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SAMPLE EXAM QUESTIONS (OR ADDITIONAL EXERCISES), AND DERIVED ANSWERS 
 

1. Consider a seismic line laid out along the x axis.  The x axis points in a direction 25o east of north.  
The z axis points downwards into the Earth.  The seismometers are 3C (i.e., they each produce 3 
traces, corresponding to the xu , yu , and zu components of displacement u ).  It is desired to rotate the 
data about the z axis into an ' ' 'x y z  coordinate system in which the 'x axis points directly north.   
(a). Calculate the rotation matrix needed to do this.  
(b). If, at a given time, the displacement ( )2,1, 1= − −u , as measured on the original 3 traces, what is 

u' (i.e., what is u in the new coordinate system)? 
 
2. The components of a 3D  tensor ijt  are all zero except for 11 5t = , 33 2t = − , and 13 4t = .  What is the 

value of the quantity 
3 3

1 1
ij ij

i j
L t δ

= =

=∑∑ ?  ijδ is the Kronecker delta. 

 
3. Let a  be a constant, and let ( ) 1g t =  for 0 t a≤ ≤ , 1−  for 0a t− ≤ < , and 0 for all other .t   Sketch a 

graph of ( ).g t Calculate the amplitude and phase spectra of ( ) ,g t sketch graphs of them, and briefly 
discuss them.  Hint: after calculating the Fourier transform, also calculate 2sin θ  from the formula 

   ( )sin 2i ie e iθ θθ −= − . 
 
4. (a). Suppose a coordinate system is rotated about the 3x axis by an angle 1φ  and that this is followed 

by a second rotation about the new 2x axis by an angle 2φ .  Derive formulas for the values of the  
components of a vector A  in the final rotated coordinate system.  (b). Apply your results to the case 
where A  is a vector parallel to the 3x axis.  What do you notice about the result?  Can you explain it? 

 
5. Suppose the values of all the components ijσ of the stress tensor are known in a certain Cartesian 

( )xyz coordinate system.  In this coordinate system, the pressure P on the x y− plane due to a 
deformation is given by zzP σ= − .  What is P in a coordinate system rotated by an angleθ about the 

axisy − ?  In other words, derive the formula for zzP σ′ ′= − .  The rotation is counter-clockwise (the 
axisz −  rotates towards the axisx − ).  Hint: use the transformation law for tensors of rank 2:  

ij ik j kk
C R R C′ = ∑ ∑

 



.  Does your answer reduce to the correct one for 0oθ =  and 90o  ? 
 
6. For a certain isotropic medium, 2211 4.78c GPa= ,  3333 19.22c GPa= , and the density is 32.0 g cm

What are the P  and S  wave speeds in the medium? 
 
7. Evaluate the sum ij iji j

σ η∑ ∑ , where ijσ  and ijη  are the stress and rotation tensors, respectively.  

Hint: use the symmetry properties of these two tensors.  
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8. True or false?:  For P waves,  ( ), , 1, 2,3j i i ju x u x i j∂ ∂ = ∂ ∂ = , which means that the strain tensor for 
P waves can be written as ij j i i je u x u x= ∂ ∂ = ∂ ∂ .   Prove your answer. 

 
9. It is known that W=K at all times for a plane harmonic P wave, where W and K are the potential 

(strain) and kinetic energy densities for an isotropic medium. But in the case of “simple harmonic 
motion” for a mass m connected to a spring, the potential and kinetic energies, Wm and Km , of the 
mass m, are generally not equal – Wm is a maximum when Km is a minimum, and vice versa, and Wm 
and Km are equal only at a specific time instants (e.g., part-way through an oscillation cycle).  Explain 
why W = K at all times, whereas Wm = Km only at specific times. 

 
10. Derive a formula for Young's modulus Y in terms of the P and S wave speeds α  and β .  Apply 

your formula to obtain the value of Y for a rock which is as “hard” as possible (i.e., Poisson’s ratio 
0σ = ). What is Lamé’s parameter λ  for such a rock?  What kind of materials have Y=0 ? 

 
11. The speed of a compressional wave propagating down a long thin homogeneous rod is given by 

[ ]1 2
rodv Y ρ= , where Y is Young’s modulus, i.e., ( ) ( )3 2Y µ λ µ λ µ= + + .  Note that rodv  is 

different from the compressional wave speed ( ) 1 2
2α λ µ ρ= +    in an infinite homogeneous 

medium.  True or false? : rodv α<  for all materials with a positive Poisson ratio ( )2 .σ λ λ µ≡ +    

Prove your answer mathematically.  What is the ratio rodv α  for 1 4?σ =  
 
12. (a) Calculate the mean value of the vector V , where ( )i k ikk

V u t e= − ∂ ∂∑  for a plane harmonic P 
wave propagating in the x direction in a homogeneous isotropic medium. ike is the strain tensor and u 
is the displacement vector. 
(b) What would the mean value be if the wave was propagating in the z direction? (Hint: consider the 
nature of the medium). 

 
13.  Assume the z axis points down into the Earth.  The displacement produced by a certain seismic 

plane wave is given by ( )expU i px qz tω= + −  u d , where [ ]"exp "a means " "ae , and where 

0.1272 ,p s km=  0.4158 ,q s km= −  188.50 ,Hzω = and ( )0.2924, 0, 0.9563 .= −d  
(a) What is the speed of the wave? 
(b) In what direction is the wave propagating, and at what angle (relative to the vertical)?  
(c) What kind of wave is it (P, SV, or SH)?   
(d) What are the frequency and wavelength ?  
(e) If the wave has a phase-delay of 30º and if the maximum value of |u| is 2 mm, what is U ? 

(express your answer in polar form, i.e., in the form " "ire θ  ).  
(f) What is the displacement u experienced by a material point (or particle) at ( ) ( ), 0,0x z =  at the 

time 0t = ? 
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14.  Consider an interface between two rock layers.  The P and S wave speeds in the upper layer are 2.5 
and 1.4 ,km s  respectively, and in the lower layer they are 3.6 and 2.08 ,km s respectively.  The 
density is 32.0 ,g cm  in both layers.  Consider an incident P wave in the upper layer.  The angle of 
incidence is 30º.  The displacement reflection coefficient for the reflected SV wave is 0.12.PSR = −  
(a) What fraction of the incident wave’s down-going energy flux is carried away by the reflected SV 

wave?   
(b) What is the phase-delay for the reflected SV wave?       

 
15.  Consider a horizontal flat interface separating two rock layers.  For our purposes, assume each layer 

is infinitely thick (i.e., it is a half-space).  The lower layer has the higher acoustic impedance.  
Suppose a compressional wave source is located in the upper layer, well above the interface, and that 
a receiver is located vertically above the source and well-separated from it.  Assume that the waves 
can be approximated by plane waves.  Sketch the trace you would expect to see if the receiver was a 
geophone.  Repeat for a hydrophone. 

 
16.  We have seen that the displacement reflection and transmission coefficients for a normally incident 

plane waveP − are R and T , and that the corresponding pressure coefficients are R andT , where 
R R= and 2 1( / )T Z Z T= .  What are the corresponding P wave potential coefficients?  For the 
“ghost” reflection discussed in chapter 3 of the text (see Figure 3-3), if the geophone were replaced 
by a hydrophone, would the primary and ghost still have the opposite polarity?  What about if the 
geophone were replaced by an instrument that could measure the P wave potential? 

