

Chapter 1: Real Numbers and Functions
Part A: Properties of Real Numbers

Table of Contents

Field Axioms

Order Axioms

Completeness Axiom

A **binary operation** on a set X associates a unique member of X to every ordered pair of elements of X.

A **binary operation** on a set X associates a unique member of X to every ordered pair of elements of X.

A **binary operation** on a set X associates a unique member of X to every ordered pair of elements of X.

- **1** Addition and multiplication are **commutative**: a + b = b + a and $a \cdot b = b \cdot a$ for every $a, b \in \mathbb{R}$.
- 2 Addition and multiplication are **associative**: a + (b + c) = (a + b) + c and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for every $a, b, c \in \mathbb{R}$.

A **binary operation** on a set X associates a unique member of X to every ordered pair of elements of X.

- **1** Addition and multiplication are **commutative**: a + b = b + a and $a \cdot b = b \cdot a$ for every $a, b \in \mathbb{R}$.
- **2** Addition and multiplication are **associative**: a + (b + c) = (a + b) + c and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for every $a, b, c \in \mathbb{R}$.
- **3** 0 serves as **identity** for addition: 0 + a = a for every $a \in \mathbb{R}$.

A **binary operation** on a set X associates a unique member of X to every ordered pair of elements of X.

- **1** Addition and multiplication are **commutative**: a + b = b + a and $a \cdot b = b \cdot a$ for every $a, b \in \mathbb{R}$.
- 2 Addition and multiplication are **associative**: a + (b + c) = (a + b) + c and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for every $a, b, c \in \mathbb{R}$.
- **3** 0 serves as **identity** for addition: 0 + a = a for every $a \in \mathbb{R}$.
- **4** 1 serves as **identity** for multiplication: $1 \cdot a = a$ for every $a \in \mathbb{R}$.

5 Each $a \in \mathbb{R}$ has an additive **inverse** $b \in \mathbb{R}$, with the property a + b = 0.

- **5** Each $a \in \mathbb{R}$ has an additive **inverse** $b \in \mathbb{R}$, with the property a + b = 0.
- **6** Each non-zero $a \in \mathbb{R}$ has a multiplicative **inverse** $c \in \mathbb{R}$, with the property $a \cdot c = 1$.

- **5** Each $a \in \mathbb{R}$ has an additive **inverse** $b \in \mathbb{R}$, with the property a + b = 0.
- **6** Each non-zero $a \in \mathbb{R}$ has a multiplicative **inverse** $c \in \mathbb{R}$, with the property $a \cdot c = 1$.
- Multiplication **distributes** over addition: $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ for every $a, b, c \in \mathbb{R}$.

These seven properties are called the **field axioms** for \mathbb{R} .

- **6** Each $a \in \mathbb{R}$ has an additive **inverse** $b \in \mathbb{R}$, with the property a + b = 0.
- **6** Each non-zero $a \in \mathbb{R}$ has a multiplicative **inverse** $c \in \mathbb{R}$, with the property $a \cdot c = 1$.
- Multiplication **distributes** over addition: $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ for every $a, b, c \in \mathbb{R}$.

These seven properties are called the **field axioms** for \mathbb{R} .

The sets $\mathbb Q$ of rational numbers and $\mathbb C$ of complex numbers also have operations of addition and multiplication satisfying the same seven axioms. We shall call $\mathbb Q$, $\mathbb R$ and $\mathbb C$ **fields**.

- **5** Each $a \in \mathbb{R}$ has an additive **inverse** $b \in \mathbb{R}$, with the property a + b = 0.
- **6** Each non-zero $a \in \mathbb{R}$ has a multiplicative **inverse** $c \in \mathbb{R}$, with the property $a \cdot c = 1$.
- Multiplication **distributes** over addition: $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ for every $a, b, c \in \mathbb{R}$.

These seven properties are called the **field axioms** for \mathbb{R} .

The sets $\mathbb Q$ of rational numbers and $\mathbb C$ of complex numbers also have operations of addition and multiplication satisfying the same seven axioms. We shall call $\mathbb Q$, $\mathbb R$ and $\mathbb C$ **fields**.

The set of non-zero real numbers is denoted by \mathbb{R}^* .

