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Appendix SA12.1 Earlier Formulation of Energy Input–Output Models 
 
A12.1.1 Introduction 

In this appendix we present a more detailed description of the original formulation of the energy 
input–output model that is summarized in chapter 12. While still widely applied in the literature, 
this approach suffers from limitations that in some cases should preclude its use.  This 
formulation was initially adopted by Strout (1967) and Bullard and Herendeen (1975a and 
1975b), even though the Bullard and Herendeen subsequently developed the more contemporary 
hybrid units formulation to replace it, perhaps in many cases since the contemporary approach 
has additional data requirements. While still widely applied in the literature, however, this 
approach suffers from limitations that in some cases should preclude its use unless the data are 
unavailable to use the hybrid units approach.  In other cases, as we will show, however, the 
model can be acceptable or even equivalent to the hybrid units formulation presented in chapter 
12. 

First, recall the m × n matrix of energy flows, E, which was defined in the text of this 
chapter and used in the basic accounting relationship 

 + =Ei q g   (A12.1.1) 

The traditional approach to energy input–output analysis is to define a matrix of direct energy 
coefficients, [ ]kjd=D  where /kj jk jd e x= , that is, the amount of energy type k (in Btus or some 
other convenient energy units for k = 1,..., m) required directly to produce a dollar’s worth of 
each producing sector’s output (j = 1,..., n). Expressed in matrix terms this is 1ˆ −=D Ex . This is, 
of course, directly analogous to the direct input coefficients, 1ˆ −=A Zx , except that D will in 
general not be square since m < n. 

For purposes that will become clear later, defining a direct energy coefficient is equivalent 
to first defining a matrix, P, of implied energy prices, with elements defined as /kj kj kjp z e=  (k = 
1,…, m; j = 1,..., n), defined only for  0kje ≠ . The units kjp  are then dollars paid per unit of 
energy of type k delivered to consuming sector j. These prices are “implied” since the prices 
calculated in this way generally do not necessarily correspond to the price actually paid for 
energy, but their significance, nonetheless, will become clear shortly. For now, implied prices 
can be used to derive the direct energy coefficients as kj

kj

a
kj pd = . This is equivalent to our previous 

definition of D, since ( )( )kj kj kj kj

kj j kj j

a z e e
kj p x z xd = − =  or, in matrix terms, 1ˆ −=D Ex . It follows directly 

that ˆ=E Dx  and from the original energy transactions balance equation Ei + q = g, we obtain 
ˆ + =Dxi q g  but, since ˆ + =xi = x, Dx q g , which, as noted earlier, is directly analogous to Ax + f 

= x of the traditional Leontief model. The traditional method continues to develop a matrix of 
total energy coefficients first by substituting ( ) 1−= −x I A f  to obtain 

 ( ) 1−= −Dx D I A f   (A12.1.2) 



2 
 

The matrix ( ) 1−−D I A  is defined as the matrix of total interindustry energy coefficients. In order 
to account for the energy consumed directly by final demand, the second term in the energy 
transactions balance equation (A12.1.1), we return to the notion of implied energy prices, this 
time for the energy that is delivered to final demand (as done in earlier interindustry transactions 
when the p were defined – recall that direct energy coefficients were defined only for 
interindustry energy transactions). Now we have [ ]kfp=fp  where 

 kf k kp f q=   (A12.1.3) 

Here fk is the final demand in dollars for the output of energy sector k and pkf is the 
corresponding implied energy price in units of dollars of final demand per unit of energy type k 
(for 0kq ≠ ; for 0kq =  we will define 0kfp = ). This relationship allows us to express final 
demand and the corresponding energy requirements in a manner similar to that for interindustry 
energy requirements associated with interindustry transactions, by rewriting (A12.1.3) as 

(1 / )k kf kq p f=  or in matrix terms as =q Qf , where [ ]kq=Q   is an m × n matrix of implied 
inverse energy prices for final demand whose elements are defined as 

when energy sector  and industry sector describe the same industrial sector
otherwise

1 ,
0,

kf
k

k jp
q 

= 




 

There will, of course, be at most m nonzero elements in Q  since there are only m elements in q. 
By constructing Q  of dimension m × n, we can combine it with the interindustry energy 
coefficients to produce a matrix of total (interindustry plus final-demand) energy coefficients, to 
obtain g = Dx + q or, substituting (I − A)−1f for x, we have ( ) 1−= − +g D I A f Qf  and collecting 
terms we have 

 ( ) 1[ ]− += −g D I A Q f   (A12.1.4) 

The bracketed quantity, which we denote by ε, is a matrix of total energy coefficients analogous 
to α defined in the course of developing the energy conservation conditions, which expresses the 
total amount of energy (Btus) required of each energy type, g, both directly and indirectly, as a 
function of final demand f. 

