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Chapter 1 Solutions

Problems

1.1 Find the mass flow rate of a fluid at a constant density of 1.2 kg/m3

passing through a surface whose area is 1 m2 and whose normal is n⃗ =
1
√

14

(
î + 2 ĵ + 3k̂

)
. The velocity of the flow is: V⃗ = 2î + 3 ĵ + 0k̂ m/s.

Solution: The mass passing through a surface is defined as:

ṁpass =

	
A
ρV⃗ · n⃗dA

We can plug our numbers in:

ṁpass =

	
A
ρV⃗ · n⃗dA

=

	
A

1.2
kg
m3

(
2î + 3 ĵ

)
m/s ·

(
1
√

14

(
î + 2 ĵ + 3k̂

))
dA

=

	
A

1.2
kg
m3 (2 + 6 + 0)

1
√

14
m/sdA

= 1.2
kg

sm2

8
√

14
A

∣∣∣∣∣∣1 m2

0

=
9.6
√

14
kg/s

1.2 Approximate how long will it take, in minutes, to fill up a bathtub with
dimensions of 1.3 m x 0.6 m x 0.4 m if water is coming out of a 40 mm
diameter faucet at a speed of 1.2 m/s. Assume the density of water is
1000 kg/m3.
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Solution: This is a basic mass conservation problem. In words, we have:

the change
of mass of water

in the bathtub
in a given

unit of time

=

time rate of
mass of water
entering the

bathtub

–

time rate of
mass of water

leaving the
bathtub

There is no mass coming out, which leaves us with:

the change
of mass of water

in the bathtub
in a given

unit of time

=

time rate of
mass of water
entering the

bathtub

So, the change of the mass in a given unit of time in the tub is just
equal to the mass flow rate into the tube:

ṁin =

	
A
ρV⃗ · n⃗dA

simplifies to
−−−−−−−−→ ρVA

It simplifies to ρVA because ρ and V⃗ are constant and can be pulled
out of the area integral. In addition, it is assumed that the velocity and
the normal are in the same direction. Plugging in numbers:

ṁin = ρVA = (1000) (1.2)
(
π

4
0.042

)
= 0.302kg/s

Thus the tube fills at a rate of 0.302 kg/s. The total mass of water that
the tube (masstotal) can hold is the volume of the tub multiplied by the
density of water:

masstube = (1000) (1.3 × 0.6 × 0.4) = 312kg

The length of times to fill is:

time =
masstotal

ṁin
=

312kg
0.302kg/s

= 1033 s = 17 minutes
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1.3 The divergence of the velocity vector in spherical coordinates can be
written as:

∇⃗ · V⃗ =
1
r2

∂
(
r2Vr

)
∂r

+
1

r sin (θ)
∂

∂θ
(Vθ sin (θ)) +

1
r sin (θ)

∂Vϕ
∂ϕ

where Vr, Vθ, and Vϕ are the velocity coordinates in the r−, θ−, and ϕ−
direction, respectively. Determine if a flow with the following flow field
velocity is incompressible:

Vr = −U cos (θ)
(
1 −

3R
2r
+

R3

2r3

)

Vθ = U sin (θ)
(
1 −

3R
4r
−

R3

4r3

)
Vϕ = 0

where R and U are constants (note, R is not the gas constant in this prob-
lem).

Solution: This one is simple enough. We just have to plug in the Vr,
Vtheta, and Vz expression into the divergence of velocity equation given
for spherical coordinates and see if it is equal to zero, since the diver-
gence of velocity is zero for an incompressible flow. The easiest term in
the velocity divergence term is the last one since Vϕ is zero:

1
r sin θ

∂Vphi

∂ϕ
=

1
r sin θ

∂0
∂ϕ
= 0

The next term we will look is the first term of the velocity divergence.
Before we do anything, let’s break out the derivative using the product
rule:

1
r2

∂
(
r2Vr

)
∂r

=
1
r2 r2︸︷︷︸
=1

∂Vr

∂r
+

1
r2 Vr

∂r2

∂r︸︷︷︸
=2r

(product rule)

=
∂Vr

∂r
+

2
r

Vr

(1.1)

We can insert Vr into Equation 1.1 to get:
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1
r2

∂
(
r2Vr

)
∂r

=
∂Vr

∂r
+

2
r

Vr

=
∂

∂r

(
−U cos (θ)

(
1 −

3R
2r
+

R3

2r3

))
+

2
r

(
−U cos (θ)

(
1 −

3R
2r
+

R3

2r3

))
= −U cos θ

((
+

3R
2r2 − 3

R3

2r4

))
− U cos θ

((
2
r
−

3R
r2 +

R3

r4

))
= −U cos θ

(
2
r
−

3
2r2 −

1
2

R3

r4

)
Now onto the second term. We can do the same thing for the second

term as we did for the first term. That is, we can expand out the derivative
using the product rule:

1
r sin θ

∂

∂θ
(Vθ sin (θ)) =

1
r sin θ

sin θ︸       ︷︷       ︸
= 1

r

∂Vθ
∂θ
+

1
r sin θ

Vθ
∂ sin θ
∂θ︸ ︷︷ ︸
=cos θ

So now we can plug in Vθ into the above equation to get:

1
r sin (θ)

∂

∂θ
(Vθ sin (θ)) =

1
r
∂Vθ
∂θ
+

cos θ
r sin θ

Vθ

=
1
r
∂

∂θ

(
U sin θ

(
1 −

3R
4r
−

R3

4r3

))
+

cos θ
r sin θ

U sin θ
(
1 −

3R
4r
−

R3

4r3

)
=

1
r

U cos θ
(
1 −

3R
4r
−

R3

4r3

)
+

U
r

cos θ
(
1 −

3R
4r
−

R3

4r3

)
= U cos θ

(
2
r
−

3R
r2 −

R3

2r4

)
(1.2)

As you can see, Equation 1.3 and 1.2 are negatives of each other.
Therefore, adding them up gives us zero and, hence, constitutes an in-
compressible flow.

1.4 An incompressible fluid with density ρ = 1000 kg/m3 travels through
a channel with a rectangular cross-section of dimensions 25 mm by 30
mm. The average velocity of the flow in this portion of the channel is
1 m/s. If the flow is at a steady state, what will the velocity be if the
rectangular cross-section increases to 50 mm by 50 mm? Start from the
integral form of the continuity equation.
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Solution: Starting from the integral form of the continuity equation we
have: $

V

∂ρ

∂t
+

	
A
ρV⃗ · n⃗dA = 0

The slow is at steady state, so the time derivative goes away and we are
left with: 	

A
ρV⃗ · n⃗dA = 0

We essentially have two sections (areas) that have flow: an inlet and
an exit. So, we can break up the area integral into two pieces:"

inlet
ρV⃗ · n⃗dA +

"
outlet
ρV⃗ · n⃗dA = 0

We are going to assume the density and the velocity do not change
with the cross-sectional area. In addition, we will assume the inlet nor-
mal is −î and the outlet normal is î, giving us:

ρinletV⃗inlet · −îAinlet + ρoutletV⃗outlet · îAoutlet = 0

If the velocity is only in the x−direction, then we have:

− ρinletuinletAinlet + ρoutletuoutlet · îAoutlet = 0

− uinletAinlet + uoutletAoutlet = 0
solve for uoutlet
−−−−−−−−−−→ uoutlet = uinlet

Ainlet

Aoutlet

Plugging in numbers leads to:

uoutlet = 1m/s
(30) (25)
(50) (50)

= 0.3m/s

1.5 Air in a pipe with a diameter of 10 cm starts out at a temperature of 700
K and pressure of 4 × 105 Pa. The initial flow velocity is 10 meters per
second. If the pipe diameter contracts to 5 cm with the air speeding up to
115 m/s and the temperature decreases to 500 K, what is the pressure af-
ter the contraction? You can assume the molecular weight of air is 28.97
kg/kmol and a steady state. Start from the integral form of the conti-
nuity equation.
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Solution: This one is very similar to the previous problem except now
we are no longer assuming a constant density. We are still going to start
with the intgral form of the continuity equation:

$
V

∂ρ

∂t
+

	
A
ρV⃗ · n⃗dA = 0

Again, like last time, we are going to assume steady state:

	
A
ρV⃗ · n⃗dA = 0

We have an inlet and an exit section, leaving us with:

"
inlet
ρV⃗ · n⃗dA +

"
outlet
ρV⃗ · n⃗dA = 0

We are going to assume the inlet surface has a normal of −î and the
outlet surface has a normal of î. In addition, we are going to assume the
velocity is only in the x−direction, giving us:

ρinletuinlet î ·
(
−î

)
Ainlet + ρoutletuoutlet î ·

(
î
)

Aoutlet = 0
leads to
−−−−−→ −ρinletuinletAinlet + ρoutletuoutletAoutlet = 0

Solve for the density at the exit:

ρoutlet =
ρinletuinletAinlet

uoutletAoutlet

use ρ= p
RT

−−−−−−−→ =
pinlet

RTinlet

uinletAinlet

uoutletAoutlet

(1.3)

Next, utilize the fact that (for an ideal gas), p = ρRT and plug in poutlet
RToutlet

for ρoutlet in Equation 1.3 to get:

poutlet

RToutlet︸  ︷︷  ︸
=ρoutlet

=
pinlet

RTinlet

uinletAinlet

uoutletAoutlet

Solve for poutlet to get:
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poutlet = pinlet
Toutlet

Tinlet

uinlet

uoutlet

Ainlet

Aoutlet

= 4 × 105Pa
500K
700K

10m/s
115m/s

(10 cm)2

(5 cm)2

= 99378Pa

1.6 The velocity profile of flow in a pipe in the z−direction (Vz) is given by:

Vz =
∆pR2

4µL

(
1 −

r2

R2

)
where r is the radial component (in cylindrical coordinates), R in this
case is the radius of the pipe, L is the length of the pipe, ∆p is con-
sidered to be a pressure difference between the entrance and exit of the
pipe, and µ is something called the dynamic viscosity. Obtain an expres-
sion for the mass flow rate through the pipe.

Solution: The mass flow is given by:

ṁ =
"

A
ρV⃗ · n⃗dA

The velocity in the z−direction is given and it is assumed that the normals
of the surface areas of the flow passing through the pipe is also in the
z−direction. Therefore, we can replace the dot product of the velocity
with the normal with just the velocity in the z−direction:

ṁ =
"

A
ρVzdA

We are now dealing with cylindrical coordinates. If you recall, the
area, dA in cylindrical coordinates will just be given by rdrdθ, therefore
we now have:

ṁ =
"

A
ρVzrdrdθ

We can replace Vz with the expression given in the problem:

ṁ =
"

A
ρ

(
∆pR2

4µL

(
1 −

r2

R2

))
rdrdθ
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We can pull out the constant ρ∆pR2

4µL from the problem and integrate over
r from 0 to R and integrate over θ from 0 to 2π to get:

ṁ = ρ
∆pR2

4µL

∫ 2

0
π

∫ R

0

(
1 −

r2

R2

)
rdrdθ

= ρ
∆pR2

4µL
2π

∫ R

0

(
1 −

r2

R2

)
rdr

= ρ
∆pR2

4µL
2π

∫ R

0

(
r −

r3

R2

)
dr

= ρ
∆pR2

4µL
2π

(
1
2

r2 −
1
4

r4

R2

) ∣∣∣∣∣∣R
0

= ρ
∆pR2

4µL
2π

(
1
2

R2 −
1
4

R2
)

Therefore, after the algebra:

ṁ = ρ
∆pR4π

8µL

1.7 If the velocity profile of flow in a channel is given by: u = U∞
H y, what

is the mass flow rate through the channel per length into the page if the
height of the channel is H?

