
13

Evolution and Extinction

13.1 History

13.1.1 How many bacterial generations have passed since life started on
Earth? Assume near optimal growth, with 1 hour doubling time.

Set origin of life to be 3 800 000 000 years ago and 1 year = 365 times 24
hours. Notice that the 1 hour generation time is unrealistic, in free oceans
the generation time 10 days = 240 hours, and it is in fact much longer an
ocean floors.

13.1.2 Assume that there is on average one base pair mutation per bacterium
per generation. Assume that there has always been about 5 · 1030 bacteria on
Earth. Give an estimate of how many of all the possible bacterial mutants
have been tested?

13.1.3 With 5 000 000 million base pairs in the genome, what fraction of all
mutants have been tested until now?

Answer The number of hours since the dawn of life is assumed to be
3 800 000 000 years ago is t = 3.8 · 109 · 365 · 24 = 3 · 1013 hours.

The number of selection events is ns = 5 · 1030 · t = 1.7 · 1049.
A bacterial genome consists of 5 000 000 base pairs, allowing nc = 45000000

different genomes. The fraction of tested combinations is accordingly ns/nc ∼
10−3 000 000, i.e. infinitely small.
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Fitness climbers in fixed rugged landscape will slow down evolution as 1/t :
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Figure 13.1 Climbing in fitness at fixed landscape. The inherited fitness
is f . At each time step, a new f ∈ [0, 1] is explored. If the new f is
larger than the previous one, the new f is adopted, otherwise there is
no change. The left-hand plot shows how f increases with historic time,
whereas the right-hand plot shows a histogram of activity per time unit
since the start of evolution. The figure illustrates that evolution effectively
stops, a statement that will be independent of which fixed distribution f is
selected from.

13.2 Fitness landscapes

13.2.1 Draw random numbers from a continuous distribution, and remem-
ber the largest you have had until now. Simulate the times at which this
largest number increases. Show that the times for such changes get sub-
sequently larger as time passes. What is the distribution of these times?
The numbers may be fitness values, and each new number a mutation at-
tempt (only a fitter species will “outrun” the current species).

Answer Consider the number a = 1− f , and start a simulation with a = 1.
for each a value, the rate of finding a new smaller a value by drawing numbers
from [0, 1] is∝ a. Thus the next time such a new smaller number will be found
is t = t− ln(ran1)/a, at which point a = a · ran2 where ran1 and ran2 are two
random numbers selected uniformly between 0 and 1. The results are shown
in Fig. 13.1.
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Figure 13.2 Barrier passing in a double well potential, modelled by Langevin
dynamics. The left- and right-hand sides of the plots refer to exactly the same
parameters, just simulated with a 100 times larger time step in the right-hand
panel. As expected, the simulation results are consistent with each other.

13.2.2 Study numerically the space–time trajectory of a particle in a double
well potential V (x) = −2 · x2 + x4 using first-order Langevin dynamics and
a noise term that sustains bistable behavior. Discuss the results in terms of
evolution in the fitness landscape F = −V .

Answer: The Langevin dynamics dx/dt = −dV/dx plus noise reads:

dx = 4 · (x− x3) · dt+ σ · (2 · r − 1)
√
dt (13.1)

where r ∈ [0, 1] is a uniformly selected random number. The simulation with
σ = 2 is shown in Fig. 13.2. One can observe characteristic intermittent
dynamics, with long stasis times in each potential minimum, interrupted
by sudden changes across the barrier at x = 0. The motion mimics the
punctuated equilibrium where fitness peaks at x = +1, x = −1 are separated
by less optimal genomes at x ∼ 0 that separate the fitness peaks.

13.3 Punctuated equilibrium and co-evolution

13.3.1 Simulate the BS model for 100 species placed along a line in a variant
of the model where only one of the neighbors is updated at each step. Plot the
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Figure 13.3 Simulation of Bak–Sneppen model with the variation that only
one (random one) of the neighbors is updated at each time-step. The self-
organized threshold is ∼ 0.74.
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Figure 13.4 Simulation of coherent noise model, with N = 1000 species
exposed to random events of characteristic size 0.1 (in units of max
strength 1).

selected Bmin as a function of time, as well as the maximum of all previous
Bmins. How do the minima of B change as time progresses toward a steady
state (look at the envelope defined as the maximum over all Bmin at earlier
times)?
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Answer At each time step, select minimal B as well as either the right or
the left neighbor of this. Update both of these sites to new random B values
between 0 and 1. The resulting evolution of the system over 5000 time steps
is shown in Fig. 13.3.

13.3.2 Consider externally driven version of an evolution based on stability
of species [761]: Implement a system of N =1000 species. Assign a random
number B in [0, 1] to each species. At each timestep select an external noise
x from a narrow distribution p(x) ∝ exp(−x/σ), σ = 0.1. At each time step
replace all B < x with new random numbers ∈ [0; 1] and, in addition, select
one random species and set its B to a new random number ∈ [0; 1]. Simulate
this model.

Answer: The results of the simulation are shown in Fig. 13.4.
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