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Problems and solutions Chapter 2 

 

P.A. The density and the mean free path. (a) Show, from the ideal gas laws, that the 

pressure P of a dilute gas in thermal equilibrium is related to the number density n by 

� 

P = nm v
2
/ 3  where m is the mass of the molecules and 

� 

v
2  is the average squared 

velocity.  (b) Under standard conditions (0o C, 1 atm) the density of a pure gas is 

1.429.10-3 gcm-3. Suggest the possible chemical identity of the gas and compute the root 

mean squared velocity at room temperature. (c) Assuming a collision cross section of 40 

Å2, (an interaction radius of 1.8 Å), compute the mean free path. (d) Discuss whether the 

computed mean free path is large or small by providing a suitable distance for 

comparison. With this result check if our assumption that the gas is dilute enough to be 

nearly ideal is reasonable. (e) Plot the mean free path against pressure. At what low 

pressure will a molecule be likely to survive one second before colliding with another 

molecule? (We gave you a mixed bag of units. That is how real life is). 

 

S.A. (a). Temperature is a measure of the random kinetic energy of the molecules. At 

thermal equilibrium the gas has no net motion so that its center of mass is at rest and the 

entire kinetic energy is that of the random motion. Since there is no preferred direction 

 kBT =
1

2
nm vx

2
=
1

2
nm vy

2
=
1

2
nm vz

2
=
1

2
nm
1

3
v
2  

or  3
2
kBT =

1

2
nm v

2   where kB  is Boltzmann’s constant and v
2  is the variance of 

the velocity distribution, vx
2

+ vy
2

+ vz
2

= v
2 . 

(Option: In general, show that the entire kinetic energy of the gas is the kinetic energy of 

the directed motion of the center of mass plus the random kinetic energy of the 

molecules). 
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For an ideal gas PV = NkBT or 

 P = nkBT =
1

3
nm v

2  

(b). To infer the identity of the gas compute the mass M of a mole of molecules. For one 

mole of an ideal gas PV = RT where R is the gas constant and V is the volume per mole. 

n is the number density so the product ρ = nm is the mass density, and using  

1atm = 1.013 !106 erg cm3( ) , erg=gr⋅cm2/sec2 

M = !V = !
RT

P
= 1.429 "10#3

gr

cm3

8.831 "107 erg K "mol( )273(K)

1.013 "106 erg cm3( )
$ 34gr "mol-1  

The gas is probably molecular oxygen, O2. 

Next compute the density at the temperature of 300K and under atmospheric pressure. It 

follows from (a) that at a constant pressure the density scales inversely to the 

temperature.  

 ! 300K( ) =
273

300
! 300K( ) " 1.3 #10$3

gr

cm
3

 

From the density at room temperature, the RMS velocity is 

 v
2

=
3P

!
=

3 "1.013 "106 erg cm3( )
1.3 "10#3 gr cm3( )

= 4.84 "104
cm

sec
 

(c). The mean free path is computed from ! = 1 n" . n is the number density of the target 

gas, n = P kBT  and ! = 40Å2 = 40 " 10#8cm( )
2
= 4 "10#15cm2  
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! =
kBT

"P
=
0.082 liter # atm/K( )103 cm3/liter( ) 6.022 #1023 molecule mol( )( )300K

4 #10
-15
(cm

2
) #1(atm)

$ 1 #10
%5
cm

 

We compare ! " 1 #10$5 cm = 103Å  to the range d of the force between the molecules. 

For a rough estimate of d use ! = " d
2 or d = 40Å2 ! " 3.6Å . Since d is twice the 

radius of the hard spheres, cf. Figure 2.3, the mean free path (!  103Å ) is almost three 

orders of magnitude larger than the hard sphere radius (! 1.8Å ). For most of the time the 

molecules of the gas are very much isolated. 

