
(a) (b)

ity, where sij = ∂vi/∂xj + ∂vj/∂xi − 2dij∇ · v/3 is
symmetric and traceless.

For a unitary gas, the evolution equation for
the pressure takes a simple form because P = 2E/3
(23, 24), where E is the local energy density (sum
of the kinetic and interaction energy). Then, en-
ergy conservation and Eq. 1 implies (∂t + v · ∇ +
5∇ · v/3)P= 2 ·q̇/3. Here, the heating rate per unit
volume times q̇ = hsij

2/2 arises from friction from
the relative motion of neighboring volume ele-
ments. To express this in terms of the force per
particle ( fi ), we differentiated this equation for P
with respect to xi and used the continuity equa-
tion for the density to obtain

∂t þ v ˙ ∇þ 2
3
∇ ˙ v

! "
fi þ

∑
j
ð∂ivjÞfj −

5
3
ð∂i∇⋅vÞ

P
n

¼ −
2
3
∂iq̇
n

ð2Þ

Force balance in the trapping potential Utrap(x),
just before release of the cloud, determines the
initial condition fi(0) = ∂iUtrap(x).

These hydrodynamic equations include both
the force and the heating arising from viscosity.
The solution is greatly simplified when the cloud
is released from a deep, nearly harmonic trapping
potential Utrap because fi(0) is then linear in the
spatial coordinate. If we neglect viscosity, the force
per particle and hence the velocity field remain
linear functions of the spatial coordinates as the
cloud expands. Thus, ∂i(∇ · v) = 0, and the pres-
sure P does not appear in Eq. 2. Through nu-
merical integration (25), we found that nonlinearities
in the velocity field are very small, even if the
viscosity is not zero, because dissipative forces
tend to restore a linear flow profile. Hence, the
evolution Eqs. 1 and 2 are only weakly de-
pendent on the precise initial spatial profile of P
and independent of the detailed thermodynamic
properties.

We therefore assumed that the velocity field is
exactly linear in the spatial coordinates. We took
fi = ai(t)xi and si(t) = bi(t)si(0); the density

changes by a scale transformation (26), where cur-
rent conservation then requires vi = xibi(t)/bi(t).

In general, the viscosity takes the universal
form h = a(q)ħn, where q is the local reduced
temperature and h→ 0 in the low-density region
of the cloud (20, 27). Using the measured trap
frequencies, and Eqs. 1 and 2, the aspect ratio
data are fit to determine the trap-averaged vis-
cosity parameter, ā = (1/Nħ)∫d3x h(x,t), which
arises naturally independent of the spatial profile
of and is equivalent to assuming h. Because q has
a zero convective derivative everywhere (in the
zeroth-order adiabatic approximation) and the
number of atoms in a volume element is con-
served along a stream tube, ā is a constant that
can be compared with predictions for the trapped
cloud before release.

As shown in Fig. 1, the expansion data are
very well fit over the range of energies studied,
using ā as the only free parameter. We found that
the friction force produces a curvature that
matches the aspect ratio–versus-time data, where-
as the indirect effect of heating is important in
increasing the outward force, which increases the
fitted ā by a factor of ≅2, as compared with that
obtained when heating is omitted (20).

Formeasurements at low temperatures, where
the viscosity is small, we determined ā from the
damping rate of the radial breathing mode (19).
For the breathing mode, the cloud radii change by
a scale transformation of the formbi = 1 + ėi, with
ei << 1, and the heating rate in Eq. 2 isºėi

2, which
is negligible. Hence, the force per particle evolves
adiabatically. Adding the trapping force to Eq. 1,
one obtains the damping rate 1/t = ħ ā/(3m〈x2〉)
(20, 28).

The fitted viscosity coefficients ā for the
entire energy range are shown in Fig. 2, which
can be used to test predictions (29–31). Despite
the large values of ā at the higher energies, the
viscosity causes only a moderate perturbation to
the adiabatic expansion, as shown by the ex-
pansion data and the fits in Fig. 1. The breathing
mode data and expansion data smoothly join,
provided that the heating rate is included in the

analysis. In contrast, omitting the heating rate
produces a discontinuity between the high- and
low-temperature viscosity data (20). The agree-
ment between these very different measurements
when heating is included shows that hydrody-
namics in the universal regime is well described
by Eqs. 1 and 2.

To test the prediction of the T 3/2 temperature
scaling in the high-temperature regime, we as-
sumed that h relaxes to the equilibrium value in
the center of the trap but vanishes in the low-
density region so that ā is well defined. This
behavior is predicted by kinetic theory (27). We
expect that ā ≅ a0, where h0 = a0 ħ n0 is the
viscosity at the trap center before release. At high
temperatures (15),

a0 ¼ a3=2 q
3=2
0 ð3Þ

where a3/2 is a universal coefficient. Because q
has a zero convective derivative everywhere (in
the zeroth-order adiabatic approximation), q0 at
the trap center has a zero time derivative, and a0
is therefore constant, as is ā.