Solution: Assume that the velocity is only in the x−direction and that
the normal is also in the x−direction. Also, assume the density is con-
stant. Therefore:"

A
ρV⃗ · n⃗dA = ρ

"
A

udA

= ρ

∫ H

0
udy

= ρ

∫ H

0

U∞
H

ydy

= ρ
U∞
H

1
2

y2

∣∣∣∣∣∣H
0
= ρ

U∞H
2

(
per width into the board

)
1.8 Given the following velocity vector: V⃗ = Cy cos(5x)î + D sin(5x)y2 ĵ,

what do C and D need to be in order for this vector field to be considered
incompressible flow?
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Solution: Take the divergence of velocity:

∇⃗ · V⃗ =
∂

∂x
(Cy cos (5x)) +

∂

∂y

(
D sin (5x) y2

)
= −5Cy sin (5x) + 2Dy sin (5x)

In order for the flow to be incompressible, the above expression must
equal zero. Thus:

− 5Cy sin (5x) + 2Dy sin (5x) = 0

∴ C =
2
5

D

1.9 The flux of a quantity given by the vector, f⃗ = 5xyî + 10y ĵ + 0k̂, passes
through a cube with dimensions (in x−, y−, and z− directions) of 2 x 1
x 1 (assume the cube “starts” at the origin). Find the value of the area
integral,

�
A f⃗ · n⃗dA.

Solution: The geometry for this problem is simple enough:

x

y

z

The first thing to notice in this problem is that the flux is two-dimensional
since the f⃗ vector does not have a component in the z−direction. There-
fore, the front and back faces (i.e. the z−faces) will not be utilized). With
this in mind, we can break out the area integral into the following four
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separate integrals corresponding to the left, right, bottom, and top faces,
i.e.:

	
A

f⃗ · n⃗dA =
"

left
f⃗ ·

(
−î

)
dA +

"
right

f⃗ ·
(
î
)

dA

+

"
bottom

f⃗ ·
(
− ĵ

)
dA +

"
top

f⃗ ·
(

ĵ
)

dA

Plugging in the expression for the flux vector and taking the dot products,
we get:

	
A

f⃗ · n⃗dA =
"

left
−5xydA +

"
right

5xydA

+

"
bottom

−10ydA +
"

top
10ydA

Now we need to perform these integrals. The limits of the integration
depend on which face you are at. For example, the left face lies on the
x = 0 place with y− and z−varying. Therefore, the left face needs to be
integrated with respect to y and z. The right face is at the x = 2 plane with
y and z varying, so the right face needs to be integrated over y and z. The
top and bottom faces (which are located at y = 1 and y = 0, respectively)
need to be integrated over the x and z coordinates. Thus:

	
A

f⃗ · n⃗dA =
(∫ 1

0

∫ 1

0
−5xydydz

) ∣∣∣∣∣∣
x=0
+

(∫ 1

0

∫ 1

0
5xydydz

) ∣∣∣∣∣∣
x=2

+

(∫ 1

0

∫ 2

0
−10ydxdz

) ∣∣∣∣∣∣
y=0
+

(∫ 1

0

∫ 2

0
10ydxdz

) ∣∣∣∣∣∣
y=1

Notice that, once the integrals are evaluated, the values of x or y need
to be set to match whether the surface is the left (x = 0), right (x = 2),
bottom (y = 0), or the top (y = 1) surface.

Evaluating the integrals leads to:

	
A

f⃗ · n⃗dA =
(
−5x

1
2

y2
∣∣∣∣∣y=1

y=0
z
∣∣∣∣∣z=1

z=0

) ∣∣∣∣∣∣
x=0︸                      ︷︷                      ︸

=0

+

(
5x

1
2

y2
∣∣∣∣∣y=1

y=0
z
∣∣∣∣∣z=1

z=0

) ∣∣∣∣∣∣
x=2︸                    ︷︷                    ︸

=5

+

(
−10yx

∣∣∣∣∣x=2

x=0
z
∣∣∣∣∣z=1

z=0

) ∣∣∣∣∣∣
y=0︸                    ︷︷                    ︸

=0

+

(
10yx

∣∣∣∣∣x=2

x=0
z
∣∣∣∣∣z=1

z=0

) ∣∣∣∣∣∣
y=1︸                 ︷︷                 ︸

=20
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Adding them up thus equals 25!
1.10 Sketch the velocity vector given by: V⃗ = − sin(y)î + sin(x) ĵ.

Solution: We are asked to plot this velocity vector on an x and y grid.
This essentially means calculating the u and v values at different x and
y points and plotting the u and v as a vector on an xy grid. The u values
are just obtained by calculating − sin(y) with the y− plugged in and the v
values are calculated via sin(x) with the x− plugged in. This is done for
some x and y values below:

x y u = − sin(y) v = sin(x)
0 0 0 0
1 0 0 0.84
1 1 -0.84 0.84
0 1 -0.84 0
-1 -1 0.84 -0.84
-1 0 0 -0.84
0 -1 0.84 0
2 0 0 0.909
2 2 -0.909 0.909
. . . .
. . . .
. . . .

The values of u and v are made into a “vector” and plotted at the
different x and y points. This can all be done relatively easy in either a
Matlab or Python script. An example Matlab script is given below along
with the corresponding plot:

clc

clear

x = [-2*pi:0.5:2*pi]; %sets up an x-axis

y = [-2*pi:0.5:2*pi]; %sets up a y-axis

[x,y] = meshgrid(x,y); %takes the axis info and makes a grid

%of x and y values

u = -sin(y); %calculates the u velocity

v = sin(x); %calculates the v velocity

quiver(x,y,u,v) %draws the velocity vectors on the grid

xlabel(’x-axis’)

ylabel(’y-axis’)

title(’velocity vector plot’)
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2
Chapter 2 Solutions

Problems

2.1 Given an initial temperature distribution of T (x) = sin(x), create a table
similar to Table 2.1 for times of 0 s, 0.5 s, 1 s, and 1.5 s when u = 1 m/s.
Plot the final temperature distribution at t = 1.5 s.

Solution: The table is filled out below and the figure at t = 1.5 s is
given on the next page.

x (m) T (celsius) T (celsius) T (celsius) T (celsius)
(@t = 0) (@t = 0.5 s) (@t = 1 s) (@t = 1.5 s)

(T=T(x,0)) (T=T(x-u*0.5,0)) (T=T(x-u*1,0)) (T=T(x-u*1.5,0))
0 0 -0.48 -0.84 -0.99

1.0 0.84 0.48 0 -0.48
2.0 0.909 0.99 0.84 0.48
3.0 0.141 0.6 0.909 0.99
4.0 -0.76 -0.35 0.141 0.6
5.0 -0.96 -0.98 -0.76 -0.35
6.0 -0.28 -0.7 -0.96 -0.98

16
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0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

x (m)

T
(◦

C
) Advected

at 1 m/s

Notice that the sine plot is just shifted to the right by 1.5*1 in the
x−direction.

2.2 Explain why the characteristic curves for the advection equation are par-
allel when the velocity is a constant value.

Solution: The reason why the characteristic curves are parallel for con-
stant velocity is because the characteristic curves provide a way for de-
termining how fast the fluid elements are advecting via the inverse of
the slope of the t − x curve. Since the velocity of the fluid elements are
the same throughout, the various characteristic curves must also have the
same slope.

2.3 Given an initial x−velocity distribution of:

u(x, 0) =


1 x ≤ 0.5

2x 0.5 < x < 1

2 x ≥ 1

Does a shock form when the inviscid Burgers’ equation is applied to this
initial velocity field? Why or why not? Plot the characteristic curves.

Solution: In order to determine if a shock forms, we can plot the charac-
teristic curves and see if they overlap. The characteristic curves are just
the t vs. x curves of various fluid elements as they travel. The velocity of
the fluid elements do not change since the inviscid Burgers’ equation, in
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Lagrangian form, is just Du
Dt = 0. Therefore, we can pick a few points on

our initial velocity distribution, call them fluid elements, and track their
position in time via characteristic curves. If the curves overlap, then a
shock is considered to have developed since there is an “overtaking” of
one fluid element going past another. The initial points (i.e. initial fluid
elements) we will pick will be (you can pick whichever points you would
like):

x = 0, which has a velocity of u = 1 (Fluid element 1)

x = 0.5, which has a velocity of u = 1 (Fluid element 2)

x = 0.75, which has a velocity of u = 1.5 (Fluid element 3)

x = 1, which has a velocity of u = 2 (Fluid element 4)

x = 1.5, which has a velocity of u = 2 (Fluid element 5)

We can plot the characteristic curves (the t vs x curves) with the slopes
being the inverse of velocity, giving us:

0 1 2 3 4 5
0

1

2

3

x

t

Fluid element 1
Fluid element 2
Fluid element 3
Fluid Element 4
Fluid element 5

Notice that the characteristic curves appear to be diverging from each
other...hence no shock will form as time passes. This is called rarefrac-
tion.

2.4 Find an expression for the material derivative of temperature if the tem-
perature is given by the following equation T = e−t(sin(2x)+ cos(y)) and
if the velocity vector is: V⃗ = î + 2 ĵ.
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Solution: The material derivative of the temperature in Cartesian co-
ordinates is given by:

DT
Dt
=
∂T
∂t
+ u
∂T
∂x
+ v
∂T
∂y
+ w
∂T
∂z

There does not appear to be a z−coordinate, so the z−will go away. The
local time derivative of the temperature is given by:

∂T
∂t
=
∂

∂t

(
e−t(sin(2x) + cos(y))

)
= −e−t(sin(2x) + cos(y)) (2.1)

The x−derivative is:

∂T
∂x
=
∂

∂x

(
e−t(sin(2x) + cos(y))

)
= 2e−t cos(2x) (2.2)

The y−derivative is:

∂T
∂y
=
∂

∂y

(
e−t(sin(2x) + cos(y))

)
= −e−t sin(y) (2.3)

The material derivative can now easily be obtained:

DT
Dt
=
∂T
∂t
+ u
∂T
∂x
+ v
∂T
∂y
+ w
∂T
∂z︸︷︷︸
=0

= −e−t(sin(2x) + cos(y))︸                      ︷︷                      ︸
from Equation 2.1

+u e−t cos(2x)︸       ︷︷       ︸
from Equation 2.2

+v

 −e−t sin(y)︸      ︷︷      ︸
from Equation 2.3


Plug in 1 for u and 2 for v to get:

DT
Dt
= −e−t(sin(2x) + cos(y)) + 2e−t cos(2x) − 2e−t sin(y)

2.5 For the temperature equation used in Problem 2.4, what is the advec-
tive transport term of temperature if the velocity field is given by V⃗ =
2xyî − y2 ĵ when x = 2, y = 1, and t = 1?

Solution: The advection transport term is considered the spatial terms
in the material derivative (i.e. everything but the local time derivative).
In the previous example, the x−derivative of temperature was:
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∂T
∂x
= 2e−t cos(2x)

and the y−derivative was:

∂T
∂y
= −e−t sin(y)

The u−velocity is given by 2xy and the v−velocity is given by −y2.
For x = 2, y = 1, and t = 1, the advection term becomes:

u
∂T
∂x
+ v
∂T
∂y
= 2xy

(
2e−t cos(2x)

)
− y2

(
−e−t sin(y)

)
= 2 (2) (1)

(
2e−1 cos(2 · 2)

)
+ 12

(
e−1 sin(1)

)
= −1.614

2.6 Given the velocity field vector: V⃗ = y (A cos(2t) + B sin(3t)) î + 6xyt ĵ
m/s, what is the acceleration of the fluid at x = 0.5 m and y = 0.5 m at
time, t = 1 s?

