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Sum of a Series Absolute and Conditional Convergence

Sum of a Series
Consider a sequence a1, a2, a3, . . . . The corresponding expression

a1 + a2 + a3 + · · · or
∞∑
n=1

an

is called a series. The very notation raises a question: How can we add
infinitely many numbers?

We define the partial sums of the series by

Sn = a1 + · · ·+ an =
n∑

i=1

ai

If s = lim
n→∞

Sn exists, we call this limit the sum of the series and we

write
∞∑
n=1

an = s. The series is called

• Convergent if lim
n→∞

Sn exists,

• Divergent if lim
n→∞

Sn does not exist.
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Geometric Series

A geometric series has the form
∞∑
n=1

rn−1 for some fixed r ∈ R.

Its partial sums are

Sn =
n∑

i=1

r i−1 =


n if r = 1

1− rn

1− r
if r ̸= 1

.

If r = 1, then Sn = n → ∞, so the series diverges.

If r = −1, then Sn =

{
1 if n is odd
0 if n is even

, so the series diverges.

If |r | > 1, then |r |n → ∞, so the series diverges.

If |r | < 1, then rn → 0, so the series converges and its sum is
1

1− r
.
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Examples of Divergence

•
∞∑
n=1

1: Sn = 1 + · · ·+ 1 = n → ∞.

•
∞∑
n=1

(−1)n: Sn =

{
0 if n even,

−1 if n odd,
diverges.

•
∞∑
n=1

1√
n
: Sn = 1 +

1√
2
+ · · ·+ 1√

n
≥ n√

n
=

√
n → ∞.

The last of these is the most important. It shows that terms that are
decreasing to zero can still accumulate in an unbounded way.
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Example: Telescoping Series

Consider
∞∑
n=1

1

n(n + 1)
.

We have the partial fractions decomposition
1

n(n + 1)
=

1

n
− 1

n + 1
.

Hence,

Sn =

(
1− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n
− 1

n + 1

)
= 1− 1

n + 1
→ 1.

Therefore
∞∑
n=1

1

n(n + 1)
= 1.

This is called a telescoping series due to the cancellations in the partial
sums.
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Harmonic Series∑∞
n=1 1/n is called the harmonic series. Here are some of its partial

sums:

S1 = 1, S2 = 1.5, S4 = 2.1, S8 = 2.7, S16 = 3.4.

We see that while the growth of the partial sums is slowing down, there
seems to be an increase of at least 1/2 every time the number of terms
doubles. First, we verify this:

S2n − Sn =
1

n + 1
+ · · ·+ 1

2n
>

n

2n
=

1

2
.

Now suppose the partial sums Sn converge to S . Letting n → ∞ gives
S − S ≥ 1/2, a contradiction! So the harmonic series diverges.

Task 1

Show that
∑n

k=1 1/k >
∫ n+1

1
dx/x = log(n + 1). Use this observation for

another proof that the harmonic series diverges.
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Algebra of Series
Theorem 1

Let
∞∑
n=1

an = L,
∞∑
n=1

bn = M and c ∈ R. Then:

1

∞∑
n=1

(c an) = cL. 2

∞∑
n=1

(an + bn) = L+M.

Proof. Apply the algebra of limits to the partial sums.

∞∑
n=1

(c an) = lim
N→∞

N∑
n=1

(c an) = lim
N→∞

(
c

N∑
n=1

an
)
= c

(
lim

N→∞

N∑
n=1

an
)
= c

∞∑
n=1

an.

The other statement is left as an exercise. □

Task 2

Do the following series converge?

1

∞∑
n=1

2n

3n+1
. 2

∞∑
n=1

2n + 3n

5n
. 3

∞∑
n=1

(1
n
− 1

2n

)
.
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Tail of a Series

The notation
∑∞

n=k an refers to the expression ak + ak+1 + · · · . This is
also a series, with first term b1 = ak , second term b2 = ak+1, and so on.
Given an initial series

∑∞
n=1 an, a series of the form

∑∞
n=k an is called its

tail.

Task 3

Show that
∑∞

n=1 an converges if and only if the tail
∑∞

n=k an converges.
Further,

∞∑
n=1

an = Sk−1 +
∞∑
n=k

an.

When we are only discussing convergence and not the actual sum we can
drop the range of the index and just write

∑
n an, or even

∑
an.
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Divergence Test

Theorem 2

If
∑

an is a convergent series then an → 0.

Proof. Let
∑∞

n=1 an = L. Consider the partial sums Sn = a1 + · · ·+ an.
We have an = Sn − Sn−1 for n ≥ 2.
Hence, lim

n→∞
an = lim

n→∞
Sn − lim

n→∞
Sn−1 = L− L = 0. □

Thus, if an ̸→ 0 then
∑

an certainly diverges.

However, if an → 0 then we do not learn anything. The series may
converge (e.g.

