
ζðk; tÞ ¼ exp
!
−
i
2
hfðkÞ · σt

"
ζiðkÞ; ð2Þ

and by introducing a Bloch vector,

n ¼ ζ†ðk; tÞσζðk; tÞ; ð3Þ

Eqs. (2) and (3) together define a mapping f from ½kx; ky; t%
to the Bloch sphere n.
Scheme.—Taking any two constant vectors n1 and n2 on

the Bloch sphere, their inverse images f−1ðn1Þ and f−1ðn2Þ
are two trajectories in the ½kx; ky; t% space. The linking
number of these two trajectories within the first Brillouin
zone equals the Chern number of the ground state for the
final Hamiltonian at the same filling [23].
Example to illustrate the scheme.—As a concrete exam-

ple to illustrate our proposal, we consider the Haldane
model in a honeycomb lattice [see Fig. 1(a)]. The particle
annihilation operators at two sublattices of the honeycomb
lattices are denoted by âri and b̂ri . The tight-binding model
is written as

Ĥ ¼ −J0
X

ri;j

ðâ†ri b̂riþ dj þ H:c:Þ þ M
X

ri

ðâ†ri âri − b̂†ri b̂riÞ

þ J1
X

ri;j

ðe−iϕâ†ri âriþ aj þ eiϕb̂†ri b̂riþ aj þ H:c:Þ; ð4Þ

where d1;2 ¼ ð'
ffiffiffi
3

p
=2; 1=2Þa0, d3 ¼ ð0;−1Þa0 are the

three vectors connecting the nearest-neighboring sites,
and a1;2 ¼ ð−

ffiffiffi
3

p
=2; ' 3=2Þa0 and a3 ¼ ð

ffiffiffi
3

p
; 0Þa0 are

the three vectors connecting the next-nearest-neighboring
sites, with a0 being the lattice spacing. The next-nearest
hopping has a phase factor that is opposite between A and B
sublattices. In the momentum space, Eq. (4) becomes

Ĥ ¼
X

k

ðâ†k; b̂
†
kÞHðkÞ

!
âk
b̂k

"
; ð5Þ

and aside from a term proportional to the identity matrix,
HðkÞ takes the same form as Eq. (1), with

hxðkÞ ¼ −2J0
X

i

cosðk · diÞ; ð6Þ

hyðkÞ ¼ −2J0
X

i

sinðk · diÞ; ð7Þ

hzðkÞ ¼ 2M þ 4J1 sinϕ
X

i

sinðk · aiÞ: ð8Þ

The phase diagram of this Haldane model at half filling
(with the lower band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have Chern numbers
þ 1 and −1, respectively. Here, we consider a sudden
change of M and ϕ starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Figs. 2(a)

and 2(b), we consider the inverse image of two vectors n
and −n on the equator. One can see that if Hf is in the
topologically trivial regime, as shown in Fig. 2(a), f−1ðnÞ
sits inside the trajectory of f−1ð−nÞ, and the linking
number is zero; while if Hf is in the topologically non-
trivial regime, as shown in Fig. 2(b), these two trajectories
link 3 times. This is because, to avoid the discontinuity
of the trajectory across the boundary of the first Brillouin
zone, our plot spans the momentum regime including
three replicas of the first Brillouin zone. Within the first
Brillouin zone, the linking number is unity that equals
to the Chern number of Hf. Similarly, we consider the
inverse images of the north and the south pole. As shown in

(b)(a)
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FIG. 1. (a) Schematic of hopping in the Haldane model in a
honeycomb lattice. (b) Phase diagram of the Haldane model. The
arrow indicates a quench from a topologically trivial regime to a
topologically nontrivial regime.

FIG. 2. (a),(b) Inverse images of two vectors n and −n on the
equator, when the Hamiltonian is quenched from hiðkÞ with
M ¼ −∞ (topologically trivial regime) to hfðkÞ with ϕ ¼ 0.1
and M ¼ 1 (topologically trivial regime) (a), and to hfðkÞ with
ϕ ¼ π=2 and M ¼ 0 (topologically nontrivial regime) (b), re-
spectively. (c),(d) Inverse images of the north and the south poles,
when the Hamiltonian is quenched from hiðkÞ withM ¼ −1 and
ϕ ¼ π=2 to hfðkÞwithM ¼ 0.33

ffiffiffi
3

p
and ϕ ¼ π=2 (topologically

trivial regime) (c), and to hfðkÞ with M ¼ 0.27
ffiffiffi
3

p
and ϕ ¼ π=2

(topologically nontrivial regime) (d). For all plots we have taken
J0 ¼ 1 and J1 ¼ 0.1.
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