 
17.  Consider a flat horizontal interface between two homogeneous materials. 

(a). In the upper material (medium 1) the P −  and S −wave speeds are 2.0 and 1.3 ,km s
respectively, and in the lower material (medium 2) they are 3.1 and 1.7 km s , respectively.  A plane 
P wave is incident in medium 1 at an angle of 20° .  What are the slowness and polarization vectors (s 
and d) for the two transmitted waves?  If the waves have a frequency of 30 Hz , what are their 
wavelengths? 
(b). Consider a P or SV plane wave incident at some non-zero angle.  It generates four scattered (i.e., 
reflected and transmitted) plane waves.  True or false? : if the scattered wave speed is greater than the 
incident wave speed, then the scattered wave is bent towards the horizontal upon scattering (i.e., the 
scattering angle is larger than the incidence angle).  Prove your answer. 

 
18.  The components of particle displacement for a hypothetical surface wave are given approximately 

by [ ] ( )exp cosxu Az x tκ ω= − − − , 0,yu =  and ( ) ( )2 21 exp 2 sinzu Bz Bz x tκ ω = − − −   where A and 
B are positive constants, and where z is the depth below the surface (z is positive downwards).  
Discuss the particle motion for this wave at the surface and at any depth z:  is it elliptical? retrograde? 
prograde?  What about nodal planes? 

 
19.  Consider a medium with P and S wave velocities of 1200m s  and 600m s overlying another 

medium with P and S velocities of 2200 m s  and 1000m s .  Consider an SV wave incident from the 
upper medium.  Calculate all the critical angles, and sketch a wavefront diagram showing all the head 
waves generated. 
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20.  A set of Love-wave data in a layer over a half-space has been analyzed.  It is found that the phase 

velocity c at 10Hz is 1km s .  The layer is 20m  thick.  The shear wave speed 1β  in the layer is 
0.7 km s .   Calculate the shear wave speed 2β  in the half-space.  Assume the layer and half-space 
have approximately the same densities. 

 
21.  Consider a subsurface model consisting of three flat horizontal homogeneous layers over a 

homogeneous half-space.  A source is on the surface.  The P −wave velocity values, from the top 
down, are 1, 2, and 3 .km s   The layer thicknesses, from the top down, are 300, 500, and 800 .m
Consider a ray for a primary reflection off the base of layer 3.  The take-off angle is 15° .  Calculate 
the offset x and the travel-time t for the ray. 

 
22.  Consider a medium in which the wave speed varies continuously with depth z as 
    0( ) (2 )azv z v e−= − , where 0v  and a are positive constants. 

(a) Sketch a graph of v(z). 
    (b) Without doing a calculation, sketch some typical ray paths with varying take-off angles that you 

might expect to see in this medium, and explain your results. 
 
23.  Consider a subsurface medium consisting of two horizontal homogeneous layers over a half-space.  

The P −wave speeds in the first and second layers are α1 and α2, with α2 > α1.  Sketch a typical non-
zero-offset ray path for the primary P −wave reflection from the second interface (all the ray 
segments are P −waves).  Next, suppose that the value of α2 is increased (with α1 remaining the 
same), and sketch the ray path again for the same offset (superimpose it on your previous sketch).  
Which of these two ray paths has the larger ray parameter (p) value?  Or do they have the same p 
value because they have the same offset?  Explain your answer. 

 
24.  In a certain subsurface zone, the P −wave velocity is given by 0v v az= + , where 0 2.0v km s=  and 
 10.5a s−= .  How deep does a P −wave penetrate for a source-receiver offset of 3 km ? 
 
25.  Consider a stack section containing a single flat dipping reflection event.  It is produced by a flat 

subsurface reflector with dip angle δ .  The body wave speed above the reflector is 1v .  Let v  be the 
apparent velocity of the event as measured on the stack section, i.e., v  is the slope of the reflection 
event on the stack section (e.g., in m/s).  Derive a formula for v  in terms of 1v  and δ .  How does it 
compare with the apparent velocity measured on a shot record? 

 
26.  The frequency spectrum of a signal s(t) is given by {1, for 1 1ω ω ω− < < + ; 0, otherwise}.  Derive the 

formulas for the signal and its Hilbert transform (HT), and sketch graphs of them.  Does the HT look 
like what you would expect a 90o − phase-advanced signal to look like?  Explain. 
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27.  A depth model consists of 31 flat horizontal alternating layers.  Layers 1, 3, 5, …, 31 each have a 
density of 32.0 g cm  and a waveP − speed of 1.0km s , and layers 2, 4, 6, …, 30 each have a density 
of 32.2 g cm and a waveP − speed of 2.0km s .  The layers all have the same thickness, 20 m.  What 
is the amplitude, measured by a surface geophone, of a zero-offset primary reflection from interface 
30 if we consider (a) reflection losses only? (b) both reflection and transmission losses? (c) 
reflection, transmission and geometrical spreading losses?  (d) Comment on what other possible 
depth models would give identical results for parts (a), (b) and (c). 

 
28. Consider a medium consisting of two horizontal homogeneous absorbing layers, each of thickness 1 

km, over a half-space.  The P −wave speeds in the first layer, second layer, and half-space are 2, 3 
and 4.0 km s , respectively, and the P −wave Q values are 20, 30 and 40, respectively.  The density is 

32.0 g cm everywhere.  Suppose a plane P −wave propagates vertically from the surface to the 
second reflector and back to the surface, i.e., the wave is a primary reflection.  Suppose the amplitude 
spectrum of this wave as it leaves the surface is ( ) ( ){ }2

0 0expA cω ω ω ω= − −    (for 0ω > ), where 

0 0 2 50 ,f Hzω π= =  and c π= .  Sketch a graph of ( )A ω .  What is the dominant frequency df ?  
What is the amplitude spectrum ( )rA ω of the wave that arrives back at the surface, and what is its 
dominant frequency drf ?  Briefly discuss the physical meaning of your results.  Ignore dispersion. 

 
29.  Consider a vertically transversely isotropic (VTI) medium that has the following parameter values: 

32.2 g cmρ = , 0 2km sα = ,  0 1km sβ = , 0.33, 0.3ε γ δ= = = .  Assume that this is not “weak” 
VTI.  Compute the numerical value of the wave speed of the horizontally – travelling qP wave. 

 
30.  Consider two vertically transversely isotropic (VTI) half-spaces joined at a flat horizontal interface, 

and consider an incident plane qSH wave in the upper half-space.  The vertical and horizontal qSH 
wave speeds are 1.0 and 1.3 km/s, respectively, in the upper half-space, and 2.0 and 2.2 km/s, 
respectively, in the lower half-space.  If the phase angle of the incident wave is 20° , what is the 
phase angle of the transmitted wave?  What would it be if the two media were isotropic with SH wave 
speeds of 1.0 km/s and 2.0 km/s in the upper and lower media, respectively ? 

