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Reading: Fundamentals of Structural Geology, Ch 9 
 
1) Data from rock mechanical testing of the Shiiya shale (Laboratory name, XT) a 
Japanese sedimentary rock, are reported in non-SI units and given in terms of confining 
pressures, Pc, and differential strengths in compression, Dc, by Hoshino et al. (1972). 
 

 Pc (kgf/cm2)  Dc (kgf/cm2)  

Shiiya shale (XT) 1 1532 

 500 2980 

 1000 3899 

 1500 4172 

 2000 4704 

 2500 5758 

Maze sandstone (XC) 1 1150 

 500 2980 

 1000 4040 

 1500 4310 

 2000 5172 
 

a) Convert these data to SI units. Calculate the two unique principal stresses, σ1 = σ2 
and σ3, associated with each failure state, based on the values of confining 
pressure and differential strength. Show how the differential strength and triaxial 
compressive strength are related to the principal stresses. 

  
b) Plot the strength data for the Shiiya shale in principal stress space. Determine the 

best fitting straight line to define this part of the failure surface and write down 
the equation for this line. Use the linear fit to the data and the Coulomb failure 
criterion to determine the uniaxial compressive strength, Cu, and coefficient of 
internal friction, μi. 

 
c) Calculate the differential strength and the triaxial compressive strength for the 

Shiiya shale for conditions of confining pressure that would be found at 5 km 
depth. Suggest reasons why this value is different from the uniaxial compressive 
strength based upon your understanding of the microscopic mechanisms that 
operate to limit the load-carrying capacity of rock subject to confining pressure. 
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d) Construct a line representing the lithostatic stress state on the graph from part b) of 
principal stress space with the failure surface for the Shiiya shale. Draw a path 
representing the stress state changes during the laboratory experiment. Draw a 
path that the stress state might have followed during burial and deformation to 
reach the differential strength at 5 km depth. Discuss possible effects of stress 
path on strength. 

 
e) Consider the strength of Shiiya shale in triaxial experiments as defined by the 

linear segment of the failure surface from part b) of this exercise. Plot six points 
on the failure surface in principal stress space that are the predicted triaxial 
strengths for confining pressures representative of 0, 1, 2, 3, 4, and 5 km depths 
with no pore fluid pressure. Using Terzaghi’s principal subtract pore pressures of 
0, 10, 20, 30, 40, and 50 MPa from the respective principal stresses to plot six 
points on a new failure surface for Shiiya shale with pore fluid pressure on the 
same graph. Note that these pore pressures are what you would expect for 
hydrostatic columns of water to depths of 0, 1, 2, 3, 4, and 5 km. Based on the 
new confining pressures, however, calculate the new representative depths for 
these tests and the corresponding depths to the top of the water table. 

 

 
Figure 1. Photographs of Shiiya sandstone (SEF) specimens deformed at confining 
pressures of 0.1, 19.6, and 49.0 MPa from left to right. These show, respectively, an 
extension fracture, conjugate deformation bands, and bulging with no fracture. Note this 
is not the Shiiya shale (XT) (Hoshino et al., 1972). 
 
2) Data from rock mechanical testing of the Maze sandstone (Laboratory name, XC) a 
Japanese sedimentary rock, are reported in non-SI units and given in terms of confining 
pressures, Pc, and differential strengths in compression, Dc, by Hoshino et al. (1972). 
 

a) Convert these data to SI units. Calculate the two principal stresses, σ1 and σ3, 
associated with each failure state based on the values of confining pressure and 
differential strength. Plot these data in principal stress space. 
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b) Use the best linear fit to these data as plotted in part a) and the Coulomb failure 
criterion to determine the uniaxial compressive strength, Cu, and coefficient of 
internal friction, μi. Use these parameters to compute the inherent shear strength 
of the Maze sandstone. Write the Coulomb criterion for the Maze sandstone using 
these parameters. 

 
c) Recall that the Mohr diagram (Figure 6.23) is a plot of the magnitude of the shear 

stress (ordinate) versus the normal stress (abscissa). Plot the Coulomb criterion 
for the Maze sandstone on a Mohr diagram. Plot the five Mohr’s half circles 
representing the stress states at failure from the laboratory test data. These half 
circles should be tangent to the line representing the Coulomb criterion if that is a 
good description of strength for this rock. Half circles that plot under this line 
would represent all possible pre-failure stress states. Because the linear Coulomb 
criterion does not necessarily correspond to laboratory data, Otto Mohr suggested 
that a smooth curve (now called the Mohr envelope) could be drawn tangent to 
the set of half circles from laboratory strength tests. Draw the Mohr envelope. 

 
d) In principle, the orientation of the shear fracture plane in a laboratory specimen 

should be given by the orientation of the line drawn from the center of a particular 
Mohr circle to the point where it touches the Mohr envelope. This line is oriented 
at the angle 2γC to the abscissa, where γC is the angle between the direction of σ1 
and the normal to the fracture plane. Construct such lines for the Maze sandstone 
deformed at 49 and 98 MPa confining pressures and determine the predicted 
orientation of the shear fracture. Compare your result to the shear fractures on the 
photographs from Hoshino et al., 1972 (Figure 2). 

