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Problems for Chapters 3 and 9 of

Advanced Mathematics for Applications

The Fourier Series

by Andrea Prosperetti

1 General

1. Find the Fourier series representing over 0 < x < π the function

u(x) =

{

sin x + cosx 0 < x ≤ 1
2π

sin x − cosx 1
2π ≤< x < π

.

2. Over the interval 0 < x < 2π sketch the function

u(x) =











x 0 ≤ x ≤ 1
2π

1
2π 1

2π ≤ x ≤ π

π − 1
2x π ≤ x ≤ 2π

and find its Fourier series.

3. Over the interval 0 < x < 2π find the Fourier series of the function

u(x) =

{

sin x
2 0 ≤ x ≤ π

− sin x
2 π ≤ x ≤ 2π

.

4. Over the interval 0 < x < π expand (a) in a sine and (b) a cosine series the function

u(x) =







1
3π 0 < x < 1

3π
0 1

3π < x < 2
3π

− 1
3π 2

3π < x < π
.

5. Prove the Fourier series expansion

eax =
sinhπa

π

[

1

a
+ 2

∞
∑

n=1

(−1)n

n2 + a2
(a cosnx − n sin nx)

]

.

Hence, deduce the sums of the two series

∞
∑

n=1

(−1)n

n2 + a2
,

∞
∑

n=1

1

n2 + a2
.
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6. Prove, for −π < x < π, the Fourier series expansions

sin αx =
2

π
sinαπ

∞
∑

n=1

(−1)n−1n sinnx

n2 − α2
, cosαx =

2

π
sin απ

(

1

2α
+

∞
∑

n=0

(−1)nn cosnx

n2 + α2

)

.

7. Over the interval −π < x < π find the Fourier series expansion of the function

u(x) =

{

π2 −π < x ≤ 0

(x − π)2 0 ≤ x < π
.

Hence, deduce the sums of the two series

∞
∑

n=1

1

n2
,

∞
∑

n=1

(−1)n+1

n2
.

8. In −π < x < π consider the ordinary differential equation

d2u

dx2
+ 4u =

π2

12
−

1

4
x2 − p(x) .

Find conditions on the function p(x) which will ensure the existence of a periodic solution u(x).

9. Consider the ordinary differential equation

d2u

dx2
+ a

du

dx
+ bu = f(x)

where a and b are given constants and f(x) is periodic of period 2π. Expand u in a Fourier series and
discuss conditions on a, b and f which ensure that u is also periodic with the same period.

2 Partial differential equations

1. Solve the equation
∂u

∂t
= D

∂2u

∂x2
, 0 < x <

1

4
π ,

with D > 0 a given constant. The initial condition is u(x, 0) = x(π/4−x) and the boundary conditions
u(0, t) = u(π/4, t) = 0.

2. Solve the diffusion equation
∂u

∂t
=

∂2u

∂x2
, 0 < x < π

subject to the boundary conditions ∂u/∂x|x=0 = g(t), ∂u/∂x|x=π = 0, and to the initial condition
u(x, 0) = 0.

3. On 0 < x < π solve the diffusion equation

∂u

∂t
−

∂2u

∂x2
= 0

subject to the boundary conditions ∂u/∂x|x=0 = g(t), u(π, t) = 0 and to the initial condition u(x, 0) =
0.
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4. A taut string (section 3.3) with mass µ per unit length and tension T is fixed ad its end points x = 0
and x = L is initially at rest. At time t = 0 a uniform load q is applied to it and remains constant for
t > 0. Determine the motion of the string.

5. A point mass m is attached at the center point of a string of length 2L, mass µ per unit length and
tension T fixed at its two ends. At time t = 0 the mass is displaced by a small amount h. Find the
subsequent motion of the string if its initial velocity vanishes.

6. Use the method demonstrated in section 3.6 to solve the two-dimensional Laplace equation

∇2u = 0

inside the circle of radius a subject to n ·∇∇∇u = f , given, on the circle and to the condition of regularity
at the center of the circle.

7. Use the method demonstrated in section 3.6 to solve the two-dimensional Poisson equation

∇2u = −2πf(x)

inside the circle 0 < r < a subject to u = 0 on the circle, and u regular at the center.

8. Use the method demonstrated in section 3.6 to solve the two-dimensional Laplace equation

∇2u = 0

outside the circle of radius a subject to u = f given on the circle, u → 0 at infinity.