Solution: Another material derivative question. In order to find the accel-
eration, the material derivative of velocity needs to be calculated. Again,
it appears there is only an x−velocity and a y−velocity in our velocity
vector:

u = y (A cos(2t) + B sin(3t)) m/s

and

v = 6xyt m/s

The material derivative of the velocity vector is given by (Equation
2.13 without the z−component):


Du
Dt

Dv
Dt

 =

∂u
∂t + u ∂u

∂x + v ∂u
∂y

∂v
∂t + u ∂v

∂x + v ∂v
∂y


The local time derivative is calculated to be:
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∂u
∂t

∂v
∂t

 =

∂
∂t (y (A cos(2t) + B sin(3t)))

∂
∂t (6xyt)

 =

y (−2A sin(2t) + 3B cos(3t))

6xy


(2.4)

The x−derivative term of advection:


u ∂u
∂x

u ∂v
∂x

 = (y (A cos(2t) + B sin(3t)))︸                          ︷︷                          ︸
u


∂
∂x (y (A cos(2t) + B sin(3t)))

∂
∂x (6xyt)



=


0

6yt (y (A cos(2t) + B sin(3t)))


(2.5)

The y−derivative term of advection is:


v ∂u
∂y

v ∂v
∂y

 = 6xyt︸︷︷︸
v


∂
∂y (y (A cos(2t) + B sin(3t)))

∂
∂y (6xyt)



=


6xyt (A cos(2t) + B sin(3t))

36x2yt2


(2.6)

Adding up Equations 2.5, 2.6, and 2.4, we get the following expression
for the material derivative of velocity:
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Du
Dt

Dv
Dt

 =

∂u
∂t + u ∂u

∂x + v ∂u
∂y

∂v
∂t + u ∂v

∂x + v ∂v
∂y



=


y (−2A sin(2t) + 3B cos(3t)) + 0 + 6xyt (A cos(2t) + B sin(3t) )

6xy + 6yt (y (A cos(2t) + B sin(3t))) + 36x2yt2


plug in values
−−−−−−−−−→ =


0.5 (−2A sin(2) + 3B cos(3)) + 0 + 6(0.5)(0.5)(1) (A cos(2) + B sin(3))

6(0.5)(0.5) + 6(0.5)(1) ((0.5) (A cos(2) + B sin(3))) + 36(0.5)2(0.5)(1)2



=


−A(0.909) + 1.5B(−0.98999) + 1.5A(−0.416) + 1.5B(0.1411)

1.5 + 1.5A(−0.416) + 1.5B(0.1411) + 4.5



=


−1.533A − 1.2733B

6 − 0.624A + 0.21165B

 −−−−−−−−−−−−→if A = 1 and B = 1


−2.81

5.59


2.7 The Lagrangian and non-conservation form of the continuity equation

can be obtained by applying mass conservation to a moving fluid el-
ement, which states that the mass of a moving fluid element does not
change in time. Mathematically, this can be written as:

d
dt

$
V(t)
ρdV = 0

Using the ideas from Section 2.4, where we applied a time derivative
to the momentum of a moving fluid element, derive the Lagrangian form
of the mass continuity equation as well as the non-conservation form of
the continuity equation.

Solution: We can sneak in the time derivative into the volume integral
of ρ and utilizing the product rule:
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d
dt

$
V(t)
ρdV =

$
V(⊔)

ρdV
Dt

=

$
V(t)

(
Dρ
Dt

dV + ρ
D (dV)

Dt

) (2.7)

Recalling the the material derivative of volume is given by:

D (dV)
Dt

= ∇⃗ · V⃗dV

We can plug in the equation above for the material derivative of the in-
finitesimal volume into Equation 2.7 to get:

d
dt

$
V(t)
ρdV =

$
V(t)

(Dρ
Dt

dV + ρ∇⃗ · V⃗dV
)

=

$
V(t)

(Dρ
Dt
+ ρ∇⃗ · V⃗

)
dV︸                             ︷︷                             ︸

=0

Since the integral needs to equal zero for continuity and since the volume
is completely arbitrary (meaning that the limits of the volume integral
could be anything), then the integrand must also be zero, therefore:

Dρ
Dt
+ ρ∇⃗ · V⃗ = 0

Which is the Lagrangian form of the continuity equation. We can also
expand the material derivative out into the non-conservation form of the
continuity equation:

∂ρ

∂t
+ V⃗ · ∇⃗ρ + ρ∇⃗ · V⃗ = 0

2.8 Suppose the density of a fluid element is given by the expression: ρ =
e−0.005t + 1. It travels with a velocity of 2 m/s in the x−direction. What is
the value of the material derivative after it has gone 60 meters?

Solution: The density of a fluid element as it moves changes in time
given the expression in the problem. Assuming the starting time is t = 0
s, the time when the fluid element has gone 60 meters is (60 meters)/(2
meters per second) = 30 seconds. Thus, the material derivative at 30 sec-
onds is nothing but:



24 Chapter 2 Solutions

Dρ
Dt
= −0.005e−0.005∗30 = −0.004kg/s

2.9 What is the summation force vector on a cube fluid element that is
1 meter by 1 meter by 1 meter in size if the density is 1 kg/m3 and
V⃗ = 2xî + 4y ĵ?

Solution: The force balance on a fluid element is given by:

$
V(t)
ρ

DV⃗
Dt

dV = ΣF⃗

Since the velocity given contains spatial coordinates, the material deriva-
tive of velocity should be calculated in an Eulerian description. Thus:

DV⃗
Dt
=
∂V⃗
∂t
+ V⃗ · ∇⃗V⃗

The velocity vector given does not appear to be a function of time,
therefore the system must be in a steady state. Thus, only the advective
term needs to be calculated:

V⃗ · ∇⃗V⃗ =


u ∂u
∂x + v ∂u

∂y

u ∂v
∂x + v ∂v

∂y

 =

2x · 2 + 4y · 0

2x · 0 + 4y · 4

 =


4x

16y


Integrating over volume, we get:

$
V(t)
ρ

DV⃗
Dt

dV =
∫ 1

0

∫ 1

0

∫ 1

0
ρ


4x

16y

 dxdydz

= ρ


2x2

∣∣∣∣∣1
0
y
∣∣∣∣∣1
0
z
∣∣∣∣∣1
0

8y2
∣∣∣∣∣1
0
x
∣∣∣∣∣1
0
z
∣∣∣∣∣1
0

 =

2 kg m/s

8 kg m/s


The summation of forces equals the above expression.

2.10 The gradient of a scalar function, f , is defined as:

∇⃗ f ≡ î
∂ f
∂x
+ ĵ
∂ f
∂y
+ k̂
∂ f
∂z
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Show that
(
V⃗ · ∇⃗

)
f = V⃗ ·

(
∇⃗ f

)
Solution: Given how ∇⃗ f is defined above, V⃗ ·

(
⃗nabla f

)
is just:

V⃗ ·
(
∇⃗ f

)
=

(
uî + v ĵ + wk̂

)
·

(
î
∂ f
∂x
+ ĵ
∂ f
∂y
+ k̂
∂ f
∂z

)
= u
∂ f
∂x
+ v
∂ f
∂y
+ w
∂ f
∂z

This is the same as
(
V⃗ · ∇⃗

)
f operating on f , observe:

(
V⃗ · ∇⃗

)
f =

((
uî + v ĵ + wk̂

)
·

(
î
∂

∂x
+ ĵ
∂

∂y
+ w
∂

∂z

))
f

=

(
u
∂

∂x
+ v
∂

∂y
+ w
∂

∂z

)
f

= u
∂ f
∂x
+ v
∂ f
∂y
+ w
∂ f
∂z
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Problems

3.1 Find the stress vector acting on a surface if the stress tensor is:

⃗⃗T =


5 −3 10
−3 2 4
10 4 7


and the normal of the surface is given by: n⃗ = 1

√
2
î + 1

√
2

ĵ + 0k̂.

Solution: The stress vector can be obtained by simply doing a matrix

multiplication of ⃗⃗T with n⃗. Before we do that, we should check to en-
sure n⃗ is a unit normal, i.e. : ||⃗n|| =

√
n⃗ · n⃗ =

√
1
√

2
+ 1
√

2
= 1. Check.

Now let’s perform the matrix multiplication to find the stress vector (i.e.
traction vector), τ⃗:

τ⃗ =


5 −3 10

−3 2 4

10 4 7





1
√

2

1
√

2

0


=



5
√

2
− 3
√

2

− 3
√

2
+ 2
√

2

10
√

2
+ 4
√

2


=



2
√

2

− 1
√

2

14
√

2


3.2 Do you spot any potential issue with the stress tensor below?

⃗⃗T =


5x 4x 10z
−3y 2xy 4x
2z 4y 7xyz
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Solution: Yes, the stress tensor is not symmetric. In general, the stress
tensor should be symmetric due to the conservation of angular momen-
tum. We illustrated in the book that not having a symmetric tensor can
lead to an imbalance of forces (and hence torque) on an infinitesimal
fluid element. Since an infinitesimal fluid element cannot resist motion
at all (since there is no moment of inertia), the imbalance of torque would
cause the fluid element to infinitely accelerate.

3.3 A stress tensor (in pascals) of a flow is given by:

⃗⃗T =


5x −3y 10z
−3y 5y 4x
10z 4x 5z


What is the acceleration of a fluid particle with density of 1.2 kg

m3 (as-
suming no body force)?

Solution: Here we must use Cauchy’s first law of motion:

ρ
DV⃗
Dt
= ∇⃗ ·

⃗⃗T + ρg⃗

If there is no body force, then:

ρ
DV⃗
Dt
= ∇⃗ ·

⃗⃗T

The acceleration of the fluid element is just the material derivative of
velocity of the fluid element, thus:

acceleration =
DV⃗
Dt
=

1
ρ
∇⃗ ·
⃗⃗T

Therefore, the acceleration of the fluid element in this case is:

acceleration =
1

1.2

(
∂
∂x

∂
∂y

∂
∂z

) 
5x −3y 10z
−3y 5y 4x
10z 4x 5z


=

1
1.2

(
5 − 3 + 10 0 + 5 + 0 0 + 0 + 5

)
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The acceleration is then (written in column vector form):

acceleration =


10

4.17
4.17

 m/s2

3.4 If the velocity field of a given flow is given by:

V⃗ = A cos(x)î + B sin(y) ĵ +C tan(z)k̂

Determine an expression for the total force (per volume) acting on the
fluid at a given (x, y, z) point.

Solution: This is another Cauchy first law problem. Again, Cauchy’s
first law is:

ρ
DV⃗
Dt
= ∇⃗ ·

⃗⃗T + ρg⃗

The right-hand side is the total force (per volume). Thus, if we found
an expression for the left-hand side by finding the material derivative of
the velocity and multiplied by density, we would have an expression for
the total force.

The material derivative of velocity can be written in Cartesian coordi-
nates (in an Eulerian description) as:

DV⃗
Dt
=



∂u
∂t + u ∂u

∂x + v ∂u
∂y + w ∂u

∂z

∂v
∂t + u ∂v

∂x + v ∂v
∂y + w ∂v

∂z

∂w
∂t + u ∂w

∂x + v ∂w
∂y + w ∂w

∂z


In our example, u = A cos(x), v = B sin(y), w = C tan(z). In addition,

the velocity field appears to be at a steady state, so the time derivatives
go away. We can start crossing off terms in the material derivative:
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DV⃗
Dt
=



A cos(x) ∂(A cos(x))
∂x + B sin(y)

����* 0
∂(A cos(x))
∂y +C tan(z)

�
���* 0

∂(A cos(x))
∂z

A cos(x)
�
���*

0
∂(B sin(y))
∂x + B sin(y) ∂(B sin(y))

∂y +C tan(z)
�

���*
0

∂(B sin(y))
∂z

A cos(x)
����* 0
∂(C tan(z))
∂x + B sin(y)

����* 0
∂(C tan(z))
∂y +C tan(z) ∂(C tan(z))

∂z


This leads to the following expression for the force per volume after

the derivatives have been taken:

force per volume = ρ
DV⃗
Dt
= ρ


−A2 cos(x) sin(x)

B2 sin(y) cos(y)

C2 tan(z) sec2(z)


3.5 For the velocity field given in Problem 3.4, if there are no body forces

and if the dynamic viscosity is considered a constant, find an expression
for the pressure gradient (given A = 1, B = 1, and C = 0). Be sure to
check if this flow is incompressible or not. Is this flow at a steady state?