 

 
Figure 2. Photographs of Maze sandstone (XC) specimens deformed at confining 
pressures of 0.1, 49, 98, 147,196, and 245 MPa from left to right. These show, 
respectively, wedge failure, single shear fracture, single shear fracture, network fracture, 
bulging with no fracture (Hoshino et al., 1972). 
 
3) A. A. Griffith (1924) used different combinations of remote biaxial loading for the 
inclined elliptical hole (Figure 3) to investigate the growth of cracks from flaws in elastic 
solids. The distribution of tangential stress, σt, on the hole wall is given by (9.65). Note 
that there are the three applied loads (two remote principal stresses, σ1 and σ3, and an 
internal pressure, P) and three geometric parameters (half-length, a, half-width, b, and 
inclination angle, β). Position around the hole is prescribed using the angle η. Because of 
the symmetry of this problem one only need consider the range . o o90 90η− ≤ ≤ +
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a) Begin the analysis with the case of internal pressure of unit magnitude, P = 1, no 

remote stress, and a ratio a/b = 4. Systematically vary the inclination of the hole 
by changing the angle β from 0˚ to 90˚ in increments of 15˚ and plot the 
distributions of tangential stress versus position around the hole on the same 
graph so they can be compared. Explain why the stress distribution does not vary 
with inclination of the hole. Describe the distribution, noting the magnitude and 
position of the maximum and minimum tangential stress.  
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Figure 3. Schematic illustration of elastic boundary value problem for an inclined 
elliptical hole subject to biaxial remotely applied stress and internal pressure. 

 
b) Consider the case of a uniaxial remote tension of unit magnitude, σ1 = 1, parallel to 

the x-axis, no internal pressure, and a ratio a/b = 4. Systematically vary the 
inclination of the hole (Figure 4) by changing the angle β from 0˚ to 90˚ in 
increments of 15˚ and plot the distributions of tangential stress versus position 
around the hole on the same graph so they can be compared. Describe how the 
stress distributions change with inclination. 

 
c) Griffith made the surprising discovery that the flaw could induce tensile stresses 

even though the applied stress is compressive. Impose a uniaxial remote 
compression of unit magnitude, σ3 = -1, parallel to the y-axis and no internal 
pressure. Plot and describe the distribution of tangential stress on the hole 
boundary for different inclinations (Figure 4), varying the angle β from 0˚ to 90˚ 
in increments of 15˚. Describe the range of η over which the tangential stress is 
tensile. What conclusions can you draw regarding the effects of inclination on the 
stress distribution? From the plot estimate the critical angle of inclination, βc, at 
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which the tangential stress is greatest. Draw a sketch of the hole inclined at the 
critical angle and show where an opening fracture would initiate on the boundary 
and in what direction it would propagate. Use symmetry to determine where a 
second fracture would initiate and show its propagation direction. 

 
 

  
Figure 4. Photoelastic images of a narrow slot cut out of a plate subject to uniaxial 
tension. Colored bands are contours of the principal stress difference. The left slot is 
perpendicular to the direction of tension. The right slot is inclined to this direction. 
 

d) Investigate the effect of changing the shape of the cavity on the tangential stress. 
Impose a uniaxial remote compression of unit magnitude, σ3 = -1, parallel to the 
y-axis and no internal pressure. Choose an inclination of β = 60o and decrease the 
hole width, 2b, in the sequence 0.40, 0.35, 0.30, 0.25, 0.20, 0.15, 0.10. Plot and 
describe how the distribution of tangential stress changes as the ratio of b to a 
decreases and the hole becomes more crack-like. Given this result and the result 
from part c) describe the shape and orientation of ‘most dangerous flaw’ in a rock 
mass subject to compression. 

