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Field Axioms

A binary operation on a set X associates a unique member of X
to every ordered pair of elements of X .

The set R of real numbers has two binary operations, +
(addition) and · (multiplication), and two special elements named
zero (0) and one (1), with the following fundamental properties:

1 Addition and multiplication are commutative: a + b = b + a
and a · b = b · a for every a, b ∈ R.

2 Addition and multiplication are associative:
a + (b + c) = (a + b) + c and a · (b · c) = (a · b) · c for every
a, b, c ∈ R.

3 0 serves as identity for addition: 0 + a = a for every a ∈ R.

4 1 serves as identity for multiplication: 1 · a = a for every
a ∈ R.
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Field Axioms

5 Each a ∈ R has an additive inverse b ∈ R, with the property
a + b = 0.

6 Each non-zero a ∈ R has a multiplicative inverse c ∈ R, with
the property a · c = 1.

7 Multiplication distributes over addition:
a · (b + c) = (a · b) + (a · c) for every a, b, c ∈ R.

These seven properties are called the field axioms for R.

The sets Q of rational numbers and C of complex numbers also
have operations of addition and multiplication satisfying the same
seven axioms. We shall call Q, R and C fields.

The set of non-zero real numbers is denoted by R∗.

We shall usually abbreviate a · b to ab.
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Uniqueness of Identity and Inverse

Theorem

The field R has the following properties.

1 0 is the only additive identity and 1 is the only multiplicative
identity.

2 The additive inverse of any real number is unique.

3 The multiplicative inverse of any non-zero real number is
unique.

Suppose 0′ is also an additive identity. Then 0′ = 0 + 0′ = 0.
Next, suppose a has additive inverses b and c . Then,

b = b + 0 = b + (a + c) = (b + a) + c = 0 + c = c .

You can similarly show the uniqueness of the multiplicative identity
and inverses. �
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Cancellation Laws

We denote the additive inverse of a by −a and the multiplicative
inverse by 1/a or a−1.

Theorem

Let a, b, c ∈ R. Then,

1 If a + b = a + c then b = c.

2 If ab = ac and a 6= 0 then b = c.

a + b = a + c =⇒ (−a) + (a + b) = (−a) + (a + c)

=⇒ ((−a) + a) + b = ((−a) + a) + c

=⇒ 0 + b = 0 + c =⇒ b = c .

If a 6= 0 then it has a multiplicative inverse a−1 and we have

ab = ac =⇒ a−1(ab) = a−1bc =⇒ (a−1a)b = (a−1a)c

=⇒ 1 · b = 1 · c =⇒ b = c . �
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Properties of Zero and Inverses

Theorem

Let a, b, c ∈ R. Then the following hold:

1 0 · a = 0.

2 −(−a) = a.

3 If a ∈ R∗ then (a−1)−1 = a.

4 (−1)a = −a.

5 (−1)(−1) = 1.

6 (−a)(−b) = ab.

7 If ab = 0 then a = 0 or b = 0.

1 a · 0 = a · (0 + 0) = (a · 0) + (a · 0) =⇒ 0 + (a · 0) =
(a · 0) + (a · 0) =⇒ 0 = a · 0.

2 Let b = −(−a) so that b + (−a) = 0. We also have
a + (−a) = 0. Cancellation gives b = a.
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Properties of Zero and Inverses (contd.)

3 Similar to previous proof.

4 To show that (−1)a is the additive inverse of a we add them:

(−1)a + a = (−1) · a + 1 · a = ((−1) + 1) · a = 0 · a = 0.

5 Substitute a = −1 in the previous statement.

6 (−a)(−b) = (−1)a(−1)b = (−1)(−1)ab = ab.