Solution: For A = 1, B = 1, C = 0, the force per volume (given
from the previous problem) is:

force per volume = ρ
DV⃗
Dt
= ρ


− cos(x) sin(x)

sin(y) cos(y)

0


(3.1)

Since there is no time variation in the velocity field, given by: V⃗ =
cos(x)î+ sin(y) ĵ, the problem is at a steady state. We should also deter-
mine if incompressible:

(
∂
∂x

∂
∂y

) (cos(x)
sin(y)

)
= − sin(x) + cos(y) , 0 (3.2)

Thus, the flow is not an incompressible flow. Now we need to find the
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pressure gradient. If we assume the compressible Navier-Stokes equa-
tions in Lagrangian form with no body force and a constant viscosity,
we have:

ρ
DV⃗
Dt
= −∇⃗p −

2
3
µ∇⃗

(
∇⃗ · V⃗

)
+ µ∇⃗ ·

(
∇⃗V⃗ +

(
∇⃗V⃗

)†)
Solving for the pressure gradient gives us:

∇⃗p = −
ρDV⃗

Dt
+

2
3
µ∇⃗

(
∇⃗ · V⃗

)
− µ∇⃗ ·

(
∇⃗V⃗ +

(
∇⃗V⃗

)†)
We already obtained ρDV⃗

Dt from Equation 3.1. We can now find an
expression for 2

3µ∇⃗
(
∇⃗ · V⃗

)
. From Equation 3.39, we have:

2
3
µ∇⃗

(
∇⃗ · V⃗

)
=

2
3
µ



∂
(
∇⃗·V⃗

)
∂x

∂
(
∇⃗·V⃗

)
∂y

∂
(
∇⃗·V⃗

)
∂z


We can plug our velocity divergence from Equation 3.2 into the above
equation to get:

2
3
µ∇⃗

(
∇⃗ · V⃗

)
=

2
3
µ


− cos(x)

− sin(y)

0


(3.3)

Next up we need to calculate the µ∇⃗ ·
(
∇⃗V⃗ +

(
∇⃗V⃗

)†)
term. To calculate

this term, we need to first find the velocity gradient. The velocity gradient
is just determined by the following expression:

∇⃗V⃗ =



∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z
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Plugging in our velocity field of V⃗ = cos(x)î + sin(y) ĵ leads to:

∇⃗V⃗ =


− sin(x) 0 0

0 cos(y) 0

0 0 0


Thus, ∇⃗V⃗ +

(
∇⃗V⃗

)†
becomes:

∇⃗V⃗ +
(
∇⃗V⃗

)†
=


− sin(x) 0 0

0 cos(y) 0

0 0 0


+


− sin(x) 0 0

0 cos(y) 0

0 0 0



=


−2 sin(x) 0 0

0 2 cos(y) 0

0 0 0


The diffusive transport term then becomes:

µ∇⃗ ·
(
∇⃗V⃗ +

(
∇⃗V⃗

)†)
= µ

(
∂
∂x

∂
∂y

∂
∂z

)

−2 sin(x) 0 0

0 2 cos(y) 0

0 0 0


= µ

(
−2 cos(x) −2 sin(y) 0

)
(3.4)

Putting together Equations 3.1, 3.3, and 3.4 (written as a column vec-
tor) leads to the following for the pressure gradient:
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∇⃗p = −
ρDV⃗

Dt
+

2
3
µ∇⃗

(
∇⃗ · V⃗

)
− µ∇⃗ ·

(
∇⃗V⃗ +

(
∇⃗V⃗

)†)

= −


ρ


− cos(x) sin(x)

sin(y) cos(y)

0


+

2
3
µ


− cos(x)

− sin(y)

0


− µ


−2 cos(x)

−2 sin(y)

0




3.6 Determine the Newtonian stress tensor if the pressure is given by 10x

pascals and a velocity field of V⃗ = 2x sin(2y)î + x cos(2y) ĵ m/s at loca-
tion x = 1 m, y = 2 m. Assume a dynamic viscosity of 10−4 Pa·s.

Solution: The Newtonian stress tensor is given by:

⃗⃗T = −p⃗⃗I −
2
3
µ
(
∇⃗ · V⃗

) ⃗⃗I + µ (∇⃗V⃗ +
(
∇⃗V⃗

)†)
=



−p − 2
3µ

(
∇⃗ · V⃗

)
+ 2µ ∂u

∂x µ
(
∂v
∂x +

∂u
∂y

)
µ
(
∂w
∂x +

∂u
∂z

)
µ
(
∂u
∂y +

∂v
∂x

)
−p − 2

3µ
(
∇⃗ · V⃗

)
+ 2µ ∂v

∂y µ
(
∂w
∂y +

∂v
∂z

)
µ
(
∂u
∂z +

∂w
∂x

)
µ
(
∂v
∂z +

∂w
∂y

)
−p − 2

3µ
(
∇⃗ · V⃗

)
+ 2µ ∂w

∂z


The velocity field has no z−component, so we can just write the stress

tensor in two-dimensions:

⃗⃗T = −p⃗⃗I −
2
3
µ
(
∇⃗ · V⃗

) ⃗⃗I + µ (∇⃗V⃗ +
(
∇⃗V⃗

)†)
=


−p − 2

3µ
(
∇⃗ · V⃗

)
+ 2µ ∂u

∂x µ
(
∂v
∂x +

∂u
∂y

)
µ
(
∂u
∂y +

∂v
∂x

)
−p − 2

3µ
(
∇⃗ · V⃗

)
+ 2µ ∂v

∂y


The pressure term is simple:

−p⃗⃗I =
(
−10x 0

0 −10x

) ∣∣∣∣∣∣
x=1
=

(
−10 0

0 −10

)
(3.5)

Next we need to find the divergence of velocity:
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∇⃗ · V⃗ =
(
∂
∂x

∂
∂y

) 
2x sin(2y)

x cos(2y)

 = 2 sin(2y) − 2x sin(2y)

Now that we have the divergence of velocity, we can find − 2
3µ

(
∇⃗ · V⃗

) ⃗⃗I
at x = 1 m, y = 2 m and a dynamic viscosity of 10−4 Pa via:

−
2
3
µ
(
∇⃗ · V⃗

) ⃗⃗I
=


− 2

3µ (2 sin(2y) − 2x sin(2y)) 0

0 − 2
3µ (2 sin(2y) − 2x sin(2y))


∣∣∣∣∣∣
x=1,y=2,µ=10−4

=


− 2

3 10−4 (2 sin(4) − 2 sin(4)) 0

0 − 2
3 10−4 (2 sin(4) − 2 sin(4))



=


0 0

0 0


(3.6)

Next up is the µ
(
∇⃗V⃗ +

(
∇⃗V⃗

)†)
term, The velocity gradient in 2D is:

∇⃗V⃗ =


∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

 =

∂(2x sin(2y))

∂x
∂(x cos(2y))
∂x

∂(2x sin(2y))
∂y

∂(x cos(2y))
∂y


=


2 sin(2y) cos(2y)

4x cos(2y) −2x sin(2y)


Using the velocity gradient above, the µ

(
∇⃗V⃗ +

(
∇⃗V⃗

)†)
turns out to be:
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µ
(
∇⃗V⃗ +

(
∇⃗V⃗

)†)

= µ


2 sin(2y) cos(2y)

4x cos(2y) −2x sin(2y)

 +

2 sin(2y) 4x cos(2y)

cos(2y) −2x sin(2y)



= µ


4 sin(2y) 4x cos(2y) + cos(2y)

cos(2y) + 4x cos(2y) −4x sin(2y)


∣∣∣∣∣∣
x=1,y=2,µ=10−4

=


4 sin(4) 5 cos(4)

5 cos(4) −4 sin(4)

 =

−3.027 −3.27

−3.27 3.027


(3.7)

Adding up Equations 3.5, 3.6, and 3.7, the stress tensor becomes:

⃗⃗T =
(
−10 0

0 −10

)
+


0 0

0 0

+

−3.027 −3.27

−3.27 3.027

 =
(
−13.027 −3.27
−3.27 −6.973

)
3.7 What is the pressure, in pascals, a person experiences when they have

dived 5 meters below the water surface? Assume atmospheric pressure
is 105 pascals.

Solution: This problem deals with hydrostatic pressure. The equation
of which is just:

p = ρ|gy|depth + patm

Plugging in the numbers from the problem gives us (assume water
density is 1000 kg/m3 and the gravitational acceleration is 9.8 m/s2:

p = ρ|gy|depth + patm = 1000 ∗ 9.8 ∗ 5 + 105 = 149000Pa

3.8 Estimate the shear stress (i.e. viscous force) on a surface defined by n⃗ = î
where the velocity distribution is given by:
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u =
U
H

y

v = w = 0

where U is a velocity parameter and H is a length scale parameter.

Solution: The shear stress comes from the µ
(
∇⃗V⃗ +

(
∇⃗V⃗

)†)
term in the

stress tensor, which is given by:

µ
(
∇⃗V⃗ +

(
∇⃗V⃗

)†)
=



2µ ∂u
∂x µ

(
∂v
∂x +

∂u
∂y

)
µ
(
∂w
∂x +

∂u
∂z

)
µ
(
∂u
∂y +

∂v
∂x

)
2µ ∂v
∂y µ

(
∂w
∂y +

∂v
∂z

)
µ
(
∂u
∂z +

∂w
∂x

)
µ
(
∂v
∂z +

∂w
∂y

)
2µ ∂w
∂z



=


0 µU

H 0

µU
H 0 0

0 0 0


The shear stress vector (τ⃗shear) can be written as:

τ⃗shear = µ
(
∇⃗V⃗ +

(
∇⃗V⃗

)†)
· n⃗ =


0 µU

H 0

µU
H 0 0

0 0 0




1

0

0


= µ

U
H

ĵ

The shear stress on the n⃗ = î surface is µU
H in the y−direction.

3.9 Show that
(
V⃗ · ∇⃗

)
V⃗ = V⃗ ·

(
∇⃗V⃗

)
in two dimensional Cartesian coordinates.

Solution: The V⃗ · ∇⃗ operator in 2D Cartesian coordindates is given by:

V⃗ · ∇⃗ = u
∂

∂x
+ v
∂

∂y

Applying this operator to V⃗ = uî + v ĵ yields:



36 Chapter 3 Solutions

(
V⃗ · ∇⃗

)
V⃗ = u

∂

∂x
+ v
∂

∂y

(
uî + v ĵ

)
=

(
u
∂u
∂x
+ v
∂u
∂y

)
î +

(
u
∂v
∂x
+ v
∂v
∂y

)
ĵ

The V⃗ ·
(
∇⃗V⃗

)
is calculating the dot product of velocity with the velocity

gradient. This is given by:

V⃗ ·
(
∇⃗V⃗

)
=

(
u v

) 
∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

 = (
u ∂u
∂x + v ∂u

∂y u ∂v
∂x + v ∂v

∂y

)
The above result, while written as a row vector, yields the same result
as when we calculated

(
V⃗ · ∇⃗

)
V⃗ . Thus, the calculation order turns out to

not matter in this instance.
3.10 Please explain, in your own words, why an equation of state is not nec-

essarily needed for an incompressible flow.

Solution: The reason for not needing an equation of state for an in-
compressible flow is simply because the incompressible Navier-Stokes
equations are closed by including the divergence-free velocity condition.
Thus, no thermodynamics is needed to be able to solve for the flow field
of an incompressible flow under usual circumstances. Even more to the
point, often incompressible flows assume a constant density throughout
the flow.
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4.1 Chapter 4 Solutions

Problems

4.1 Find A⃗ ⊗ B⃗ if A⃗ = 3î + 5 ĵ − 10k̂ and B⃗ = 5î − 2 ĵ − k̂.

Solution: Matrix multiply the column vector form of A⃗ with the row
vector form of B⃗:

A⃗ ⊗ B⃗ =


3
5
−10

 (5 −2 −1
)
=


15 −6 −3
25 −10 −5
−50 20 10


4.2 Determine

�
A ρV⃗ ⊗ V⃗ · n⃗dA for a 1 cm x 1 cm x 1 cm Cartesian element

if V⃗ = 5
√

x î m/s and the density is 1000 kg/m3.