(e). From the above ! "
1 #10

$5
(cm # atm)

P(atm)
 and the time τ between collisions is ! / v  

where v  is the mean speed, v =
8kBT

!m
. Therefore the mean time between collisions 

and the pressure are related by ! =
kBT

v "P
=

82

6.022 #1023
cm

3
atm

K #mol

$

%
&

'

(
) # 300(K)

4.5 #104
cm

sec

$
%&

'
()
4 #1015(cm2)P(atm)

  

A time interval of one second is equivalent to a (very very low) pressure of roughly 

2.3 !10-10 atm. 

 

P.C. Derive equation (2.1) and hence compute the flux of O2 molecules incident on the 

wall of a room under ordinary conditions. Is the flux of N2 molecules the same and if not, 

how different is it? In chapter 12 we will conclude that this flux is rather high. Can you 

suggest what is the number against which we will compare the flux to decide when it is 

high? 
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S.C. To compute the flux of molecules striking the surface of the container, take z to be 

the direction perpendicular to the wall. At thermal equilibrium, half the molecules are 

moving from left to right and the other half from right to left along the z direction. If n is 

the number density of the gas, the number density of molecules moving towards the wall 

is n/2. The flux of molecules striking the wall is therefore n vz 2  .  If v is the velocity 

of a molecule its z component is vcos!  where θ is the angle of the velocity with respect 

to the z axis. Averaging over θ, 

 cos! =

cos! d cos!

0

1

"

d cos!

0

1

"

=
1

2
 

the flux of molecules striking the wall is I = n v 4  . With 1 atm= 760 torr and with 

kB ! 1.035 "10
#19
cm

3
" torr/K   and    R = 8.3145 !107  gr !cm2 / sec2 K !mol . 

 

I molecules cm2 ! sec( ) = 1
4

P(torr)

kB cm3 ! torr/K( ) !T (K)
8 ! R gr ! cm2 / sec2 K !mol( ) !T (K)

" !M (gr/mol)

# 3.5 !1022
P(torr)

M (gr/mol) !T (K)

 

For molecular oxygen at 1 torr and room temperature there are about 3.5 !1020  

molecules striking an area of 1cm2 of the surface per second. The flux of N2 is 

comparable. 

The number of atoms at the surface of the solid is of the order of 1015 cm!2  so that the 

flux is sufficient to saturate all the available surface sites in much less than 1 sec. 
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P.E. The rate constant for bimolecular collisions. In the text we defined the number, Z, of 

collisions per unit volume and unit time as Z= nAω = nAnBvσ .  nA and nB are the number 

densities of the two gases. By analogy to chemical kinetics, where the corresponding 

number of reactive collisions is written as knAnB and k is called the reaction rate 

constant,  we can call k = vσ the collision rate constant. (a) If we define k as the loss of 

flux in the experiment of figure 2.1, equation (2.10), show that this recovers the result k = 

vσ. (b) The collision cross section is energy dependent.  The collision rate constant for 

thermal partners is therefore given by 

� 

k = v!  where the averaging is over a thermal 

distribution of the relative velocity v∗. It is however customary to define an effective 

collision cross section by 

� 

k = v! " v !eff . v = (8kBT /#µ)
1/2 . kB=R/NA is 

Boltzmann's constant namely the gas constant per molecule and not per mole. Show that 

in practical units  

 

� 

k(cm3mol-1s-1) ! 8.76 "1011 T /µ(amu)( )1/2# eff (Å
2)

$(s-1) ! P(atm) 298 /T( )4.11 "10%8k(cm3mol-1s-1)
 

(c) Go to a source of chemical kinetics rate data and conclude that our k above is 

significantly larger than a typical bimolecular reaction rate constant. Why? Some 

bimolecular reactions are known to be fast. Can their rate constants be larger than the 

collision rate constant ? (No, but why not?). 

 

                                                

∗ Prove that if A and B both have a thermal distribution of velocities at the same temperature T 

then their relative velocity also has a thermal distribution at the same temperature T . If necessary, 

go first to section 2.2.7. Next prove that if A and B both have a thermal distribution of velocities 

but at two different temperatures  then their relative velocity also has a thermal distribution and 

determine the temperature T  for the distribution of the relative velocity. 
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S.E. (a). The flux along the beam diminishes because of collisions with the target gas. 

