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HOLES IN SEMICONDUCTORS: HOW DO HOLES MOVE?
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Holes behave as if they carry a positive charge.

The movement of an empty electron state, i,e,. a hole under an electric field. 
The electrons move in the direction opposite to the electric field so that the 
hole moves in the direction of the electric field thus behaving as if it were 
positively charged, as shown in (a), (b), and (c). (d) The velocities and 
currents due to electrons and holes. The current flow is in the same direction, 
even though the electron and holes have opposite velocities. The electron 
effective mass in the valence band is negative, but the hole behaves as if it has 
a positive mass.
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FREE CARRIERS IN SEMICONDUCTORS: INTRINSIC CARRIERS
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In semiconductors, at finite temperatures, there are electrons in the conduction band and 
holes in the valence band.

(a) A schematic showing allowed energy bands in electrons in a metal. The electrons 
occupying the highest partially occupied band are capable of carrying current. (b) A 
schematic showing the valence band and conduction band in a typical semiconductor. In 
semiconductors only electrons in the conduction band holes in the valence band can carry 
current.
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Intrinsic case:

For small electron (n), hole (p) densities we can use Boltzmann approximation:

where

ni = pi = 2(   )kBT
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INTRINSIC CARRIER DENSITIES FOR SOME SEMICONDUCTORS
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Effective densities and intrinsic carrier concentrations of Si, Ge and GaAs. The numbers for 
intrinsic carrier densities are the accepted values even though they are smaller than the values 
obtained by using the equations derived in the text.
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CONDUCTION BAND VALENCE BAND INTRINSIC CARRIER

MATERIAL EFFECTIVE DENSITY (NC) EFFECTIVE DENSITY (NV) CONCENTRATION (ni = pi)

Si (300 K) 2.78 x 1019 cm–3 9.84 x 1018 cm–3 1.5 x 1010 cm–3

Ge (300 K) 1.04 x 1019 cm–3 6.0 x 1018 cm–3 2.33 x 1013 cm–3

GaAs (300 K) 4.45 x 1017 cm–3 7.72 x 1018 cm–3 1.84 x 106 cm–3



DOPING OF SEMICONDUCTORS: DONORS AND ACCEPTORS
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If an impurity atom replaces a host semiconductor atom in a crystal it could donate (donor) an 
extra electron to the conduction band or it could accept (acceptor) an electron from the valence 
band producing a hole.

A schematic showing the approach one takes to understand donors in semiconductors. The 
donor problem is treated as the host atom problem together with a Coulombic interaction term. 
The silicon atom has four “free” electrons per atom. All four electrons are contributed to the 
valence band at 0 K. The dopant has five electrons out of which four are contribted to the 
valence band, while the fifth one can be used for increasing electrons in the conducton band.

Charges associated with an arsenic impurity atom in silicon. Arsenic has five valence electrons, 
but silicon has only four valence electrons. Thus four electrons on arsenic form tetrahedral 
covalent bonds similar to silicon, and the fifth electron is available for conduction. The arsenic 
atom is called a donor because when ionized it donates an electron to the conduction band.
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FREE CARRIERS IN DOPED SEMICONDUCTORS
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If electron (hole) density is measured as a function of temperature in a doped semiconductor, one 
observes three regimes:

Freezeout: Temperature is too small to ionize the donors (acceptors), i.e., 
kBT < EC – ED (kBT< ED – EV).

Saturation: Most of the donors (acceptors) are ionzed.
Intrinsic: Temperature is so high that ni > doping density.

Electron density as a function of temperature for a Si sample with donor impurity 
concentration of 1015 cm–3. It is preferable to operate devices in the saturation region 
where the free carrier density is approximately equal to the dopant density.

It is not possible to operate devices in the intrinsic regime, since the devices always have a high 
carrier density that cannot be controlled by electric fields.
       every semiconductor has an upper temperature beyond which it cannot be used in devices. 
The larger the bangap, the higher the upper limit.
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