Solution: First thing first, let’s determine V⃗ ⊗ V⃗:

V⃗ ⊗ V⃗ =


5
√

x
0
0

 (5√x 0 0
)
=


25x 0 0
0 0 0
0 0 0


Thus:

ρV⃗ ⊗ V⃗ =


25000x 0 0

0 0 0
0 0 0


Next, instead of using the form given in the problem, we can use the
divergence theorem to get:
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A
ρV⃗ ⊗ V⃗ · n⃗dA =

$
V

∇⃗ ·
(
ρV⃗ ⊗ V⃗

)
dV

Performing the divergence gives:

∇⃗ ·
(
ρV⃗ ⊗ V⃗

)
=

(
∂
∂x

∂
∂y

∂
∂z

) 
25000x 0 0

0 0 0
0 0 0

 = (
25000 0 0

)

Thus, the integral,
#
V
∇⃗ ·

(
ρV⃗ ⊗ V⃗

)
dV becomes (written in column

vector form):

$
V

∇⃗ ·
(
ρV⃗ ⊗ V⃗

)
dV =

$
V


25000

0
0

 dV

=

∫ 0.01 m

x=0

∫ 0.01 m

y=0

∫ 0.01 m

z=0


25000

0
0

 dxdydz

=


25000 (0.01) (0.01) (0.01)

0
0


=


0.025

0
0

 kg m /s2

4.3 Consider incompressible flow between two parallel plates a distance, H,
apart. If the bottom plate moves with a velocity of UB and the top is fixed,
find an expression of the velocity profile assuming there is no pressure
gradient.

Solution: We will make the following assumptions: steady state, one-
dimensional flow, no gravity, and no pressure difference. The continuity
equation is:

∂u
∂x
+
∂v
∂y
= 0

Setting v = 0 leads us to:
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∂u
∂x
= 0

Next we look the Navier-Stokes equations. We can start with the incom-
pressible Navier-Stokes equations in the x−direction:

ρ

(
�
��∂u
∂t
+ u

�
��∂u
∂x
+
�
��v
∂u
∂y

)
=
�

��−
∂p
∂x
+ µ


�
��∂
2u
∂x2 +

∂2u
∂y2


After our assumptions we are left with:

0 =
d2u
dy2

This is the governing equation for Couette flow. The general solution to
this equation is:

u = C1y +C2

where C1 and C2 are constants of integration. In order to find values for
C1 and C2, boundary conditions need to be applied. The no-slip boundary
condition for u is utilized at the top and bottom plates. Recall that the no-
slip boundary condition implies that the velocity of the fluid is the same
as the velocity of the adjacent solid surface. Thus, in mathematical form,
the boundary conditions are:

at y = 0, u = UB

at y = H, u = 0

Applying the first boundary condition (i.e. at y = 0, u = UB) to our
general solution, we get:

UB = C10 +C2

∴ C2 = UB

Next apply the second boundary condition (i.e. at y = H, u = 0) to our
general solution, i.e.:
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0 = C1H + UB

∴ C1 =
−UB

H

The solution for the x-velocity profile is now obtained by plugging in
the expressions for C1 and C2 into the general solution:

u =
−UB

H
y + UB

4.4 Find an expression for the shear stress on the bottom and top plates from
Problem 4.3.

Solution: We can obtain the shear stress on the top and bottom plates by

recognizing that the shear term of the stress tensor is given by µ
(
∇⃗V⃗ +

(
∇⃗V⃗

)†)
,

i.e.: term in the stress tensor, which is given by:

µ
(
∇⃗V⃗ +

(
∇⃗V⃗

)†)
=



2µ ∂u
∂x µ

(
∂v
∂x +

∂u
∂y

)
µ
(
∂w
∂x +

∂u
∂z

)
µ
(
∂u
∂y +

∂v
∂x

)
2µ ∂v
∂y µ

(
∂w
∂y +

∂v
∂z

)
µ
(
∂u
∂z +

∂w
∂x

)
µ
(
∂v
∂z +

∂w
∂y

)
2µ ∂w
∂z



=


0 −µUB

H 0

−µUB
H 0 0

0 0 0


Therefore, the shear stress (i.e. the stress vector, τ⃗shear) on the bottom

(given by normal, n⃗b = − ĵcan be written as:

τ⃗shear,bottom = µ
(
∇⃗V⃗ +

(
∇⃗V⃗

)†)
·⃗nb =


0 −µUB

H 0

−µUB
H 0 0

0 0 0




0

−1

0


= µ

UB

H
î
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Likewise, the shear stress at the top is given by:

τ⃗shear,top = µ
(
∇⃗V⃗ +

(
∇⃗V⃗

)†)
· n⃗t =


0 −µUB

H 0

−µUB
H 0 0

0 0 0




0

1

0


= −µ

UB

H
î

4.5 Consider incompressible flow between two parallel plates a distance,
H = 0.5 cm, apart. The top plate is moving with a velocity to the right of
1 m/s. There is also a constant pressure gradient that is resisting the flow
in the x−direction with a magnitude of 2 pascals per meter. The dynam-
ics viscosity of the fluid is 2x10−5 Pa · s. Determine the velocity at the
midpoint of the parallel plates.

Solution: Like before, we will make the following assumptions: incom-
pressible flow, steady state, one-dimensional flow, and no gravity. The
continuity equation is (after setting v = 0):

∂u
∂x
= 0

The incompressible Navier-Stokes equations in the x−direction is:

ρ

(
�
��∂u
∂t
+ u

�
��∂u
∂x
+
�
��v
∂u
∂y

)
= −
∂p
∂x
+ µ


�
��∂
2u
∂x2 +

∂2u
∂y2


After our assumptions we are left with:

0 = −
∂p
∂x
+ µ

d2u
dy2

This is the governing equation for Couette flow. The general solution to
this equation is:

u =
1

2µ
∂p
∂x

y2 +C1y +C2

where C1 and C2 are constants of integration. In order to find values
for C1 and C2, boundary conditions need to be applied. The boundary
conditions are:
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at y = 0, u = 0

at y = H, u = UT

Applying the first boundary condition (i.e. at y = 0, u = 0) to our
general solution, we get:

0 =
1

2µ
∂p
∂x

02 +C10 +C2

∴ C2 = 0

Next apply the second boundary condition (i.e. at y = H, u = UT ) to
our general solution, i.e.:

UT =
1

2µ
∂p
∂x

H2 +C1H

∴ C1 =
UT

H
−

1
2µ
∂p
∂x

H

Thus the solution for the x-velocity profile is:

u =
1

2µ
∂p
∂x

y2 +

(
UT

H
−

1
2µ
∂p
∂x

H
)

y

To find the value of the velocity at the midpoint, we plug in y = H
2 to

get:

umidpoint =
1

2µ
∂p
∂x

H2

4
+

(
UT

2
−

1
4µ
∂p
∂x

H2
)
=

(
UT

2
−

1
8µ
∂p
∂x

H2
)

Plugging in ∂p
∂x = 2 Pa/m, µ = 2x10−5Pa · s, and UB = 1 m/s, we get:

umidpoint =

(
UT

2
−

1
8µ
∂p
∂x

H2
)
=

1
2
−

H2

8x10−5 m/s

If H = 0.005 meters (or 0.5 centimeters), then:

umidpoint = 0.1875 m/s
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4.6 In your own words, describe the various forms of the Navier-Stokes
equations discussed in this book and how they were obtained.

Solution: A quick discussion of this is on the video podcasts.

4.7 Show that the conservation form and the non-conservation form of the
Navier-Stokes equations are equivalent. You may use Cartesian coordi-
nates.

Solution: The non-conservation form of the Navier-Stokes equations is:

ρ

∂V⃗
∂t
+ V⃗ · ∇⃗V⃗

 = −∇⃗p − ∇⃗
(

2
3
µ
(
∇⃗ · V⃗

))
+ ∇⃗ ·

(
µ
(
∇⃗V⃗ +

(
∇⃗V⃗

)†))
+ ρg⃗

The conservation form of the Navier-Stokes equations is:

∂
(
ρV⃗

)
∂t
+ ∇⃗ ·

(
ρV⃗ ⊗ V⃗

)
= −∇p− ∇⃗

(
2
3
µ∇⃗ · V⃗

)
+ ∇⃗ ·

(
µ∇⃗V⃗ + µ

(
∇⃗V⃗

)†)
+ ρg⃗

As you can tell, the main difference between the two versions is the
left-hand side. Thus, we need to show that:

ρ

∂V⃗
∂t
+ V⃗ · ∇⃗V⃗

 = ∂
(
ρV⃗

)
∂t

+ ∇⃗ ·
(
ρV⃗ ⊗ V⃗

)
The easiest way to show this equivalency is by using Cartesian coor-

dinates. For example, recall that ρV⃗ ⊗ V⃗ equals:

ρV⃗ ⊗ V⃗ =


ρuu ρuv ρuw
ρvu ρvv ρvw
ρwu ρwv ρww


Taking the divergence we have:

∇⃗ ·
(
ρV⃗ ⊗ V⃗

)
=

(
∂
∂x

∂
∂y

∂
∂z

) 
ρuu ρuv ρuw
ρvu ρvv ρvw
ρwu ρwv ρww


This leads to (in column vector form):
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∇⃗ ·
(
ρV⃗ ⊗ V⃗

)
=



∂(ρuu)
∂x +

∂(ρvu)
∂y +

∂(ρwu)
∂z

∂(ρuv)
∂x +

∂(ρvv)
∂y +

∂(ρwv)
∂z

∂(ρuw)
∂x +

∂(ρvw)
∂y +

∂(ρww)
∂z


Adding the time derivative:

∂
(
ρV⃗

)
∂t

+ ∇⃗ ·
(
ρV⃗ ⊗ V⃗

)
=



∂ρu
∂t

∂ρv
∂t

∂w
∂t


+



∂(ρuu)
∂x +

∂(ρvu)
∂y +

∂(ρwu)
∂z

∂(ρuv)
∂x +

∂(ρvv)
∂y +

∂(ρwv)
∂z

∂(ρuw)
∂x +

∂(ρvw)
∂y +

∂(ρww)
∂z


We can take the result from above (for simplicity, let’s just take the

x−direction) and expand it out via product rule:

∂ (ρu)
∂t
+
∂ (ρuu)
∂x

+
∂ (ρvu)
∂y

+
∂ (ρwu)
∂z

= ρ
∂u
∂t
+ u
∂ρ

∂t︸        ︷︷        ︸
=
∂(ρu)
∂t

+ ρu
∂u
∂x
+ u
∂ (ρu)
∂x︸              ︷︷              ︸

=
∂(ρuu)
∂x

+ ρv
∂u
∂y
+ u
∂ (ρv)
∂y︸              ︷︷              ︸

=
∂(ρvu)
∂y

+ ρw
∂u
∂z
+ u
∂ (ρw)
∂z︸               ︷︷               ︸

=
∂(ρwu)
∂z

group terms
−−−−−−−−→= ρ

(
∂u
∂t
+ u
∂u
∂x
+ v
∂u
∂y
+ w
∂u
∂z

)
︸                               ︷︷                               ︸

non-conservative form

+u
(
∂ρ

∂t
+
∂ (ρu)
∂t
+
∂ (ρv)
∂y
+

(ρw)
∂z

)
︸                                   ︷︷                                   ︸

=0 from continuity

=ρ

(
∂u
∂t
+ u
∂u
∂x
+ v
∂u
∂y
+ w
∂u
∂z

)
Thus, the conservation and the non-conservation forms of the equations
are equivalent. The same procedure can be done for the other directions.
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Problems

5.1 Evaluate the viscous dissipation term at an (x, y) location of (1, 5) me-
ters with a dynamic viscosity of 10−3 Pa · s if velocity field is given by:
V⃗ = 2y cos(2x)î + y2 sin(2x) ĵ m/s.

