.3. Oscillation of a Kuperus-Raadu Model.
Show that vertical oscillations of a Kuperus-Raadu prominence model give a
period of 2π(h/g)1/2.

SOLUTION. Kuperus and Raadu (1974) model a prominence as a line
current I and mass m = πR2 at height h in equilibrium

0 =
µ I2

4 π h
−m g,

between the force of gravity and the repulsion between the line current and
its image −I a distance h below the photosphere.

Suppose the prominence is perturbed by moving it up by a distance z
with the force of gravity remaining the same and the repulsion decreasing to

µ I2

4 π (h+ z)
.

Then its vertical equation of motion becomes

m
d2z

dt2
=

µ I2

4 π (h+ z)
−m g,

or substituting for mg,

m
d2z

dt2
=

µ I2

4 π (h + z)
−

µ I2

4 π h
.

After Taylor expanding the first term for z ≪ h and keeping only the linear
term, this becomes

m
d2z

dt2
= −

µ I2

4 π h

z

h
,

or, substituting for m from the initial force balance,

d2z

dt2
= −

g

h
.
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This implies that the initial equilibrium is stable and that the promi-
nence performs small vertical oscillations of frequence (g/h)1/2 and period
2π(h/g)1/2, which is about 20 min for a prominence height of h = 10 Mm.

PROBLEM 11.4. Flux-Rope Model.
Seek solutions for current-sheet support in a force-free flux rope with Bz =
cA.

SOLUTION. Following Ridgway, Priest and Amari (1991), we model a
cylindrical flux rope of radius a and consider a force-free field independent
of z that is expressed in terms of a flux function A(r, θ) as

B =

(

1

r

∂A

∂θ
,−

∂A

∂r
, Bz(A)

)

,

where the force-free equation reduces to

∇2A+ F (A) = 0,

with F (A) = d/dA(1
2
B2

z ). When Bz = cA, this becomes

∇2A + c2A = 0,

Separable solutions may be found of the form

A(r, θ) = R(r) cos(Kθ),

where

r
d

dr

(

r
dR

dr

)

+ (c2r2 −K2)R = 0.

This is Bessel’s equation of order K and so the solution that is nonsingular
at r = 0 is

A(r, θ) = bKJK(cr) cos(Kθ),

where JK(cr) is the Bessel function of the first kind of order K.
Since the differential equation is linear, the general solution is the sum

over possible values Kn of K, namely,

A(r, θ) =
B0

c

[

J0(cr) +
∞
∑

n=0

b(Kn)JKn
(cr) cos(Knθ)

]

,
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where B0 is the axial field strength at r = 0 and b represents the departure
from cylindrical symmetry (b = 0). Singularities of Br, Bθ can be avoided by
taking K > 1 and a sign change of Bθ for small r by taking K > 2.

As a particular example, consider

A(r, θ) = B0{J0(cr) + bKJK(cr) cos(Kθ)}/c,

with K > 2, for which the field components are

Br = −B0KbKJK(cr) sin(Kθ)/(cr),

Bθ = B0{J1(cr)− bK [KJK(cr)/(cr)− JK+1(cr)] cos(Kθ)},

Bz = B0{J0(cr) + bKJK(cr) cos(Kθ)}.

To ensure that a field line dip is present at θ = ±π we need Br(r, π) > 0,
which implies bK < 0 for 2i < K < 2i+1 and bK > 0 for 2i+1 < K < 2i+2,
where i = 1, 2, 3.... Examples of the resulting fields can be found in Ridgway,
Priest and Amari (1991), as well as other examples when Bz = cA1/2.

PROBLEM 11.5. Linear Force-Free Flux-Rope Model.
Set up a model for a cylindrical linear force-free flux rope with no axial field
reversal.

SOLUTION. Following Rust and Kumar (1994), consider a cylindrically
symmetric flux tube with field components [Bθ(r)Bz(r)] in cylindrical po-
lars, satisfying the linear force-free equation

(∇2 + α2)B = 0,

where ∇ ·B = 0. The appropriate solution is

Bθ = B0J1(r/r0), Bz = B0J0(r/r0),

where J0 and J1 are Bessel functions, r0 = 1/α and B0 is the axial field at
r = 0.

In order to avoid a field reversal we need to suppose this solution holds
for r 6 R, say, and surround the force-free field by a potential field, namely,

Bθ = cB0R/r, Bz = 0.
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Then, equating the field components are r = R implies that

c = J1(R/r0) and J0(R/r0) = 0,

and so, in order to avoid reversals in the axial field, we take R/r0 to be the
first zero of J0(x), namely, 2.2.