Variations of this approach abound in the literature, sometimes ignoring the energy 
consumed directly in final demand, sometimes assuming uniform energy prices across all 
consuming sectors, but almost always defining a set of direct energy coefficients in this manner 
and thereby ignoring or assuming away the technical energy conservation relationships between 
primary and secondary energy sectors. 
A12.1.2 Illustration of the Implications of the Traditional Approach 
The following example illustrates the inconsistencies introduced by using variations of the 
traditional approach just outlined. 

Example 12.5: Energy Input–Output Alternative Formulation  Consider a simple three-
sector input–output economy where two of the sectors are energy sectors, coal and electricity. 
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Assume that transactions (in millions of dollars) observed for a given year are as shown in Table 

A12.1.1. Here Z, f and x are 
0 40 0 0 40
10 10 10 , 30 and 60
0 0 0 10 100

     
     =      
          

Z f = x = . Suppose that the 

corresponding energy flows of this economy, expressed in quadrillions of Btus, are given by 
Table A12.1.2. Hence, using notation introduced earlier, 

0 120 0 0 120
, and

20 20 20 60 120
     

= =     
     

E q g = . 

Note some of the special characteristics of this energy economy. First, the coal sector delivers all 
of its product to the electricity sector, another energy sector. Hence, as discussed earlier, the coal 
sector is known as a primary energy sector and electricity is a secondary energy sector. Note also 
that the total amount of coal used is the same as the amount of electricity consumed in the 
economy, which seems reasonable since the electricity sector received all of its primary energy 
from coal (excluding conversion efficiencies, for the moment). Another important peculiarity of 
this example is the matrix of implied energy prices, 

0 40 120 0 0 0.333 0
[ ]

10 20 10 20 10 20 0.5 0.5 0.5kj kjz e    
= = =   

   
P  and [ ] 0

0.5k kf q  
=  

 
fp . Note that 

the price of electricity 

Table A12.1.1 Dollar Transactions for Example 12.5 (millions of dollars) 

 
Coal 

Electric 
Power Autos 

Final 
Demand Total Output 

Coal 0 40 0 0 40 
Electric Power 10 10 10 30 60 
Automobiles 0 0 0 100 100 

Table A12.1.2 Energy Flows for Example 12.5 (1015 Btus) 

 

Coal 
Electric 
Power Autos 

Final 
Energy 
Demand 

Total 
Energy 
Output 

Coal 0 120 0 0 120 
Electric Power 20 20 20 60 120 

is the same across all consuming sectors, including final demand (0.5). Hence, by the earlier 
development, Q , the matrix of inverse energy prices for final demand, and D, the direct energy 

coefficients matrix are 1

2

0 0 0 0 0
0 0 0 2 0
q

q
   

= =   
  

Q  and 
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1 40 0 0
0 120 0 0 2 0

0 1 60 0
20 20 20 0.5 0.333 0.2

0 0 1 100

 
    = =         

D . Finally, we can compute 

1

0 0.667 0
ˆ 0.25 0.167 0.1

0 0 0

−

 
 =  
  

A = Zx  and ( ) 1
1.25 1.00 0.10
0.38 1.50 0.15

0 0 1.00

−
 
 − =  
  

I A . Knowing ( ) 1, −−D I A  and 

Q  and using (A12.1.4) we can find the total energy requirements, 

( ) 1 0.75 3 0.3
0.75 3 0.3

−  
− +  

 
ε = D I A Q = . 

It should not be surprising, at least for this example, that the rows of ε are identical, because of 
the peculiarities of this energy economy noted earlier. Suppose, however, we change the example 
only slightly to remove the uniformity of energy prices across consuming sectors. 

Example 12.6: Energy Input–Output Example (Revised) In modifying Example 12.5, only 
slightly, we redefine only E and Q as shown in Table A12.1.3, i.e., increasing the amount of 
electricity consumed by the autos sector from 20 to 30 quads and reducing the amount of 
electricity consumed by final demand from 60 to 50 quads (denoted in bold face in the table). 