Solution: The viscous dissipation term is given by:

−
2
3
µ
(
∇⃗ · V⃗

)2
+ µ

(
∇⃗V⃗ +

(
∇⃗V⃗

)†)
: ∇⃗V⃗

For an incompressible flow, it is just µ
(
∇⃗V⃗ +

(
∇⃗V⃗

)†)
: ∇⃗V⃗

Let’s first see if the flow is incompressible by calculating the diver-
gence of velocity (with u = 2y cos(2x), v = y2 sin(2x), and w = 0:

∇⃗ · V⃗ =
∂u
∂x
+
∂v
∂y
+
∂w
∂z

=
∂ (2y cos(2x))

∂x
+
∂
(
y2 sin(2x)

)
∂y

= −4y sin(2x) + 2y sin(2x) = −2y sin(2x)

Therefore, the − 2
3µ

(
∇⃗ · V⃗

)2
portion is:

−
2
3
µ
(
∇⃗ · V⃗

)2
= −

2
3
µ (−2y sin(2x))2 = −

8
3
µy2 sin2(2x)

Plugging in the numbers for the problem yields:
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−
8
3
µy2 sin2(2x) = −

8
3

(
10−3 (5)2 (0.909)2

)
= −0.055

J
m3s

(5.1)

Next up we need to calculate µ
(
∇⃗V⃗ +

(
∇⃗V⃗

)†)
: ∇⃗V⃗ . This is essentially a

2D scenario, so the velocity gradient is:

∇⃗V⃗ =


∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

 =
(
−4y sin(2x) y2 cos(2x)
2 cos(2x) 2y sin(2x)

)

The ∇⃗V⃗ +
(
∇⃗V⃗

)†
portion turns out to be:

∇⃗V⃗ +
(
∇⃗V⃗

)†
=

(
−4y sin(2x) y2 cos(2x)
2 cos(2x) 2y sin(2x)

)
+

(
−4y sin(2x) 2 cos(2x)
y2 cos(2x) 2y sin(2x)

)

=

(
−8y sin(2x) y2 cos(2x) + 2 cos(2x)

2 cos(2x) + y2 cos(2x) 4y sin(2x)

)
Next we calculate the

(
∇⃗V⃗ +

(
∇⃗V⃗

)†)
: ∇⃗V⃗:

(
∇⃗V⃗ +

(
∇⃗V⃗

)†)
: ∇⃗V⃗

=

(
−8y sin(2x) y2 cos(2x) + 2 cos(2x)

2 cos(2x) + y2 cos(2x) 4y sin(2x)

)
:
(
−4y sin(2x) y2 cos(2x)
2 cos(2x) 2y sin(2x)

)

=64y2 sin2(2x) + y4 cos2(2x) + 2y2 cos2(2x)

+ 4 cos2(2x) + 2y2 cos2(2x) + 16y2 sin2(2x)

= 1322.9 + 108.234 + 8.658 + 0.693 + 8.659 + 330.729 = 1779.87

Multiplying this result by mu gives 1.77987 and adding to Equation
5.1 leads to the value for the viscous dissipation: 1.72 J

m3s .
5.2 Calculate the power (per volume) if the stress tensor is:

⃗⃗T =


10x 5y 6x
5y 2y 25y
6x 25y 3z
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with a velocity vector is V⃗ = î + 2 ĵ − 2k̂ and no body force.

Solution: The power (per volume) without body forces can be written
as:

Ẇ = −∇⃗ ·
(
V⃗ · ⃗⃗T

)
The velocity dotted with the stress tensor leads to:

V⃗ · ⃗⃗T =
(
1 2 −2

) 
10x 5y 6x
5y 2y 25y
6x 25y 3z


=

(
10x + 10y − 12x 5y + 4y − 50y 6x + 50y − 6z

)
=

(
−2x + 10y −41y 6x + 50y − 6z

)
The power per volume is therefore:

Ẇ = −
(
î
∂

∂x
+ ĵ
∂

∂y
+ k̂
∂

∂z

)
·
(
(−2x + 10y) î + −41y ĵ + (6x + 50y − 6z) k̂

)

= − (−2 − 41 − 6) = 49
watts
m3

5.3 Does the follow expression satisfy the Laplace equation?

T = T0 + T1
sin(πx) sinh(πy)

sinh(πL)

You may assume T0, T1, and L are constants.

Solution: The Laplace equation is:

∇2T = ∇⃗ · ∇⃗T =
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 = 0

Taking the derivative of T with respect to x gives:

∂T
∂x
= T1

cos(πx) sinh(πy)
sinh(πL)

π
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Taking the derivative with respect to x again gives:

∂2T
∂x2 = −T1

sin(πx) sinh(πy)
sinh(πL)

π2

Taking the derivative of T with respect to y gives (the derivative of
hyperbolic sine is hyperbolic cosine):

∂T
∂y
= T1

sin(πx) cosh(πy)
sinh(πL)

π

The second derivative is (the derivative of hyperbolic cosine is hyper-
bolic sine):

∂2T
∂y2 = T1

sin(πx) sinh(πy)
sinh(πL)

π2

which is the negative of the second derivative with respect to x. Thus,
addding them up leads to zero and this solution for temperature is a so-
lution to Laplace’s equation.

5.4 Consider a 2D flow whose velocity vector is given by V⃗ = −10xî + 10y ĵ
m/s and whose temperature is T = 50e−0.03t sin(2x) cosh(5y) kelvin. The
fluid has a thermal conductivity of 0.6 W

mK , a density of 1000 kg/m3, and
a specific heat of 4180 J

kgK . What is the value of the heat generation at a
time of 10 seconds and (x, y) coordinates of (1, 1) meters?

Solution: Let’s first check to see if the flow in incompressible or not:

∇⃗ · V⃗ =
(
î
∂

∂x
+ ĵ
∂

∂y
+ k̂
∂

∂z

)
·
(
−10xî + 10y ĵ

)
= −10 + 10 = 0

Yes, the flow is incompressible. So, we need to use the 2D incompress-
ible energy equation:

ρcp

(
∂T
∂t
+ u
∂T
∂x
+ v
∂T
∂y

)
= k

(
∂2T
∂x2 +

∂2T
∂y2

)
+ Φ + q̇gen

where Φ = µ

2 (
∂u
∂x

)2

+

(
∂u
∂y
+
∂v
∂x

)2

+ 2
(
∂v
∂y

)2
With u = −10x and v = 10y, the viscous dissipation becomes:
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Φ = µ

2 (
∂u
∂x

)2

+

(
∂u
∂y
+
∂v
∂x

)2

+ 2
(
∂v
∂y

)2
= µ

(
2 (−10)2 + (0 + 0)2 + 2 (10)2

)
= 400µ

(5.2)

The x− and y−derivatives of T are:

∂T
∂x
= 100e−0.03t cos(2x) cosh(5y)

= 100e−0.3 cos(2) cosh(5)

= 5467 kelvin/m

(5.3)

and

∂T
∂y
= 250e−0.03t sin(2x) sinh(5y)

= 250e−0.3 sin(2) sinh(5)

= 12496 kelvin/m

(5.4)

The second-order derivatives are:

∂2T
∂x2 = −200e−0.03t sin(2x) cosh(5y)

= −200e−0.3 sin(2) cosh(5)

= −9997.9 kelvin/m2

(5.5)

and

∂T
∂y
= 1250e−0.03t sin(2x) cosh(5y)

= 1250e−0.3 sin(2) cosh(5)

= 62487 kelvin/m2

(5.6)

The time derivative is:

∂T
∂t
= −0.03 (50) e−0.03t sin(2x) cosh(5y)

= −1.5e−0.3 sin(2) cosh(5)

= −75 kelvin/s

(5.7)

Putting it all together yields:
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ρcp

(
∂T
∂t
+ u
∂T
∂x
+ v
∂T
∂y

)
= k

(
∂2T
∂x2 +

∂2T
∂y2

)
+ Φ + q̇gen

leads to
−−−−−→(1000)(4180) (−75 + (−10)(5467) + (10)(12496)) = 0.6 (−9997.9 + 62487) + 400µ + q̇gen

q̇gen = 2.9e11 − 400µ watts per meter cubed

5.5 Find the steady state temperature in the middle of a 10 cm bar whose
sides in the y− and z−directions can be ignored and the temperature of
the right (at x = 10 cm) is fixed at 0 degrees Celsius and the flux on the
left is 1 W/m2. The thermal conductivity is 0.6 W

mK .

Solution: The temperature distribution for this problem can be obtained
by simply solving the following equation:

∂2T
∂x2 = 0

This is just the equation for diffusion in one dimension at steady state.
Simple enough. The general solution for this problem is just a straight
line:

T = C1x +C2

We now need to apply boundary conditions:

at x = 0, q⃗′′ · n⃗ = 1 watt per meter squared

at x = 10 cm, T = 0◦C

Applying the first boundary condition (at x = 10 cm, T = 0◦C) leads
to:

0 = C10.1 +C2 (notice we switched to using meters)

∴ C2 = −0.1C1

Applying the next boundary condition (i.e. at x = 0, q⃗′′ ·⃗n = 1 watt per meter squared)
yields (with n⃗ = −î since it is considered the left face):
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q⃗′′ · n⃗ = − k
(
∂T
∂x

î +
∂T
∂y

ĵ +
∂T
∂z

k̂
)
· −î = −k

∂T
∂x

leads to
−−−−−→ − kC1 = 1

W
m2

∴C1 = −
1
k
= −

1
0.6
= −1.67

◦C
m

The temperature in the middle of the bar (i.e. at x = 5 cm or x = 0.05
m) leads to:

T = −
1

0.6
(0.05) +

(
−0.1

−1
0.6

)
= 0.0833◦C

5.6 Does the following function for temperature satisfy the heat equation
when there is no heat generation (α is thermal diffusivity):

T = T0 + Tm exp
(
−2π2α

L2 t
)

sin
(
πx
L

)
sin

(
πy
L

)
You may assume L, T0, and Tm are also constant.

Solution: The heat equation is given by (in 2D):

∂T
∂t
= α

(
∂2T
∂x2 +

∂2T
∂y2

)
The time derivative of the given temperature function is:

∂T
∂t
= Tm

(
−2π2α

L2

)
exp

(
−2π2α

L2 t
)

sin
(
πx
L

)
sin

(
πy
L

)
The second derivative of T with respect to x is:

∂2T
∂x2 = Tm

(
−π2

L2

)
exp

(
−2π2α

L2 t
)

sin
(
πx
L

)
sin

(
πy
L

)
The second derivative of T with respect to y is:

∂2T
∂y2 = Tm

(
−π2

L2

)
exp

(
−2π2α

L2 t
)

sin
(
πx
L

)
sin

(
πy
L

)
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Adding the second derivative with respect to x with the second deriva-
tive with respect to y and multiplying with α gives:

α

(
∂2T
∂x2 +

∂2T
∂y2

)
= α

(
2Tm

(
−π2

L2

)
exp

(
−2π2α

L2 t
)

sin
(
πx
L

)
sin

(
πy
L

))
Upon inspection, the above equation is equal to the time derivative.

Hence, this equation satisfies the heat equation.
5.7 Consider a system of water with a pinch of salt centered in the mid-

dle. If we were to model the “stirring” of the system of water using the
advection equation, what would the result be? What would we need to
do in order to more accurately model the physical reality of the situation?

Solution: If the pinch of salt was very small so that the velocity at the dif-
ferent parts of the salt would be essentially the same, then the salt would
stay relatively the same shape and size and just move with the stirring of
the water. If the pinch of salt was somewhat big to begin with, then the
various areas of the salt pinch might experience differing velocities, and
hence cause the salt to get stretched. Either way, the salt will just move
with the velocity vectors of the flow but will not spread out and diffuse
into the water like you would expect. In order to more accurately model
the situation, a diffusion term would need to be added. In other words,
the convection-diffusion equation should be used.