The inset in Fig. 2 shows the high-temperature
(expansion) data for ā versus the initial reduced
temperature at the trap center, q0. Here, q0 =
T0/TF(n0) = (T0/TFI)(nI/n0)

2/3. The local Fermi
temperature TF(n0) = ħ2(3p2n0)2/3/(2mkB), and
TFI = EF /kB = TF (nI) is the ideal gas Fermi
temperature at the trap center. nI is the ideal gas
central density for a zero-temperature Thomas-Fermi
distribution. We used (nI/n0)

2/3 = 4(s2z/s
2
Fz)/p

1/3

and obtained the initial T0/TFI from the cloud
profile (20).

The excellent fit of Eq. 3 to the data (Fig. 2,
inset) demonstrates that at high temperature, the
viscosity coefficient very well obeys the q0

3/2

scaling, which is in agreement with predictions
(15). Eq. 3 predicts that a0 scales nearly as E3

because q0 º T0/n0
2/3 º E2. This explains

the factor of ≅10 increase in the viscosity co-
efficients as the initial energy is increased from
E = 2.3EF to E = 4.6EF.

A precise comparison between the viscosity
data and theory requires calculation of the trap-
average ā from the local shear viscosity, where
the relation is tightly constrained by the observed
T 3/2 scaling. Our simple approximation ā ≅ a0
yields a3/2 = 3.4(0.03), where 0.03 is the sta-
tistical error from the fit. A better estimate based
on a relaxation model (29) shows that ā = 1.3 a0
at high T, yielding a3/2 = 2.6. At sufficiently high
temperature, the mean free path becomes longer
than the interparticle spacing because the unitary
collision cross section decreases with increasing
energy. In this limit, a two-body Boltzmann equa-
tion description of the viscosity is valid. For a
Fermi gas in a 50-50 mixture of two spin states, a
variational calculation (15) yields a3/2 = 45p3/2/
(64

ffiffiffi
2

p
) = 2.77, which is in reasonable agreement

with the fitted values.
Lastly, Fig. 3 shows an estimate of the ratio of

h/s = aħn/s = (ħ/kB)a/(s/nkB) ≅ (ħ/kB) ā/S, where
S is the average entropy per particle of the
trapped gas in units of kB.We obtain Sin the low-

Fig. 3. Estimated ratio of the
shear viscosity to the entropy den-
sity. Blue circles indicate breathing-
mode measurements; red squares
indicate anisotropic expansion mea-
surements. (Inset) The red dashed
line denotes the string theory limit.
Bars denote statistical error arising
from the uncertainty in E, a, and
S (20).
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Figure 2. Transport properties of strongly correlated fluids. Ratio of shear viscosity η
to entropy density s as a function of (T −Tc)/Tc, where Tc is the superfluid transition
temperature in the case of ultracold Fermi gases, the deconfinement temperature in the
case of QCD, and the critical temperature at the endpoint of the liquid gas transition
in the case of water and helium. The data for water and helium are from [1], the
ultracold Fermi gas data are from [2], the quark-gluon plasma point (square) is taken
from the analysis of [3], the lattice QCD data (open squares) from [4], and the lattice
data for the ultracold Fermi gas (open circles) are the 83 data from [5]. The dashed
curves are theory curves from [6, 7, 8, 9]. The theories are scaled by overall factors
to match the data near Tc. The lines labeled “holographic bounds” correspond to the
KSS bound !/(4πkB) [11] and the Gauss-Bonnet bound (16/25)!/(4πkB) [10]. Similar
compilations can be found in [11, 12, 13].

energy E are equivalent up to a factor of Boltzmann’s constant, kB = 1.3806503×10−23

J/K, with E = kBT . We focus on fluids that can be studied in bulk, as opposed to

quantum liquids that exist on lattices. We show ultracold Fermi gases, liquid helium,

neutron matter in proto-neutron stars, and the QGP. For comparison we also show a
classical fluid, water, and a classical plasma, the Coulomb plasma in the sun.

Figure 2 shows that despite the large range in scale there is a remarkable universality

in the transport behavior of strongly correlated quantum fluids. Transport properties of

the fluid can be characterized in terms of its shear viscosity η, which governs dissipation

due to internal friction. A dimensionless measure of dissipative effects is the ratio η/s

of shear viscosity to entropy density in units of !/kB. Near the critical point, where
the role of correlations is expected to be strongest, the ratio η/s has a minimum. For

classical fluids the minimum value is much bigger than !/kB, but for strongly correlated

and the corona. The neutron matter point is at T = 1MeV/kB = 1.2 · 1010 K and at a density
n = 0.1n0, where n0 = 0.14/fm3 is nuclear matter saturation density. Neutron stars are born at
T ≃ 10 MeV/kB, and they can cool to temperatures below 1 keV/kB. The critical temperature of the
QGP is Tc ≃ 150MeV/kB = 1.75 · 1012 K. Experiments with heavy ions explore temperatures up to
∼ 3Tc.