 
 
 

ANSWERS begin on the next page  
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ANSWERS 
 

1. (a). The rotation of the planex y− about the axis,z which is chosen as positive downwards, by 
some angle, φ , is described for an arbitrary point ( ), , Tx y z=x as ′ = ℜx x , where 

 
cos sin 0
sin cos 0
0 0 1

φ φ
φ φ

 
 ℜ = − 
  

   

 
 
and ( ), , Tx y z′ ′ ′ ′=x  is the point in the rotated coordinate system. If the rotation is clockwise, so 
that the x axis moves towards the y axis, then φ is positive, while for counter clockwise rotation, 
as is the case here, φ is negative, i.e., 25oφ = − . It follows that 

cos 25 sin 25 0 0.9063 0.4226 0
sin 25 cos 25 0 0.4226 0.9063 0

0 0 1 0 0 1

− −   
   ℜ = =   
      

 
 
 
 
(b).With this and ( ) ( ), , 2,1, 1

T T
x y zu u u= = − −u  

0.9063 0.4226 0 2 2.235
0.4226 0.9063 0 1 0.0611

0 0 1 1 1

x

y

z

u
u
u

′ = ℜ
′ − − −       

       ′ = =       
′       − −       

u u

 

 
 
 
 
       2. 

( )

3 3 3

11 22 33
1 1 1

5 0 2
3

ij ij ii
i j i

L t t t t t

L
L

δ
= = =

= = = + +

= + + −

=

∑∑ ∑

 

 
 
 
 
 
 
 

x′
  

x
  

y′
  y

  

1
′e

  
2e

  

12 1 2Check: cos(90 25 ) 0.42R ′ • = + = −= e e  

  

25φ = − 

  

z axis is into page 

East 
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3. The Fourier transform is defined as 

( ) ( ) i tg g t e dtωω
∞

−∞

= ∫
   For the ( )g t specified here 

 ( ) ( ) ( )

[ ]

00

0 0

1 1

2 cos 11 1 2 .

aa i t i t
i t i t

a a

i a i a i a i a

e eg e dt e dt
i i

ae e e e
i i i i

ω ω
ω ω

ω ω ω ω

ω
ω ω

ω
ω ω ω ω

− −

− −

   
= − + + = − +   

   
−   − − − +

= − + = =   
   

∫ ∫

 

 

    Using the definition sin
2

i ie e
i

θ θ

θ
−−

= the following is obtained 

2 2
2 2sin .

4

i ie eθ θ

θ
−− +

=
−

 

    Comparing this result with that obtained for ( )g ω has 

( )
2 24sin 2 4 sin 2a i ag
i
ω ωω
ω ω

= − =  

     from which it follows that 

( )
2 24sin 2 4sin 2 .a ag
i
ω ωω
ω ω

= − =  

It may appear that the above may be problematic at 0 .ω =  If the small argument               
approximation for sin x is used,  sin for 1x x x≈ <<  then

 ( )2 2 2 2sin 2 4 for / 2 1.a a g a aω ω ω ω ω≈ → ≈   
 
Note that the amplitude spectrum has peaks (the peaks of 2sin ( 2)aω ) which decrease as | |ω  
increases. As for the phase spectrum, inspection of the formula above for the Fourier transform ( )g ω  
shows that the phase spectrum is 𝜋𝜋/2 radians (or 90 deg) for positive 𝜔𝜔 and −𝜋𝜋/2 radians (or -90 deg) 
for negative 𝜔𝜔, except at 𝜔𝜔 = ±2𝜋𝜋𝜋𝜋/𝑎𝑎, n = 0, 1, 2, ... , where the phase spectrum is undefined (because 

( ) 0g ω = there). 
The graphs are schematically shown below. 

 
 
 
 
 
 
 
 
 
 

t 

g(t) 

a 

-a 
1 

-1 

ω
  

| ( ) |g ω
  

2
a
π

  

ω
  

phase 

/ 2π
  

/ 2π−
  

2 / aπ
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4. (a).The first rotation about the 3x axis has the form  

1 1

1 1 1

cos sin 0
sin cos 0
0 0 1

φ φ
φ φ

 
 ℜ = − 
  

 

   and the second rotation about the initially rotated 2x axis is given by 

2 2

2

2 2

cos 0 sin
0 1 0

sin 0 cos

φ φ

φ φ

 
 ℜ =  
 − 

 

  After the two rotations 
1

2 2 1

,
.

′ = ℜ
′′ ′= ℜ =ℜ ℜ =ℜ

A A
A A A A

 

  where  
2 2 1 1 1 2 1 2 2

2 1 1 1 1 1

2 2 1 2 1 2 2

cos 0 sin cos sin 0 cos cos sin cos sin
0 1 0 sin cos 0 sin cos 0

sin 0 cos 0 0 1 cos sin sin sin cos

φ φ φ φ φ φ φ φ φ
φ φ φ φ

φ φ φ φ φ φ φ

     
     ℜ =ℜ ℜ = − = −     
     − − −     

 

 This produces the values 
1 1 2 1 1 2 2 2 3

2 1 1 1 2

3 1 2 1 1 2 2 2 3

cos cos sin cos sin
sin cos
cos sin sin sin cos

A A A A
A A A
A A A A

φ φ φ φ φ
φ φ
φ φ φ φ φ

′′= + +
′′ = − +
′′ = − − +

 

 (b). [ ]1 2 2 3 2 30 sin ,0,cos TA A A Aφ φ′′= = → =A  
  The result depends only on 2φ , not 1φ . This makes sense because A is unaffected by 
  the first rotation about the 3x  axis, as A is parallel to the 3x axis. 
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(5).  Refer to the following figure for the calculations below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )
11 1 1 12 1 2

13 1 3 21 2 1

cos , 0 ,

cos 90 sin , 0 ,
ij i j

o

R R R

R R

θ

θ θ

′ ′ ′= ⋅ → = ⋅ = = ⋅ =

′ ′= ⋅ = + = − = ⋅ =

e e e e e e

e e e e
 

( )
22 2 2 23 2 3

31 3 1 32 3 2

33 3 3

1 , 0 ,

cos 90 sin , 0 ,

cos .

o

R R

R R

R

θ θ

θ

′ ′= ⋅ = = ⋅ =

′ ′= ⋅ = − = = ⋅ =

′= ⋅ =

e e e e

e e e e

e e

 

cos 0 sin
0 1 0

sin 0 cos

θ θ

θ θ

− 
 ℜ =  
  

 

 

  

ij ik j kk
C R R C′ = ∑ ∑

 



 

  

33 31 31 11 31 32 12 31 33 13

32 31 21 32 32 22 32 33 23

33 31 31 33 32 32 33 33 33

C R R C R R C R R C
R R C R R C R R C
R R C R R C R R C

′ = + + +
+ + +
+ +

 

  

2 2
33 11 13 31 33sin sin cos sin cos cosC C C C Cθ θ θ θ θ θ′ = + + +  

  ij ijC σ=  which is symmetric, so 13 31 .C C=  
   Thus, 

  

2 2
33 11 13 33sin  2sin cos  cos  , and with sin 2 2sin cos ,σ θ σ θ θ σ θ σ θ θ θ′ = + + =  

  

2 2
33 11 13 33 33sin sin 2 cos , and .Pσ σ θ σ θ σ θ σ′ ′ ′= + + = −

   

 
     33 330 ,oθ σ σ′= → = as expected for no rotation. 
     33 1190 ,oθ σ σ′= → = as expected for a 90o rotation. 
  The z′  axis coincides with the xy  plane and the x′  axis is normal to the xy  plane. 
 
 
 

z z 

x 

z′
  

x′
  

θ
  

3e
  

1
′e

  

1e
  

3
′e
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6.  