Table A12.1.3 Energy Flows for Example 1 Revised (1015 Btus) 

 

Coal 
Electric 
Power Autos 

Final 
Energy 

Demand 

Total 
Energy 
Output 

Coal 0 120 0 0 120 
Electric Power 20 20 30 50 120 

Note that we do not change the total energy consumption of 120 quads in Table A12.1.2 and we 
do not change the economic transactions measured in dollars, Z. However, since some of the 
energy transactions measured in quads change, the corresponding relative interindustry and final-
demand energy prices change as well. The new implied energy prices for interindustry and final-
demand sales along with the matrix of implied inverse energy prices to final demand are then, 

respectively, given by 
0 0.333 0 0

,
0.5 0.5 0.333 0.599
   

= =   
   

fP p  and 
0 0 0
0 1.67 0
 
 
 

Q = . Note that 

the prices are no longer uniform. Finally ε, the matrix of total energy coefficients, becomes 
0.75 3 0.3
0.75 2.667 0.4
 
 
 

ε = . Looking at the elements in the third column, this new total energy 

requirements matrix specifies that one dollar’s worth of automobiles requires 0.4 × 1015 Btus of 
electricity to produce that output, but only 0.3 × 1015 Btus of coal. This violates the energy 
conservation condition for this example, since the electricity-producing sector received all its 
primary energy from coal (electricity is a pass-through sector for coal). In other words, by design 
for this example the two total energy requirements matrix rows should be the same. 
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It should be readily apparent that application of this energy input–output formulation simply 
yields the output of the traditional Leontief model multiplied by a set of conversion factors – the 
implied energy prices. Such formulations are frequently applied in the literature, but in the 
following we show more generally that this formulation provides internally consistent results 
only when these energy prices are the same across all consuming sectors (including final 
demand) for each energy type or when a new final demand presented to the economy is very 
close to that from which the input–output model was originally derived. Only under such 
circumstances will the model always faithfully reproduce the original data. Griffin (1976) shows 
that the condition of uniform prices across all energy-consuming sectors does not hold at all 
historically for the US economy. Similar results are illustrated in Weisz and Duchin (2006). 
Possible cases where it could be more acceptable are discussed later. For reference, Table 
A12.1.4 summarizes the alternative energy formulation just described compared with the 
analogous “hybrid units” formulation developed in this chapter and so-called physical input–
output models. 

Table A12.1.4 Summary of Energy Input–Output Relationships 

 Economic Model Hybrid Units Energy Model 
Method II 

Alternative Energy 
Model Method I 

Transactions 
ˆ+ =

Z
Zi f x

 

*

* * *

,
+ =
+

Z E
Z i f x
Ei q = g

 = +
E
g Ei q

 

Direct 
Requirements 

1ˆ −=A Zx  
* * 1 * 1 *ˆ ˆ; ( )− −=A Z x δ = G x A  1ˆ −=D Ex  

=Ax + f x  * * * *;+ = =A x f x δx +q g  + =Dx q g  

Total 
Requirements 

1)−−(I A  * 1 * 1 * 1ˆ) ; ( ) )− − −− = −(I A α G x (I A  1)−= +−(I Aε D Q  

1)−−x = (I A f  * * 1 * *) ;−= − =x (I A f g αf  g = εf  

We now explore further the conditions of energy conservation and the conditions under 
which the alternative model can be applied, first through an example and then more generally. 
First, however, for reference, in Table A12.1.4 we summarize the relationships developed so far 
for the traditional Leontief model, the hybrid units interindustry model defined in the text of this 
chapter, which we will refer to as Method II and, finally, the alternative energy model just 
defined, which we will refer to as Method I. 

Extensions of Example 12.1 Recall the two-sector economy given in Example 12.1 of the 
text of this chapter where we constructed the following hybrid units energy input–output 

relationships using Method II: * 10 20
60 80
 

=  
 

Z  and 
100
240
 

=  
 

x . The direct and total energy 

requirements matrices (Method II) for this example are ( ) 1* * * 0.100 0.083
0.600 0.333

ˆ
−  

= =  
 

A Z x  and 
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* 1.212 1.515
1.091 1.636
 

=  
 

L  so that ( ) [ ]1* *ˆ 0.600 0.333
−

=δ = G x A  and 

( ) [ ]1* *ˆ 1.091 1.636
−

=α = G x L . The analogous information for the alternative energy input–

output formulation, using Method I, is given by the energy transactions [ ]80 60=E  and 

[ ] 100=q  and the interindustry dollar transactions and total outputs by 
10 20
30 40
 

=  
 

Z  and 

100
200
 

=  
 

x . Hence, the direct and total energy requirements matrices are 

1 0.100 0.167
0.300 0.333

ˆ −  
= =  

 
A Zx  and ( ) 1 1.212 0.303

0.546 1.636
−  

− =  
 

I A . Using q, we have 

[ ] [ ]0 100 50 0 2= =Q  and [ ] [ ]1 1 100 0
ˆ 60 80 0.600 0.667

0 1 120
−  

= = = 
 

D Ex . 

