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Chapter 1: Introduction

#	parameters/sample	size
not	small

Machine 
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small

Figure 1.1 ML and statistics tend to occupy different parts of the data science
space, as characterized by the number of model parameters to the sample size.
In reality, there is overlap and more gradual transition between the two than
the sharp boundary shown (see the Venn diagram in Fig. 15.1).
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Figure 1.2 Schematic diagram illustrating the problem of outliers in the input
data in 2-D. The grid illustrates a finite-domain discrete input data space with
crosses indicating training data and circles marking outliers in the test data.
For unbounded continuous input variables, the test data can lie well outside the
grid and much farther from the training data, as illustrated by the stars.
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Figure 1.3 Effects of time-averaging on the nonlinear relation (1.1).(a) Syn-
thetic ‘daily’ data from a quadratic relation between x and y. The data time-
averaged over (b) 7 observations and (c) 30 observations. [Follows Hsieh and
Cannon (2008).]
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(a)  Order = 1
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(b)  Order = 2
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(d)  Order = 9

Figure 1.4 Polynomial fit to data using a polynomial of order (a) 1, (b) 2, (c) 4
and (d) 9. The circles indicate the 11 data points used for fitting (i.e. training),
the solid curve the polynomial solution ŷ and the dashed curve the true signal
(ysignal = x − 0.25x2). The crosses show 10 new data points used to validate
the polynomial fit.



CHAPTER 1. INTRODUCTION 5

0 2 4 6 8 10

Order of polynomial fit

0

1

2

3

4

5

6

M
ea

n 
sq

ua
re

d 
er

ro
r

training
validation

Figure 1.5 Mean squared error of the training and validation data as the order
of the polynomial fit varies from 0 to 10.
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(a)  Low noise,  N = 15
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(b)  Low noise,  N = 100
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(c)  High noise,  N = 100
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(d)  High noise,  N = 1000

Figure 1.6 The ninth order polynomial fit to data with two noise levels and
different numbers of training data points. The circles indicate the data points
used for training, the solid curve the polynomial solution ŷ and the dashed curve
the true signal ysignal.
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(a)  Order = 1
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(d)  Order = 9

Figure 1.7 Extrapolating the polynomial solution to beyond the training data
domain, where 1,000 data points (circles) were used for training and the order
of the polynomial was (a) 1, (b) 2, (c) 4 and (d) 9. In (d), extending to the
left side, the curve first shot up beyond the top of the plot, then plunged back
down.
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Figure 1.8 The ‘curse of dimensionality’ effect, as one proceeds from one to
three dimensions.



Chapter 2: Basics

Data types

Categorical Numerical

Nominal Ordinal ContinuousDiscrete

Figure 2.1 Main types of data.

(a) (b)

Figure 2.2 (a) The probability of x lying within the interval (x, x+δx) is given
by the area of the narrow vertical band of height p(x) and width δx. The two
peaks in p(x) indicate the two regions of higher probability. (b) The cumulative
distribution F (x̃) is given by the shaded area under the curve.
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Figure 2.3 A cumulative
distribution function F (x).
By inverse mapping from
the ordinate to the abscissa,
one can obtain the quan-
tiles qα. The 95th percentile
q0.95 and the median q0.5 are
shown.
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(a)  correlation = 0.9
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(c)  correlation = 0.7
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Figure 2.4 Scatterplots showing distribution of (x, y) data and the correspond-
ing Pearson correlation coefficient as the noise level rises from (a) to (f).
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(b)  correlation = 0.03
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Figure 2.5 Scatterplots and Pearson correlation coefficients of daily weather
variables from Vancouver, BC, Canada, with 25 years of data (1993–2017).
[Data source: weatherstats.ca based on Environment and Climate Change
Canada data.]
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Figure 2.6 (a) An example illustrating that correlation is not robust to de-
viations from linearity. Here, the strong non-linear relation between x and y
is completely missed by the near-zero correlation coefficient. (b) An example
showing that correlation is not resistant to outliers. By removing the single out-
lier on the lower right corner, the correlation coefficient changes from negative
to positive.
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(b)  Winter 2017-18
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Figure 2.7 Autocorrelation function for the daily temperature at Vancouver,
BC during (a) 1993–2017 and (b) winter of 2016–17 (Dec.-Feb.), with the hor-
izontal lines indicating the 95% confidence interval. [Data source: weather-
stats.ca based on Environment and Climate Change Canada data.]
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Figure 2.8 Histogram for the distribution of daily (a) temperature, (b) relative
humidity, (c) wind speed, (d) sea level pressure, (e) precipitation and (f) non-
zero precipitation in Vancouver, BC from 1993–2017. A Gaussian distribution
curve has also been fitted to the data. Relative humidity is bounded between 0%
and 100%, and wind speed is non-negative. Since 53.4% of the days in (e) have
no precipitation, the dry days are omitted in (f). [Data source: weatherstats.ca
based on Environment and Climate Change Canada data.]
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Figure 2.9 Quantile–quantile plots where quantiles of the daily (a) tempera-
ture, (b) relative humidity and (c) wind speed in Vancouver, BC from 1993–2017
are plotted against the quantiles of the standard Gaussian distribution as indi-
cated by the ‘+’ symbols. If the observed distribution is a perfect Gaussian, the
plot will fall on the straight (dot-dashed) line. In (d), the quantiles of the tem-
perature in Toronto, Ontario are plotted against those from Vancouver. [Data
source: weatherstats.ca based on Environment and Climate Change Canada
data.]
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Figure 2.10 Boxplots for the daily weather at three Canadian cities: (a) tem-
perature during the winter of 2016–17, and (b) temperature, (c) relative humid-
ity and (d) wind speed from 1993–2017. [Data source: weatherstats.ca based
on Environment and Climate Change Canada data.]
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Figure 2.11 Mahalanobis distances versus Euclidean distances, as illustrated
by two data points marked by the asterisk and the star. The square marks the
centre (i.e. the mean) of the Gaussian dataset containing 500 points. (a) In the
original data, the line marking the Euclidean distance from the centre is longer
for the asterisk than for the star. (b) Subtracting the mean gives the centred
data. (c) Principal components (a1 and a2) are obtained by rotating the centred
data, so the direction of the maximum variance is along the horizontal axis. (d)
Principal components are normalized to have unit variance in each direction.
The line connecting the centre and the asterisk/star gives the Mahalanobis
distance. Thus in terms of Euclidean distance, the asterisk is further from the
centre than the star, but in terms of Mahalanobis distance, the star is further
from the centre than the asterisk.
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Figure 2.12 Relation between p(w|D), p(D|w) and p(w). (a) A broad and flat
distribution of p(w) provides little prior information for estimating w, leading
to the posterior distribution p(w|D) being very similar to the likelihood p(D|w).
(b) A narrow p(w) distribution leads to a larger difference between p(w|D) and
p(D|w). If more data are available, p(D|w) will be narrower and more strongly
peaked than that shown in (b), and the p(w|D) distribution will be pulled more
towards p(D|w). [Follows Cowan (2007)].
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Figure 2.13 (a) A linear decision boundary separating two classes of data de-
noted by crosses and circles, respectively. (b) A non-linear decision boundary.
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(a)  Iteration = 0
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(b)  Iteration = 1

98 100 102 104
Pressure (kPa)

-10

-5

0

5

10

15

20

25

T
em

pe
ra

tu
re

 (
de

g.
C

)

(c)  Iteration = 2
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(d)  Final iteration

Figure 2.14 (a) The initial guesses for the three centroids are marked by three
asterisks. The data points are assigned to clusters based on their nearest cen-
troid. In (b), the centroids have been recalculated based on the mean position
of the cluster members in (a), and cluster members in (b) have been reassigned
based on their closeness to the centroids in (b). The location of the centroids
and their associated cluster members are shown after (c) two iterations and (d)
after final convergence of the K-means clustering algorithm.
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Figure 2.15 Entropy H as a
function of α. When α = 0.5, the
maximum (H = 1) is attained.
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Chapter 3: Probability distributions
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Figure 3.1 Probability distribution of the number of years with category 5
hurricane(s) (a) per decade and (b) per century. The binomial distribution
with p = 0.25 was used with (a) N = 10 and (b) N = 100. As N becomes large,
the skewness of the distribution disappears, and the binomial distribution can
be approximated by the Gaussian (normal) distribution.
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Figure 3.2 Probability density p(x) of a Gaussian distribution with mean µ
and standard deviation σ.
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Figure 3.3 The elliptical con-
tour (with semi-major axis of

length λ
1/2
1 and semi-minor axis

of λ
1/2
2 ) shows where the prob-

ability density is exp(−1/2)
times that at the centre µ for
the Gaussian distribution in a
two-dimensional space (x1, x2).
The semi-major and semi-minor
axis are pointed in the direc-
tions given by the eigenvectors
e1 and e2, respectively, while a1
and a2 are the distances (mea-
sured from µ) along these two
directions. x1

x2 a1

a2

e1e2
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(c)  Stave River streamflow
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Figure 3.4 (a) Gamma probability density distribution for several values of the
shape parameter a and the scale parameter b, and histograms of (b) non-zero
daily precipitation amount in Vancouver, BC (1993–2017), (c) daily streamflow
of Stave River, BC (1985–2011) and (d) hourly concentration of the atmospheric
pollutant PM2.5 in Beijing (2010–2015). The gamma distribution is fitted to
the histograms, with the values of the parameters a and b given in the legends.
[Data source: (b) weatherstats.ca based on Environment and Climate Change
Canada data, (c) Water Survey of Canada and (d) Machine Learning Repository,
University of California Irvine, with data from X. Liang et al. (2016).]
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Figure 3.5 Beta probability
density distribution for several
values of the parameters a and
b. When a = b = 1, it turns
into the uniform distribution.
When the parameters are in-
terchanged, as seen between
the cases a = 4, b = 2 and
a = 2, b = 4, the curves are
mirror images of each other.
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Figure 3.6 Histograms of (a) daily relative humidity and (b) daily cloud cover
in Vancouver, BC (1993–2017). The beta distribution is fitted to the histograms,
with the values of the parameters a and b given in the legends. [Data source:
weatherstats.ca based on Environment and Climate Change Canada data.]
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Figure 3.7 (a) von Mises probability density distribution for two sets of
the parameters a and b. (b) The same distribution shown in a polar plot
(r cos θ, r sin θ), where r, the radial distance from the origin, is given by
p(θ| a, b).