The flux is the number of molecules crossing a unit are per unit time. Let I(x) be the flux 

at the distance x along the beam, equation (2.1). Then I x( ) ! I x + "x( )  is the number of 

collisions in the volume !x  per unit time. The number of collisions per unit volume and 

per unit time is I x( ) ! I x + "x( )( ) / "x  in the limit where !x" 0 . This is, cf. equation 

(2.3),  

 !
dI

dx
=
I

"
=

vnA

1 # nB

= nAnB v#  

(b). The ‘effective cross section’ is defined by the measured rate constant for collisions, 

k, by k = v !eff  where the mean speed is, as before, v =
8kBT

!m
. In practical units 

this is rewritten as v =
8RT

!µ
where R is the gas constant and µ  is the reduced mass per 

mole. Then, using NA for Avogadro’s number to convert from rate per molecule to rate 

per mole 

k(cm3sec-1mol-1) = NA
8 !8.314 !107(erg !K-1mol-1) !T (K)

" µ(gr !mol-1)
!10#16$eff (Å

2 )

% 8.76 !1011
T (K)

µ(gr !mol-1)
!$eff (Å

2 )

 

The number of collisions per unit time is, section 2.1.5, ! = nk where n is the number 

density of the gas that the molecule moves through.  In mol/cm3 

  

 

n(mol ! cm
-3

) =
P

RT
=

P(atm)

82.05 (cm
3
! atm/K !mol) !T (K)

= 4.1 !10
"5
P(atm)

298

T (K)

# (sec
"1

) = n(mol ! cm
-3

)k(cm
3
sec

-1
mol

-1
) = 4.1 !10

"5
P(atm)

298

T (K)
k(cm

3
sec

-1
mol

-1
)

 



 

MRD Problems and solutions for Chapter 2        page7 

 R. D. Levine 2009 

 

(c) Reaction rate constants for fast elementary chemical reactions are typically in the 

range of 1013 to 1014 cm3⋅mol-1sec-1. These are reactions (e.g., radical recombination, 

CH3 + CH3! C2H6 ) that proceed without any activation energy. The corresponding 

effective reaction cross sections are from a few to tens of Å2 . These are comparable or 

even larger than the (total) cross sections for atom-atom collisions. But of course the 

comparison is physically not sensible. We define the total collision cross section by the 

rate of all collisions, where a collision occurs if the two partners exercised a force on one 

another. If a reaction took place then of course the two partners were under the influence 

of their mutual force. The total collision cross section has at least to be comparable to or, 

as is usually the case, much larger than the reaction cross section. The conclusion that 

will be reinforced in chapter 3: Fast bimolecular reactions are governed by long range 

forces. Hence they will have particularly large total collision cross sections.  

 

P.G. The Morse functional form, 

� 

V(R) = ! 1" exp("(R" Rm) / 2#)[ ]
2
"! , is also often 

used. This has the short range exponential form as in equation (2.13). (a) Show that the 

Morse potential satisfies the scaling law (2.22). (b) The Morse potential is more flexible 

because the range parameter  ρ can be fitted independently of the position, 

� 

Rm, of the 

minimum. In particular verify that this allows fitting the harmonic frequency, the 

anharmonicity and the rigid-rotor rotational constant as three independent parameters. In 

this fashion data from spectroscopy can be directly used to infer the potential, Herzberg 

(1950).  

 

S.G. First verify that the equilibrium distance is Rm  by checking that the first derivative 

of the potential (=the force) vanishes at Rm . Then introduce reduced (= dimensionless) 

variables by scaling distances by Rm and scaling energies by the well depth ε, 
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 z !
R

Rm

, "# !
"

Rm

, V
# !

V

$
 

Thereby rewrite the Morse potential as  

V R( ) = ! 1" exp " R " Rm( ) 2#( )$% &'
2
"1{ } = ! 1" exp "Rm

R

Rm

"1
(
)*

+
,-
2#

(

)*
+

,-
$

%
.
.