7 We’ll show that if a 6= 0 then we must have b = 0. So at least
one of a = 0 and b = 0 must hold. a 6= 0 =⇒ a−1(ab) =
a−10 =⇒ (a−1a)b = 0 =⇒ 1 · b = 0 =⇒ b = 0. �

Task

Verify that −(a + b) = (−a) + (−b) and (ab)−1 = a−1b−1.
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Subtraction and Division

The sum a + (−b) is denoted by a− b and is called the difference
of a and b. The process of obtaining a− b is called subtraction.

If b ∈ R∗, the product a · (1/b) is denoted by a
b or a/b and is

called the ratio of a and b. The process of obtaining a/b is called
division.

Task

Use the field axioms of R to prove the following:

1 −a

b
=
−a
b

=
a

−b
if b 6= 0,

2
a

b
+

c

d
=

ad + bc

bd
if b, d 6= 0.

The square of a number x is defined by x2 = x · x .

Task

Show that (−x)2 = x2.
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Positive and Negative Numbers

The non-zero real numbers R∗ split into two types: positive and
negative.

We denote the set of positive real numbers by R+ and the set of
negative real numbers by R−.

The key facts associated to this split are as follows.

1 Every non-zero real number is either positive or negative.

2 Zero is neither positive nor negative.

3 No real number is both negative and positive.

4 A real number is negative if and only if its additive inverse is
positive.

5 The sum and product of positive numbers are positive.

These properties are called the order axioms of R.
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Combinations of Positive and Negative Numbers

Theorem

1 If x , y ∈ R− then x + y ∈ R−.

2 If x , y ∈ R− then xy ∈ R+.

3 If x ∈ R+ and y ∈ R− then xy ∈ R−.

4 If x ∈ R∗ then x2 ∈ R+.

5 1 ∈ R+.

We prove the first two to show you the way, and leave the others
as exercises.

x , y ∈ R− =⇒ −x ,−y ∈ R+ =⇒ (−x) + (−y) ∈ R+

=⇒ x + y = −((−x) + (−y)) ∈ R−.
x , y ∈ R− =⇒ −x ,−y ∈ R+ =⇒ (−x)(−y) ∈ R+

=⇒ xy = (−x)(−y) ∈ R+. �
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Ordering of Real Numbers

We say that a is greater than b, a > b, if a− b ∈ R+. In this
case, we also say that b is less than a and denote that by b < a.

Theorem

Let a, b, c ∈ R. Then the following hold.

1 R+ = { x ∈ R | x > 0 } and R− = { x ∈ R | x < 0 }.
2 (Trichotomy) Exactly one of the following holds: a = b or

a > b or a < b.

3 (Transitivity) If a > b and b > c then a > c.

1 We have x > 0 ⇐⇒ x − 0 ∈ R+ ⇐⇒ x ∈ R+. Similarly for
R−.

2 First, a = b =⇒ a− b = 0 rules out a > b and a < b. Next,
let a 6= b. Then a− b 6= 0 and belongs to exactly one of R+

and R−. Apply the first part.
3 Hint: Consider a− c = (a− b) + (b − c). �
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Ordering and Arithmetic

Theorem

Let a, b, c ∈ R. Then the following hold.

1 If a > b then a + c > b + c.

2 Let c > 0. If a > b then ac > bc.

3 Let c < 0. If a > b then ac < bc.

4 If a < b then a <
a + b

2
< b.

5 If 0 < a < b then 0 < 1/b < 1/a.

6 Suppose a, b > 0. Then a > b ⇐⇒ a2 > b2.

7 Suppose a, b > 0. Then a = b ⇐⇒ a2 = b2.

We give hints for the first three statements.

1 Hint: Consider (a + c)− (b + c) = a− b.

2 Hint: Consider ac − bc = (a− b)c .

3 As above. �
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Absolute Value

The absolute value of a real number x is defined by

|x | =

{
x if x ≥ 0,
−x if x < 0.

Theorem

Let x , y ∈ R. Then we have the following.

1 |x | ≥ 0.

2 |x | = 0 if and only if x = 0.

3 |x2| = |x |2 = x2.