Figure 3.8 GEV probability
density curves for the three
sub-families: type I (ξ = 0),
type II (ξ > 0) and type III
(ξ < 0).
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Figure 3.9 GEV fit to the annual maximum daily flow rate of the river Thames
at Kingston, UK, with (a) the PDF from the GEV model shown as a curve over
the histogram of the observed data, and (b) the CDF from the GEV model
shown by the solid black curve, with the empirical CDF shown by the fainter
curve. The 0.9 and 0.99 quantiles of the GEV model are indicated by the hori-
zontal dot-dashed and dashed line, respectively, with the corresponding vertical
dotted lines indicating, respectively, the 10 year and 100 year return levels along
the abscissa. [Data source: National River Flow Archive, UK.]
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Figure 3.10 (a) Histogram of a synthetic dataset generated from mixing three
Gaussian distributions (shown individually by the three dashed curves). Fitting
a three-component Gaussian mixture model to the data yields the solid curve
with three peaks. (b) A two-component Gaussian mixture model is fitted to the
daily pressure and wind speed data (indicated by dots), from Vancouver, BC
during 2013–2017. The PDF from the Gaussian mixture model is shown by the
contours, with the contour interval being 0.02. The two circles indicate the mean
position µk for the two Gaussian components. [Data source: weatherstats.ca
based on Environment and Climate Change Canada data.]
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Figure 3.11 (a) Probability density distribution from histogram of daily tem-
perature at Vancouver, BC (2014–2015), and from kernel density estimation
(with Gaussian kernel and bandwidth h = 1.4◦C) as shown by the smooth
curve. (b) Kernel density estimation with h = 0.2◦C (thin solid curve) and
h = 5◦C (dashed curve). [Data source: weatherstats.ca based on Environment
and Climate Change Canada data.]

Figure 3.12 Box–Cox trans-
form for various values of
the parameter λ. λ = 1
gives a straight line, while
λ > 1 have transformed vari-
ables more positively (i.e. right)
skewed than the original vari-
ables, and λ < 1 have trans-
formed variables more nega-
tively (i.e. left) skewed than the
original.
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Figure 3.13 Histograms showing original data distribution (left column) and
Box–Cox transformed distribution (right column). (a), (c) and (e) are the wind
speed, non-zero precipitation and relative humidity in Vancouver, BC during
1993–2017, while (b), (d) and (f) are the corresponding transformed distribu-
tions, with λ = 0.23, 0.16 and 2.04, respectively. [Data source: weatherstats.ca
based on Environment and Climate Change Canada data.]
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Figure 3.14 The t-distribution with various degrees of freedom: (a) ν = 1, (b)
ν = 3 and (c) ν = 10. As ν increases, the t-distribution approaches the standard
Gaussian distribution N (0, 1), shown by a light, thin curve.
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Figure 3.15 The chi-squared distribution with various degrees of freedom (N).
The PDF has mean N and variance 2N . As N increases, the PDF approaches
the Gaussian distribution.
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Figure 4.1 (a) Probability density functions of the null hypothesis H0 and the
alternative hypothesis H1. The vertical solid line marks the critical value for
rejecting H0 at the α level (α = 0.05); that is, if the value of the test statistic lies
to the right of the critical value, H0 is rejected. The dark shaded region of area
α underneath the PDF of H0 indicates that there is a probability of α where H0

is actually true though the test statistic turned up in the region for rejecting H0

(type I error). The value of the test statistic is marked by the vertical dotted
line, and p is the dark shaded area to its right. The light shaded region of area
β underneath the PDF of H1 indicates a probability of β for failing to reject
H0 when H1 is true (type II error). The power of the test is 1− β, that is, the
area under the H1 PDF to the right of the critical value, and is the probability
of correctly accepting H1. (b) The test statistic is next estimated using many
more data points, so the spread of the PDF is much reduced. For the same α
value, the vertical line marking the critical value is shifted to the left; the area
β is much reduced and the power much enhanced.
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Figure 4.2 The critical cor-
relation value at the 5% level
(ρ0.05) as a function of the
sample size N , for the two-
tailed test (solid curve) and
the one-tailed test (dashed).
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Figure 4.3 Histogram of
the winter snow water
equivalent distribution at
Grouse Mountain, BC for
all winters, El Niño win-
ters and La Niña win-
ters. [Data source: River
Forecast Centre, British
Columbia.]

500 1000 1500 2000 2500 3000

SWE (mm)

0

0.05

0.1

0.15

0.2

0.25

0.3

P
ro

ba
bi

lit
y



CHAPTER 4. STATISTICAL INFERENCE 32

-4 -3 -2 -1 0 1 2 3 4
Nino3.4

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

(a)

Nino3.4
Gaussian

-4 -3 -2 -1 0 1 2 3 4
SOI

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

(b)

SOI
Gaussian

Figure 4.4 Empirical cumulative distribution function (solid curve) for (a) the
standardized Niño3.4 index and (b) the standardized SOI index, using monthly
data from 1870–2017, with the reference distribution, the standard Gaussian,
shown by the dashed curve. Close inspection reveals the empirical distribution
curves to be non-smooth, as they vary by steps. DN , the KS test statistic,
is simply the maximum vertical distance between the solid and dashed curves.
[Data source: Climatic Research Unit, University of East Anglia.]
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Figure 4.5 The empirical distribution functions for SOI during 1870–1943 and
during 1944–2017. The DN,M test statistic from the two-sample KS test is the
maximum vertical distance between the two curves. [Data source: Climatic
Research Unit, University of East Anglia.]
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Figure 4.7 Maximum winter snow water equivalent at (a) Grouse Mountain
and (b) Sinclair Pass, BC from 1938–2018, with linear trend (dashed line),
mean (dotted) and median (dot-dashed). Sinclair Pass (50◦ 40′N, 117◦ 58′W,
1,370 m elevation) is located just west of the Canadian Rockies, while Grouse
Mountain (49◦ 23′N, 123◦ 05′W, 1,100 m elevation) is located near the west
coast (hence the much large winter SWE values). [Data source: River Forecast
Centre, British Columbia.]
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(c) Bootstrap distribution of SWE standard deviation
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Figure 4.8 (a) Histogram of the maximum winter SWE at Glacier, BC. Dis-
tribution of the SWE (b) sample mean and (c) sample standard deviation from
10,000 bootstrap samples. The fitted Gaussian curve is also shown. The verti-
cal lines show the statistic from the original sample (solid), the median of the
bootstrap statistic (dot-dashed), the 95% CI from the BCa method (dashed),
the basic method (darkly dotted) and the percentile method (lightly dotted).
[Data source: River Forecast Centre, British Columbia.]
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Figure 5.1 Illustrating linear re-
gression. A straight line ŷi = a0 +
a1xi is fitted to the data, where
the parameters a0 and a1 are de-
termined from minimizing the sum
of the square of the error εi, which
is the vertical distance between the
ith data point and the line. The
slope of the line is given by a1 and
the y-intercept by a0.
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Figure 5.2 Simple linear
regression with visibility
as the response variable
and relative humidity as
predictor. The 95% predictor
intervals are indicated by
the dashed lines and the
95% confidence intervals by
the dot-dashed lines. [Data
source: weatherstats.ca
based on Environment and
Climate Change Canada
data.]
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Figure 5.3 Multiple linear regression for daily weather variables in Vancouver,
BC, where visibility is the response variable y and relative humility and pressure
are the two standardized predictors. The MLR predicted values ŷi lie on a two-
dimensional plane as indicated by the grid, with the observed yi values indicated
by the circles. The grid is tilted downward as relative humidity increases and
upward as pressure increases, as expected from the regression parameters â1 =
−7.03 and â2 = 1.54. The vertical distance between a data point (xi, yi) and its
projected value (xi, ŷi) on the plane is the error εi. When there are m predictors
in the regression relation, (xi, ŷi) lies on an m-dimensional hyperplane. [Data
source: weatherstats.ca based on Environment and Climate Change Canada
data.]
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Figure 5.4 Boxplot showing the RMSE difference with respect to the MLR
model, that is, the RMSE of stepwise regression, ridge regression and lasso
minus the RMSE of the MLR model, for 1,000 trials. Visibility in Vancouver,
BC is the response variable, while humidity, pressure, air temperature and wind
speed are the four predictors. The sample size of the training data was (a)
N = 100, (b) N = 30 and (c) N = 30. In (c), the third and fourth predictors
were replaced by random numbers from a standard Gaussian distribution. The
RMSE was computed on test data, that is, data not chosen for model training.
A positive RMSE difference means the model is underperforming the MLR. See
Section 2.12.3 for an explanation of boxplots. [Data source: weatherstats.ca
based on Environment and Climate Change Canada data.]
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(a)  Stepwise regression
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Figure 5.5 Histogram showing the percentage distribution of models selected
by (a) stepwise regression and (b) lasso from 1,000 trials with visibility as the
response variable. With four predictors, there are 16 possible model architec-
tures, for example, model [1 0 0 0] indicates only the first predictor was used and
[1 1 1 1] indicates that all four predictors were used.
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Figure 5.6 Schematic diagram illustrating the SSE contours (ellipses) and the
constraint region for (a) lasso (diamond region) and (b) ridge regression (circu-
lar region) in a two-dimensional regression parameter space a1-a2. The solution
is indicated by the small square, marking where the lowest value of the SSE
function intercepts the constraint region. The dot in the centre of the ellipses
marks â, where the minimum of the SSE occurs. [Adapted from Hastie, Tib-
shirani, et al. (2009, figure 3.11), which was based on Tibshirani (1996, figure
2).]
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Figure 5.7 The loss L as a function of the error ε using (a) absolute errors (solid
curve) for finding the conditional median and squared errors (dashed curve) for
the conditional mean, and (b) for finding the conditional 0.95 quantile (solid)
and the conditional 0.10 quantile (dashed).
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Figure 5.8 Quantile regression with wind speed as response and pressure as
predictor, with data from Vancouver, BC. Bootstrap resampling was used to
estimate the 95% confidence intervals (dashed lines) around the regression
lines. [Data source: weatherstats.ca based on Environment and Climate Change
Canada data.]