&

'
/
/

2

"1
0
1
2

32

4
5
2

62

= ! 1" exp " z "1( ) 2#7( )$
%

&
'
2
"1

0
1
3

4
5
6
= !V7

z( )

 

Unlike the case of the Lennard-Jones potential, here the shape of the reduced potential is 

not universal because it does depend on the value of the reduced range parameter !"  

(b). Very near the equilibrium position the Morse potential can be evaluated by a Taylor 

expansion of the exponent, 
 
exp(!(z !1) / 2"*)

z!1
# $## 1! (z !1) / 2" *  which allows us 

to write 1! exp ! R ! Rm( ) 2" *( )#$ %&
2
' 4 ! R ! Rm( ) 2" *( )

2  

 
V R( )! "# +

1

2

2#

$2

%

&
'

(

)
* R " Rm( )

2
harmonic limit

+ "# +
1

2
ke R " Rm( )

2
harmonic potential

  

The force constant ke  is defined in terms of the harmonic potential. The harmonic 

vibration frequency is determined by 2! "2 . The rotation constant is determined by the 

equilibrium bond distance Rm  which is an independent parameter. The (dimensionless) 

anharmonicity is determined by the ratio !" . 

 

P.I. Use the conservation of energy condition, equation (2.27), to show that for a collision 

of hard spheres the particles do not feel any force if the impact parameter is larger than 

the hard sphere diameter, b > d.  Hence derive equation (2.35). 
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S.I. For any potential, the region that can be sampled by the relative motion as described 

by classical mechanics is the region where the kinetic energy of the relative motion is not 

negative. From Equation (2.27) this region is specified as 

 1

2
µ

dR

d t

!

"#
$

%&

2

= ET 1'
b
2

R
2

!

"
#

$

%
& 'V (R) ( 0  

For the relative motion of two hard spheres the potential is infinitely repulsive for 

R ! d and vanishes for R > d . If b > d the inequality requires that only the region 

R > b can be sampled. Since b > d and R > b  it follows that the two hard spheres do not 

approach to within the range d of their potential. Only for those initial conditions where 

b ! d do the two spheres feel the force between them. So collisions can only be said to 

take place for b ! d and the cross section is 

 ! = 2"bdb

0

the largest impact paramater
for which a force acted

# = "d2  

 

 

P.K. Orbiting. At low collision energies there will be more than one solution for the 

distance R0 of closest approach as determined from equation (2.30). The easy way to see 

it is to solve (2.30) by graphical means, i.e., to plot 

� 

Veff(R) = V (R) + ETb
2
/ R
2  vs. R and 

see where 

� 

Veff(R) = ET  . The largest root is the turning point of the collision. The other 

two roots are the inner and outer turning points for a state that is bound in the inner 

hollow of the effective potential. Such a bound A-B molecule can dissociate by 

tunneling.  As the collision energy is increased the turning point eventually coincides 

with the very top of the barrier in the effective potential. Above this energy there is only 

one turning point. For a Lennard-Jones (12,6) potential, determine this energy. The 

collision at this energy will just manage to crawl over the top of the barrier. It will do so 
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very very slowly and the collision partners will have lots of time to rotate about one 

another. Hence 'orbiting'. 
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S.K. Orbiting occurs when the maximum of the effective potential  

 Veff (R) = V (R) +
ETb

2

R
2

 

coincides with the turning point of the trajectory. The impact parameter at the top of the 

barrier is determined by the condition !Veff (R) / !R( ) = 0  to be 

b
2
=

R
3

2ET

dV (R)

d R
 

The impact parameter when the turning point is R is b2 = R2 1!V (R) / ET( ) . Equating 

the two values of b determines of the value of R at orbiting as the largest root of 

 1!
V (R)

ET

"

#$
%

&'
!

R

2ET

dV (R)

d R
= 0  

The equation has a real root only for such low collision energies that satisfy 

 ET ! max V (R) +
R

2

dV (R)

d R

"

#$
%

&'
 

  