4 |xy | = |x ||y |.
5 (Triangle Inequality) |x + y | ≤ |x |+ |y |.
6 |x − y | ≥ ||x | − |y ||.
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Absolute Value (contd.)
The first two claims are obvious from the definition. To prove the
others we use the earlier result that if a, b ≥ 0 then
a = b ⇐⇒ a2 = b2.

3 Since x2 ≥ 0, we have |x2| = x2. Further,

|x |2 =

{
x2 if x ≥ 0

(−x)2 if x < 0
= x2.

4 |xy |2 = (xy)2 = x2y2 = |x |2|y |2 = (|x ||y |)2.

5 |x + y |2 = (x + y)2 = x2 + y2 + 2xy ≤ |x |2 + |y |2 + 2|x ||y | =
(|x |+ |y |)2.

6 |x − y |2 = x2 + y2 − 2xy ≥ |x |2 + |y |2 − 2|x ||y | = ||x | − |y ||2.

�

Task

For any x , a ∈ R with a ≥ 0, prove that |x | ≤ a ⇐⇒ −a ≤ x ≤ a.
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Distance

We call |x − y | the distance between x and y .

Theorem

Let x , y , z ∈ R. Then we have the following.

1 (Positivity) |x − y | ≥ 0, and |x − y | = 0 if and only if x = y.

2 (Symmetry) |x − y | = |y − x |.
3 (Triangle Inequality) |x − z | ≤ |x − y |+ |y − z |.

The proofs are left as an exercise.
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Some Types of Real Numbers

• By repeatedly adding 1 we generate the subset of natural
numbers,

N = {1, 2 = 1 + 1, 3 = 2 + 1, . . . }.

We have 1 < 2 < 3 < · · · .

• By including zero we get the whole numbers,

W = N ∪ {0} = {0, 1, 2, . . . }.

• By further including the additive inverse of each whole
number we get the integers,

Z = {. . . ,−2,−1, 0, 1, 2, . . . }.

• By dividing integers with each other we get the rational
numbers,

Q = { a/b | a, b ∈ Z and b 6= 0 }.
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Integer Powers

First define x0 = 1 for any x ∈ R.

Then, for any n ∈ N, define
xn = x · xn−1. If x 6= 0, we define x−n = (xn)−1. We will use
mathematical induction to prove the following:

If x 6= 0 and n ∈ N then (x−1)n = (xn)−1.

Let P(n) be the statement (x−1)n = (xn)−1. Then P(1) is the
statement x−1 = x−1 which is certainly true. Now assume some
P(n) is true. We need to show that this forces P(n + 1) to be true:

(x−1)n+1 = x−1 · (x−1)n (definition of an+1)

= x−1(xn)−1 (induction hypothesis)

= (x · xn)−1 (because (ab)−1 = a−1b−1)

= (xn+1)−1 (definition of an+1).

This shows the truth of P(n + 1). Therefore, by mathematical
induction, (x−1)n = (xn)−1 holds for every n ∈ N.
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Maximum and Minimum

Let A be a subset of R.

• An element M ∈ A is called the maximum or greatest
element of A if a ≤ M for every a ∈ A. We write
M = max(A).

• An element m ∈ A is called the minimum or least element
of A if m ≤ a for every a ∈ A. We write m = min(A).

Example 1: The maximum of A = [1, 2] is 2 and the minimum is 1.

Example 2: The maximum of A = (1, 2] is 2 and it has no

minimum. For if m ∈ A then m′ =
1 + m

2
is in A and m′ < m.

Example 3: R+ has neither a maximum nor a minimum.
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Completeness Axiom

This is our final fundamental property of R. It seeks to capture the
intuition of there being no gaps between the real numbers.

Completeness Axiom

Suppose A and B are non-empty subsets of R such that a ≤ b for
every a ∈ A and b ∈ B. Then there is a real number m such that
a ≤ m ≤ b for every a ∈ A and b ∈ B.