Chapter 6: Neural networks

axon synapse
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Figure 6.1 In a neuron, dendrites receive signals from other neurons. If the
total stimulus exceeds some threshold, the neuron becomes activated, firing
a signal down its axon to the synapses at its end. Synapses are sites where
neurotransmitting chemicals are released into the space between neurons so the
signal can be picked up by neighbouring neurons. [Image source: Quasar Jarosz
at English Wikipedia.]

Figure 6.2 The perceptron model consists of a
layer of input neurons connected directly to a
layer of output neurons.
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Figure 6.3 (a) The logistic sigmoidal function (solid) and the hyperbolic tan-
gent function tanh (dashed). (b) Effect of the weight w in f(wx) as seen by
comparing f(2x) (solid) and f(x) (dashed), with tanh used for f . (c) Effect
of the offset parameter b in f(wx + b) by comparing f(x + 1) (solid) and f(x)
(dashed). (d) Three unbounded activation functions: the rectified linear unit
(ReLU) function f(x) = max(0, x), the softplus function f(x) = log(1 + ex) and
the swish function given in (15.2).

Figure 6.4 The perceptron model for computing
y = x1.AND.x2. The activation function f used
is the Heaviside step function H in (6.2). The
threshold −b = 1.5 is exceeded by w1x1 + w2x2 in
H(w1x1 +w2x2 +b) only when both inputs have the
value 1.
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Figure 6.5 The classification of the input data (x1, x2) by the Boolean logical
operator (a) AND and (b) XOR (exclusive OR). In (a), the decision boundary
separating the TRUE domain (black circle) from the FALSE domain (white
circles) can be represented by a straight (dashed) line, hence the problem is
linearly separable, whereas in (b), two lines are needed, rendering the problem
not linearly separable.

Figure 6.6 The multi-layer percep-
tron (MLP) or feed-forward neural
network (FFNN) model with one
‘hidden layer’ of neurons or nodes
sandwiched between the input layer
and the output layer. There are m1

nodes in the input layer, m2 nodes
in the hidden layer and m3 nodes in
the output layer.
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Figure 6.7 (a) The ensemble average (solid curve) of an MLP ensemble with
25 members, the true signal (dashed) and the training data (circles). (b) The 25
individual ensemble members are shown by thin curves in addition to the ensem-
ble average (solid curve), with two of the individual members (corresponding to
shallow local minima in the objective function) highlighted by the dashed curve
and the dot-dash curve. Different vertical scales are used in (a) and (b).
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Figure 6.8 The relative humidity–visibility data from Figure 5.2 (but with
457 instead of 100 data points chosen) are used to train an ensemble of 100
ELM models (using the logistic activation function in the hidden layer), with
the ensemble averaged output in (a) shown for L = 2, 3 and 20 hidden nodes,
with underfitting seen when L = 2 and overfitting when L = 20. (b) With
five-fold cross-validation (see Section 8.5), the RMSE of the validation data
(dashed curve) bottoms at L = 3 hidden nodes. RMSE of the training data
(solid curve) keeps on decreasing as L increases, as the model fits closer to the
noisy data. [Data source: weatherstats.ca based on Environment and Climate
Change Canada data.]



CHAPTER 6. NEURAL NETWORKS 47

Figure 6.9 The random vector
functional link (RVFL) model is
similar in architecture to an MLP
model except direct linear mapping
from the input layer to the output
layer is allowed (dashed arrows). In
this example, the RVFL model has
two inputs, three hidden nodes and
two outputs.
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Figure 6.10 (a) Radial basis functions (RBFs) and (b) normalized RBFs. Holes
are present in (a), where RBFs with fixed width σ are used. This problem is
avoided in (b) with the normalized RBFs.
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Figure 6.11 (a) Mixing density network (MDN) applied to the same dataset
used in Figure 6.8(a), with contours showing the conditional density p(y|x) and
the solid curve the conditional mean. The contour labels need to be multiplied
by 100 to give the value for p(y|x). Along the vertical dashed line at relative
humidity = 70, the conditional density shows two peaks (at visibility around
30 km and 45 km). (b) The centres µ1 and µ2 and the standard deviations σ1
and σ2 for the two Gaussian functions in the mixture model and (c) the mixing
coefficients a1 and a2.
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Figure 6.12 Non-linear quantile regression by neural network models as applied
to the same dataset as in Figure 6.11, using (a) the basic QRNN model and (b)
the MCQRNN model. The observations (circles) and the 0.1, 0.2, . . . , 0.9
quantiles are shown. Crossing of quantile curves is seen in (a) but not in (b).
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Figure 6.13 The Huber error
function h(ε) (with parameter
δ = 1) (solid curve) plotted
versus the error ε. The squared
error function (dashed) and
the absolute error function
(dot-dashed) are also shown
for comparison. The vertical
dashed lines at ε = ±δ = ±1
indicate where the Huber func-
tion changes from behaving like
the squared error function to
behaving like the absolute error
function, which is less sensitive
to outliers. -3 -2 -1 0 1 2 3
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Chapter 7: Non-linear optimization
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Figure 7.1 A schematic diagram illustrating an objective function J(w). There
are multiple local minima labelled A, B, D, E and F, and a global minimum
labelled C. Local minima B and D, being close to C, are likely to give good
solutions, whereas the shallow minima A and F, poor solutions. The point
labelled S is a saddle point – the gradient (i.e. slope) of the curve is zero but
the point is neither a maximum nor a minimum.
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Figure 7.2 A saddle point on the surface J = w2
1−w2

2, with the saddle point at
(0, 0) marked by a semi-circle. At (0, 0), J concaves up (i.e. positive curvature)
along the w1 dimension and concaves down (negative curvature) along the w2

dimension.
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J

epochs

training

validation

Figure 7.3 Schematic diagram illustrating the behaviour of the objective func-
tion J as the number of training epochs increases. Evaluated over the training
data, the objective function (solid curve) decreases with increasing number of
epochs; however, evaluated over an independent set of validation data, the objec-
tive function (dashed curve) initially drops but eventually rises with increasing
number of epochs, indicating that overfitting has occurred when a large number
of training epochs is used. The minimum in the objective function evaluated
over the validation data (as marked by the vertical dotted line) indicates when
training should be stopped to avoid overfitting.

Figure 7.4 The gradient descent approach
starts from the weights wk estimated at step
k of an iterative optimization process. The
descent path dk is chosen along the negative
gradient of the objective function J , which
is the steepest descent direction. Note that
dk is perpendicular to the J contour where
wk lies. The descent along dk proceeds until
it is tangential to another contour at wk+1,
which is the minimum of J along the dk
direction, thereby giving the optimal step
size η in the descend along dk. At wk+1,
the direction of steepest descent is given by
−∇J(wk+1). The process is iterated.

k

dk

wk+1− k+1w

w

J ( )∇
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(a) (b)

(c) (d)

Figure 7.5 The gradient descent method with (a) line minimization (i.e. op-
timal step size η), (b) a fixed step size that is too small, (c) a fixed step size
that is too large and (d) momentum, which reduces the zigzag behaviour during
descent. The direction of steepest descent is indicated by dashed lines in (d).
[Follows Masters (1995, chapter 1).]
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Figure 7.6 Using line search to find
the minimum of the function J(η).
First, three points a, b and c are found
with J(a) > J(b) and J(b) < J(c), so
that the minimum is bracketed within
the interval (a, c). Next a parabola is
fitted to pass through the three points
(dashed curve). The minimum of the
parabola is at η = d. Next the three
points among a, b, c and d with the
three lowest values of J are selected,
and a new parabola is fitted to the
three selected points, with the pro-
cess iterated until convergence to the
minimum of J .

J

a

d

c

b

η

Figure 7.7 Constructing the mutant vec-
tor in DE. From three randomly chosen
vectors w(1), w(2) and w(3) from the pop-
ulation, the difference vector w(2) − w(3)

(dashed) is constructed. A scaled version of
this difference vector (dotted) is added to
w(1) to give the mutant vector w̃(1) (dot-
dashed).

w

w

w
w

˜ (1)

(3)

(2)

(1)
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Figure 7.8 (a) The objective function J along the w1 axis. Position of the
50 candidate solutions in the w1-w2 space: (b) at the initial setup and after
using the DE algorithm to perform (c) 10 iterations and (d) 20 iterations. If a
candidate is perturbed to move beyond the boundary of the interval [−5, 5] in
any dimension, it is repositioned to sit right on the boundary. Negative contour
values of J are indicated by dashed lines and non-negative contours by solid
lines, with the global minimum at (0, 0) marked by the cross.



Chapter 8: Learning and generalization

Figure 8.1 The model out-
put ŷ is the conditional mean
(dashed line) of the target data
y, with the conditional proba-
bility distribution p(y|x) illus-
trated at x1 and at x2.

y

xx1 x2

y(x)

p(y|x1)

p(y|x2)
ˆ

Figure 8.2 The optimal solution
ŵ when there is no weight penalty
in J and the optimal solution wp

when there is weight penalty. The
solid contours show J (with only
the MSE term), with a minimum at
ŵ, while the dashed contours show
the parabolic contribution from the
weight penalty term. Thus, wp is
the minimum resulting from adding
the weight penalty term to the
MSE term.

^

1

2

w

w

w
wp

Figure 8.3 Illustrating the
model error (e.g. the MSE) for
the training data (solid curve)
and for the validation data
(dashed curve) as a function of
the weight penalty parameter
λ. The minimum in the dashed
curve gives the optimal λ value
(as marked by the dotted line).

Error

0

training

validation

λ
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(a)  Early stopping
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(b)  No early stopping

Figure 8.4 (a) The output from 25 runs of an MLP NN model trained using
early stopping (thin lines), the ensemble average of the output from the 25 runs
(thick line), the signal (dashed line) and the data (circles). (b) Repeat of (a)
but without using early stopping during the training of the NN model.

Figure 8.5 In K-fold cross-validation (here K = 5), the
computational loop begins by withholding the first data
segment as validation data (striped pattern), using only
the remaining data segments for training the model. The
trained model is then used to predict the data over the
validation segment. Next, the second segment is with-
held as validation data and the other segments used as
training data, and so on, until the final segment is used
as validation data.



CHAPTER 8. LEARNING AND GENERALIZATION 59

Figure 8.6 Double cross-validation
involving an outer cross-validation
loop CV1 and an inner loop CV2.
In CV1, the data record is divided
into a number of segments, and the
first segment is withheld as test data
(horizontally striped), while the re-
maining segments are used for model
training. In CV2, consider only the
data for model training: a standard
K-fold cross-validation loop (here
K = 5) is used where data are
withheld for validation (diagonally
striped) to determine the optimal
model hyperparameters. CV1 con-
tinues by withholding the second
segment as test data, and so on, un-
til the final segment is used for test
data.