 
4) Fractures in rock are idealized as two adjacent, mirror image surfaces that are bounded 
in extent along a common curved line called the tipline. The direction of the displacement 
discontinuity between originally-adjacent points on these surfaces near the fracture tipline 
serves to classify fractures into three modes. (Figure 5). For mode-I fractures the 
displacement discontinuity is perpendicular to the fracture surfaces so they either open or 
close. Natural opening fractures include joints, veins, and dikes. In this exercise the near-
tip mode-I stress field (9.72) is investigated to gain insights about the propagation of 
dikes and the associated damage zone. 
 

a) For a uniform remote normal stress, r
yyσ , and a uniform normal stress at the 

fracture surfaces, c
yyσ , the mode-I stress intensity factor is: 
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 ( )r c
I yy yyK aσ σ π= −  (1) 

For this loading state analyze the dimensions of the equations for the near-tip 
stress components and show that they are dimensionally homogeneous. Indicate 
the dimensions and units (S.I.) for the stress intensity factor. 
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mode I, opening mode II, sliding mode III, tearing
 

Figure 5. Three modes of fracture based upon near-tip displacement discontinuities (after 
Kanninen and Popelar, 1985). The fracture tipline lies along the z-axis and the fracture 
surfaces lie in the (x, z)-plane. 
 

b) Calculate the Cartesian stress components for the near-tip stress field of the mode-I 
fracture. Recall that these functions are good approximations only for r < 0.01a 
where a is the half length of the fracture. Choose a = 1 and KI = 1 and prepare 
contour plots of each component. Be sure to avoid the region very close to the tip. 
Describe these three stress distributions, commenting on how the sign and 
magnitudes of each component vary spatially. Rationalize the distribution of signs 
for the shear stress based on the kinematics of fracture opening.  

 
c) Derive an equation for the maximum shear stress, σs, in the (x, y)-plane as a 

function of the Cartesian stress components for this plane strain problem. 
Calculate σs for the near-tip field and compare a contour plot of this stress with 
the photoelastic image in Figure 4a. Compare the distributions of σs and σxy (from 
part b) pointing out similarities and differences. 

 
d) Figure 6 shows the distribution of ground cracks in Keanakakoi ash near a 
fissure that erupted from a dike on Kilauea volcano (also see Figure 9.32). Why 
did more than one crack form? Why are the cracks distributed to either side of the 
trace of the fissure? To address these questions suppose the cracks formed in the 
near-tip region of the dike as it approached the surface. Calculate the distributions 
of the normal stress components, σxx and σyy, about an opening fracture tip by 
plotting the appropriate functions of θ from (9.72) versus the polar angle over the 
range, π θ− ≤ ≤ +π . Describe these stress distributions and use them to predict 
the location and orientation of secondary fractures. 
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Figure 6. Map of ground cracks in Keanakakoi ash that formed with the adjacent fissure 
and lava flow on the southwest rift zone of Kilauea Volcano on December 31, 1974. 
Numbers are horizontal (H) and vertical (V) separations in millimeters across the cracks. 
 
5) For mode-II fractures the displacement discontinuity is parallel to the fracture surfaces 
(Figure 5) and perpendicular to the tipline. Natural examples of sliding fractures include 
sheared joints, deformation bands, and faults. The sheared joint shown in Figure 7 has a 
kinked end which is about 15 cm long, whereas the main trace of the fracture extends 
straight off the left side of the photograph many times this length. The trace of the kinked 
portion is oriented about 43o counterclockwise from the main trace. 
 

 
Figure 7. Termination of a fracture in Entrada Sandstone, Arches National Park, Utah 
interpreted as a left-lateral sheared joint (Cruikshank et al., 1991). 
 

a) To address questions about the propagation of sheared joints suppose the 
straight portion formed as an opening fracture and the kinked portion formed later 
when left-lateral shearing developed. To investigate the propagation of the joint 
calculate the distributions of the Polar stress components (σrr, σθθ, and σrθ) about 
an opening (mode-I) fracture tip as given by Lawn and Wilshaw (1975): 
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The Polar coordinates (r, θ) are defined in Figure 5a. Normalize the stress 
components so they are functions of θ only and plot these versus the polar angle 
over the range π θ− ≤ ≤ +π . Describe these stress distributions in terms of their 
symmetry, signs, and magnitudes. Discuss how the near-tip stress distribution 
might influence the direction of propagation. 
 
b) To investigate the propagation of the kinked portion of the fracture calculate 
the distributions of the Polar stress components (σrr, σθθ, and σrθ) about a mode-II 
(sliding) fracture tip as given by Lawn and Wilshaw (1975): 
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 (3) 

These functions are for a right-lateral sense of sliding as illustrated in Figure 5b. 
Modify (3) to account for left-lateral sliding and to normalize the stress 
components as functions of θ only. Plot the appropriate functions of θ versus the 
polar angle over the range π θ π− ≤ ≤ +  and describe these stress distributions in 
terms of their symmetry, signs, and magnitudes. Discuss how this near-tip stress 
distribution might influence the direction of propagation. 
 
c) Explain why the kinked portion of the fracture is so short relative to the main 
fracture trace. Predict what you would observe at the other end of the sheared 
joint if your explanation for the propagation mechanics is correct. 

 


	Exercise: concepts from chapter 9 