For example: A = (0, 1), B = (1, 2), m = 1. Or A = (0, 1],
B = [1, 2), m = 1. We see that m may or may not belong to either
A or B.

The Completeness Axiom lends itself to showing the existence of a
number with a particular property by locating it between numbers
which are too large or too small to have that property.
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Existence of Square Roots

Theorem

Let x ∈ R+. Then there is a unique y ∈ R+ such that y2 = x. (We
call y the positive square root of x and denote it by x1/2 or

√
x.)

Define A = { a ∈ R+ | a2 < x } and B = { b ∈ R+ | b2 > x }.
Check that A and B are non-empty:

• If x > 1 then 1 ∈ A, while if x ≤ 1 then x/2 ∈ A.

• In all cases, x + 1 ∈ B.

Now a ∈ A and b ∈ B implies that a2 < x < b2, and hence a < b.
The Completeness Axiom gives y ∈ R+ such that a ≤ y ≤ b for
every a ∈ A, b ∈ B.

If y ∈ A then y = max(A), while if y ∈ B then y = min(B).
Therefore, if we show that A has no maximum and B has no
minimum, we will have ruled out both y2 < x and y2 > x ,
ensuring y2 = x .
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Existence of Square Roots (contd.)

To show that B has no least member, take any m ∈ B. We need
to find an m′ ∈ B such that m′ < m.

Consider the following
geometric argument:

x/m

m

→ x/m
x/m

m

→ x/m
x/m

m

Move one of the two strips to an adjacent side of the square, and
fill in the missing portion to create a larger square.

→

If the side of the final square is m′ then it is clear that m′ < m
while m′2 > x .
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Existence of Square Roots (contd.)

The geometric argument given above leads to an algebraic one.

Define m′ =
1

2

(
m +

x

m

)
=

x

m
+

1

2

(
m − x

m

)
.

Then 0 < m′ < m and m′2 >
x2

m2
+

x

m

(
m− x

m

)
= x . Hence B has

no least element.

Now take any m ∈ A, so that m > 0 and m2 < x .

1
x2

m2
>

x2

x
= x , hence

x

m
∈ B.

2 Choose m′ ∈ B such that m′ <
x

m
.

3
x2

m′2
<

x2

x
= x , hence

x

m′
∈ A.

4 From 0 < m′ <
x

m
we see that

x

m′
> m.

Hence A has no greatest element. This proves that y2 = x .
Uniqueness has been established earlier.
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no least element.

Now take any m ∈ A, so that m > 0 and m2 < x .

1
x2

m2
>

x2

x
= x , hence

x

m
∈ B.

2 Choose m′ ∈ B such that m′ <
x

m
.

3
x2

m′2
<

x2

x
= x , hence

x

m′
∈ A.

4 From 0 < m′ <
x

m
we see that

x

m′
> m.

Hence A has no greatest element. This proves that y2 = x .
Uniqueness has been established earlier.
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Upper and Lower Bounds

Let A be a subset of R.

• M ∈ R is an upper bound of A if a ≤ M for every a ∈ A.

• m ∈ R is a lower bound of A if m ≤ a for every a ∈ A.

A is bounded above if it has an upper bound.
A is bounded below if it has a lower bound.
If A is bounded above and below, we say it is bounded.
If A is not bounded, we say it is unbounded.

Example 1: (1, 2) has upper bound 2 and lower bound 1, hence is
bounded.

Example 2: R+ has lower bound 0 but no upper bound, hence is
unbounded.

Task

Is the empty set bounded as a subset of R?
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Archimedean Property

Ver. 1

The set N is not bounded above in R.