The 81 stiffness coefficients required to describe a general elastic medium are given by the 
tensor ijkc

  and the 21 independent quantities obtained from symmetry conditions may be written 
in Voigt notation as a 6 6× symmetric matrix, mnc . In particular, for this problem 

3333 33 2 19.22c c GPaλ µ= = + = and  2211 21 12 4.78 .c c c GPaλ= = = = 9 210 .GPa N m =    

With the density, 3 22000 2kg m g cmρ  =    , it follows from using the definitions  

( )Shear wave speed: SS vβ µ ρ= =  

( )Compressional wave speed: ( 2 )PP vα λ µ ρ= = +  
and  

( ) 9 233 12 19.22 4.78
7.22 7.22 10 ,

2 2
c c GPa GPa N mµ

−−
= = = = ×  

so 
 

( ) 9Shear wave speed: 7.22 10 2000 1900SS v m s m sβ = = × =  

( ) 9Compressional wave speed: 19.22 10 2000 3100 .PP v m s m sα = = × =  
 
 
 
7. The symmetry properties for the stress and rotation tensors, andij ijσ η , are ij jiσ σ= + and ij jiη η= − ,  

respectively. Using these properties, the summation 
ij iji j

S σ η=∑ ∑  

     becomes 
.ji jii j

S σ η= −∑ ∑  

Switching the dummy summation indices produces 
.ij ijj i

S σ η= −∑ ∑  

Reversing the order of summation has 
.ij iji j

S σ η= −∑ ∑
 

For this to be true, S must equal S− , which is only satisfied if 0.S =  
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8. The relationships 

( ), , 1, 2,3           .j i

i j

u u i j
x x

∂ ∂
= = ⇒ ∇× =

∂ ∂
u 0

 
It is known that for waveP − propagation, for some displacement potential φ , φ= ∇u which 
yields

 .φ∇× = ∇×∇ =u 0
 Thus, the answer is "true" .  Further,

  
1 1 , .
2 2

j j j ji i
ij ij

i j i i i j

u u u uu ue e
x x x x x x

 ∂ ∂ ∂ ∂ ∂ ∂
= + = + = =    ∂ ∂ ∂ ∂ ∂ ∂    

Also, as 
2 2

, then .ji
i

i j j i i j i

uuu
x x x x x x x
φ φ φ ∂∂∂ ∂ ∂

= = = =
∂ ∂ ∂ ∂ ∂ ∂ ∂

 
 
9. For single particle motion, like a mass on a spring, the kinetic energy KE  and potential energy PE  
are not generally equal at all times, i.e., KE PE≠ , i.e., KE  is large when PE  is small, and vice versa.  
But for a solid body, the particles making up the body vibrate at different phases.  For example, on one 
plane wavefront, the particles may be moving at peak speed (large KE  and zero PE ) but another plane 
wavefront a quarter of a cycle further on, they are moving at zero speed (zero KE  and large PE ).  So 
overall, this suggests that with all the particles in the body contributing to KE  and PE , it all balances 
out to give K W= . 
 
But what about the fact that K W= at any single time t  at some specific point x ?  This means that at 

/t x v= , for instance, 0K W= = , which seems strange.  To address this, note that for a mass on a 
spring, oscillating back and forth with a displacement u  from the rest position, we have 

 

2, cos( ) , ,F ku u A t k mω ω= − = =
  

 

2 2 2 2 2 21 1 1sin ( ) sin ( ) ,
2 2 2

KE mu m A t kA tω ω ω= = =

  

 

2 2 21 1 cos ( ) .
2 2

PE ku kA tω= =
  

So 2~ sin ( )KE tω  whereas 2~ cos ( )PE tω  .  KE  is max when PE  is zero, and vice versa.  KE PE≠ .  
Note also that for a mass on spring,  2~PE u , but for a solid, 2~W D , i.e., 2~ xxW e , i.e., 

2~ ( / )xW u x∂ ∂ , not 2
xu .  In words, W  involves strain, not displacement -- W  is more correctly called 

the strain energy density, not the potential energy density, in this regard. This is also why both W  and 
2~ sin [ ]K  , i.e., because both involve derivatives of xu .  So evidently one cannot directly compare W  

with the PE  of a mass on a spring.  One should not expect W  and K  to be 90°  out of phase, like KE  
and PE  for a mass on a spring.  There are instants t  where both K  and W  can be zero.  So it may be 
better to look at time-averages, in which case K W〈 〉 = 〈 〉  for a solid, in agreement with KE PE〈 〉 = 〈 〉  for 
a mass on a spring.
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10. Using the definitions 
( )
( )

2 23 2 2, ,Y
µ λ µ λ µ µα β

λ µ ρ ρ
+ +

= = =
+  

it follows that: 
2 2 22 2λ ρα µ ρα ρβ= − = −

 from which 
2 2 2 2 23 2 3 6 2 3 4 .λ µ ρα ρβ ρβ ρα ρβ+ = − + = −

 Thus, 
( ) ( ) ( )2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

3 4 3 4 3 4
.

2
Y

ρβ ρα ρβ ρ β α β ρβ α β

ρα ρβ ρβ ρα ρβ α β

− − −
= = =

− + − −  
Equivalently, this could have been alternatively obtained by substituting

 
2 1

2 2
2

( / )    and        into    2 (1 )   (eq. 2-38 in the text) .
( / ) 1

Yβ αµ ρβ σ µ σ
β α

−
= = = +

−
  

The value of Y for a rock which is as “hard” as possible requires Poisson’s ratio to be specified 
as 0.σ = This has 

2
2 21 2 1 so that 2 . leading to

1 2
β σ β α
α σ

−  = = =  −   
( ) ( )( )2 2 2 2 2

2 2 2

6 4 2
2

Y
ρβ β β ρβ β

β β β

−
= =

−  
from which it follows that 

2 22 for 0.Y ρβ ρα σ= = =
 Alternatively, 

( )
0 implies 0 for 0.

2
λσ λ σ
λ µ

= = = =
+

 
In the strictest theoretical sense 0Y > for all materials, which would preclude materials where 

0Y ≤ from existing. If 0,Y = then 
2 2 20, 0; or 3 2 0 , 3 4 .µ β λ µ α β= → = + = → =

 The condition that 0µ = , i.e., 2 0β = , indicates that the medium is a fluid. From this it may be 
seen that 1 2σ = which is the maximum value of .σ  
If the identity 3 2 0λ µ+ = holds, then 3 2µ λ= − which yields  

( ) ( )1 0 .
2 3

λ λσ σ
λ λ λ

= = = − <
+ − −

 
These material types are referred to as "exotic"materials. 
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11. ( ) ( ), 2 , 2rodv Y ρ α λ µ ρ σ λ λ µ= = + = +  

{ } { }for 0 ? i.e. 2 for 0 ?rodv Yα σ λ µ σ< > < + >   
 Assume the above to be true and prove. 

 ( )
( )
3 2

2 . For 0 it is known that 0.Y
µ λ µ

λ µ σ µ
λ µ

+
= < + > >

+
 

 Also, 2 3 0, 2 3, 3 0.Bk λ µ λ µ λ µ µ= + > → > − → + > >  
 So,   0 0.σ λ> ↔ >  
 Continuing,  
 ( ) ( )( ) ( )3 2 2 since 0.µ λ µ λ µ λ µ λ µ+ < + + + >  
 ( )2 2 2 23 2 3 2 , 0 which is λµ µ λ λµ µ λ+ < + + → < true. 
 Working this backwards proves rodv α<  for 0σ > →  true. 

