
!!!R, E " → c
sin#kR − "!/2 + #!!E "$

%k
ei#!!E " !4"

as R→$, where #!!E " is the scattering phase shift
and c=%2% /"&2 is a constant that ensures the wave
function &E !' is normalized per unit energy, (E !&E !!'
=)0

$!!
*!R, E "!!!R, E !"dR='!E − E !". The scattering

phase shift is the key parameter that incorporates the
effect of the whole potential on the collision event.

Sadeghpour et al. !2000" reviewed the special proper-
ties of scattering phase shift near a collision threshold
when k→0. If V !R" varies as 1/Rs at large R, then
tan #!(k2!+1 if 2!+1) s−2 and tan #!(ks−2 if 2!+1* s
−2. While Levinson’s theorem shows that #!→N!" as
k→0, we need not consider the N!" part of the phase
shift in this review. For van der Waals potentials with s
=6, the threshold tan #! varies as k and k3 for s and p
waves and as k4 for all other partial waves. The proper-
ties of s-wave collisions are of primary interest for cold
neutral atom collisions, where near threshold, a more
precise statement of the variation of tan #0 with k is
given by the effective range expansion,

k cot #0!E " = − 1/a + 1
2r0k2, !5"

where a is called the s-wave scattering length and r0 is
the effective range. For practical purposes, it often suf-
fices to retain only the scattering length term and use
tan #0!E "=−ka. Depending on the potential, the scatter-
ing length can have any value, −$+ a+ +$.

When the scattering length is positive and sufficiently
large, that is, large compared to the characteristic length
scale of the molecular potential !see Sec. II.B.1", the last
s-wave bound state of the potential, labeled by index n
=−1 and !=0, is just below threshold with a binding
energy E b=−E −1,0 given by Eq. !2" in the Introduction.
The domain of universality, where scattering and bound
state properties are solely characterized by the scatter-
ing length and mass, is discussed in recent reviews
!Braaten and Hammer, 2006; Köhler et al., 2006". The
universal bound state wave function takes on the form
!−1,0!R"=%2/a exp!−R/a" at large R. Such a state exists
almost entirely at long range beyond the outer classical
turning point of the potential. Such a bound state is
known as a “halo state,” also studied in nuclear physics
!Riisager, 1994" and discussed in Sec. V.B.2.

1. Collision channels

The atoms used in cold collision experiments gener-
ally have spin structure. For each atom i=1 or 2 in a
collision the electronic orbital angular momentum Li is
coupled to the total electronic spin angular momentum
Si to give a resultant ji, which in turn is coupled to the
nuclear spin Ii to give the total angular momentum fi.
The eigenstates of each atom are designated by the com-
posite labels qi. At zero magnetic field these labels are
fimi, where mi is the projection of fi. For example, alkali-
metal atoms that are commonly used in Feshbach reso-
nance experiments have 2S1/2 electronic ground states

with quantum numbers L i=0 and Si=1/2, for which
there are only two values of fi=Ii−1/2 and Ii+1/2 when
Ii!0. Whether fi is an integer or half an odd integer
determines whether the atom is a composite boson or
fermion.

A magnetic field B splits these levels into a manifold
of Zeeman sublevels. Only the projection mi along the
field remains a good quantum number, and B =0 levels
with the same mi but different fi can be mixed by the
field. Even at high field, where the individual fi values no
longer represent good quantum numbers, the fi value
still can be retained as a label, indicating the value at
B =0 with which the level adiabatically correlates.

Figure 5 shows the Zeeman energy levels versus B for
the 6Li atom, a fermion, according to the classic Breit-
Rabi formula !Breit and Rabi, 1931". The two fi levels
are split at B =0 by the hyperfine energy, E hf /h
=228 MHz. At large fields the lower group of three lev-
els is associated with the quantum number mS=−1/2,
while the upper group has mS=+1/2. The figure also
shows our standard notation for atomic Zeeman levels
for any species and any field strength. We label states by
lower case Roman letters a, b, c,… in order of increasing
energy. Some prefer to label the levels in order numeri-
cally as 1, 2, 3… . The notation qi can symbolically refer
to the fimi, alphabetical, or numerical choice of labeling

The collision event between two atoms is defined by
preparing the atoms in states q1 and q2 while they are
separated by a large distance R, then allowing them to
come together, interact, and afterward separate to two
atoms in states q1! and q2!. If the two final states are the
same as the initial ones, q1 ,q2=q1! ,q2!, the collision is
said to be elastic, and the atoms have the same relative
kinetic energy E before and after the collision. If one of
the final states is different from an initial state, the col-
lision is said to be inelastic. This often results in an en-
ergy release that causes a loss of cold atoms when the
energetic atoms escape from the shallow trapping poten-
tial. We concentrate primarily on collisions where the
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FIG. 5. !Color online" Atomic energy levels of the 6Li atom,
which has S=1/2, I=1, and f=1/2 and 3/2. The figure shows
both the projection m of f and the alphabetical shorthand no-
tation qi=a, b, c, d, e, and f used to label the levels in order of
increasing energy.
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the similar potentials for the H2 molecule or other
alkali-metal atoms. The superscripts 1 and 3 refer to sin-
glet and triplet couplings of the spins of the unpaired
electrons from each atom, i.e., the total electron spin S
=S1+S2 has quantum numbers S=0 and 1. The ! refers
to zero projection of electronic angular momentum on
the interatomic axis for the S-state atoms, and g !u" re-
fers to gerade !ungerade" electronic inversion symmetry
with respect to the center of mass of the molecule. The
g !u" symmetry is absent when the two atoms are not of
the same species.