It follows directly from (A12.1.4) that 1 11 (ˆ ( ) )− − −+= − = − +ε Ex I A Q D I A Q  , which for the 

example is [ ] [ ] [ ]1.212 0.303
0.600 0.667 1.091 3.273

0.546
0 2

1.636
 

= + = 
 

ε . Note that ε is identical 

to α, except that the elements involving energy consumption in α are simply multiplied by the 
relevant energy price. This is reasonable because ε is used in conjunction with f and not with f*. 

That is, 
70

*  
100
 

=  
 

f  with an energy price of 2 (1015 Btus/$106) is equivalent to 
70

 
50
 

=  
 

f , so, 

we have [ ] 70
1.091 3.2 24072

50
 

= = 
 

εf  and [ ] 70
1.091 1.636 240

100
 

= 
 

αf* = . The first 

expression, εf, generates the total energy requirement (240 × 1015 Btus) needed to support final 
demand f. The second expression, αf*, yields the same result but in terms of supporting the 
equivalent final demand, f*, measured in hybrid units. 

The result should not be surprising at all, since under conditions of uniform interindustry 
energy prices, the computation of ε is simply a price adjustment of α. To reflect this in our 
notation, we define a two-element vector [ ]1 2=r  where the first element is the value that 
converts the nonenergy units of the original model to the nonenergy units of the hybrid units 
model. Clearly these units are the same, so the value of this element is always unity. The second 
element is the interindustry inverse energy price. 

Given this vector r, we can easily write ˆ* =f rf . For the example this is 
70 1 0 70

ˆ*
100 0 2 50
     

= = =     
     

f rf . Also, ˆ* =x rx  or 1ˆ −=x r x* . For the example this is 

100 1 0 100
ˆ*

240 0 2 120
     

= =     
     

x rx = . The implications of this are as follows. For the case of uniform 

interindustry energy prices, there is no need to account for energy in Btus at all, since this is 
equivalent to deriving outputs in dollars and converting to Btus by simply multiplying by the 
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energy price. However, as we found before, if prices are not uniform for all consumers (both 
interindustry and final-demand consumers), such procedures are inappropriate. 

It is important to note that the above result, i.e., that a vector r exists such that ˆ* =x rx  and 
ˆ* =f rf , will in general be true only under conditions of uniform energy prices, which we will 

illustrate in the following. Recall that in the case of using the alternative formulation in Example 
12.1, when this condition was not met, the model gave inappropriate results. We can test to see if 
the hybrid units model fares better when we relax the condition of uniform energy prices by 
considering, once again, the two-sector model of Example 12.1 with new energy flows and 
corresponding energy prices. 

Note that the dollar quantities, Z, f, x, A and (I − A)−1 do not change at all from the earlier 
case. However, the hybrid units quantities change since the energy transactions have changed by 
reducing the amount of energy delivered to final demand by 20 quadrillion Btus and increasing 
the amount of energy consumed by the energy sector itself by the same amount, thus keeping 
total energy output the same. With a change in energy flows but no change in the corresponding 
dollar transactions, the energy prices change and are no longer uniform for all consumers, as 
shown in Table A12.1.6. 

Table A12.1.5 Energy and Dollar Flows for Example 12.1 (Revised) 

 
Widgets Energy 

Final 
Demand 

Total 
Output 

 Value Transactions in Millions of Dollars 
Widgets 10 20 70 100 
Energy 30 40 50 120 
 Energy Transactions in Quadrillions of Btus 
Energy 60 100 80 240 

Table A12.1.6 Implied Energy Prices for Example 12.1 (Revised) 

1015 
Btus/$106 Widgets Energy 

Final 
Demand 

Total 
Output 

Energy 2 2.5 1.6 2 

Table A12.1.7 Results for Example 12.1 (Revised) 

Method I: Alternative Formulation Method II: Hybrid units Model 

10 20 100
30 40 120
   

= =   
   

Z x  * *10 20 100
60 100 240
   

= =   
   

Z x  

1 0.100 0.167
0.300 0.333

ˆ −  
= =  

 
A Zx  ( ) 1* * * 0.100 0.083

0.600 0.417
ˆ

−  
= =  

 
A Z x  
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( ) 1 1.212 0.303
0.546 1.636

−  
= − =  

 
L I A  ( ) 1* * 1.228 0.175

1.263 1.895
−  

= − =  
 

L I A  

As before, from the conventions of the alternative formulation (Method I) and of the hybrid 
units formulation (Method II) we can derive the results given in Table A12.1.7. We can now 
calculate the total energy coefficients by the two methods. 