 ( ) 23 2 5 51 4 and 2 3 .
2 2

Y
µ µ µ µ µσ λ µ λ µ µ

µ µ µ
+

= → = → = = = + =
+

 

 Therefore, 
( )

5 5 for 1 4.
2 2 3 6

5 0.913.
6

rod

rod

v Y

v

ρ µ σ
α ρ λ µ µ

α

= = = =
+ ⋅

= =
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12. (a).The components ( ), 1, 2,3iV i = of the vector V are given by 

   1
2

k k i k
i ikk k

k i

u u u uV e
t t x x

 ∂ ∂ ∂ ∂   = − = − +    ∂ ∂ ∂ ∂    
∑ ∑

 
 So that iV  is quadratic in iu .  

A plane harmonic waveP − is propagating in an isotropic homogeneous medium along the 1x  
axis. 
The only nonzero component of particle displacement is 1u so that ( ) [ ]1 2 3,0,0 0u u u= = =u and 

1u  may be written as 
( ) ( )1 1

1 and speed .i x v t i x v t iu Ae A e A A e vω ω ψ ω ψ α− − +  = = = = = 
  

   1 1

1

1 0 for 2 and 3
2

k i
i ikk

i

u uu uV e i
t t x x

 ∂ ∂∂ ∂   = − = − + = =   ∂ ∂ ∂ ∂    
∑  

   so that 

   1 1 1 1 1
1

1 1 1

1
2

u u u u uV
t x x t x

   ∂ ∂ ∂ ∂ ∂   = − + = −      ∂ ∂ ∂ ∂ ∂      
 

   and 
   2 3 0 .V V= =  

Since 1V  is quadratic, i.e., not linear, in 1u , the complex exponential form of 1u cannot be used, rather, 
the real part must first be taken, i.e., 1 | | cos[ ( / ) ]  | | cosu A x v t Aω ω ψ φ= − + ≡  , giving 

   ( ) ( ) ( )2 2 2
1 ( sin ) ( sin ) sinV A A v A vφ ω φ ω ω φ= −  − −   −  =     

   where 1( )x v tφ ω ω ψ= − +
 
and 

 

   ( )2 2
1

1
2

V A vω=  

         since 2sin 1 2 .φ = From the above, the following is obtained 

   
2 2

1 2 3, 0 , 0 .
2

A
V V V

v
ω

= = =  

        which yields 

   ( )
22

2
A

v
v

ω
α

 
=   =
 
 

1V e  

      (b).As the medium is isotropic, the mean value would be the same. 
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13. The slowness vector s in two dimensions with components p and q may be written as              

       ( ),0,p q=s with the slowness given by ( )1 22 2 .s p q= = +s   Note that 0p > and 0.q <   

 (a). The speed of wave propagation, v, is the inverse of the slowness, 1v s= , where the  slowness is                

         
( ) ( ) ( )

1 21 2 2 22 2 0.1272 0.4158 0.434821s p q s km s km = + = + − =   so that 2.3v km s= . 

 (b). The plane wave travels in the direction of the unit vector ,ξ which is normal to the plane wave   
        front.   Since  0p > and 0q < , the wave travels in the x+ and z−  directions, i.e., it travels 
upwards and to the right (the z  axis points downwards, and the x axis points to the right) in the xz plane.  
This direction is determined by the slowness vector components, and .p q  

   ( )1sin sin sin 17 .op pv pv
v
φ φ φ −= → = → = =

 

       As cosq
v
φ

= − , one may use tan
p
q

φ = to obtain the same result. 

(c). The polarization vector is given by ( ) ( ), , 0.2924, 0, 0.9563 .x y zd d d= = −d  
       i.   As 0yd = , the wave cannot be an SH wave. 
       ii.  If the wave was of the SV type, then 0,⋅ =d s which is not the case. 
       iii. As ( )0.2924, 0, 0.9563 (sin ,0, cos ),φ φ= − = −d   the wave is a P wave. 

(d). The frequency,  f, is given by 188.5 30 .
2 2

f Hz Hzω
π π

= = =  

The wavelength, ,λ is obtained in terms of a period, 1 ,T f= and speed, v, as     
( ) ( )12300 30 76.67 .vT v f m s s mλ −= = = =  

(e).  The wave has a phase-delay of 30º and the maximum value of u is 2 .mm  
           2 2 .mm U mm= → =u  

           ( ) 30, 30 2 or
oi o iU U e U mm eψ ψ= = → =  

           ( ) ( ) ( )30 302 .
o oi ti px qz iU e e U mm eωω − −+= → =u d  

(f).   
           ( ) ( ) ( ){ }Re Re cosi px qz t iUe U px qz tω ψ ω ψ+ − + = = + − + u d d  

         At 0,x z t= = =  

           
( ) ( )
( ) ( )

Re ( cos ) (2 cos30 ) 1.732 or

Re 0.5064, 0, 1.656 .

oU mm mm

mm

ψ= = =

= −

u d d d

u
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(14). 3
1 1 2 1 1 22.5 , 1.4 , 3.6 , 2.08 , 2 .km s km s km s km s g cmα β α β ρ ρ= = = = = =  

          0.12.R
PS

I

BR
A

= = −  

(a). We want to determine the fraction 21 1 1
1

1 1 1

cos where cos 0.8660.
cosPS PSRρ β φ θ

ρ α θ
 

ℜ = = 
 

 

                1 1
1 1

1 1

sin sin sin 0.28 16.26oφ θ φ φ
β α

= → = → =  

        so that 

                
( )1 22

1 1

21 1 1

1 1 1

cos 1 sin 0.96

cos 0.12 0.00894.
cosPS

φ φ

ρ β φ
ρ α θ

= − =

 
ℜ = − = 

 
 

Thus only a small fraction of the vertical component of the incident P – wave’s energy flux is 
reflected up into the incident medium  [ ]0.00894 or 0.894% 1%PSℜ = < as shear energy.  

 
(b). ( )0.12 0.12 phase delay 180 .i o

PSR e π π= − = → = =  

        ( ), , with  0  and  0x PS x z PS z x zu R d u R d d d∝ ∝ > >
 

 
 
 
 
 
 
15.    We will use the SEG convention stated in the caption of Figure 3-1 of the text.  The direct wave 
going upward from the source is a compression, hence, the geophone is pushed upwards in the z−  
direction, resulting in a pulse with a down-kicking first motion (as 0zu <  ).  The compression wave that 
goes down from the source reflects as a compression, because 1 2 ,Z Z<  and hence travels upwards to the 
receiver as a compression, resulting again in a pulse with a down-kicking first motion.  Therefore the 
geophone trace consists of a down-kicking direct-wave pulse followed by a down-kicking reflected-
wave pulse.  The hydrophone is squeezed by both arriving compressions, resulting in negative down-
kicking pulses.  Therefore the hydrophone trace looks the same as the geophone trace in this case. 
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16. and . With R T
j j j

I I

A AR T Z
A A

ρ α= = =  

 2

1

and .ZR R T T
Z

 
= =  

 
 

 If φ  is the P wave potential, then φ= ∇u so that the scalar quantity .zu
z
φ∂

=
∂

  

 ( ) ( ) ( )1 1 2, , .i t z i t z i t z
I I R R T TA e A e A eω α ω α ω αφ φ φ− − − + − −′ ′ ′= = =  

 Potential reflection coefficient = .R IR A A′ ′ ′≡  
 Potential transmission coefficient = .T IT A A′ ′ ′≡  

 

( ) ( )

( ) ( ) ( ) ( )( )
( )

1

1 1

1

1

1

so that .