PROBLEM 11.6. A Dip in a Potential Field.
Show that, for a 2.5D potential arcade with the fundamental solution plus the
nth harmonic, inverse polarity is not possible and that a dip needs parasite
polarity.

SOLUTION. Consider a 2.5D potential coronal arcade field of the form

Bx = − cos kx e−kz + bn cosnkx e−nkz,

By = 0,

Bz = sin kx e−kz − bn sin nkx e−lnz,

Thus, on the z-axis the horizontal field is

Bx = −e−kz + bne
−nkz,

while on the x-axis the vertical field is

Bz = sin kx− bn sinnkx.

The presence of a dip on the z-axis needs dB2
x/dz > 0 there, where

dB2
x

dz
= 2k(−e−kz + bne

−nkz)(e−kz − nbne
−nkz).

This in turn implies that

1

n
e(n−1)kz < bn < e(n−1)kz,

and so

bn >
1

n
,

which is just the condition that there be parasite flux since then Bz < 0
on the positive part of the x-axis near x = 0 and then changes sign as x
increases.
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PROBLEM 11.7. Current Sheet Models using Complex-Variable
Theory.
Use complex variable theory to build current sheet models of infinite or finite
height by modifying the field given by By + iBx = B0(p

2 + z2)1/2/z, where
z = x+ iy.

SOLUTION. More details of the solution may be found in the paper by
Malherbe and Priest (Astron. Astrophys. 123,80-88,1983). Potential fields
containing current sheets may be set up in terms of complex variable theory,
since, for any function of the form By+ iBx = f(z), where f(z) is an analyti-
cal function, the functions Bx(x, y) and By(x, y) satisfy Laplace’s equation. If
f(z) contains cuts in the complex plane, those cuts represent current sheets.
Shear may be added to this 2D field by adding a uniform field out of the
plane, or by modifying the theory to include force-free fields: for example,
Ridgway et al (1991) show how to use constant-current force-free fields.

The solution

By + iBx = B0
(p2 + z2)1/2

z
,

represents the field of a magnetic arcade surmounted by a current sheet
stretching upwards from a base at z = ip, but the field either side of the sheet
is oppositely directed and purely vertical (Fig.1a in Malherbe and Priest,
1983).

First of all, for Inverse-Polarity sheet models of infinite height the above
function may be modified to add a horizontal field at the current sheet
(Fig.3a) by putting

By + iBx = B0
(p2 + z2)1/2

z
+ iB1

z − ih

z
,

where h 6 p. It possesses an X-type neutral point below the prominence at

y =
h + (B4

0p
2/B4

1 + (p2 − h2)B2
0/B

2
1)

1/2

1 +B2
0/B

2
1

.

When h = p, the X-point coincides with the base of the sheet. The singularity
at z = 0 may be avoided since the photosphere may be regarded as being at
a finite height above z = 0.
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Next, for Inverse-Polarity models having a finite height, consider instead
the solution given by

By + iBx = B0
[(p2 + z2)(q2 + z2)]1/2

z
,

which is similar to the previous one with a vertical field both sides of a current
sheet, except that now the sheet is finite in height, stretching from z = ip to
z = iq (Fig.1b in Malherbe and Priest, 1983). This may be modified to give
three different types of Inverse Polarity model, namely,

By + iBx = B0
[(p2 + z2)(q2 + z2)]1/2

z
+B1(z − ip),

which has open field lines towards the corona (Fig.3c),

By + iBx = −B0
[(p2 + z2)(q2 + z2)]1/2

z(z + ih)2
− B1

z − ip

z(z + ih)
,

which has closed field lines down to to the photosphere when q 6 2p (Fig.3d),
and

By + iBx = −B0
[(p2 + z2)(q2 + z2)]1/2

z(z + ih)2
+B1

z − ip

z(z − iq)
,

which has helical field lines when q/p < B1/B0 (Fig.3e).
Normal-Polarity arcade models may be obtained from

By + iBx = B0
(p2 + z2)1/2

z(z + ih)
−

B1

z
,

with p/h < B1/B0, which has an infinite current sheet (Fig.4a), or

By + iBx = −B0
[(p2 + z2)(q2 + z2)]1/2

z(z + ih)2
−

B1

z
,

with pq/h2 < B1/B0, which has a current sheet of finite length (Fig.4b).
When p/h > B1/B0 for the first solution or pq/h2 > B1/B0 for the second
solution, they change their polarity from normal to inverse.

Normal-Polarity models with helical structure (Fig.4c) may be modelled
by

By + iBx = −B0
[(p2 + z2)(q2 + z2)]1/2

z(z + ih)2
+

B1

z

z + ik

z − iq
,

when pq2/(h2k) < B1/B0 < 1 and kq > h2.
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