∑
1/2n and

∑
1/n(n + 1)) or diverge (e.g.

∑
1/n and∑

1/
√
n).

Task 4

Show that the following series diverge.

1

∞∑
n=1

sin(nπ/2). 2

∞∑
n=1

(−1)n
n − 1

n
.
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Comparison Test

Theorem 3

Let
∑

an and
∑

bn satisfy 0 ≤ an ≤ bn for every n. Then

1 If
∑

bn converges, so does
∑

an.

2 If
∑

an diverges, so does
∑

bn.

Proof. Consider the partial sums Sn =
∑n

i=1 ai and Tn =
∑n

i=1 bi . The
non-negativity of the terms implies that (Sn) and (Tn) are increasing
sequences.

First, suppose that
∑

bn is convergent. Then Tn → T = sup{Tn}. Now
Sn ≤ Tn ≤ T for each n, so (Sn) is increasing and bounded above.
Hence it is convergent.

The second claim is just a rewording of the first. □
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Example:
∑

1/n2

Consider
∑∞

n=1 1/n
2. We shall compare it with the telescoping series∑∞

n=1 1/n(n + 1), which converges. As n increases, the contribution of 1
becomes tiny compared to that of n and so we expect

∑
1/n2 and∑

1/n(n + 1) to have the same behaviour.

Now let us expand these two series,
∞∑
n=1

1

n2
= 1 +

1

4
+

1

9
+ · · · ,

∞∑
n=1

1

n(n + 1)
=

1

2
+

1

6
+

1

12
+ · · · .

Suppose we drop the first term of the
∑

1/n2 series, and also shift the
index of the telescoping series:

∞∑
n=2

1

n2
=

1

4
+

1

9
+

1

16
· · ·

The Comparison Test applies and implies that
∑∞

n=2 1/n
2 converges.

Hence
∑∞

n=1 1/n
2 converges.
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Examples

Example 4

Consider the following comparisons for
∑∞

n=1 1/n
3/4:

0 <
1

n2︸︷︷︸∑
converges

≤ 1

n︸︷︷︸∑
diverges

≤ 1

n3/4
≤ 1√

n︸︷︷︸∑
diverges

.

∑
1/n2 does not help because it is a smaller converging series.

∑
1/
√
n

does not help because it is a larger diverging series. However,
∑

1/n is a
useful combination: a smaller series that diverges. So

∑
1/n3/4 diverges.

Example 5

Consider
∞∑
n=1

1

2n + 3n
. We know

∞∑
n=1

1

2n
converges. And

0 <
1

2n + 3n
≤ 1

2n
. So

∞∑
n=1

1

2n + 3n
converges.
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Limit Comparison Test

Theorem 6

Let
∑

an and
∑

bn be series whose terms are all positive, and suppose

lim
n→∞

an
bn

= c ̸= 0.

Then
∑

bn converges if and only if
∑

an converges.

Proof. Take two positive numbers m,M such that m < c < M. There is

N ∈ N such that m <
an
bn

< M for every n ≥ N. So mbn < an and

M bn > an for every n ≥ N. Now apply the Comparison Test.

If
∑

bn converges, then
∑

(M bn) converges, so
∑

an converges.

If
∑

bn diverges, then
∑

(mbn) diverges, so
∑

an diverges. □
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Example

Example 7

Consider
∞∑
n=1

π

n2 + 4n + 3
. Let us compare with

∞∑
n=1

1

n2
:

lim
n→∞

π/(n2 + 4n + 3)

1/n2
= lim

n→∞

πn2

n2 + 4n + 3
= π.

Therefore
∞∑
n=1

π

n2 + 4n + 3
converges.
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Example

Example 8

Consider
∞∑
n=1

2n

3n − 2n
. Compare with

∞∑
n=1

(
2

3

)n

:

lim
n→∞

2n/(3n − 2n)

2n/3n
= lim

n→∞

3n

3n − 2n
= lim

n→∞

1

1− (2/3)n
= 1.

So
∞∑
n=1

2n

3n − 2n
converges.
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Integral Test

Theorem 9

Consider a series
∞∑
n=k

an whose terms can be expressed as an = f (n),

where f : [k,∞) → R is positive and decreasing. Then
∞∑
n=k

an converges

if and only if the improper integral

∫ ∞

k

f (x) dx converges.
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Integral Test: Proof

Proof. We may assume k = 1. Since f is decreasing it is integrable on
every closed interval [1, b] with b > 1. The partial sums of

∑∞
n=k an give

upper and lower sums for the integral of f over [1, n]:

1 n − 1 n

Sn−1 ≥
∫ n

1
f (x) dx

1 2 n

Sn − a1 ≤
∫ n

1
f (x) dx

First, suppose

∫ ∞

1

f (x) dx diverges. Then

Sn−1 =
n−1∑
i=1

ai · 1 ≥
∫ n

1

f (x) dx → ∞ =⇒ Sn → ∞.