CV1

CV2

CV2

CV1

CV1

CV2

CV2

CV2

CV2

CV2

test

Figure 8.7 A modified double cross-validation scheme to alleviate serial corre-
lation across the boundary between the test data and the training data. In the
outer loop (CV1), the training data are shown in grey and the test data are hor-
izontally striped. The data segments (in white) bridging the training data and
the test data are not used, to avoid serial correlation leaking information from
the training data to the adjacent test data. The test data segment is moved
repeatedly from the start of the data record to the end in this cross-validation
loop, so forecast performance is tested over the whole record. Meanwhile, in the
inner loop (CV2), the training data from CV1 are assembled and divided into
training and validation (diagonally striped) data segments, which are rotated
under K-fold cross-validation to determine the optimal hyperparameters. The
model with the optimal hyperparameters is used to predict over the test data
segment in CV1. [Adapted from Zeng et al. (2011, figure A.1).]
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(a) (b)Grid search Random search

Figure 8.8 Illustrating (a) grid search and (b) random search for hyperparame-
ters. Of the two hyperparameters, one is important and the other unimportant
in influencing the objective function. The peaked curve drawn on top of the
square illustrates the effectiveness of the important hyperparameter on improv-
ing the objective function, while the relatively flat curve on the left side of the
square illustrates the ineffectiveness of the unimportant hyperparameter. Both
(a) and (b) have nine circles within the square representing nine model runs
using different values for the hyperparameters. The peak of the curve for the
important hyperparameter was well located by the nine circles projected onto
the curve from the nine runs in (b). In contrast, the projected circles from the
nine runs in (a) failed to locate the peak of the curve due to multiple projected
circles landing on the same spot. [Follows Bergstra and Bengio (2012, figure 1).]
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Figure 8.9 Scatter plot of model bias versus standard deviation (SD) of the
model error for the 10 individual ensemble members (asterisks), the simple
ensemble average (cross) and the non-linear ensemble average by NN (diamond).
[Adapted from Krasnopolsky (2007, figure 7).]
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Figure 8.10 The dropout method applied to a neural network model. The
original model is shown in the top left quadrant. The other three are versions of
the original model but with various input and hidden nodes deleted (as marked
by the crosses) during model training. The output nodes are always retained.

Figure 8.11 Schematic diagram
of model selection based on the
highest model evidence, with p(D)
shown for three models – a simple
model M1, an intermediate model
M2 and a complex model M3. The
simple model can only fit a narrow
range of observed data D, while
the complex model can fit a broad
range. For the observed data D0,
the highest p(D) (along the verti-
cal dashed line) is found for model
M2. [Follows Bishop (2006, figure
3.13).]
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(b)  Noise level = 0.5

2 4 6 8 10 12

Number of parameters

-30

-20

-10

0

10

20

30

40

In
fo

rm
at

io
n 

cr
ite

rio
n

(c)  Noise level = 1
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(d)  Noise level = 1.5

Figure 8.12 AIC (crosses) and BIC (circles) values for polynomial linear re-
gression models of order 1 to 10 (i.e. with corresponding number of parameters
from 2 to 11). The signal ysignal was generated by a fifth order polynomial (with
six parameters). Gaussian noise with standard deviation equal to (a) 0.25, (b)
0.5, (c) 1 and (d) 1.5 times the standard deviation of ysignal was added to the
signal. Model is selected based on lowest AIC or BIC (as indicated by the verti-
cal dotted lines). In (a), both AIC and BIC selected the correct model with six
parameters. The first term in AIC and BIC, that is, N log(σ̂2), is also shown
(triangles).
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Figure 8.13 The probability of selecting a model with a certain number of
parameters using AIC and BIC for four different noise levels, as estimated from
10,000 runs with different random noise. The true model had six parameters.



Chapter 9: Principal components and canoni-
cal correlation

Figure 9.1 The PCA problem formulated
as a minimization of the sum of r2i , where
ri is the shortest distance from the ith
data point to the first PCA axis z1.
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Figure 9.2 Rotation of coordinate axes by
an angle θ in a two-dimensional space.
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Figure 9.3 Regions of interest in the equatorial Pacific for sea surface temper-
ature anomalies associated with the El Niño/La Niña phenomenon: Niño 1+2
(0◦–10◦S, 80◦W–90◦W), Niño 3 (5◦S–5◦N, 150◦W–90◦W), and Niño 4 (5◦S–
5◦N, 160◦E–150◦W). Niño 3.4 (5◦S–5◦N, 170◦W–120◦W, marked by dashed
box) straddles Niño 3 and Niño 4. SST anomalies averaged over each of these
regions are used as climate indices.
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Figure 9.4 The monthly SST anomalies in Niño 1+2, Niño 3, Niño 3.4 and
Niño 4 (in ◦C), and the monthly Southern Oscillation Index, SOI. During El
Niño episodes, the SST rises in Niño 3 and Niño 3.4 (and less consistently in
Niño 1+2), while the SOI drops. The reverse occurs during a La Niña episode.
The grid mark for a year marks the January of that year. [Data source: Climate
Research Unit, University of East Anglia.]
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Figure 9.5 The spatial patterns (i.e. eigenvectors or EOFs) of PCA modes (a)
1, (b) 2 and (c) 3 for the SST anomalies. Positive contours are indicated by
the solid curves, negative contours by dashed curves and the zero contour by
the thick solid curve. The contour unit is 0.01◦C. The eigenvectors have been
normalized to unit norm. [Reproduced from Hsieh (2001b, figure 7).]
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Figure 9.6 The principal component time series for the SST anomaly modes
(a) 1, (b) 2 and (c) 3. [Source: Hsieh (2009)]
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Figure 9.7 The spatial patterns of PCA modes (a) 1, (b) 2 and (c) 3 for the
SLP anomalies. The contour unit is 0.01 hPa. Positive contours are indicated
by the solid curves, negative contours by dashed curves and the zero contour by
the thick solid curve. [Source: Hsieh (2009)]
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Figure 9.8 The principal component time series for the SLP modes (a) 1, (b)
2 and (c) 3. PC for mode 1 is strongly correlated with the SST mode 1 PC in
Fig. 9.6(a). [Source: Hsieh (2009)]
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Figure 9.9 The case of PCA applied to a dataset composed of (a) a single
cluster, (b) two clusters, (c) three and (d) four clusters. In (c), an orthonormal
rotation has yielded rotated eigenvectors ẽj , (j= 1, 2), which pass much closer
to the data clusters than the unrotated eigenvectors ej . In (d), an oblique ro-
tation is used instead of an orthonormal rotation to spear through the data
clusters, while the dashed lines indicate the orthonormally rotated eigenvec-
tors. Eigenvectors that failed to approach any data clusters generally bear little
resemblance to physical states. [Follows Preisendorfer (1988, figure 7.3).]
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Figure 9.10 (a) In E-frame rotation, the rotated eigenvector ẽ2 points much
closer to the direction of the data point (small circle) than the original eigenvec-
tors e1 and e2, with the coordinates of the data point in the original unrotated
system being (a1, a2) and, in the rotated system, (ã1, ã2). (b) In A-frame
rotation, the rotated PC vector ã2 points much closer to the direction of the
data point than the original vectors a1 and a2. The roles of a and e have been
reversed between (a) and (b).
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Figure 9.11 PCA with and without rotation for the tropical Pacific SST anoma-
lies. In the PC1–PC2 plane of the scatter plot, where the monthly data are
shown as dots, the cool La Niña states lie in the upper left corner, while the
warm El Niño states lie in the upper right corner. The first PCA eigenvec-
tor would lie along the horizontal direction and the second eigenvector along
the vertical direction. A varimax rotation is performed on the first three PCA
eigenvectors. The direction of the first RPCA eigenvector ẽ1 (dot-dashed line)
spears through the cluster of El Niño states in the upper right corner, thereby
yielding a more accurate description of the SST anomalies during an El Niño.
The direction of the second RPCA eigenvector ẽ2 (dashed line) is orthogonal
to the first RPCA eigenvector (though not discernible in this two-dimensional
projection of three-dimensional vectors). Note the axes have different scales for
clarity. [Adapted from Hsieh (2001b, figure 8).]
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Figure 9.12 The varimax RPCA spatial modes (a) 1 and (b) 2 for the SST. The
contour unit is 0.01◦C. More intense SST anomalies are found in the eastern
equatorial waters off Peru (i.e. just off the west coast of South America) in the
RPCA mode 1 than in the PCA mode 1. [Adapted from Hsieh (2001b, figure
9).]
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Figure 9.13 Eigenvectors (i.e. EOFs) from PCA on the winter 500 hPa geopo-
tential height anomalies showing the loadings for (a) mode 1 and (b) mode 2.
[Reproduced from Wallace and Gutzler (1981, figure 27), c©American Meteoro-
logical Society. Used with permission.] Eigenvectors from rotated PCA for (c)
mode 1 and (d) mode 2. [Reproduced from Horel (1981, figure 2), c©American
Meteorological Society. Used with permission.] The loading at any location is
the correlation between the PC and the local 500 hPa height anomaly, as in
(9.44). The contour interval is 0.2. The sign of an eigenvector is arbitrary, that
is, the entire loading pattern can be multiplied by −1.
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(a) (b)