I i t zI
z I

i t z I i t z I
I z I z

I I

iu A e
z

A e d A e d

i A A

ω α

ω α ω α

φ ω
α

ω α

− −

− − − −

∂ ′= =
∂

= = = +

′ =

 

 

( ) ( )

( ) ( ) ( ) ( )( )
( )

1

1 1

1

1

1

and thus .

R i t zR
z R

i t z R i t z R
R z R z

R R

iu A e
z

A e d A e d

i A A

ω α

ω α ω α

φ ω
α

ω α

− +

− + − −

∂ ′= = −
∂

= = − = −

′ =

 

 

( ) ( )

( ) ( ) ( ) ( )( )
( )

2

2 1

2

2

1

resulting in .

T i t zT
z T

i t z T i t z T
T z T z

T T

iu A e
z

A e d A e d

i A A

ω α

ω α ω α

φ ω
α

ω α

− −

− − − −

∂ ′= =
∂

= = = +

′ =
 

 
 The three instances above lead to: 

( )
( )

1

1

RR R

I I I

i AA AR R
A i A A

α ω
α ω

′
′ = = = =

′
 

 and 
( )
( )

2 2 2

1 1 1

.TT T

I I I

i AA AT T
A i A A

α ω α α
α ω α α

′
′ = = = =

′  
The primary and ghost arrivals, a compression and rarefaction, have opposite polarities. A 
hydrophone would also record opposite polarities. 
If a potential measuring instrument measured a wave based on the sign of the potential, then it 
also would measure opposite polarities. 
For example, letting superscripts (P) and (G) denote the primary and the ghost, resp., 
If ( ) ( )1P i t z

zu e ω α− += −  then ( ) ( )1G i t z
zu re ω α− += +  where 0 1.r< <  

 Let ( ) ( )1P i t zAe ω αφ − +=  and ( ) ( )1 .G i t zBe ω αφ − +=  Since ,zu zφ= ∂ ∂  A and B would have to have  

 opposite signs so that ( ) ( )andP G
z zu u  have opposite signs. ( ) ( )( )and have opposite signs.P Gφ φ  
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17.  
 

(a). 1 1 2 22.0 , 1.3 , 3.1 , 1.7 .km s km s km s km sα β α β= = = =  

  Snell’s Law: 1 2 2

1 2 2

sin sin sin pθ θ φ
α α β

= = =    (see the angles in Figure 3-5 of the text). 

  ( )2 1
2 2

1

sin 3.1sin sin 20 0.53013 32.014 .
2

o oα θθ θ
α

= = = → =  

  Similarily, 1 2 1
2

1

sinsin 16.901 .oβ θφ
α

−  
= = 

 
 

Transmitted P – wave :  
( ) ( )2 2 1 2

2 2 1 2

sin cos sin cos,0, ,0, 0.1710,0,0.2735TP s km s km s kmθ θ θ θ
α α α α

   
= = =   
   

s  

( ) ( ) ( )2 2sin ,0,cos 0.5301,0,0.8479TP θ θ= =d  
 Transmitted SV – wave : 

 ( ) ( )2 2

2 2

sin cos,0, 0.1710,0,0.5628TS s km s kmφ φ
β β

 
= = 
 

s  

( ) ( ) ( )2 2cos ,0, sin 0.9568,0, 0.2907TS φ φ= − = −d  
 Wavelengths: 

( )
2 3.1 30 0.1033 103.3TPv f f km mλ λ α= → = = = =  

( )
2 1.7 30 0.0567 56.7TS f km mλ β= = = =  

 (b). Snell’s Law:  1 1 2 2

1 1 2 2

sin sin sin sinθ φ θ φ
α β α β

= = =  

This implies that if  the scattered wave speed is greater than the incident wave speed, then 
the scattered angle is greater than the incident angle. Thus, true. 

 
        Example: 

  If ( ) ( ). .
2 1

Scat Incβ α>  then 2 1
2 1

2 1

sin sin .φ θ φ θ
β α

= → >  
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18.        
( ) ( ) ( )cos cosAz

xu e x t a z x tκ ω κ ω−= − − = −  

 ( ) ( ) ( ) ( )22 21 sin sinBz
zu Bz e x t b z x tκ ω κ ω−= − − = −  

 It should be noted that ( )b z  is of the form of a Ricker wavelet, but with a spatial coordinate as  
 the dependent variable. 
 It does not matter at what value of x the particle motion is evaluated, so that at ( ) ( ), 0,0x z =   

  ( ) ( ) ( ) ( )cos cos and sin sin .x zu t t u t tω ω ω ω= − − = − = + − = −  
 At 0, 1 0 and 0.x zt u u= = − < =  

 At 3, 0 and 1 0 and so on at and , etc.
2 2x zt u u t tπ π π
ω ω ω

= = = − < = =  

 The positive z direction is downwards and the positive x direction is to the right. 
            Hence, on the surface, the particle motion is prograde circular; circular because 
 ( ) ( )1, or equivalently as 0 0 1.x zu u a b= = = =  
 

 For 0z >  and 0x = , ( ) ( ) ( )generallya z b z≠  which implies elliptical particle motion 

( ) ( )2 2 1 ellipsex zu a u b + = ←  , except at points z where ( ) ( )a z b z= ± , where the motion 

is circular, because | ( ) | | ( ) |a z b z= .  These points can be determined by numerically or graphically 
solving ( ) ( )a z b z= ± .  

 
 From the formula or graph of ( )b z it may be seen that ( ) 0b z ≤ for 0z z≥ indicating a 

nodal plane at 0 .z z= This requires ( ) 2
0 0 00 or 1 0 yielding 1 .b z Bz z B= − = =  In the nodal 

plane, ( ) 0 so that 0zb z u= = , and the particle motion is linear and horizontal.  For 00 z z< <  , 
it can be seen from a graphical analysis that there is a depth 0cz z<  where ( ) ( )c cb z a z= −  at 
which the motion is prograde circular.  Otherwise, the motion for 00 z z< < is prograde elliptical. 

 
 For 0z z> , the partical motion is retrogade elliptical, ( ) ( )( )0 , 0b z a z< < , although it is 
retrograde circular at depths where ( ) ( )a z b z= . 

 
The amplitude generally decreases with increasing z.  As z →∞ , the amplitude tends to zero. 