5.8 Consider incompressible flow between two parallel plates. The flow is
driven by the bottom plate moving to the right with a velocity of 100
m/s. The viscosity of the fluid is given by 0.001 Pa · s and the thermal
conductivity is 0.6 W

mK . If both the bottom and the top temperatures are
fixed at 0◦C, what is the maximum temperature of the flow? You may
assume the flow is in a steady-state and is only in the x−direction. In
addition, you may ignore any pressure gradient as well as any heat gen-
eration. How is the maximum temperature of the flow different than the
plate temperatures? What accounts for the difference?

Solution: This problem starts out like the other cases between two plates.
In particular, the continuity equation simplifies to:

du
dx
= 0

And the Navier-Stokes equations (in the x−direction) simplifies to:
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d2u
dy2 = 0

The general solution of the velocity profile is:

u = C1y +C2

We now need to apply the following velocity boundary conditions:

at y = 0, u = UB

at y = H, u = 0

Applying the first boundary condition leads to:

UB = C10 +C2

∴ C2 = UB

The next velocity boundary condition is:

0 = C1H + UB

∴ C1 =
−UB

H
Thus, the velocity profile is:

u =
−UB

H
y + UB

Next, we need to find the temperature profile. The temperature pro-
file is obtained from the energy equation. Making the assumption that
the flow is only in the x−direction, steady state, the derivative of tem-
perature with respect to x is zero, there is no heat generation, and an
incompressible flow, we have:

0 = k
d2T
dy2 + µ

(
du
dy

)2

Solving for the general solution for temperature, with du
dy =

−UB
H , we

get:

T = −
µ

k

(UB

H

)2

y2 +C3y +C4
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We now need to apply the following velocity boundary conditions:

at y = 0, T = 0

at y = H, T = 0

Applying the first boundary condition leads to:

0 = −
µ

k

(UB

H

)2

02 +C30 +C4

∴ C4 = 0

The next temperature boundary condition is:

0 = −
µ

k

(UB

H

)2

H2 +C3H

∴ C3 =
µ

k

(UB

H

)2

H

The temperature profile is thus:

T = −
µ

k

(UB

H

)2

y2 +
µ

k

(UB

H

)2

Hy

The maximum temperature of the flow is located at the point where
the derivative of the temperature with y is zero, thus:

dT
dy
= −2

µ

k

(UB

H

)2

y +
µ

k

(UB

H

)2

H = 0

leads to
−−−−−→y =

H
2

Thus, the maximum occurs (as expected) at y = H/2. Plugging in y =
H/2 into the temperature equation leads to:

Tmax = −
µ

k

(UB

2

)2

+
µ

2k
U2

B =
µ

4k
U2

B

Plugging in values gives:

Tmax =
µ

4k
U2

B =
0.001
4(0.6)

1002 = 4.16◦C

The maximum temperature is greater than the sides of the wall because
viscous dissipation (i.e. frictional heating due to shearing) has increased
the flow temperature.
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5.9 In your own words, what is the definition of a boundary layer?

Solution: There is a short discussion on boundary layers in the video
podcasts.
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Problems

6.1 A metal block, whose dimensions in the x−, y−, and z−directions are
respectively L x H x W, is in a steady state with each of its sides all held
fixed at various temperatures. If L is much smaller than both H and W,
show, by scaling, that the governing equation for this problem is simply
the conduction term in the x−direction is equal to zero.

Solution: The first step in this problem is to simplify and write down
the governing equation. This problem deals with steady state conduction,
thus the governing equation is:

∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 = 0

The second step is to introduce scaled variables into the equation. The
scaling we will use is the following:

θ∗ =
T − Tshi f t

Ts
, x∗ =

x
L
, y ∗=

y
H
, z∗ =

z
W

where the * superscript indicates the non-dimensional version of the vari-
able in question, Tshi f t and Ts are general shift and scale factors, respec-
tively, for the temperature.

We can introduce this scaling into the governing equation to get:

Ts

L2

∂2θ∗

∂x∗2
+

Ts

H2

∂2θ∗

∂y∗2
+

Ts

W2

∂2θ∗

∂z∗2
= 0

Step 3 would just be to divide out by a dimensional coefficient in front

56
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of one of the terms. Typically, the largest term is the one that is advised
to be divided out. In this case, since L is less than both H and W, we can
divide out by Ts

L2 to get:

∂2θ∗

∂x∗2
+

L2

H2

∂2θ∗

∂y∗2
+

L2

W2

∂2θ∗

∂z∗2
= 0

We now have a non-dimensional equation.
In the fourth step we can simplify this equation by recognizing that

L2

H2 and L2

W2 is really small and can thus be ignored, i.e.:

∂2θ∗

∂x∗2
= 0

This is the simplified scaled equation, which is just the conduction
term in x equals zero.

Step 1: Simplify the problem and equations (and boundary/initial con-
ditions) as much as possible.

Step 2: Introduce scaled (i.e. non-dimensional) variables and plug
them into the simplified equations and conditions.

Step 3: Divide the whole equation by a dimensional “coefficient.” This
dimensional coefficient is usually determined to be a coefficient in front
of one of the terms in the equation. If there are multiple terms in the
equation and each one has a coefficient in front, it is usually advised to
divide by the biggest coefficient.

Step 4: Make any additional simplifications with the new scaled vari-
ables if necessary.

Step 5: Set any characteristic scale factors not previously defined such
that the coefficient terms are of order one (this is the hardest part and will
be explained as we go). Note, this may not show up in all problems.

Step 6: Solve the resulting equation if applicable.
6.2 Scale the one dimensional heat equation with the heat generation term

included. Write the non-dimensional heat equation in terms of Fourier
number (Fo), a non-dimensional time parameter defined as:

Fo =
αt
L2

where α is the thermal diffusivity and L is the length scale.

Solution: The one-dimensional heat equation is (first step):
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∂T
∂t
= α
∂2T
∂x2 +

q̇gen

ρcp

Introducing scaled variables (second step):

θ∗ =
T − Tshi f t

Ts
, x∗ =

x
L
, t ∗=

t
ts
, z∗ =

z
W

where Tscale and tscale and the temperature and time characteristic scales,
respectively. Their values (or expression) has not yet been defined and
may change depending on the specifics of the problem. In addition, we
are not going to scale the density, specific heat, and heat generation term
as we will just assume those to be a constant. With the scaled variables,
the heat equation becomes:

Ts

ts

∂θ∗

∂t∗
= α

Ts

L2

∂2θ∗

∂x∗2
+

q̇gen

ρcp

We now need to divide out by a dimensional coefficient (third step).
The term we need to divide out by is not as obvious because Ts and
ts have still not been defined. At this point, we will just pick a term to
divide out by and so we will just divide out by the Ts

ts
:

∂θ∗

∂t∗
= α

ts

L2

∂2θ∗

∂x∗2
+

ts

Ts

q̇gen

ρcp

We have a scaled equation. Now the question is can we make any simpli-
fications (step 4) and/or define any characteristics scale not previously
defined (step 5)? The answer is yes. For one thing, we have not defined
a characteristic time scale. To do so, we will set the coefficient in front
of the diffusion term to be one, thus:

α
ts

L2 = 1
gives us
−−−−−→ ts =

L2

α

We now have a scale factor for time.
Introducing this scale factor for time into our scaled equation we get:

∂θ∗

∂t∗
=
∂2θ∗

∂x∗2
+

L2

αTs

q̇gen

ρcp

We can simplify further by setting the last term to one such that:
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L2

αTs

q̇gen

ρcp
= 1

gives us
−−−−−→ Ts =

L2q̇gen

αρcp

Introducing the temperature scale into the scaled equation gives us:

∂θ∗

∂t∗
=
∂2θ∗

∂x∗2
+ 1

We have one more thing to do. We still need to put this equation in
terms of an often used non-dimensional parameter, the Fourier number.
If we plug the time scale, ts, expresssion that we obtained earlier into the
scaling the time, notice that we get:

t∗ =
t
ts
=

t
L2

α

=
αt
L2

Comparing non-dimensional time, ts, to the Fourier number, we notice
that they are the same thing. In fact, the Fourier number is nothing but
a non-dimensional time parameter for conduction problems. So, we can
replace the non-dimensional time with Fourier number (Fo) in our final
expression to get:

∂θ∗

∂Fo
=
∂2θ∗

∂x∗2
+ 1

Note, depending on the problem, it may have been more fruitful to use
different scale factors for either temperature or time. However, with such
little information, the scaling done here was the easiest.

6.3 Consider a conduction problem similar to the one given in Figure 5.5, ex-
cept the boundary condition of the right side (at x = L) is no longer held
at a fixed temperature and is instead in contact with a fluid at temperature
T∞. The boundary condition on the right side is given by a convection
boundary condition, i.e.:

q⃗′′ · n⃗ = h (T − T∞)

where h is a parameter known as the heat transfer coefficient. Obtain an
expression for the non-dimensional steady state temperature in terms of
a non-dimensional parameter known as the Biot number (Bi), given by:
Bi = hL

k .
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Solution: The first thing to do is to write down the simplified governing
equation and boundary conditions:

d2T
dx2 = 0 (6.1)

Notice the boundary condition on the right side (i.e. at x = L) contains
a heat flux. The heat flux vector dotted with the normal on the right side
(i.e. n⃗ = î becomes:

q⃗′′ · n⃗ = −k
(
∂T
∂x
+
∂T
∂y
+
∂T
∂z

)
· î = −k

∂T
∂x

Thus, the boundary conditions become (the partial is replaced by an
ordinary derivative):

at x = 0, T = Tle f t

at x = L, −k
dT
dx
= h (T − T∞)

(6.2)

We now want to introduced scaled variables for temperature and x
(step 2):

x∗ =
x
L
, θ∗ =

T − T∞
Ts

Notice that we are shifting by T∞ instead of Tle f t. We could have shifted
by Tle f t, however, as you will see, shifting by T∞ will make the right
boundary condition a little easier to handle. Shifting by Tle f t would make
the left boundary condition a little easier. So, you will need to make a
decision. In addition, the characteristic scale factor for temperature, Ts,
will be determined later.

Introducing the scaling into the governing equation yields:

Ts

L2

d2θ∗

dx∗2
= 0

Introducing the scaling into boundary conditions yields:
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at Lx∗︸︷︷︸
x

= 0, Tsθ
∗ + T∞︸      ︷︷      ︸

T

= Tle f t

at Lx∗︸︷︷︸
x

= L, −k
Ts

L
dθ∗

dx∗︸     ︷︷     ︸
−k dT

dx

= h

Tsθ
∗ + T∞︸      ︷︷      ︸
=T

−T∞


The governing equation and boundary conditions still are not non-

dimensional. To do that we need to divide out by a dimensional coeffi-
cient (step 3). For the governing equation, this is easy, we just divide out
by Ts

L2 to get:

d2θ∗

dx∗2
= 0

Likewise, the boundary conditions are also not yet non-dimensional.
We can first consider the boundary condition at x = 0 (or Lx∗ = 0):

at Lx∗ = 0︸   ︷︷   ︸
divide
by L

, Tsθ
∗ + T∞ = Tle f t︸                ︷︷                ︸

subtract by T∞ and divide by Ts

→x∗ = 0, θ∗ =
Tle f t − T∞

Ts︸       ︷︷       ︸
=1

If we set the boundary condition on the right to 1, we get an expression
now for the characteristic scale scale, namely:

Ts = Tle f t − T∞

Scaling the next boundary condition looks like this :

at Lx∗ = L︸   ︷︷   ︸
divide
by L

, −k
Ts

L
dθ∗

dx∗
= h (Tsθ

∗ + T∞ − T∞)︸                                    ︷︷                                    ︸
divide out by −k Ts

L and subtract out the T∞ on the right

→x∗ = 1,
dθ∗

dx∗
= −

hL
k︸︷︷︸
=Bi

θ∗

Thus the scaled boundary conditions are:
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at x∗ = 0, θ∗ = 1

at x∗ = 1,
dθ∗

dx∗
= −Biθ∗

Notice that we introduced a new parameter, the Biot number (Bi).
Solving our scaled governing equation (step 6) leads to the general

solution of:

θ∗ = C1x∗ +C2

Applying our first scaled boundary condition (i.e. at x = 0, θ∗ = 1)
to our scaled general solution leads to:

1 = C10 +C2

∴ C2 = 1

Applying the next boundary condition gives us:

dθ∗

dx∗

∣∣∣∣∣∣
x∗=1
= −Biθ∗

∣∣∣∣∣∣
x∗=1

→C1 = −Bi

C11 + 1︸︷︷︸
=C2


∴ C1 =

−Bi
1 + Bi

So our final expression for the non-dimensional temperature is:

θ∗ =
−Bi

1 + Bi
x∗ + 1

6.4 The book provided the boundary layer equations in scaled form. Rescale
the boundary layer equations in dimensional form.