Suppose N is bounded above.
Then the set B of all upper bounds of N is non-empty.
By definition of B, if a ∈ N and b ∈ B then a ≤ b.
Hence, by the Completeness Axiom, there is α ∈ R such that
a ≤ α ≤ b for every a ∈ N, b ∈ B.
Since α− 1 < α, we know α− 1 /∈ B.
Hence there is an N ∈ N such that N > α− 1.
But then N + 1 ∈ N and N + 1 > α, a contradiction. �

Task

Show that Z has neither an upper nor a lower bound in R.

Amber Habib Calculus



Field Axioms Order Axioms Completeness Axiom

Archimedean Property

Ver. 1

The set N is not bounded above in R.

Suppose N is bounded above.

Then the set B of all upper bounds of N is non-empty.
By definition of B, if a ∈ N and b ∈ B then a ≤ b.
Hence, by the Completeness Axiom, there is α ∈ R such that
a ≤ α ≤ b for every a ∈ N, b ∈ B.
Since α− 1 < α, we know α− 1 /∈ B.
Hence there is an N ∈ N such that N > α− 1.
But then N + 1 ∈ N and N + 1 > α, a contradiction. �

Task

Show that Z has neither an upper nor a lower bound in R.

Amber Habib Calculus



Field Axioms Order Axioms Completeness Axiom

Archimedean Property

Ver. 1

The set N is not bounded above in R.

Suppose N is bounded above.
Then the set B of all upper bounds of N is non-empty.

By definition of B, if a ∈ N and b ∈ B then a ≤ b.
Hence, by the Completeness Axiom, there is α ∈ R such that
a ≤ α ≤ b for every a ∈ N, b ∈ B.
Since α− 1 < α, we know α− 1 /∈ B.
Hence there is an N ∈ N such that N > α− 1.
But then N + 1 ∈ N and N + 1 > α, a contradiction. �

Task

Show that Z has neither an upper nor a lower bound in R.

Amber Habib Calculus



Field Axioms Order Axioms Completeness Axiom

Archimedean Property

Ver. 1

The set N is not bounded above in R.

Suppose N is bounded above.
Then the set B of all upper bounds of N is non-empty.
By definition of B, if a ∈ N and b ∈ B then a ≤ b.

Hence, by the Completeness Axiom, there is α ∈ R such that
a ≤ α ≤ b for every a ∈ N, b ∈ B.
Since α− 1 < α, we know α− 1 /∈ B.
Hence there is an N ∈ N such that N > α− 1.
But then N + 1 ∈ N and N + 1 > α, a contradiction. �

Task

Show that Z has neither an upper nor a lower bound in R.

Amber Habib Calculus



Field Axioms Order Axioms Completeness Axiom

Archimedean Property

Ver. 1

The set N is not bounded above in R.

Suppose N is bounded above.
Then the set B of all upper bounds of N is non-empty.
By definition of B, if a ∈ N and b ∈ B then a ≤ b.
Hence, by the Completeness Axiom, there is α ∈ R such that
a ≤ α ≤ b for every a ∈ N, b ∈ B.

Since α− 1 < α, we know α− 1 /∈ B.
Hence there is an N ∈ N such that N > α− 1.
But then N + 1 ∈ N and N + 1 > α, a contradiction. �

Task

Show that Z has neither an upper nor a lower bound in R.

Amber Habib Calculus



Field Axioms Order Axioms Completeness Axiom

Archimedean Property

Ver. 1

The set N is not bounded above in R.

Suppose N is bounded above.
Then the set B of all upper bounds of N is non-empty.
By definition of B, if a ∈ N and b ∈ B then a ≤ b.
Hence, by the Completeness Axiom, there is α ∈ R such that
a ≤ α ≤ b for every a ∈ N, b ∈ B.
Since α− 1 < α, we know α− 1 /∈ B.

Hence there is an N ∈ N such that N > α− 1.
But then N + 1 ∈ N and N + 1 > α, a contradiction. �

Task

Show that Z has neither an upper nor a lower bound in R.

Amber Habib Calculus



Field Axioms Order Axioms Completeness Axiom

Archimedean Property

Ver. 1

The set N is not bounded above in R.