We shall usually abbreviate $a \cdot b$ to ab.

00000000

Uniqueness of Identity and Inverse

Theorem

The field \mathbb{R} has the following properties.

- 1 0 is the only additive identity and 1 is the only multiplicative identity.
- 2 The additive inverse of any real number is unique.
- The multiplicative inverse of any non-zero real number is unique.

Uniqueness of Identity and Inverse

Theorem

The field \mathbb{R} has the following properties.

- 1 0 is the only additive identity and 1 is the only multiplicative identity.
- 2 The additive inverse of any real number is unique.
- 3 The multiplicative inverse of any non-zero real number is unique.

Suppose 0' is also an additive identity. Then 0' = 0 + 0' = 0.

Uniqueness of Identity and Inverse

Theorem

The field \mathbb{R} has the following properties.

- 0 is the only additive identity and 1 is the only multiplicative identity.
- 2 The additive inverse of any real number is unique.
- 3 The multiplicative inverse of any non-zero real number is unique.

Suppose 0' is also an additive identity. Then 0' = 0 + 0' = 0. Next, suppose a has additive inverses b and c. Then,

$$b = b + 0 = b + (a + c) = (b + a) + c = 0 + c = c.$$

Uniqueness of Identity and Inverse

Theorem

The field \mathbb{R} has the following properties.

- 1 0 is the only additive identity and 1 is the only multiplicative identity.
- 2 The additive inverse of any real number is unique.
- 3 The multiplicative inverse of any non-zero real number is unique.

Suppose 0' is also an additive identity. Then 0' = 0 + 0' = 0. Next, suppose a has additive inverses b and c. Then,

$$b = b + 0 = b + (a + c) = (b + a) + c = 0 + c = c.$$

You can similarly show the uniqueness of the multiplicative identity and inverses.

Cancellation Laws

We denote the additive inverse of a by -a and the multiplicative inverse by 1/a or a^{-1} .

Theorem

Let $a, b, c \in \mathbb{R}$. Then,

- **1** If a + b = a + c then b = c.
- 2 If ab = ac and $a \neq 0$ then b = c.

Cancellation Laws

We denote the additive inverse of a by -a and the multiplicative inverse by 1/a or a^{-1} .

Theorem

Let $a, b, c \in \mathbb{R}$. Then,

- **1** If a + b = a + c then b = c.
- 2 If ab = ac and $a \neq 0$ then b = c.

$$a+b=a+c \implies (-a)+(a+b)=(-a)+(a+c)$$
$$\implies ((-a)+a)+b=((-a)+a)+c$$
$$\implies 0+b=0+c \implies b=c.$$

Cancellation Laws

We denote the additive inverse of a by -a and the multiplicative inverse by 1/a or a^{-1} .

Theorem

Let $a, b, c \in \mathbb{R}$. Then,

- **1** If a + b = a + c then b = c.
- 2 If ab = ac and $a \neq 0$ then b = c.

$$a+b=a+c \implies (-a)+(a+b)=(-a)+(a+c)$$
$$\implies ((-a)+a)+b=((-a)+a)+c$$
$$\implies 0+b=0+c \implies b=c.$$

If $a \neq 0$ then it has a multiplicative inverse a^{-1} and we have

$$ab = ac \implies a^{-1}(ab) = a^{-1}bc \implies (a^{-1}a)b = (a^{-1}a)c$$

 $\implies 1 \cdot b = 1 \cdot c \implies b = c.$

Theorem

- $0 \cdot a = 0.$
- (-a) = a.
- **3** If $a \in \mathbb{R}^*$ then $(a^{-1})^{-1} = a$.
- (-1)a = -a.
- **6** (-1)(-1) = 1.
- **6** (-a)(-b) = ab.
- **7** If ab = 0 then a = 0 or b = 0.