(continued . . . )
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Integral Test: Proof

(. . . continued)

Next, suppose

∫ ∞

1

f (x) dx converges.

1 an = f (n) > 0 implies the partial sums (Sn) are increasing.

2 Sn = a1 +
n∑

i=2

ai · 1 ≤ a1 +

∫ n

1

f (x) dx ≤ a1 +

∫ ∞

1

f (x) dx .

Since (Sn) is increasing and bounded above, it is convergent. □
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Example

Example 10

Consider
∞∑
n=2

log n

n2
. The corresponding function f (x) =

log x

x2
is positive

on [2,∞). Is it decreasing?

f ′(x) =
1− 2 log x

x3
=⇒ f ′(x) ≤ 0 for x >

√
e = 1.6 . . . .

So f (x) is decreasing on [2,∞). Apply the Integral Test:∫ ∞

2

log x

x2
dx =

1

2
(1 + log 2) =⇒

∞∑
n=2

log n

n2
converges.

Amber Habib Calculus



Sum of a Series Absolute and Conditional Convergence

p-Series Test

Theorem 11 (The p-Series Test)

The p-series
∞∑
n=1

1

np
converges if and only if p > 1.

Proof. If p ≤ 0 the terms are greater than or equal to 1, so the series
diverges.

For p > 0 the function
1

xp
is positive and decreasing. And,

∫ ∞

1

1

xp
dx =


1

p − 1
if p > 1,

∞ if 0 < p ≤ 1.

□
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Alternating Series Test

Theorem 12

Consider an alternating series
∞∑
n=1

(−1)n+1bn with each bn ≥ 0. Suppose

the sequence (bn) is decreasing and has limit 0. Then the following hold.

1

∞∑
n=1

(−1)n+1bn converges.

2 Let S =
∞∑
n=1

(−1)n+1bn and Sk =
k∑

n=1

(−1)n+1bn. Then

|S − Sk | ≤ bk+1.
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Alternating Series Test: Proof

Proof. Consider the consecutive odd partial sums:

• S2k+1 − S2k−1 = (−1)2k+1b2k + (−1)2k+2b2k+1 = b2k+1 − b2k ≤ 0.

• S2k+1 = (b1 − b2) + (b3 − b4) + · · ·+ (b2k−1 − b2k) + b2k+1 ≥ 0.

Thus, the odd partial sums are decreasing and bounded below by 0,
hence convergent to some L.

Similarly the even partial sums are increasing and bounded above (by b1),
hence convergent to some M.

Finally,

S2k+1 − S2k = b2k+1 =⇒ L−M = 0 =⇒ L = M = S .

For the error estimate we note that the limit S lies between Sn and Sn+1.
Hence |S − Sn| ≤ |Sn+1 − Sn| = |bn+1|. □
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Alternating Harmonic Series

The alternating harmonic series is

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
· · · .

It has the form
∞∑
n=1

(−1)n+1bn with bn = 1/n.

The sequence bn satisfies bn ≥ 0, is decreasing, and converges to 0.
By the alternating series test, this series converges.
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Example

Example 13

Consider
∞∑
n=1

(−1)n+1

n!
.

It has the form
∞∑
n=1

(−1)n+1bn with bn = 1/n! > 0.

The sequence (bn) decreases and converges to 0, hence by the
Alternating Series Test the given series converges.

Suppose we want to estimate the sum to 3 decimal places, i.e., with an
error less than 0.0005. Observe that 1/7! = 0.0002. So

S6 =
6∑

n=1

(−1)n+1

n!
= 0.368 is accurate to 3 decimal places.
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Absolute Convergence

A series
∑

an is called absolutely convergent if
∑

|an| converges.

Example 14

Consider
∞∑
n=1

(−1)n+1

n2
. We know that

∞∑
n=1

1

n2
converges. Hence

∞∑
n=1

(−1)n+1

n2
is absolutely convergent.

Theorem 15

If a series is absolutely convergent then it is also convergent.

Proof. Suppose
∑

|an| converges. Then 0 ≤ an + |an| ≤ 2|an|. Now,∑
|an| converges =⇒

∑
2|an| converges =⇒

∑
(an + |an|) converges

=⇒
∑

an =
∑

((an + |an|)− |an|) converges.

□
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Absolute Convergence
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Example

Example 16

Consider
∞∑
n=1

cos n

n2
. Here is a plot of the terms of the series:

1 2 3 4 5 6 7 8 9 10

0.5

The terms are neither always positive, nor always negative, nor
alternating. No convergence test applies directly.

But we can use 0 ≤ | cos n|
n2

≤ 1

n2
to show absolute convergence!
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Conditional Convergence

A series is called conditionally convergent if it is convergent but not
absolutely convergent.