 
 
19. 1 2 1 2600 1000 1200 2200 :m s m s m s m sβ β α α= < = < = < =  
 Critical angles: 
  i. Transmitted P – wave: ( ) ( )1

1 1 2 1 2sin 15.83o
C S Pφ β α−= =  

  ii. Reflected P – wave: ( ) ( )1
1 1 1 1 1sin 30.00o
C S Pφ β α−= =  

  iii.Transmitted S – wave: ( ) ( )1
1 1 2 1 2sin 36.87o
C S Sφ β β−= =  

 The order in which the waves “go critical” is P2, P1, S2  . 
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 All of the head waves generated due to shear wave incidence are shown on the accompanying  
 figure, in which it assumed that ( ) ( )1 1 1 1 1 2max .C C S Sφ φ φ φ> ∗ → >    

 
 
 

20. Solve 
2 2

2 22 2
1 2 2

1 1

1 1
tan 1 1

1 1

c
c h

c

µ β
ω β

µ β

− − =  −
 for 2

2 2 2 .µ ρ β=  
2 2

2 2 2 2
2 12 2

1 1 1 1

as .µ ρ β β ρ ρ
µ ρ β β

= = =  
 

 From this it follows that 
  [ ]2 2 2 2 2 2 2 2 2

1 1 1 1 2 21 1 tan 1 1 tan 1 1c c h r rh cβ β ω β β ω β β − − = = − 
  

2 2
1where 1 1 .r cβ= −  

 Continuing, 

( ) ( ){ }24 2 2 2 4 2 2 2
2 2 1 2 21 1 tan 0,   i.e.,  /c r rh c Sβ β β ω β β− − = − −  

where ( )2
1 tanS r rhβ ω= , which is a quadratic equation in 2

2β  with solution 

( ) ( )( ) ( )
2 21 2 1 22 2 2 2 2

2 1 1 1 4 1 1 4 .
2 2
c cS c S cβ    = − − ± − − = ± +      

 

 Choose the " "+ sign so that 2
2 0.β >  

 With 2 ,fω π=  
  ( )2

1 1tan 2 , 0.7 , 1 , 10 , 0.02 ,S r frh km s c km s f Hz h kmβ π β= = = = =  
 then

 

  21.020204 and 1.682746 so that 1.502 .r S km sβ= = =  
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21. Isotropic 3 layered medium: 

         ( ) ( )
3 3 1 22 2

1 1
2 , 2 with 1 Snell's Lawj j j

j j
j jj j j

h h v p
t x r p v

v r r= =

= = = − ←∑ ∑  

         1 2 3 1 2 31 , 2 , 3 , 0.3 , 0.5 , 0.8 .v km s v km s v km s h km h km h km= = = = = =  
         1 1 115 (sin ) 0.258819 .o p v s kmθ θ= → = =  
         1 1 2 2 3 30.31058 , 0.58439 , 1.2695 .h r h r h r= = =  
     so that 

         31 2
1 2 3

1 2 3

2 2.737hh hx p v v v km
r r r

 
= + + = 

 
 

         3 31 1 2 2

1 2 3

2 2.052h rh r h rt s
v v v

 
= + + = 

 
 

 
22.

 
( ) ( ) ( )0 0 02 , Both and are constants, 0, 0 .azv z v e v a v a−= − > >  

       (a). By sketching a graph of the decaying exponential aze− , and its negative below the x axis, 
and adding 2 to it (shifting the whole graph up 2 units), and multiplying by 0v  , yields a graph of 

( )v z which shows that ( )v z increases monotonically from a value of 0v at 0z =  to a value of 02v
as z →∞ . 
       (b). Near the surface, ( )0 ,z ≈ ( ) ( ) ( )0 02 1 1v z v a z v a z≈ − − = +   , therefore   ( )v z
increases linearly with z so that the ray paths are circular arcs, as in Figure 5-4b of the text. 
Deeper within the medium, ( ) 0constantv z v→ = and the ray paths become straight lines. In the 
transition zone between these two limits, the ray paths are a “mix” of these. For large take – off 
angles, p is large, and one obtains curved ray paths that turn up back towards the surface (as in 
Figure 5-4b of the text). As p decreases, i.e., for smaller take-off  angles, a ray will initially 
follow a curved path and curve up, but as it reaches a greater depth it will tend to straighten out 
as dv dz is smaller there. 
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23. Two layered isotropic homogeneous media, 2 1 ,α α> implies a symmetric ray path for a primary     
        

 
  ray, where the ray path tends towards the horizontal, in the second medium for increasing 1θ .

 
 

If 2α  is increased, while 1α is held constant, and if the source-receiver offset x of the ray 
remains the same, then 2θ increases while 1θ decreases for a constant offset, which can be seen 
from Snell’s law written as 2 1 2 1sin / sin /θ θ α α= .  Note that if 1θ doesn’t change, then the 
offset x is larger, therefore 1θ must decrease.  1 1(sin )p θ α= implies that as 1α remains the 
same and 1θ is smaller, then p is smaller. Thus the original ray path has the larger p value.  See 
the figure below. 

 
 

               
24. The ray path in a medium, with a speed linear in the vertical (z) direction, is an arc of a 

       circle. Medium: 1
0 0, 2 , 0.5 0.5 , 3 .km sv v az v km s a s x km

km
−= + = = = =  

Refer to Figure 5.4a and the associated equations in the text.   
The equation of the circle describing the arc is given by 

( ) ( )2 2 2
max 0.        Also,       x x z z R z R z R v a− + − = = − = − ⇒  

        
0 0 0 0

max
0 0

1 1 1
sin sin

v v v vz
pa a a a aθ θ

 
= − = − = − 

   

      and  

( ) ( )1 2 1 22 2 20 0 0
0 0

0 0

cos1 1 1 sin
sin sin
v vx p v

pa a a
θθ

θ θ
= − = − =  

0 0
0

0

2 8tan
tan 2 3
v vxx

a ax
θ

θ
= = → = =  

      so that 

0
0 max

0

169.444 1 0.272 .
sin

o vz km
a

θ
θ

 
= → = − = 

 
 

Alternately, the formula for maxz above can be derived as follows:     

 ( )2 2
max max max 0when so , etc. that z z x z z R z R z R v ax − = + −= = →= =  
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25.   Refer to the diagram below for the calculations that follow. 
        Zero offset ray 1: 1 12t a v=   
        Zero offset ray 2: 2 12t b v=  

1sin sin b a
x

θ δ −
= =

∆
 

1 1 1

2 1 1 1 12 2 2( ) 2sin 2sin
v x v vx x xv

t t t b v a v b a θ δ
∆∆ ∆ ∆

= = = = = =
∆ − − −

 

 
        Note that if 1 1sinc v θ= then 2c v= . 1 1sinc v θ= applies only to a shot record. 
 

 

26. ( ) ( ) ( )
0

1 i tg t iH g t g e dtωω
π

∞
−+ =   ∫  

 ( ) Hilbert TransformH tξ ←     

 

( ) ( )

( )

[ ]

11

1

0 0 0

1 1

1 1
1 1

1 1 1

11 cos sin

sin cos 11 cos sin

i t
i t i t

i t

eg e dt g e dt
it

i e i t i t i
t t

t ti t i t i
t t t

ωω ω
ω ω

ω

ω ω
π π π

ω ω
π π

ω ωω ω
π π π

∞ −
− −

−

 
= =  − 

 = − = − −   

− = − + = +   

∫ ∫
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 Thus, 

 ( ) ( ) ( ) ( )1 1 1 1
1

1

sin sin sinc definitiont tg t s t t
t t
ω ω ω ω ω
π π ω π

 
= = = = ← 

 
 

 and 

 ( ) 1 1 1

1

cos 1 cos 1 .t tH g t
t t

ω ω ω
π π ω

 − −
= =    

 
  

 It should be noted that as 0,t →  ( ) 0 0,g t →  which is undefined. Use the series expansion  

 for sinξ  for near zero:ξ 3sin 6 , for 0,ξ ξ ξ ξ≈ − + ≈  
 or use l’Hopital’s rule. 
 