Theorem

- $0 \cdot a = 0.$
- (-a) = a.
- **3** If $a \in \mathbb{R}^*$ then $(a^{-1})^{-1} = a$.
- **4** (-1)a = -a.
- **6** (-1)(-1) = 1.
- **6** (-a)(-b) = ab.
- **7** If ab = 0 then a = 0 or b = 0.
- 1 $a \cdot 0 = a \cdot (0+0)$

Theorem

- $0 \cdot a = 0.$
- (2 (-a)) = a.
- **3** If $a \in \mathbb{R}^*$ then $(a^{-1})^{-1} = a$.
- **4** (-1)a = -a.
- **6** (-1)(-1) = 1.
- **6** (-a)(-b) = ab.
- **7** If ab = 0 then a = 0 or b = 0.

Theorem

- $0 \cdot a = 0.$
- (-a) = a.
- **3** If $a \in \mathbb{R}^*$ then $(a^{-1})^{-1} = a$.
- (-1)a = -a.
- **6** (-1)(-1) = 1.
- **6** (-a)(-b) = ab.
- **7** If ab = 0 then a = 0 or b = 0.

Theorem

- $0 \cdot a = 0.$
- (-a) = a.
- **3** If $a \in \mathbb{R}^*$ then $(a^{-1})^{-1} = a$.
- (-1)a = -a.
- **6** (-1)(-1) = 1.
- **6** (-a)(-b) = ab.
- **7** If ab = 0 then a = 0 or b = 0.

Theorem

- $0 \cdot a = 0.$
- (2) -(-a) = a.
- **3** If $a \in \mathbb{R}^*$ then $(a^{-1})^{-1} = a$.
- **4** (-1)a = -a.
- **6** (-1)(-1) = 1.
- **6** (-a)(-b) = ab.
- **7** If ab = 0 then a = 0 or b = 0.
- 2 Let b = -(-a) so that b + (-a) = 0.

Theorem

- $0 \cdot a = 0.$
- (2) -(-a) = a.
- **3** If $a \in \mathbb{R}^*$ then $(a^{-1})^{-1} = a$.
- (-1)a = -a.
- (-1)(-1) = 1.
- **6** (-a)(-b) = ab.
- **7** If ab = 0 then a = 0 or b = 0.
- 2 Let b = -(-a) so that b + (-a) = 0. We also have a + (-a) = 0.

Theorem

- $0 \cdot a = 0.$
- (2) -(-a) = a.
- **3** If $a \in \mathbb{R}^*$ then $(a^{-1})^{-1} = a$.
- **4** (-1)a = -a.
- (-1)(-1) = 1.
- **6** (-a)(-b) = ab.
- **7** If ab = 0 then a = 0 or b = 0.
- 2 Let b = -(-a) so that b + (-a) = 0. We also have a + (-a) = 0. Cancellation gives b = a.

3 Similar to previous proof.

- 3 Similar to previous proof.
- **4** To show that (-1)a is the additive inverse of a we add them:

$$(-1)a + a =$$

- 3 Similar to previous proof.
- 4 To show that (-1)a is the additive inverse of a we add them:

$$(-1)a + a = (-1) \cdot a + 1 \cdot a =$$

- 3 Similar to previous proof.
- 4 To show that (-1)a is the additive inverse of a we add them:

$$(-1)a + a = (-1) \cdot a + 1 \cdot a = ((-1) + 1) \cdot a =$$

- 3 Similar to previous proof.
- 4 To show that (-1)a is the additive inverse of a we add them:

$$(-1)a + a = (-1) \cdot a + 1 \cdot a = ((-1) + 1) \cdot a = 0 \cdot a = 0.$$

- 3 Similar to previous proof.
- 4 To show that (-1)a is the additive inverse of a we add them:

$$(-1)a + a = (-1) \cdot a + 1 \cdot a = ((-1) + 1) \cdot a = 0 \cdot a = 0.$$

5 Substitute a = -1 in the previous statement.

- 3 Similar to previous proof.
- 4 To show that (-1)a is the additive inverse of a we add them:

$$(-1)a + a = (-1) \cdot a + 1 \cdot a = ((-1) + 1) \cdot a = 0 \cdot a = 0.$$

5 Substitute a = -1 in the previous statement.

6
$$(-a)(-b) = (-1)a(-1)b =$$

- 3 Similar to previous proof.
- 4 To show that (-1)a is the additive inverse of a we add them:

$$(-1)a + a = (-1) \cdot a + 1 \cdot a = ((-1) + 1) \cdot a = 0 \cdot a = 0.$$

6 Substitute a = -1 in the previous statement.

6
$$(-a)(-b) = (-1)a(-1)b = (-1)(-1)ab =$$

- **3** Similar to previous proof.
- 4 To show that (-1)a is the additive inverse of a we add them:

$$(-1)a + a = (-1) \cdot a + 1 \cdot a = ((-1) + 1) \cdot a = 0 \cdot a = 0.$$

- **6** Substitute a = -1 in the previous statement.
- **6** (-a)(-b) = (-1)a(-1)b = (-1)(-1)ab = ab.