Method 1 

[ ] [ ]1 1 100 0
ˆ 60 100 0.6 0.833

0 1 120
−  

= = = 
 

D Ex
 

( ) [ ] [ ] [ ]1 1.212 0.303
1.182 3.145

0.546 1.6
0.6 0.833 8

36
0 5−  

= − + = + = 
 

ε D I A Q
 

From this we can verify that, since [ ]1.182 3.14
70 70

, 240
0 50

5
5
   

= = =   
   

f εf . 

Method 2 

[ ] [ ]

( ) ( ) [ ] [ ]1 1* *

1 1 100 0
ˆ 0 240 0 1

1.228 0.175
ˆ 0 1 1.263 1.8

0

95
1.263 1.895

1 240

− −

−

 
= − = = 

 

 
= = 

 

α G x I A

Gx

 

From this we can verify that, since [ ]* * 1.263 1.89
70 70

, 2405
80 80
   

= = =   
   

f αf . Both methods 

thus yield the same total energy requirements for the basic data from which the models were 
originally formulated. However, this is not generally true. Consider two cases of new final-
demand vectors for which we wish to compute the total energy requirement by both Methods I 
and II. 

Case 1. Consider two final demand vectors, f and f *, which describe the same final demand 

since the energy price to final demand is 8/5, so that 
100

333.1
 

=  
 

f  and * 100
533
 

=  
 

f . That is, the 

relationship between *
2f  and f2 is ( ) ( )( )*

2 2 8 5 333.1 8 5 533f f= = = . Computing the total 
energy requirement by the two methods: 
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Method I Method II 

[ ] 100
1.182 3.145 1,166

333.1
 

= 
 

εf =  [ ]* 100
1.263 1.895 1,136

533
 

= 
 

αf =  

Case 2. Consider another equivalent pair of final demands, defined as 
1,000

10
 

=  
 

f  and 

* 1,000
16

 
=  
 

f , for which the total energy requirement by the two and methods are: 

Method I Method II 

[ ] 1,000
1.182 3.145 1,031.90

10
 

= 
 

εf =  [ ]* 1,000
1.263 1.895 1,293.32

16
 

= 
 

αf =  

Note that in Case 1, using Method I results in a higher total energy requirement than using 
Method II and a lower amount in Case 2. In the following we will show that Method II always 
computes the total energy requirement correctly. We can then conclude that in Cases 1 and 2, 
Method I overestimates and underestimates, respectively, the total energy requirement. 
A12.1.3 General Limitations of the Alternative Formulation 
We return briefly to the alternative formulation of total energy coefficients derived earlier and 
defined in (A12.1.4): 1[ ( ) ]−= − +g D I A Q f . With an arbitrary final demand, denoted as fnew, and 
the corresponding total energy requirement as gnew, then we define the total output vector used in 
defining the total energy coefficients as xold. D is computed as 1ˆ( )old −=D E x . Combining the 
expressions for gnew and D we obtain 

( ) ( ) ( )1 11ˆ ˆnew old new new old new new− −−= − + = +g E x I A f Qf E x x Qf   (A12.1.5) 

If old newx = x , then the product ( ) 1
ˆ old new−
x x  will be a column vector of ones. In addition, by 

definition, newq = Qf , and, hence, (A12.1.5) becomes new = +g Ei q , which is (A12.1.1) from 
which the total energy coefficients were originally derived. If old new≠x x  however which is the 
case for most applications, the model does not reduce to (A12.1.1) and does not accurately 
reflect the energy flows generated by a new final demand. 

We can conclude that while Method II (the hybrid units formulation) correctly computes in 
all cases the total energy requirement for any arbitrary vector of final demands consistent with 
our energy conservation condition, Method I yields correct results only for the base case of final 
demands from which the model was originally derived, or, as it turns out, if the new final-
demand vector is a linear combination of the reference case of final demands (the same scalar 
multiplied by every element of the final-demand vector, which might be interpreted as uniform 
economic growth). Hence, in general, if the necessary data are available, the only defense for 
using Method I in practice is when impact analysis involves new final demands that are not 
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substantially different from the basic data from which the model was derived or when there are 
uniform interindustry energy prices throughout the economy.1 
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