Suppose N is bounded above.
Then the set B of all upper bounds of N is non-empty.
By definition of B, if a ∈ N and b ∈ B then a ≤ b.
Hence, by the Completeness Axiom, there is α ∈ R such that
a ≤ α ≤ b for every a ∈ N, b ∈ B.
Since α− 1 < α, we know α− 1 /∈ B.
Hence there is an N ∈ N such that N > α− 1.

But then N + 1 ∈ N and N + 1 > α, a contradiction. �

Task

Show that Z has neither an upper nor a lower bound in R.

Amber Habib Calculus



Field Axioms Order Axioms Completeness Axiom

Archimedean Property

Ver. 1

The set N is not bounded above in R.

Suppose N is bounded above.
Then the set B of all upper bounds of N is non-empty.
By definition of B, if a ∈ N and b ∈ B then a ≤ b.
Hence, by the Completeness Axiom, there is α ∈ R such that
a ≤ α ≤ b for every a ∈ N, b ∈ B.
Since α− 1 < α, we know α− 1 /∈ B.
Hence there is an N ∈ N such that N > α− 1.
But then N + 1 ∈ N and N + 1 > α, a contradiction. �

Task

Show that Z has neither an upper nor a lower bound in R.

Amber Habib Calculus



Field Axioms Order Axioms Completeness Axiom

Archimedean Property

Ver. 1

The set N is not bounded above in R.

Suppose N is bounded above.
Then the set B of all upper bounds of N is non-empty.
By definition of B, if a ∈ N and b ∈ B then a ≤ b.
Hence, by the Completeness Axiom, there is α ∈ R such that
a ≤ α ≤ b for every a ∈ N, b ∈ B.
Since α− 1 < α, we know α− 1 /∈ B.
Hence there is an N ∈ N such that N > α− 1.
But then N + 1 ∈ N and N + 1 > α, a contradiction. �

Task

Show that Z has neither an upper nor a lower bound in R.

Amber Habib Calculus



Field Axioms Order Axioms Completeness Axiom

Archimedean Property

Ver. 2

Let x , y ∈ R+. Then there exists N ∈ N such that Nx > y .

By Ver. 1 there is N ∈ N such that N > y/x , hence Nx > y . �

Ver. 3

Let x , y ∈ R+. Then there exists N ∈ N such that 0 <
y

N
< x .

There is N ∈ N such that Nx > y > 0. Hence 0 <
y

N
< x . �
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Archimedean Property Application

Theorem

Let x , y ∈ R and M > 0 such that y − M

n
≤ x ≤ y +

M

n
for every

n ∈ N. Then y = x.

We apply trichotomy.

Suppose y > x . Then 0 < y − x .
By Archimedean Property Ver. 3, there is N ∈ N such that
0 < M/N < y − x .
Hence x < y −M/N.
This contradicts the given relationship between x , y ,M.
So y > x is false.

We similarly prove that y < x is false.

Therefore, by trichotomy, y = x . �
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Greatest Integer for a Real Number

Theorem (Greatest Integer)

Given a real number x, there is a unique integer m such that
m ≤ x < m + 1.

Let A = { n ∈ Z | n ≤ x } and B be the set of upper bounds of A.
A is non-empty because Z is not bounded below.
B is non-empty because x ∈ B.
By the definition of B, a ∈ A and b ∈ B implies a ≤ b.
By the Completeness Axiom there is α ∈ R such that a ≤ α ≤ b
for every a ∈ A, b ∈ B.
Now, α− 1 /∈ B, so there is m ∈ A such that α− 1 < m ≤ x .
Then α < m + 1, hence m + 1 /∈ A and x < m + 1. We have found
the desired m.
For uniqueness, note that any integer with the given property
would be the greatest element of A. �
This m is called the greatest integer for x and is denoted by [x ].
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Denseness of Rationals

Theorem (Denseness of Rational Numbers)

Let x , y ∈ R with x < y. Then there is r ∈ Q such that x < r < y.