For example, the alternating harmonic series is conditionally convergent.

Any series has three possibilities, as depicted below.

∑
an

Convergent

Divergent

Absolutely Convergent

Conditionally Convergent
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Rearrangements

Consider the alternating harmonic series 1− 1

2
+

1

3
· · · .

By adding the first three terms we can see that its sum is between 0.5
and 0.83. (We’ll see later that it is exactly log 2 ≈ 0.69)

Let us rearrange it as follows, by moving the positive terms forward:

1 +
1

3
− 1

2
+

1

5︸ ︷︷ ︸
>0

+
1

7
− 1

4
+

1

9︸ ︷︷ ︸
>0

+
1

11
− 1

6
+

1

13︸ ︷︷ ︸
>0

· · · .

So the rearrangement is either divergent or has a sum > 1.

Changing the order of the terms can affect the convergence of a series!
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Riemann Rearrangement Theorem

Theorem 17

1 A conditionally convergent series can be rearranged so that its sum
equals any given real number or even diverges.

2 Any rearrangement of an absolutely convergent series is absolutely
convergent and converges to the same sum.

We’ll not prove these statements.
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Ratio Test

Theorem 18

Consider a series
∑

an with non-zero terms. Let lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L.

1 L < 1 implies absolute convergence.

2 L > 1 or L = ∞ implies divergence.

3 L = 1 is inconclusive.

Proof. First, suppose L < 1. Fix r such that L < r < 1. There is N ∈ N
such that n ≥ N implies |an+1| < r |an|. Hence |aN+k | ≤ |aN |rk for
k = 1, 2, . . . . By the Comparison Test,

∑∞
k=1 |aN+k | converges. Hence∑∞

n=1 |an| converges.
Next, let L > 1. There is N ∈ N such that n ≥ N implies |an+1| > |an|.
So n > N =⇒ |an| > |aN | > 0. Therefore |an| ̸→ 0. Hence an ̸→ 0 and∑

an diverges.

For the inconclusiveness of L = 1 consider
∑

1/n and
∑

1/n2. □
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Amber Habib Calculus



Sum of a Series Absolute and Conditional Convergence

Example

Example 19

Consider the series
∞∑
n=1

xn

n!
, for any given x ∈ R.

∣∣∣∣an+1

an

∣∣∣∣ = ∣∣∣∣xn+1/(n + 1)!

xn/n!

∣∣∣∣ = ∣∣∣∣ xn+1n!

xn(n + 1)!

∣∣∣∣ = ∣∣∣∣ x

n + 1

∣∣∣∣ → 0.

L = 0 < 1 implies the series converges absolutely.
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Root Test

Theorem 20 (Root Test)

Consider a series
∑

an. Let lim
n→∞

|an|1/n = L.

1 L < 1 implies absolute convergence.

2 L > 1 or L = ∞ implies divergence.

3 L = 1 is inconclusive.

Proof. Start by assuming L < 1. Fix r such that L < r < 1. There is
N ∈ N such that n ≥ N implies |an|1/n < r . Hence |an| < rn for
n = N,N + 1, . . . . By the Comparison Test,

∑∞
n=N |an| converges, hence

so does
∑∞

n=1 |an|.

Now assume L > 1. There is N ∈ N such that n ≥ N implies |an|1/n > 1,
hence |an| > 1. Therefore an ̸→ 0 and

∑
an diverges.

For the inconclusiveness of L = 1 consider
∑

1/n and
∑

1/n2. □
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Example

Example 21

Consider the series
∞∑
n=1

n2

2n
.

lim
n→∞

|an|1/n = lim
n→∞

∣∣∣∣n2/n2
∣∣∣∣ = 1

2
.

L = 1/2 < 1 implies the series converges absolutely.
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Example

Example 22

Consider the series
∞∑
n=1

an with an =

{
n/2n if n odd,
1/2n if n even.

Ratio Test :

∣∣∣∣an+1

an

∣∣∣∣ = {
1/(2n) if n odd,

(n + 1)/2 if n even,
diverges.

So the Ratio Test gives no result.

Root Test : |an|1/n =

{
n1/n/2 if n odd
1/2 if n even

→ 1

2
.

L = 1/2 < 1 implies the series converges absolutely.

This example illustrates a general fact: If the ratio test works for a
particular series, so will the root test. But it is possible that the root test
works and the ratio test is inconclusive.
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Use of Stirling’s Approximation

In a Root Test limit calculation, (n!)1/n can be replaced by n/e due to
Stirling’s approximation.

Consider the series
∞∑
n=1

(n!)2

2n2
.

Apply the Root Test and Stirling’s Approximation,

lim
n→∞

[
(n!)2

2n2

]1/n
= lim

n→∞

(n!)2/n

2n
= lim

n→∞

(n/e)2

2n
= 0.

So the series converges.
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