- 3 Similar to previous proof.
- 4 To show that (-1)a is the additive inverse of a we add them:

$$(-1)a + a = (-1) \cdot a + 1 \cdot a = ((-1) + 1) \cdot a = 0 \cdot a = 0.$$

- **5** Substitute a = -1 in the previous statement.
- **6** (-a)(-b) = (-1)a(-1)b = (-1)(-1)ab = ab.
- 7 We'll show that if $a \neq 0$ then we must have b = 0. So at least one of a = 0 and b = 0 must hold.

- 3 Similar to previous proof.
- 4 To show that (-1)a is the additive inverse of a we add them:

$$(-1)a + a = (-1) \cdot a + 1 \cdot a = ((-1) + 1) \cdot a = 0 \cdot a = 0.$$

- **5** Substitute a = -1 in the previous statement.
- **6** (-a)(-b) = (-1)a(-1)b = (-1)(-1)ab = ab.
- 7 We'll show that if $a \neq 0$ then we must have b = 0. So at least one of a = 0 and b = 0 must hold. $a \neq 0 \implies a^{-1}(ab) = a^{-1}0$

- 3 Similar to previous proof.
- 4 To show that (-1)a is the additive inverse of a we add them:

$$(-1)a + a = (-1) \cdot a + 1 \cdot a = ((-1) + 1) \cdot a = 0 \cdot a = 0.$$

- **5** Substitute a = -1 in the previous statement.
- **6** (-a)(-b) = (-1)a(-1)b = (-1)(-1)ab = ab.
- 7 We'll show that if $a \neq 0$ then we must have b = 0. So at least one of a = 0 and b = 0 must hold. $a \neq 0 \implies a^{-1}(ab) = a^{-1}0 \implies (a^{-1}a)b = 0$

- 3 Similar to previous proof.
- 4 To show that (-1)a is the additive inverse of a we add them:

$$(-1)a + a = (-1) \cdot a + 1 \cdot a = ((-1) + 1) \cdot a = 0 \cdot a = 0.$$

- **5** Substitute a = -1 in the previous statement.
- **6** (-a)(-b) = (-1)a(-1)b = (-1)(-1)ab = ab.
- 7 We'll show that if $a \neq 0$ then we must have b = 0. So at least one of a = 0 and b = 0 must hold. $a \neq 0 \implies a^{-1}(ab) = a^{-1}0 \implies (a^{-1}a)b = 0 \implies 1 \cdot b = 0$

- 3 Similar to previous proof.
- 4 To show that (-1)a is the additive inverse of a we add them:

$$(-1)a + a = (-1) \cdot a + 1 \cdot a = ((-1) + 1) \cdot a = 0 \cdot a = 0.$$

- **5** Substitute a = -1 in the previous statement.
- **6** (-a)(-b) = (-1)a(-1)b = (-1)(-1)ab = ab.
- 7 We'll show that if $a \neq 0$ then we must have b = 0. So at least one of a = 0 and b = 0 must hold. $a \neq 0 \implies a^{-1}(ab) = a^{-1}0 \implies (a^{-1}a)b = 0 \implies 1 \cdot b = 0 \implies b = 0$.

- 3 Similar to previous proof.
- 4 To show that (-1)a is the additive inverse of a we add them:

$$(-1)a + a = (-1) \cdot a + 1 \cdot a = ((-1) + 1) \cdot a = 0 \cdot a = 0.$$

- **5** Substitute a = -1 in the previous statement.
- **6** (-a)(-b) = (-1)a(-1)b = (-1)(-1)ab = ab.
- 7 We'll show that if $a \neq 0$ then we must have b = 0. So at least one of a = 0 and b = 0 must hold. $a \neq 0 \implies a^{-1}(ab) = a^{-1}0 \implies (a^{-1}a)b = 0 \implies 1 \cdot b = 0 \implies b = 0$.