By Archimedean Principle, Ver. 2, there is N ∈ N such that
1 < N(y − x) = Ny − Nx .

R
Nx Ny0

1

Take M = [Nx ] + 1. Then M − 1 ≤ Nx < M.
This gives M ≤ Nx + 1 < Nx + (Ny − Nx) = Ny .
Hence Nx < M < Ny and x < M/N < y . �

Task

Show that there are infinitely many rational numbers between any
two distinct real numbers.
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Denseness of Irrationals

We know Q 6= R. For example,
√

2 /∈ Q. A real number which is
not rational is called irrational.

Task

Let t be an irrational number. Show that:

1 The numbers −t and 1/t are irrational.

2 If r is rational then r + t and r − t are irrational.

3 If r is a non-zero rational then rt and r/t are irrational.

Theorem (Denseness of Irrational Numbers)

Let x , y ∈ R with x < y. Then there is an irrational number t such
that x < t < y.

By the denseness of Q, we have r ∈ Q such
√

2 x < r <
√

2 y . We
can arrange for r to be non-zero. Then t = r/

√
2 is an irrational

number such that x < t < y . �
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Least Upper Bounds

Let A be a non-empty subset of R. U ∈ R is called the least
upper bound (LUB) or supremum (sup) of A if

1 U is an upper bound of A, and

2 U is the least among all the upper bounds of A.

Example 1: The LUB of (0, 1] is 1.

If A has a maximum element M then M is also the LUB of A.

Example 2: The LUB of (0, 1) is 1.

The LUB of A need not belong to A. In particular, it may not be
the maximum element of A.

Example 3: N has no upper bounds, hence has no LUB.
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LUB Property

Theorem (LUB Property)

Every non-empty subset of R which is bounded above has a
(unique) least upper bound.

Let A ⊆ R be non-empty and bounded above.
Define B to be the set of all upper bounds of A.
The Completeness Axiom then gives U such that a ≤ U ≤ b for
every a ∈ A, b ∈ B.
The condition a ≤ U for every a ∈ A makes U an upper bound of
A.
The condition U ≤ b for every b ∈ B makes U the least among all
the upper bounds of A.

�
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LUB of Union

Theorem

Let A,B ⊆ R be non-empty and bounded above. Then

sup(A ∪ B) = max{sup(A), sup(B)}.

Clearly α = max{sup(A), sup(B)} is an upper bound of A ∪ B.
We’ll show that for any ε > 0, α− ε is not an upper bound of
A ∪ B.
We may assume that α = sup(A).
There is a ∈ A such that a > sup(A)− ε = α− ε. But a ∈ A∪B.�

Task

Let A,B ⊆ R be non-empty and bounded above. Define
A + B = { a + b | a ∈ A, b ∈ B }. Show that

sup(A + B) = sup(A) + sup(B).
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We’ll show that for any ε > 0, α− ε is not an upper bound of
A ∪ B.
We may assume that α = sup(A).
There is a ∈ A such that a > sup(A)− ε = α− ε. But a ∈ A∪B.�

Task

Let A,B ⊆ R be non-empty and bounded above. Define
A + B = { a + b | a ∈ A, b ∈ B }. Show that

sup(A + B) = sup(A) + sup(B).
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Greatest Lower Bound

Let A be a non-empty subset of R. L ∈ R is called the greatest
lower bound (GLB) or infimum (inf) of A if

1 L is a lower bound of A, and

2 L is the greatest among all the lower bounds of A.

Theorem (GLB Property)

Every non-empty subset of R which is bounded below has a
(unique) greatest lower bound.

Proof is similar to the LUB Property.

Task

Let A be a non-empty subset of R which is bounded above. Define
−A = { x ∈ R | −x ∈ A }. Show that

inf(−A) = − sup(A).
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