Figure 9.14 First four PCA spatial modes of three-day precipitation (May–
August) over central USA. (a) Left panels show the four modes computed for
the whole domain. (b) Right panels show the modes computed separately for
the northern and southern halves (as separated by the dashed line). Insets show
the basic harmonic patterns found by the modes. [Reproduced from Richman
(1986, figure 2).]
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Figure 9.15 A complex PCA
mode representing a two-
dimensional velocity field: (a)
At the first time instance
(l= 1), the PC = 1 and the
eigenvector gives a clockwise
circulation pattern. (b) At
l= 2, the PC is 1.5 e−iπ/2

and the mode gives a strong
convergent flow pattern. (c) At
l= 3, the PC is e−iπ, with the
mode giving a counterclockwise
circulation pattern. (d) At
l= 4, the PC is 0.5 e−i3π/2,
with the mode giving a weak
divergent flow pattern.
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Figure 9.16 Illustrating the CCA solution in the x and y spaces. The vectors
F1 and G1 are the canonical correlation patterns for mode 1, u1(t) is the am-
plitude of the fluctuation along F1 and v1(t) is the amplitude along G1. The
vectors F1 and G1 have been chosen so that the correlation between u1 and v1
is maximized. Next, F2 and G2 are found, with u2(t) the amplitude of the fluc-
tuation along F2, and v2(t) that along G2. The correlation between u2 and v2 is
again maximized, but with cov(u1, u2) = cov(v1, v2) = cov(u1, v2) = cov(v1, u2)
= 0. In general, F2 is not orthogonal to F1, and G2 is not orthogonal to G1.
Unlike PCA, F1 and G1 need not be oriented in the direction of maximum
variance. Solving for F1 and G1 is analogous to performing rotated PCA in the
x and y spaces separately, with the rotations determined from maximizing the
correlation between u1 and v1. [Source: Hsieh (2009)]
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Figure 9.17 Illustrating how CCA may end up extracting a spurious leading
mode when working with relatively high-dimensional input spaces. With the el-
lipses denoting the data clouds in the two input spaces, the dotted lines illustrate
directions with little variance but by chance with high correlation (as illustrated
by the perfect order in which the data points 1, 2, 3 and 4 are arranged in the
x and y spaces). Since CCA finds the correlation of the data points along the
dotted lines to be higher than that along the dashed lines (where the data points
a, b, c and d in the x-space are ordered as b, a, d and c in the y-space), the
dotted lines are chosen as the first CCA mode. Maximum covariance analysis
(MCA), which looks for modes of maximum covariance instead of maximum
correlation, would select the longer dashed lines over the shorter dotted lines,
since the lengths of the lines do count in the covariance but not in the corre-
lation; thus, MCA is stable even without pre-filtering by PCA. [Source: Hsieh
(2009)]
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Figure 9.18 The CCA mode 1
for (a) the SLP anomalies and
(b) the SST anomalies of the
tropical Pacific. As u1(t) and
v1(t) fluctuate together from
one extreme to the other as
time progresses, the SLP and
SST anomaly fields oscillate as
standing wave patterns, chang-
ing between an El Niño state
and a La Niña state. The pat-
tern in (a) is scaled by ũ1 =
[max(u1) − min(u1)]/2 and (b)
by ṽ1 = [max(v1) −min(v1)]/2.
Contour interval is 0.5 hPa in
(a) and 0.5◦C in (b). [Repro-
duced from Hsieh (2001a, figure
6), c©American Meteorological
Society. Used with permission.]
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(c)  4 clusters
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(f)  Calinski-Harabasz index

Figure 10.1 K-means clustering of the daily air pressure and temperature data
at Vancouver, BC, Canada, using (a) 2, (b) 3, (c) 4 and (d) 5 clusters, with
their centroids marked by circles. (e) The gap statistic from (10.15) and (f) the
Calinski–Harabasz index, with both choosing K = 3 clusters as optimal.
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Figure 10.2 2-D data generated from two elliptical Gaussian distributions, with
100 data points in the upper group and 200 in the lower group. (a) Gaussian
mixture model clustering of the 300 data points, with K = 2, solid circles
indicating the centroids and the contours showing the two separate mixture
components in (10.24).(b) K-means clustering failing to extract two elliptical-
shaped clusters.
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Figure 10.3 Hierarchical clustering of the daily air pressure and temperature
data at Vancouver, BC, Canada using Ward’s method on standardized data.
(a) Dendrogram, where the cut-off level (horizontal dashed line) is set to three
clusters, (b) the three clusters, (c) gap statistic and (d) Calinski–Harabasz index.
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Figure 10.4 (a) A two-dimensional self-organizing map (SOM) where a 5 × 5
hexagonal mesh is fitted to the Lorenz (1963) attractor data (dots) and (b) a
one-dimensional SOM with four units, dividing the data points into four clusters.
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Figure 10.5 A wave propagating to the right is analysed by a 3× 4 SOM. The
frequency of occurrence of each SOM pattern is given by the percentage on
top of each panel. As time progresses, the best matching unit (BMU) rotates
counterclockwise around the 3× 4 SOM patterns, where the SOM patterns (5)
and (8) are bypassed (as indicated by their frequency of occurrence of 0.0%).
[Reproduced from Y. Liu, Weisberg, and Mooers (2006, figure 1).]
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Figure 10.6 The autoencoder or auto-associative neural network is a feedfor-
ward MLP NN model, mapping from the input layer to the output layer while
passing through several hidden layers, including a bottleneck layer called the
‘code’, given by the bottleneck nodes u. To reduce clutter, the connecting ar-
rows linking the nodes in the network are not drawn. The model output x′

is trained towards the target data x, the same as the input data x. The first
part of the network, called the encoder, maps from the input layer to the bot-
tleneck layer, while the second part, the decoder, maps from the bottleneck to
the output layer.
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(a)  Linear regression (b)  Principal component analysis

(c)  Nonlinear regression (d)  Nonlinear principal component
analysis

Figure 10.7 Schematic comparison of methods: (a) The linear regression line
minimizes the mean squared error (MSE) in the response variable x2, with the
error of a particular data point indicated by the double-headed arrow. (b)
Principal component analysis (PCA) minimizes the MSE in all variables, with
the double-headed arrow perpendicular to the line. (c) Non-linear regression
methods produce a curve minimizing the MSE in the response variable. (d)
Non-linear PCA methods use a curve that minimizes the MSE of all variables.
In both (c) and (d), the smoothness of the curve can be varied by the method.
[Follows Hastie and Stuetzle (1989, figure 1).]
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Figure 10.8 An autoencoder for NLPCA, with a feedforward NN architecture.
The input layer x is followed by the encoding layer h(x), then the code or
bottleneck layer (with a single node u for simplicity), the decoding layer h(u)

and finally the output layer x′. Squeezing the input information through a
bottleneck accomplishes dimensionality reduction, with u giving the non-linear
principal component (NLPC). [Adapted from Hsieh (2001b).]
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Figure 10.9 Scatter plot of the SST anomaly (SSTA) data (shown as dots) in
the PC1–PC2 plane, with the El Niño states lying in the upper right corner and
the La Niña states in the upper left corner. The PC2 axis is stretched relative
to the PC1 axis for better visualization. The NLPCA first mode approximation
to the data is shown by the (overlapping) circles, which trace out a boomerang-
shaped curve. The first PCA eigenvector is oriented along the horizontal arrow
and the second eigenvector along the vertical arrow. The rotated PCA (RPCA)
eigenvectors ẽ1 and ẽ2 from a varimax rotation are indicated by the dashed
arrows. [Adapted from Hsieh (2001b).]
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(f)   min(u)  NLPCA      
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Figure 10.10 The SSTA patterns (in ◦C) of the PCA, RPCA and the NLPCA.
The first and second PCA spatial modes are shown in (a) and (b), respectively
(both with their corresponding PCs at maximum value). The first and second
varimax RPCA spatial modes are shown in (c) and (d), respectively (both with
their corresponding RPCs at maximum value). The anomaly pattern as the
NLPC u of the first NLPCA mode varies from (e) its maximum (strong El
Niño) to (f) its minimum (strong La Niña). With a contour interval of 0.5◦C,
the positive contours are shown as solid curves, negative contours as dashed
curves and the zero contour as a thick curve. [Reproduced from Hsieh (2004).]
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Figure 10.11 Illustrating
how overfitting can occur in
NLPCA (even in the limit
of infinite sample size). (a)
PCA solution for a Gaussian
data cloud (shaded ellipse),
with two neighbouring points
A and B shown projecting
to the points a and b on the
PCA straight line solution.
(b) A zigzag NLPCA solution
found by a flexible enough
non-linear model, with a
smaller MSE than that in
(a). Dashed lines illustrate
‘ambiguity’ lines where neigh-
bouring points (e.g. A and
B) on opposite sides of these
lines are projected to a and
b, far apart on the NLPCA
curve. [Adapted from Hsieh
(2007).]
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Figure 10.12 NLPCA(cir), the
NLPCA model with a circular node
at the bottleneck. Instead of having
one bottleneck node u, there are
now two nodes p and q constrained
to lie on a unit circle in the p–q
plane, so there is only one free
angular variable θ, the NLPC. This
network is suited for extracting a
closed curve solution. [Adapted
from Hsieh (2001b).]
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Figure 10.13 The NLPCA(cir) mode 1 solution for the equatorial stratospheric
zonal wind anomalies. For comparison, the PCA mode 1 solution is shown by
the dashed line. Only three out of seven dimensions are shown, namely the
zonal velocity anomaly U at the top, middle and bottom levels (10, 30 and 70
hPa). (a) A 3-D view. (b)–(d) 2-D views. [Reproduced from Hsieh (2007).]
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Figure 10.14 Contour plot of the NLPCA(cir) mode 1 zonal wind anomalies
as a function of pressure and phase θweighted, where θweighted is θ weighted by
the histogram distribution of θ (see Hamilton and Hsieh, 2002). Thus, θweighted

is more representative of actual time during a cycle than θ. Contour interval is
5 m s−1, with westerly winds indicated by solid lines, easterlies by dashed lines
and zero contours by thick lines. [Reproduced from Hsieh (2007).]
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Figure 10.15 The three MLP NNs used to perform NLCCA. (a) The double-
barrelled NN maps from the inputs x and y to the canonical variates u and v.
The objective function J forces the correlation between u and v to be maximized.
(b) The NN maps from u to the output layer x′, where the objective function J1
basically minimizes the MSE of x′ relative to x. (c) The NN maps from v to the
output layer y′, where the objective function J2 basically minimizes the MSE of
y′ relative to y. [Reproduced from Hsieh (2001a), c©American Meteorological
Society. Used with permission.]
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NLCCA NLCCA