Solution: The scaled boundary layer equations are:
Continuity for an incompressible flow past a flat plate:

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0

x−momentum for a steady incompressible flow past a flat plate
(with a constant free stream velocity):



Problems 63

u∗
∂u∗

∂x∗
+ v∗
∂u∗

∂y∗
=
∂2u∗

∂y∗2

y−momentum for a steady incompressible flow past a flat plate:

∂p∗

∂y∗
= 0

To rescale, all that we have to do is reintroduce the expressions for the
scaled variables into the equations:

u∗ =
u

U∞
, v∗ =

v
Vs
, p∗ =

p
ps
, x∗ =

x
X
, y∗ =

y
δ

where:

Vs =
δU∞
X
, ps = ρU2

∞, δ =

√
µX

ρU∞

Thus, the continuity equation becomes:

∂

(
u

U∞

)
∂
( x
X

) + ∂
 v
δU∞
X


∂
(y
δ

) = 0

→
∂u
∂x
+
∂v
∂y
= 0

The Navier-Stokes in x−becomes:
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u
U∞

∂

(
u

U∞

)
∂
( x
X

) + v
δU∞
X

∂

(
u

U∞

)
∂
(y
δ

) = ∂2
(

u
U∞

)
∂
(y
δ

)2

divide out by X

U2
∞

−−−−−−−−−−−−→ u
∂u
∂x
+ v
∂u
∂y
=

U∞δ2

X

∂2u
∂y2

introduce δ
−−−−−−−→ u

∂u
∂x
+ v
∂u
∂y
=

U∞
(
µX
ρU∞

)
X

∂2u
∂y2

with ν=µ/ρ
−−−−−−−−→ u

∂u
∂x
+ v
∂u
∂y
= ν
∂2u
∂y2

The momentum equation in y− is simply:

∂

(
p
ps

)
∂
(y
δ

) = 0

→
∂p
∂y
= 0

6.5 Scale Cauchy’s momentum equation.

Solution: The Cauchy momentum equation (i.e. Cauchy’s first law) is:

ρ

∂V⃗
∂t
+ V⃗ · ∇⃗V⃗

 = ∇⃗ · ⃗⃗T + ρg⃗
Introduce the following scaled variables (we will assume density is a

constant):

V⃗∗ =
V⃗

U∞
, t∗ =

t
ts
, ∇⃗∗ =

∇⃗

1/L
,
⃗⃗T ∗ =

⃗⃗T
σs
, g⃗∗ =

g⃗
g0
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where U∞ is a velocity scale (we will just assume is known), g0 is a
gravity scale, ts is a time scale to be determined, and σs is a stress scale
to be determined. Plugging this scaling into Cauchy’s equation leads to:

ρ

U∞
ts

∂V⃗∗

∂t∗
+

U2
∞

L
V⃗∗ · ∇⃗∗V⃗∗

 = σs

L
∇⃗ ·
⃗⃗T ∗ + ρg0g⃗∗

We can pull out the U2
∞

L term from the parentheses on the left-hand side
to get:

ρ
U2
∞

L

U∞
tsL
∂V⃗∗

∂t∗
+ V⃗∗ · ∇⃗∗V⃗∗

 = σs

L
∇⃗∗ ·
⃗⃗T ∗ + ρg0g⃗∗

We can divide out by ρU2
∞

L to get:

U∞
tsL
∂V⃗∗

∂t∗
+ V⃗∗ · ∇⃗∗V⃗∗ =

σs

ρU∞2 ∇⃗
∗ ·
⃗⃗T ∗ +

g0L
U2
∞

g⃗∗

We can now set the first term on the left to be one (making ts =
L

U∞
)

and the first term on the right to be one (making σs = ρU2
∞). In addition,

the gravity term coefficient ( g0L
U2
∞

) is just the inverse of the Froude number
squared. Thus, the scaled Cauchy equation is:

∂V⃗∗

∂t∗
+ V⃗∗ · ∇⃗∗V⃗ = ∇⃗∗ · ⃗⃗T ∗ +

1
Fr2 g⃗∗

Note that there are other ways of generally scaling Cauchy’s equation
and the exact scaling will depend on the problem at hand. For instance,
some may scale the stress tensor with a general known pressure scale, p0,
and also include a scaling for density of ρ∗ = ρ

ρ0
, where ρ0 is a known

density scale, leading to a Cauchy first law equation of:

∂V⃗∗

∂t∗
+ V⃗∗ · ∇⃗∗V⃗ =

p0

ρ0U2
∞

1
ρ∗
∇⃗∗ ·
⃗⃗T ∗ +

1
Fr2

g⃗∗

ρ∗

The p0

ρ0U2
∞

is often given the name, Euler number, Eu, thus:

∂V⃗∗

∂t∗
+ V⃗∗ · ∇⃗∗V⃗ =

Eu
ρ∗
∇⃗∗ ·
⃗⃗T ∗ +

1
Fr2

g⃗∗

ρ∗
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6.6 Consider Couette flow between two plates a distance of 2 millimeters
apart whose top plate moves with a velocity of 1 m/s and the bottom
plate is held fixed. The temperature of both plates are held fixed at zero
degrees Celsius. The thermal conductivity is 0.6 W

mK and the dynamic
viscosity is 10−3 Pa · s. Find a value for the non-dimensional temperature
in the middle in the flow. Unscale the result and obtain a value for the
temperature in the middle of the flow in Celsius.

Solution: The first step is to write down the x−momentum and energy
equations for this problem, which was obtained in Chapter 5:

d2u
dy2 = 0 (x−momentum)

d2T
dy2 = −

µ

k

(
du
dy

)2

(energy)

There is no y−momentum equation for this problem because we are
going to assume only a one-dimensional flow.

The boundary conditions are:

at y = 0, u = 0 and T = TB (0◦C)

at y = H (2 mm), u = UT (1 m/s) and T = TT (0◦C)

For the next step, we can introduce non-dimensional variables:

y∗ =
y
H
, u∗ =

u
UT
, θ∗ =

T − TB

T s

Notice that we are not defined the temperature scale as TT − TB. The
reason for not doing so is that, for this particular problem, it would result
in dividing by zero. Plugging these scaled variables into our simplified
governing equations give:

UT

H2

∂2u∗

∂y∗2
= 0 (x−momentum)

Ts

H2

∂2θ∗

∂y∗2
= −
µU2

T

kH2

(
∂u∗

∂y∗

)2

(energy)

When we plug the scaled variables into the boundary conditions we
get:
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at Hy∗ = 0, UT u∗ = 0 and Tsθ
∗ + TB = TB

at Hy∗ = H, UT u∗ = UT and Tsθ
∗ + TB = TT

Our third step is to properly scale the equations by dividing out by a
coefficient in front of one of the terms. In the case of the x−momentum
equation, the only coefficient is the UT

H2 . In the case of the temperature
equation, there are two terms. The term on the left (the diffusion term)
has a coefficient of Ts

H2 in front of it and the term on the right (the viscous

dissipation term) has the coefficient µU
2
T

kH2 . We will divide out by Ts
H2 . Thus,

dividing out the x−momentum equation by UT
H2 and the energy by Ts

H2

yields the following result for the scaled governing equations:

d2u∗

dy∗2
= 0 (scaled x−momentum)

d2θ∗

dy∗2
= −
µU2

T

kTs

(
du∗

dy∗

)2

(scaled energy)

The boundary conditions from Equation also need to be scaled by di-
viding out by a coefficient. Since the temperatures at both the top and the
bottom are zero, the scaled temperature at the top and bottom will also
be zero. The scaled velocity at the top will be 1 and the scaled velocity
at the bottom will be zero. Thus:

at y∗ = 0, u∗ = 0 and θ∗ = 0

at y∗ = 1, u∗ = 1 and θ∗ = 0

Note now that we can find an expression for Ts (step 5) by setting the
coefficient in front of the viscous dissipation term on the right hand side
of the energy equation to be zero, i.e.:

µU2
T

kTs
= 1

implies
−−−−−→ Ts =

µU2
T

k

Thus, our new energy equation is:

d2θ∗

dy∗2
= −

(
du∗

dy∗

)2

So, the final scaled equations and boundary conditions we are to solve
are:
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∂2u∗

∂y∗2
= 0 (scaled x−momentum)

∂2θ∗

∂y∗2
= −

(
∂u∗

∂y∗

)2

(scaled energy)

With boundary conditions:

at y∗ = 0 : u∗ = 0 and θ∗ = 0

at y∗ = 1 : u∗ = 1 and θ∗ = 0

We can now solve this problem (step 6). The x−momentum has a
general solution that is linear. That is:

u∗ = C1y∗ +C2

where C1 and C2 are the unknowns. Applying the boundary conditions
for u∗ leads to:

at y∗ = 0, u∗ = 0 → 0 = C10 +C2

∴ C2 = 0

at y∗ = 1, u∗ = 1 → 1 = C11 + 0

∴ C1 = 1

So the final x−velocity profile is just a line given by:

u∗ = y∗

Next up is the energy equation. The energy equation requires the deriva-
tive of the x−velocity with respect to y, which is nothing but 1. Thus, the
general solution to the energy equation is:

d2θ∗

dy∗2
= −

(
du∗

dy∗

)2

︸ ︷︷ ︸
=1

solve
−−−→ θ∗ = −

1
2

y∗2 +C3y∗ +C4
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Applying the boundary conditions for the energy equation leads to:

at y∗ = 0, θ∗ = 0 → 0 = −
1
2

02 +C30 +C4

∴ C4 = 0

at y∗ = 1, θ∗ = 0 → 0 = −
1
2

12 +C31

∴ C3 =
1
2

So, our final energy equation is (with constants C3 and C4 included):

θ∗ = −
1
2

y∗2 +
1
2

y∗

The non-dimensional temperature in the middle of the flow is obtained
by setting y∗ = 1/2 to get:

θ∗midpoint = −
1
2

(
1
2

)2

+
1
2

1
2
=

1
8

The unscaled temperature in the middle of the flow is obtained simply
by multiplying by the temperature scale, i.e.:

Tmidpoint = θ
∗
midpointTs =

1
8
µU2

T

k
=

1
8

(10−3)(1)2

0.6
= 0.0002◦C

6.7 Consider flow past a flat plate. At what point downstream from the lead-
ing edge does the boundary layer double in size compared to the size of
the boundary layer at x = 1 meter? You may assume the Reynolds num-
ber never reaches 105, which is the transition to turbulence.

Solution: The boundary layer thickness is given by:

δBL = 5
X
√

Rex

Which just equals:

δBL = 5
X√
U∞X
ν

= 5

√
νX

U∞

Thus the expression for the boundary layer thickness when x = X = 1 m
is given by:
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δBL = 5
√
ν

U∞

The distance downstream when the boundary layer thickness is twice
as thick can be obtained by:

5

√
νX

U∞
= 2

(
5
√
ν

U∞

)
Solving for X yields:

X = 4 meters