9. Find the equilibrium configuration of a semicircular membrane of radius a, subjected to a tension T
and clamped on its boundary, under the action of a time-independent load f(x).

10. A substitution of the form v(x, t) = e−αtu(x, t), with a suitable value of α, transforms the equation

1

c2

∂2u

∂t2
−

k

c2

∂u

∂t
+

k2

4c2
u =

∂2u

∂x2

into the one-dimensional telegrapher equation (see p. 9). Find the solution of this equation when

u(x, 0) = cosmx ,
∂u

∂t

∣

∣

∣

∣

t=0

= 0 , u(0, t) = ekt/2 ,

where m is an integer.

11. Find the spherically symmetric solution of the diffusion equation

∂u

∂t
−∇2u = 0

inside a sphere of radius a subject to the initial condition u(r, 0) = u0(r) and to the boundary conditions
of regularity at the center of the sphere and u(a, t) = 0. This represents the cooling of a sphere having
an initial temperature u0.

12. Solve the wave equation
∂2u

∂t2
− c2∇2u = 0

where c is a given constant, inside a circle of radius a. u is required to vanish on the circle and to
be regular at r = 0. The initial conditions are u(x, t = 0) = 0, ∂u/∂t|t=0 = δ(x − x0). This may
be interpreted as describing the oscillations of a circular membrane (see p. 18) subjected to a unit
impulsive load at the initial time.
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13. Solve the system of equations

∂u

∂t
= ∇2u + b∇2v ,

∂v

∂t
= b∇2u + ∇2v ,

where b > 0 is a given constant, inside the unit square. The boundary conditions are u = v = 0 on the
boundary while, at t = 0, u(x, 0) = f(x), v(x, 0) = 0. For what values of b is the solution bounded for
all times?

14. A bar of length L, density ρ and cross-sectional area S is fixed at x = 0 and stretched by a force
F applied at the other end L = 0. Determine the longitudinal oscillations of the bar if the force is
suddenly removed at t = 0.

15. A force F (t) is applied at t = 0 to the left end of bar of length L, density ρ and cross-sectional area S.
Determine the subsequent longitudinal motion of the bar if it is initially at rest and undeformed. The
bar is fixed at the other end x = L.

16. A bar simply supported at x = 0 and x = L is in equilibrium under the action of a concentrated force
F applied at the point x = a. Calculate the transverse motion of the bar after the force is suddenly
removed at t = 0.

17. Solve, by means of a Fourier series in the angular variable, the analog of the wave guide problem of
section 3.5 p. 72 for a domain consisting of a semi-infinite cylinder of radius a. At the base of the
cylinder u(r, φ, z = 0) = f(r, φ) given. Find the solution containing only outgoing waves (solution of
the radial equation requires the use of Bessel functions).

18. Find the solution of the two-dimensional non-homogeneous Helmholtz equation

∇2u + k2u = −2πδ(2)(x − y)

inside a circle of radius a with u = 0 on the circle and u regular at the center; the point y is fixed and
given.

19. Set up a suitable coordinate system and solve the equation

∇2u − 2β
∂u

∂x
= −Dδ(x − xs)

where β > 0 and D are given constants, in an infinite two-dimensional strip of width L parallel to the
x axis. The solution is required to vanish as x → ±∞ while, on the edges of the strip, the normal
component of its gradient vanishes. The location of the point source xs is midway between the two
edges of the strip. After finding the solution of the problem, take the limit β → 0 and disregard the
infinite constant that arises with this operation. Explain (without necessarily doing it) how you would
sum the remaining series.

3 Fourier series combined with Bessel functions

1. Solve the diffusion equation
∂u

∂t
= ∇2u

inside the circle of radius a centered at the origin; u is regular at the center of the circle and vanishes
on the circle while, at t = 0, u(x, 0) = f(x).
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2. Solve the wave equation
∂2u

∂t2
− c2∇2u = 0

where c is a given constant, inside a square of side L u vanishes on the boundary. The initial conditions
are u(x, t = 0) = 0, ∂u/∂t|t=0 = δ(x− x0). This may be interpreted as describing the oscillations of a
square membrane (see p. 18) subjected to a unit impulsive load at the initial time.

3. Find eigenvalues and eigenfunctions of the Laplacian operator inside the portion of the unit circle
bounded by the rays θ = 0 and θ = α, with 0 < α ≤ 2π. The eigenfunctions are required to vanish
on the boundary and to be regular at the origin. Give an approximate explicit expression for the
eigenvalues of high order.
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