CCA CCA

Figure 10.16 The spatial patterns for the first NLCCA mode between the win-
ter Z500A and the tropical Pacific SSTA as the canonical variate u takes its
(a) minimum value and (b) maximum value. The Z500A with contour intervals
of 10 m are shown north of 20◦N. SSTA with contour intervals of 0.5◦C are
displayed south of 20◦N. The SSTA greater than +1◦C or less than –1◦C are
shaded, and more darkly shaded if greater than +2◦C or less than –2◦C. The
linear CCA mode 1 is shown in panels (c) and (d) for comparison. Negative con-
tours are dashed and the zero contour thickened. [Reproduced from Wu, Hsieh,
and Zwiers (2003), c©American Meteorological Society. Used with permission.]
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Figure 10.17 Similar to Fig. 10.16, but for the NLCCA mode 1 between the
surface air temperature (SAT) anomalies over North America and the tropical
SSTA. The contour interval for the SAT anomalies is 1◦C. [Reproduced from
Wu, Hsieh, and Zwiers (2003), c©American Meteorological Society. Used with
permission.]
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t

Figure 11.1 A troublesome consequence of the periodicity assumption in
Fourier spectral analysis. (a) The true signal Y is over the domain (−∞,∞),
but (b) the observations y are made during t = 0 to T . For Fourier spectral
analysis, the observed record is assumed to repeat itself periodically, thereby
extending the domain to (−∞,∞). (c) The periodicity assumption leads to
jump discontinuities at t = 0 and t = T .
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(b)  Fourier transform of (a)
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(d)  Fourier transform of (c)
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(f)  Fourier transform of (e)

Figure 11.2 Windows and their Fourier transform: (a) and (b) rectangular
window, (c) and (d) Hann window, and (e) and (f) Hamming window. The
Fourier transforms are plotted only for positive ω, as the function is symmetric
about 0, and the magnitude of the Fourier transform is in units of decibel. [The
decibel (dB) is a common unit for presenting a value (divided by a reference
value) on a logarithmic scale. For the magnitude |y| of a variable, the value in
dB is given by 20 log10

(
|y|/|y0|

)
, whereas for the power P or variance of y, the

value in dB is given by 10 log10

(
P/P0

)
. Here, the maximum value is used as

the reference value y0.]
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Figure 11.3 The spectrum (in decibels) for the data in Fig. 11.1(b) is computed
using the rectangular window (solid curve), the Hann window (dashed) and the
Hamming window (dot-dashed). The frequency displayed is ν = ω/(2π).

Figure 11.4 Illustrating the phe-
nomenon of aliasing. The sampling
time interval is ∆t, but the signal
(solid curve) is oscillating too quickly
to be resolved by the sampling. From
the observations (dots), an incorrect
signal (dashed curve) of much lower
frequency is inferred. [Source: Hsieh
(2009)]
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Figure 11.5 The (a)
non-aliased spectrum
where all four signals
have frequencies below
the Nyquist frequency
νN = 1, and (b) the
aliased spectrum where
by sampling at half
the rate, νN = 0.5
and two of the higher
frequency signals in (a)
are reflected or folded
back across the vertical
dashed line at νN = 0.5,
creating spurious peaks
at the frequencies of 0.2
and 0.35.
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(a)  Non-aliased spectrum
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(b)  Aliased spectrum
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(a)  Autospectrum of Nino 3.4
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(b)  Autospectrum of 30 hPa zonal wind

Figure 11.6 Autospectra of (a) the Niño 3.4 index and (b) the equatorial zonal
wind at the 30 hPa level, with the 95% confidence interval given by the thin lines.
The Welch method (with 8 blocks, 50% overlap and the Hamming window) was
used to compute the autospectra after detrending.
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Figure 11.7 In general, in the (u, v)
plane, as the complex velocity wm ro-
tates with angular frequency ωm, the tip
of the velocity vector traces out an ellipse.
Here it is shown rotating clockwise as the
clockwise component A−m happens to be
larger than the anti-clockwise component
A+
m. If A+

m = A−m, the ellipse narrows to
a straight line.
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ENSO provides a substantive addition to 
the ENSO literature. In particular, the 
statistical significance testing allows 
greater confidence in the previous wave-
let-based ENSO results of Wang and 
Wang (1996). The use of new datasets 
with longer time series permits a more 
robust classification of interdecadal 
changes in ENSO variance. 

The first section describes the datasets 
used for the examples. Section 3 de-
scribes the method of wavelet analysis 
using discrete notation. This includes a 
discussion of the inherent limitations of 
the windowed Fourier transform (WFT), 
the definition of the wavelet transform, 
the choice of a wavelet basis function, 
edge effects due to finite-length time se-
ries, the relationship between wavelet 
scale and Fourier period, and time series 
reconstruction. Section 4 presents the 
theoretical wavelet spectra for both 
white-noise and red-noise processes. 
These theoretical spectra are compared to 
Monte Carlo results and are used to es-
tablish significance levels and confi-
dence intervals for the wavelet power 
spectrum. Section 5 describes time or 
scale averaging to increase significance 
levels and confidence intervals. Section 
6 describes other wavelet applications 
such as filtering, the power Hovmoller, 
cross-wavelet spectra, and wavelet co-
herence. The summary contains a step-
by-step guide to wavelet analysis. 

FIG. 1. (a) The Nino3 SST time series used for the wavelet analysis, (b) The 
local wavelet power spectrum of (a) using the Morlet wavelet, normalized by 1 / 
cf (cf = 0.54°C2). The left axis is the Fourier period (in yr) corresponding to the 
wavelet scale on the right axis. The bottom axis is time (yr). The shaded contours 
are at normalized variances of 1, 2, 5, and 10. The thick contour encloses regions 
of greater than 95% confidence for a red-noise process with a lag-1 coefficient of 
0.72. Cross-hatched regions on either end indicate the "cone of influence," where 
edge effects become important, (c) Same as (b) but using the real-valued Mexican 
hat wavelet (derivative of a Gaussian; DOG m = 2). The shaded contour is at 
normalized variance of 2.0. 

2. Data 

Several time series will be used for examples of 
wavelet analysis. These include the Nino3 sea surface 
temperature (SST) used as a measure of the amplitude 
of the El Nino-Southern Oscillation (ENSO). The 
Nino3 SST index is defined as the seasonal SST av-
eraged over the central Pacific (5°S-5°N, 90°-
150°W). Data for 1871-1996 are from an area aver-
age of the U.K. Meteorological Office GISST2.3 
(Rayner et al. 1996), while data for January-June 1997 
are from the Climate Prediction Center (CPC) opti-
mally interpolated Nino3 SST index (courtesy of D. 
Garrett at CPC, NOAA). The seasonal means for the 

entire record have been removed to define an anomaly 
time series. The Nino3 SST is shown in the top plot 
of Fig. la. 

Gridded sea level pressure (SLP) data is from the 
UKMO/CSIRO historical GMSLP2. If (courtesy of D. 
Parker and T. Basnett, Hadley Centre for Climate Pre-
diction and Research, UKMO). The data is on a 5° 
global grid, with monthly resolution from January 
1871 to December 1994. Anomaly time series have 
been constructed by removing the first three harmon-
ics of the annual cycle (periods of 365.25,182.625, and 
121.75 days) using a least-squares fit. 

The Southern Oscillation index is derived from the 
GMSLP2.1f and is defined as the seasonally averaged 
pressure difference between the eastern Pacific (20°S, 
150°W) and the western Pacific (10°S, 130°E). 
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Figure 11.8 (a) The time series of the SST anomalies in the Niño 3 region. (b)
The local wavelet power spectrum of the Niño 3 time series using the Morlet
wavelet. The left axis is the period in years, corresponding to the wavelet scale
on the right axis. The shaded contours are at normalized variances of 1, 2, 5 and
10, with thick contours enclosing regions above 95% confidence for a lag-1 red
noise process (see Section 11.8.2). Cross-hatched regions on either end indicate
the ‘cone of influence’, where edge effects become important. [Reproduced from
Torrence and Compo (1998, figure 1), c©American Meteorological Society. Used
with permission.]
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Figure 11.9 (a) The Morlet wavelet with real part (thick line) and imaginary
part (thin line), (b) wavelet shifted to the right by τ , (c) wavelet scaled by the
factor s = 2 and (d) wavelet shifted and scaled.

0 0.2 0.4 0.6 0.8 1

Angular frequency  (  month -1)

0

0.2

0.4

0.6

0.8

1

S
qu

ar
ed

 c
oh

er
en

ce

(a)  Squared coherence spectrum
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(b)  Phase spectrum

Figure 11.10 (a) The squared coherence and (b) phase from the cross-spectrum
between the equatorial zonal wind at the 30 hPa and at the 10 hPa levels. The
phase is only plotted when the squared coherence value is ≥ 0.2. The phase
is positive if the wind at the 30 hPa level leads that at the 10 hPa level and
negative if vice versa. After detrending, the Welch method (with 8 blocks, 50%
overlap and the Hamming window) was used to compute the cross-spectrum.
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Figure 11.11 Ideal filters: (a) Low-pass, (b) high-pass and (c) band-pass, where
f(ω) is the filter response function and ωN is the Nyquist frequency. In (a),
frequencies below the cutoff frequency ωc are allowed to pass through the filter,
while frequencies above ωc are eliminated. In (b), the situation is reversed, while
in (c), only frequencies within a selected band (ω1 ≤ ω ≤ ω2) are allowed to
pass through the filter. In these ideal filters, jump discontinuities in f(ω) give
infinitely sharp transitions, which are not attainable in practice.
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(a)  Filter response  (K = 40)
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rectangular

0 0.2 0.4 0.6 0.8 1
Angular frequency ( )

-150

-100

-50

0

M
ag

ni
tu

de
 (

dB
)

(b)  Filter response  (K = 200)

Hamming
rectangular

Figure 11.12 Magnitude of the filter response function f(ω) plotted as a func-
tion of the angular frequency ω (in units of π), using the Hamming window
(thick line) and the rectangular window (thin line), with the filter order (a)
K = 40 and (b) K = 200. The ideal filter has infinitely sharp transitions at
ω1 = 0.3π and ω2 = 0.6π, as marked by the vertical dashed lines.
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Figure 11.13 The monthly Niño 3.4 time series, unfiltered (thin line) and band-
pass filtered (thick line). The grid mark for a year marks the January of that
year.
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Figure 11.14 Comparison of the filter response f(ω) for various filters: (a) The
annual symmetric moving average (MA) filter and the 11-month and 13-month
MA filters and (b) the 1-2-1 filter and the three-point and five-point MA filters.
The angular frequency ω is in units of π and the vertical line in (a) marks the
frequency ωannual for the annual cycle.
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Figure 11.15 The SSA modes 1–6 for the tropical Pacific SSTA shown in
(a)–(f), respectively. The contour plots show the SSTA along the equator as a
function of the lag. The zero contour is marked by the thick curve, and positive
and negative anomalies by solid and dashed curves, respectively. The PC time
series is shown beneath each contour plot. [Reproduced from Hsieh and Wu
(2002).]
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Figure 11.16 Autospectrum of
the Niño 3.4 index (solid line) and
the AR(1) model (dashed line).
The AR(1) model parameter φ is
0.92.
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Chapter 12: Classification

Figure 12.1 (a) Training dataset with two predictor variables x1 and x2 from
two spectral bands and four classes (C1, . . . , C4) of land surface and (b) the
same data classified by LDA. Decision regions for the four classes are shown
by different background shading and misclassified data points are circled. (c)
Data classified by multinomial logistic regression and (d) data classified by naive
Bayes, where the Gaussian distributions for the four classes are shown by con-
tours extending out to 4 σij . [Data source: B. Johnson et al. (2012), UCI Ma-
chine Learning Repository http://archive.ics.uci.edu/ml, Irvine, CA: University
of California, School of Information and Computer Science.]
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Figure 12.2 Logistic regression fit to synthetic datasets representing the occur-
rence of red tide for various water temperatures, with data points marked by
circles. The transition between classes is relatively sharp in (a) and gradual in
(b).