The Born-Oppenheimer potentials are often available
from ab initio or semiempirical sources. When R is suf-
ficiently small, typically less than Rex#1 nm for alkali-
metal atoms, electron exchange and chemical bonding
effects determine the shape of the potentials. For R
" Rex, the potentials are determined by the long-range
dispersion interaction represented by a sum of second-
order multipolar interaction terms.

1. van der Waals bound states and scattering

Many aspects of ultracold neutral atom interactions
and of Feshbach resonances, in particular, can be under-
stood qualitatively and even quantitatively from the
scattering and bound state properties of the long-range
van der Waals potential. The properties of this potential
relevant for ultracold photoassociation spectroscopy
have been reviewed by Jones et al. !2006". Its analytic
properties are discussed by Mott and Massey !1965",
Gribakin and Flambaum !1993", and Gao !1998b, 2000".

In the case of S-state atoms, the leading term in the
long-range part of all Born-Oppenheimer potentials for
a given atom pair has the same van der Waals potential

characterized by a single C 6 coefficient for the pair. Con-
sequently, all q1q2 spin combinations have the long-
range potential

V !!R" = −
C 6

R6 +
#2

2$

!!! + 1"
R2 . !29"

A straightforward consideration of the units in Eq. !29"
suggests that it is useful to define length and energy
scales,

RvdW =
1
2
$2$C 6

#2 %1/4

and E vdW =
#2

2$

1
RvdW

2 . !30"

Gribakin and Flambaum !1993" defined an alternative
van der Waals length scale which they called the mean
scattering length,

ā = &4%/&!1/4"2'RvdW = 0.955 978 . . . RvdW, !31"

where &!x" is the gamma function. A corresponding en-
ergy scale is Ē =#2 / !2$ā2"=1.09 422. . . E vdW. The param-
eter ā occurs frequently in formulas based on the van
der Waals potential. Table I gives the values of RvdW and
E vdW for several cases. Values of C 6 for other systems
are tabulated by Tang et al. !1976", Derevianko et al.
!1999", and Porsev and Derevianko !2006".

The van der Waals energy and length scales permit a
simple physical interpretation !Julienne and Mies, 1989".
A key property for ultracold collisions is that C 6 /R6 be-
comes large compared to the collision energy E when
R' RvdW. Thus, the wave function for any partial wave
oscillates rapidly with R when R' RvdW since the local
momentum #k!R"=(2$&E −V !R"' becomes large com-
pared to the asymptotic #k. On the other hand, when
R( RvdW, the wave function approaches its asymptotic
form with oscillations on the scale determined by the
long de Broglie wavelength of the ultracold collision.
The energy scale E vdW determines the nature of the con-
nection between the long- and short-range forms of the
wave function. The de Broglie wavelength )=2%!RvdW"
for E = E vdW. When E * E vdW so that )" RvdW, a WKB
connection cannot be made near RvdW between the
asymptotic s wave and the short-range wave function
&see Fig. 15 of Jones et al. !2006"'. Consequently, the
quantum properties of the collision are manifest for E
' E vdW.

The van der Waals length also characterizes the extent
of vibrational motion for near-threshold bound state.
The outer turning point for classical motion for all low !
bound states is on the order of RvdW. The wave function
for !=0 oscillates rapidly for R' RvdW and decays expo-
nentially as e−kbR for R" RvdW, where #2kb

2 / !2$" is the
binding energy. The only case where the wave function
extends far beyond RvdW is that of the last s-wave bound
state for the case of the universal halo molecule, where
a" RvdW !see Secs. II.A and V.B.2".

The van der Waals potential determines the interac-
tion over a wide zone between RvdW and the much
smaller Rex where chemical forces become important.
Thus, near-threshold bound and scattering state proper-
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FIG. 7. !Color online" Molecular potentials V !R" /h vs Rof the
two electronic states of Li2 that correlate with two separated
2S atoms. The inset shows an expanded view of the long-range
s-wave potentials of 6Li at B =0, indicating the five hyperfine
states of the separated atoms !see Fig. 5" for which the total
angular momentum has projection M=0. The inset also shows
the last two nearly degenerate bound states !unresolved on the
figure" of the 6Li2 molecule from a coupled-channel calcula-
tion. It is a good approximation to label these nearly degener-
ate levels as the I=0 and 2 components of the total nuclear
spin I=I1+I2 of the last v=38 vibrational level of the 1!g

+ po-
tential.

1234 Chin et al.: Feshbach resonances in ultracold gases

Rev. Mod. Phys., Vol. 82, No. 2, April–June 2010

(a) (b)