Thus, 

 ( ) ( ) ( )
3

1 1 21 1 1
0

1 0

6
1 .

t
t

t t
g t O t

t
ω ωω ω ω

π ω π π→

→

 − +  → = − =     



 

 Also, ( ) ( )1
0

1 1 0 undefined .
0 0t

H g t ω
π→

− = =     
 

 For near zero:ξ 2cos 1 2 , for 0,ξ ξ ξ≈ − + ≈  

 ( ) ( ) ( )
2 2

1 21 1 1 1
0

01 00

1 / 2 1
0.

2 2t
t tt

t t tH g t O t
t

ωω ω ω ω
π ω π π→

→ →→

 − + −  → = − + = − =         



 

It may be seen that ( )H g t   looks like a 90o  phase advanced signal, very similar to the sinc 
function ( )g t  shifted to the left.  See the figure that follows. 
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27. (a). Reflection losses only. 
Let jR  be the reflection coefficient at the base of layer j.  Because of the alternating 
layers, we have 

1 3 5 29 1 2 1 2 1... ( ) / ( ) , andR R R R R Z Z Z Z= = = = = = − +
 

2 4 6 30 1...  .R R R R R= = = = = −   For reflection losses only: 

2 1
30 0 30 0 1 0

2 1

Z ZA A R A R A
Z Z

 −
= = − = −  + 

 

  ( )2 2 2 1 1 1 1 30 04.4, 2.0 0.375 and 0.375 .Z Z R A Aρ α ρ α= = = = → = = −  

(b). As ( ) ( )21 with " " downward and " " upward then 1 .k k k k k kT R T T T R± + −= ± + → − → = = −  

    ( )
1

2
0

1

1n n m
m n

A A R R
= −

= −∏  

From part (a), we have 2 2 2 2 2
1 2 3 4 29...R R R R R= = = = =  .  So, 

  ( )( ) ( )( ) ( )292 2 2 2 2
30 0 30 29 28 2 1 1 1 01 1 1 1 1A A R R R R R R R A= − − − − = − −  

( )292
1 1With 0.375 and 1 0.01234 it may be determined thatR R= − =  

30 00.004627 .A A= −  
 (c). Geometrical spreading: 

  ( ) ( )30 1 1 2 2 30 30
1

2 , 1, 2, 29,30.jL h h h h h jα α α
α

= + + + = =   

( )

[ ] [ ]( )

30 1 2 3 29 30
1

1 3 27 29 2 4 28 30
1

2

2

hL

h

α α α α α
α

α α α α α α α α
α

= + + + +

= + + + + + + + +



 

 

 

  ( ) ( ) ( )30 1 2 1 2 2 1
1 1

2 3015 15 30 1 90 90 20 1800h hL h hα α α α α α
α α

= + = + = + = = × =  

  Thus, 
 

 ( ) ( ) 5 60 0 0
30 0 0 0 0 0

30

0.0046270.004627 5.1415 10 2.571 10 .
90

r r AA A r A r A
L h h

− −   = − × = − = − × = − ×   
  

 

    
(d). The layers do not have to be alternating. As long as 1 for all 1, 2, ,30jR R j= =   the same 

answer is obtained,as in (b)., for reflection and transmission losses because ( )2 2
1 1 .R R− =  

So the 3 4, ,α α   could be different. However, 30L  would not be the same, as the jα  

would have to be chosen so that  ( )
30

1 2
1

15 .j
j
α α α

=

= +∑  
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28. At the source, ( ) ( )22
0

0, 0,cA e c cω ωω ω ω− −= > =  (frequency shifted Gaussian). ( ) 2 2
00 cA e ω− =   

 With the dominant frequency of 0 50 and ,df f Hz c π= = =  the following results: 

  ( ) 5
0 02 2 50 314.159 , 0.01 and 0 5.17 10 .f Hz Hz c s Aω π π −= = × = = = ×  

 As plane wave propagation is involved, there is no geometrical spreading losses ( )1L =  , 
 only reflection, transmission and Q losses. For a different dominant frequencies only the 
 quantities involving Q losses,

 

ae ω− , need to be recomputed, 

  
( ) ( )1 1 1 1

1 1where 0.0361111 .
2 20 3 30

a h he a s
Q Q

ω

α α
−  = + = + =   

 The amplitude specification at the receiver may be written as 
  ( ) ( ) ( ) ( ) ( )22

02
2 11 .c aa a

rA A e R R YA e Ye ω ω ωω ωω ω ω − − −− −= × − = =  

 A new dominant frequency, drω , is determined such that ( ) 0.
dr

rdA d
ω ω

ω ω
=

=    

  

( ) ( ) ( ) ( )
22

0 2 2
0 0

0 2

2 0 2

or .
2

c ar

dr

dA
Ye c a c a

d
a
c

ω ω ωω
ω ω ω ω

ω

ω ω

− − −  = − − − = → − − = 

= −  

 Finally, 

  ( )
2

0
0 02 50 28.736 21.26 .

4dr
afaf f f Hz Hz

cπ π
= − = − = − =  

 
 
 
29.  3 2

0 02.2 2200 , 2000 , 1000 ,g cm kg m m s m sρ α β= = = =  
 0.33 , 0.3 .ε γ δ= = =  

            ( )( )
2

22
0 33 33 0 3 22000 2200 kg mc c

m s
α ρ ρα= → = =

 
 so that 

            ( )9
33 28.8 10 kgc Pa

ms
= ×  

            Continuing, 

            ( ) ( )( )911 33
11 33

33

1 2 8.8 10 1.66
2

c c c c Pa
c

ε ε−
= → = + = ×  

            9
11 14.608 10c Pa= ×  

            ( )
9

11
90

14.608 1090 2576.8 .
2200qP

cv m s m sα
ρ

×
= = = =
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30.  qSH waves in VTI Media: 1 1 2 2 11 , 1.3 , 2 , 2.2 , 20 .o
v h v hkm s km s km s km sβ β β β θ= = = = =  

               
( ) ( )

1 2

1 1 2 2

sin sinSnell's Law:   . is known.p pθ θ
β θ β θ

= =  

               ( )2 2 2 2 2
2 2 2 2 2sin cos phase speedh vβ β θ β θ= +  

               ( )2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2sin sin sin 1 sinh vp pθ β θ β θ β θ = → = + −   

2 2 2 2 2 2 2 2 2
2 2 2 2 2 2sin sin sinh v vp p pθ β θ β β θ= + −  

2 2 2 2 2 2 2
2 2 2 2sin 1 h v vp p pθ β β β − + =   

2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2sin 1v h v v h vp p p pθ β β β β β β−   = − + = − +     

               
( )2 2 2 2 2 2 2

1 1 1 1 1 1 1

2
2 2

For 20 , sin cos 1.03957 ,

so that 0.32900 sin 0.47627 43.640 .

o
h v

o

km s

p s km

θ β θ β θ β θ

θ θ

= = + =

= → = → =  

               2
2 1 2

1

For isotropic media,
2sin sin sin 20 43.160.
1

oβθ θ θ
β

= = → =  

 Alternate Method: from Snell’s Law, 

      
2 2

2 1 2
2 2 2 2 2 2 2 2
1 1 1 1 2 2 2 2

sin sin
sin cos sin cosh v h v

p θ θ
β θ β θ β θ β θ

= =
+ +  

         
2 2 2 2 2 2
1 1 1 2 2 2

1 1
ctn ctnh v h vβ β θ β β θ

=
+ +  

 
      2 2 2 2 2 2

2 1 2 1 1 2 2ctn ctn 43.640 as above.o
h h v vθ β β β θ β θ = − + → =   