Figure 12.3 Illustrating
seven nearest neighbours
(within the dashed circle)
around a particular feature
vector x in a 2-D feature
space for the KNN clas-
sifier with K = 7. The
three classes represent
‘dry’, ‘rainy’ and ‘snowy’
conditions. Since ‘dry’
has the most votes in this
neighbourhood, the model
outputs ‘dry’.

X

x

x
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Figure 12.4 (a) Given the same training dataset as in Fig. 12.1(a) for forest
classification, the data are classified by the method of K-nearest neighbours,
with (b) K = 1, (c) K = 11 and (d) K = 31. Decision regions for the four
classes are shown by different background shading, and misclassified data points
are circled.
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Figure 12.5 Given the train-
ing dataset in Fig. 12.1(a) for
forest classification, the data
are classified by an ensemble
of 99 ELM models with (a)
L = 13 hidden nodes. Class
C1 is indicated by +, C2 by
♦, C3 by × and C4 by �.
Decision regions for the four
classes are shown by differ-
ent background shading, and
misclassified data points are
circled. (b) Misclassification
rate for the training and val-
idation data under a 6-fold
cross-validation scheme, with
the number of hidden nodes
ranging from 3 to 50. The
minimum validation error oc-
curred when L = 13. This es-
timated value for L can vary
considerably if different ran-
dom weights are used, since
the validation error is quite
noisy due to the small sample
size of 198 data points in the
training dataset.
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Figure 12.6 Given the train-
ing dataset in Fig. 12.1(a) for
forest classification, the data
are classified by an ensemble
of 25 MLP models with (a)
L = 9 hidden nodes. Class
C1 is indicated by +, C2 by
♦, C3 by × and C4 by �.
Decision regions for the four
classes are shown by differ-
ent background shading, and
misclassified data points are
circled. (b) Misclassification
rate for the training and val-
idation data under a 6-fold
cross-validation scheme, with
the number of hidden nodes
ranging from 3 to 50. The
minimum validation error oc-
curred when L = 9. This es-
timated value for L can vary
considerably if different ran-
dom weights are used, since
the validation error is quite
noisy due to the small sample
size of 198 data points in the
training dataset.



Chapter 13: Kernel methods
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Figure 13.1 Illustrating the effect of the non-linear mapping φ from the input
space to the hidden space, where a non-linear relation between the input x
and the response y becomes a linear relation (dashed line) between the hidden
variables h and y.

Input
data

Kernel function K 

Kernel matrix K

Algorithm for:

Regression

Classification

Clustering

PCA, CCA, etc.

Output

Figure 13.2 The modular architecture of the kernel method. [Follows Shawe-
Taylor and Cristianini (2004, figure 2.4).]
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Figure 13.3 Illustrating the pre-image problem in kernel methods. The input
space X is mapped by φ to the shaded area in the much larger feature space
F . Two data points x1 and x2 are mapped to φ(x1) and φ(x2), respectively, in
F . Although v is a linear combination of φ(x1) and φ(x2), it lies outside the
shaded area in F , hence there is no ‘pre-image’ x in X, such that φ(x) = v.
[Source: Hsieh (2009)]
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Figure 13.4 Illustrating the approach used by Mika et al. (1999) to extract
an approximate pre-image in the input space X for a point p(φ(x)) in the
feature space F . Here, for example, p(φ(x)) is shown as the projection of φ(x)
onto the direction of the first PCA eigenvector (solid line). The optimization
algorithm looks for x′ in X that minimizes the squared distance between φ(x′)
and p(φ(x)). [Source: Hsieh (2009)]
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Figure 13.5 Illustrating the approach used by Kwok and I. W.-H. Tsang (2004)
to extract an approximate pre-image in the input space X for a point p(φ(x))
in the feature space F . The distance information in F between p(φ(x)) and its
several nearest neighbours (e.g. φ(x1),φ(x2), . . .), and the relationship between
distance in X and distance in F are exploited to allow x1,x2, . . . to pinpoint
the desired approximate pre-image x′ in X. [Source: Hsieh (2009)]

Figure 13.6 The hyper-
plane ŷ = 0, with the
vector w perpendicular to
this hyperplane. In this
example with x being two-
dimensional, the hyperplane
ŷ = 0 reduces to a straight
line in the x1–x2 plane. The
component of the vector
x − x0 projected onto the
w direction is shown by the
dot-dashed line. x
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Figure 13.7 (a) A dataset
containing two classes
(shown by solid circles
and squares) separable
by a hyperplane decision
boundary ŷ = 0. The
margin is maximized. Sup-
port vectors, that is, data
points used in determining
the margins ŷ = ±1, are
circled. (b) A dataset not
separable by a hyperplane
boundary. Slack variables
ξn ≥ 0 are introduced,
with ξn = 0 for data points
lying on or within the
correct margin, ξn > 1
for points lying to the
wrong side of the decision
boundary. Support vectors
are circled.
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Figure 13.8 One-versus-one classification by SVM on the training dataset in
Fig. 12.1(a) for types of forest cover. Class C1 is indicated by +, C2 by ♦, C3

by × and C4 by �. Decision regions for the four classes are shown by different
background shading. Circled data points in (a) are the misclassified data and
in (b) the support vectors.

Figure 13.9 The ε-insensitive error
function Eε(z) shown by solid line
and the mean absolute error (MAE)
function by dashed line.
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(a)  GP with 8 data points
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Figure 13.10 GP regression using the isotropic Gaussian kernel, with the num-
ber of data points (small circles) being (a) 8 and (b) 16. The thick curve shows
the predicted mean, with the two thin curves showing the boundaries of the 95%
prediction interval (i.e. ±2 standard deviations). The true underlying signal is
indicated by the dashed curve.
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Figure 13.11 GP regression applied to daily weather variables from Vancouver,
BC, Canada, with 1/20 the data from 1993–2017 used: (a) visibility as a function
of relative humidity and (b) temperature as a function of pressure. The mean
and variance from (13.114) and (13.115) are used to draw the thick curve and
to shade the 95% prediction interval. [Data source: weatherstats.ca based on
Environment and Climate Change Canada data.]



Chapter 14: Decision trees, random forests and
boosting
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Figure 14.1 Illustrating the partitioning or splitting of the predictor x-space

by CART. (a) First split at x1 = x
(1)
1 yields two regions, each with a constant

value for the output ŷ. (b) Second split at x1 = x
(2)
1 (long dash line) is followed

by a third split at x2 = x
(3)
2 (short dash), yielding four regions of constant ŷ

values.
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Figure 14.2 Regression tree from CART where the output ŷ is the Los Angeles
ozone level (in ppm), and there are nine predictor variables. The ‘tree’ is plotted
upside down, with the ‘leaves’ (i.e. terminal nodes) drawn as rectangular boxes
at the bottom and the non-terminal nodes (i.e. internal nodes) as ellipses. (a)
The tree after three splits has four leaf nodes. (b) The tree after five splits
has six leaf nodes. In each ellipse, a condition is given. Starting from the
top ellipse, if the condition is satisfied, proceed along the left branch down to
the next node; if not, proceed along the right branch. Continue until a leaf
node is reached. In each rectangular box, the constant value of model output
ŷ (computed from the mean of the target data y) in the partitioned region
associated with the particular leaf node is given, as well as n, the number of data
points in that region. Among the nine predictor variables, the most relevant are
the temperatures T1 and T2 (in ◦F) at two stations, p grad (pressure gradient
in mm Hg) and visibility (in miles).
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Figure 14.3 The error E
for a leaf node in binary
classification, where p is the
fraction of data belonging
to class 1. E is taken
to be the entropy impurity
(dashed), the Gini impurity
(dot-dashed) and the mis-
classification rate (solid).
The dotted line shows the
entropy scaled to have the
same maximum value as the
Gini index to facilitate com-
parison.
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Figure 14.4 Relative importance of the predictors in the CART model for the
Los Angeles ozone level, when using (a) no surrogate, (b) one surrogate, (c) two
surrogates and (d) all surrogate splits.
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Figure 14.5 Given the train-
ing dataset in Fig. 12.1(a) for
forest classification, the data
are classified by a random for-
est model with 200 trees in
(a), where class C1 is indi-
cated by +, C2 by ♦, C3

by × and C4 by �. De-
cision regions for the four
classes are shown by differ-
ent background shading, and
misclassified data points are
circled. (b) Misclassification
rate for the training data and
the OOB data as the num-
ber of trees increases from 1
to 200.
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Figure 14.6 The ensemble
average (solid curve) of an
RF model containing 200 re-
gression trees, the true sig-
nal (dashed) and the train-
ing data (circles).
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Figure 14.7 Relative importance of the predictors in the random forest regres-
sion model for the Los Angeles ozone level, when using (a) no surrogate and
(b) all surrogate splits. The most important predictors are the temperatures T1
and T2, the pressure gradient and the inversion temperature.
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Figure 14.8 How boosting works in classification. Top box contains eight input
data points belonging to two classes, ‘+’ and ‘×’. Next, ensemble member 1
is built using a weak learner, a simple decision tree which splits the domain
into two regions, with the shaded region predicting class ‘+’ and the white
region predicting class ‘×’. The shaded region contains two ‘×’ data points,
which are circled to indicate their being misclassified. More effort is devoted
to improving the two misclassified points when building member 2, so they are
classified correctly here, but now two ‘+’ points are misclassified in member
2. With more effort, these two points are correctly classified in member 3, but
there are another two misclassified points. Finally, majority voting by the three
members gives the more complicated decision regions in the bottom box, where
all eight data points are correctly classified.



Chapter 15: Deep learning

AI Machine learning Statistics

Deep
learning

Neural networks Random forests
Boosting

Kernel methods

Figure 15.1 A schematic Venn diagram illustrating the relation between AI,
statistics, machine learning, neural networks and deep learning, as well as kernel
methods (Chapter 13), random forests and boosting (Chapter 14). [Reproduced
from Hsieh (2022).]
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Figure 15.2 Convolution operation as illustrated by applying a 3 × 3 filter
to a 7 × 7 matrix. The filter F is first flipped (both rows and columns) to
give the flipped filter F′. Nine elements of the input matrix A on the left are
multiplied by the nine elements of the flipped filter, then summed and placed
in the output matrix B on the right. If B is to remain the same size as A,
zeros must be padded outside the boundary of A to produce the extra elements
shaded in grey (e.g. the dashed pixel).
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Figure 15.3 Effect of moving the (flipped) filter over the input matrix A at
different stride s. A is of size 9 × 9 and the filter 3 × 3, while the output B is
of size 7× 7 (for s = 1) and 4× 4 (s = 2).

Figure 15.4 Example of a 4×4
input array undergoing a max
pooling operation, where the
output is the maximum value
from each 2 × 2 patch. Here,
the filter width f = 2 and the
stride s = 2.
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7

Figure 15.5 The eight-layer AlexNet CNN model has input images of 227×227
pixels and three colour channels (RGB), with the number of channels indicated
by the depth (i.e. thickness) of the input block. Convoluting the input by a
11 × 11 filter with a stride of s = 4 led to an array of 55 × 55, and the use
of 96 such filters led to 96 channels in layer 1. After max pooling, convoluting
by a 5 × 5 filter (with z = 2 for zero padding) led to the layer 2 array of size
27× 27, with 256 channels. All max pooling operations are done using a 3× 3
filter with s = 2. Again max pooling, then convoluting by a 3 × 3 filter (with
z = 1) led to the layer 3 array of 13× 13, with 384 channels. Convoluting with
a 3× 3 filter (with z = 1) led to the layer 4 array of 13× 13, with 384 channels,
and convoluting again led to layer 5 of 13 × 13, with 256 channels. After max
pooling, the resulting 6×6 array with 256 channels is reshaped into a 1-D array
of 4,096 nodes and is fully or densely connected to layer 6 with 4,096 nodes,
which is fully connected to layer 7 with 4,096 nodes. Layer 7 is fully connected
to layer 8 with 1,000 nodes, with the softmax activation function indicating
which one of the 1,000 classes (e.g. cats, dogs, cars, etc.) the output belongs to.
[Adapted from TensorFlow for Deep Learning, by Bharath Ramsundar and Reza
Bosagh Zadeh. Copyright c© 2018 Reza Zadeh, Bharath Ramsundar. Published
by O’Reilly Media, Inc. Used with permission.]
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Figure 15.6 Unlike the stan-
dard CNN architecture on the
left, the ResNet architecture
allows skip connections (dot-
dashed line) to connect the out-
put from layer l directly to layer
l + 3. The basic building block
for residual learning (dashed) is
repeated to give a deep network
structure.
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Layer l  + 1
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Layer l
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Figure 15.7 Example of a 2×2 in-
put array using nearest neighbour
upsampling to generate values for
a 4× 4 grid.

9 9 5 5

9 9 5 5

7 7 2 2

7 7 2 2

9 5

7 2 upsample



CHAPTER 15. DEEP LEARNING 131

skip connections

Figure 15.8 In this U-net model, the input image of 572 × 572 pixels passes
through two convolutional layers (each with 64 channels) using 3× 3 filters and
the ReLU activation function, then undergoes 2× 2 max pooling to a 284× 284
layer with 64 channels. Descending the left arm of the ‘U’ structure is the en-
coding part, where the spatial resolution decreases but the number of channel
increases, reaching a 30 × 30 layer with 1,024 channels at the bottom of the
‘U’. From this bottleneck, ascending the right arm of the ‘U’ structure is the
decoding part, where up-convolution (i.e. upsampling followed by 2 × 2 convo-
lution) increases the spatial resolution but decreases the number of channels.
Skip connections linking layers in the encoder to the corresponding layers in the
decoder are used to avoid the loss of details in the output. At the final layer, a
1× 1 convolution is used to map from the 64 channels to the desired number of
classes (two classes in this example). In total, the network has 23 convolutional
layers. [Adapted from Ronneberger et al. (2015, figure 1).]
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Figure 15.9 (a) Recurrent neural network (RNN) with one hidden layer h(t).
The network can be unfolded to give the equivalent structure in (b), where
h(t+ 1) receives x(t+ 1) and h(t) as input and the output is y(t+ 1).

Forget gate

Input gate Output gate

tanh

(a) RNN block (b) LSTM block
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Figure 15.10 (a) A hidden layer block from the the RNN in Fig. 15.9(b) has the
combined input from x(t) and h(t − 1) passing through an activation function
(e.g. tanh) to give h(t), which is further passed on to the output node y(t) and
as input to the next block at time t+ 1. (b) A corresponding block from LSTM
where the main difference is the addition of the memory cell vector C, which
stores the long-term memory to supplement the short-term memory stored in
h. There are three components inside the block: the forget gate, which decides
whether to clear the long-term memory from C; the input gate, which updates
C; and the output gate, which outputs h(t). Logistic sigmoidal functions σ
provide smooth switching between on and off, while ⊗ and ⊕ denote element-
wise multiplication and addition. The equations for the LSTM block are given
in Ki et al. (2020) and Kratzert, Klotz, Brenner, et al. (2018).
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Figure 15.11 Dilated causal convolution layers with dilation factors d = 1, 2, 4
and filter size f = 3. [Adapted from Bai et al. (2018, figure 1)].

!"

real

Generator
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vector

“real” or
“fake”

Figure 15.12 Generative adversarial network (GAN) with the generator creat-
ing a fake image (e.g. a fake Picasso painting) from random noise input, and
the discriminator classifying images as either real or fake. Whether the discrim-
inator classifies a fake image rightly or wrongly leads, respectively, to further
training for the generator or for the discriminator. [Reproduced from Hsieh
(2022).]
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Figure 15.13 Conditional generative adversarial network (CGAN) where the
generator G receives an image x and a random noise vector z as input. The
discriminator D receives x plus either a fake image from G or a real image y
as input. Here, a line drawing is converted to a photo image; similarly, a photo
image can be converted to a line drawing. [Adapted from Isola et al. (2017,
figure 2).]



Chapter 16: Forecast verification and post-processing

Figure 16.1 A schematic rel-
ative operating characteristic
(ROC) diagram illustrating the
trade-off between the false alarm
rate (F ) and the probability of
detection (POD) as the clas-
sification decision threshold is
varied for a given model (solid
curve). The dashed curve shows
the ROC of a better model while
the diagonal line (POD = F )
indicates a model with zero skill.
ROC can be characterized by a
single number, the area under
the curve (AUC), where AUC is
larger for the better model. F
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Figure 16.2 ROC diagrams for hailstone classes 1, 2 and 3, using (a) training
and (b) validation data. The error bars in the horizontal and vertical directions
are the one standard deviation intervals based on bootstrapping. The diagonal
line indicates a model with zero skill. [Reproduced from Marzban and Witt
(2001, figure 7), c©American Meteorological Society. Used with permission.]
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(b)  Underconfident
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(c)  Overforecasting

0 0.2 0.4 0.6 0.8 1
Forecast probability

0

0.2

0.4

0.6

0.8

1

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

(d)  Underforecasting
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Figure 16.3 Four types of behaviour seen in reliability diagrams, where the
observed relative frequency is plotted as a function of the forecast probability:
(a) overconfident forecasts, (b) underconfident forecasts, (c) overforecasting and
(d) underforecasting, with the dashed diagonal line indicating a perfect model.
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Figure 16.4 Effects of extrapolation with the (a) sigmoidal, (b) radial basis
and (c) softplus activation function used in the ELM NLR model. Linear ex-
trapolation of the NLR model beyond the training domain is marked by ‘+’. (d)
shows extrapolation of the NLR model over an extended domain for the three
activation functions, as well as the true signal (dashed) and LR (solid line).
[Adapted from Hsieh (2020, figure 1)].



Chapter 17: Merging of machine learning and
physics

ML
Input

Target

ML
Input

Output

GCMCRM

CRM

(a) (b)

Figure 17.1 Using ML to learn parameterization from a high-resolution numer-
ical model such as a cloud resolving model (CRM). In stage (a), high-resolution
data from the CRM are coarse-grained (i.e. averaged over a number of grids
to match the coarser GCM grid size), then supplied as input data and target
data for training the ML model. In stage (b), the trained ML model is cou-
pled to the GCM, with the ML output supplying moist convection and/or other
parameterization to the GCM.

139



CHAPTER 17. MERGING OF MACHINE LEARNING & PHYSICS 140

x

x

.

..
1

m

NN
model

y

y

.

..
1

p-n

constraint 
layers
(�xed)

y

y

.

..
p

p-n+1

Direct
outputs

Residual
outputs

Inputs

Figure 17.2 The ACnet: With predictors x1, . . . , xm, the neural network
model generates the direct outputs y1, . . . , yp−n. The constraint layers take
in x1, . . . , xm and y1, . . . , yp−n, then use the physics constraints to give the
residual outputs yp−n+1, . . . , yp. The NN model weights are optimized by mini-
mizing the MSE between the outputs y1, . . . , yp and corresponding target data.
[Follows Beucler, M. Pritchard, Rasp, et al. (2021, figure 2).]
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Figure 17.3 In 4D-Var, observations are assimilated over a time window start-
ing at t0. The solid curve, generated by integrating the dynamical model, is
fitted to the observations, as well as to the background forecast xb at t0, by
minimizing the objective or cost function J . The optimally estimated xa at t0
serves as the initial condition for integrating the dynamical model forward in
time to generate future forecasts.
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