Task

Verify that
$$-(a+b) = (-a) + (-b)$$
 and $(ab)^{-1} = a^{-1}b^{-1}$.

The sum a + (-b) is denoted by a - b and is called the **difference** of a and b. The process of obtaining a - b is called **subtraction**.

The sum a + (-b) is denoted by a - b and is called the **difference** of a and b. The process of obtaining a - b is called **subtraction**.

If $b \in \mathbb{R}^*$, the product $a \cdot (1/b)$ is denoted by $\frac{a}{b}$ or a/b and is called the **ratio** of a and b. The process of obtaining a/b is called **division**.

The sum a + (-b) is denoted by a - b and is called the **difference** of a and b. The process of obtaining a - b is called **subtraction**.

If $b \in \mathbb{R}^*$, the product $a \cdot (1/b)$ is denoted by $\frac{a}{b}$ or a/b and is called the **ratio** of a and b. The process of obtaining a/b is called **division**.

Task

Use the field axioms of $\mathbb R$ to prove the following:

$$\bullet -\frac{a}{b} = \frac{-a}{b} = \frac{a}{-b} \text{ if } b \neq 0,$$

2
$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
 if $b, d \neq 0$.

The sum a + (-b) is denoted by a - b and is called the **difference** of a and b. The process of obtaining a - b is called **subtraction**.

If $b \in \mathbb{R}^*$, the product $a \cdot (1/b)$ is denoted by $\frac{a}{b}$ or a/b and is called the **ratio** of a and b. The process of obtaining a/b is called **division**.

Task

Use the field axioms of $\mathbb R$ to prove the following:

$$-\frac{a}{b} = \frac{-a}{b} = \frac{a}{-b}$$
 if $b \neq 0$,

2
$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
 if $b, d \neq 0$.

The **square** of a number x is defined by $x^2 = x \cdot x$.

Task

Show that
$$(-x)^2 = x^2$$
.

Table of Contents

Field Axioms

Order Axioms

Completeness Axiom

The non-zero real numbers \mathbb{R}^* split into two types: **positive** and **negative**.

The non-zero real numbers \mathbb{R}^* split into two types: **positive** and **negative**.

We denote the set of positive real numbers by \mathbb{R}^+ and the set of negative real numbers by \mathbb{R}^- .

The non-zero real numbers \mathbb{R}^* split into two types: **positive** and **negative**.

We denote the set of positive real numbers by \mathbb{R}^+ and the set of negative real numbers by \mathbb{R}^- .

The key facts associated to this split are as follows.

1 Every non-zero real number is either positive or negative.

The non-zero real numbers \mathbb{R}^* split into two types: **positive** and **negative**.

We denote the set of positive real numbers by \mathbb{R}^+ and the set of negative real numbers by \mathbb{R}^- .

- 1 Every non-zero real number is either positive or negative.
- 2 Zero is neither positive nor negative.

The non-zero real numbers \mathbb{R}^* split into two types: **positive** and **negative**.

We denote the set of positive real numbers by \mathbb{R}^+ and the set of negative real numbers by \mathbb{R}^- .

- 1 Every non-zero real number is either positive or negative.
- 2 Zero is neither positive nor negative.
- 3 No real number is both negative and positive.

The non-zero real numbers \mathbb{R}^* split into two types: **positive** and **negative**.

We denote the set of positive real numbers by \mathbb{R}^+ and the set of negative real numbers by \mathbb{R}^- .

- 1 Every non-zero real number is either positive or negative.
- 2 Zero is neither positive nor negative.
- 3 No real number is both negative and positive.
- 4 A real number is negative if and only if its additive inverse is positive.

The non-zero real numbers \mathbb{R}^* split into two types: **positive** and **negative**.

We denote the set of positive real numbers by \mathbb{R}^+ and the set of negative real numbers by \mathbb{R}^- .

- 1 Every non-zero real number is either positive or negative.
- 2 Zero is neither positive nor negative.
- 3 No real number is both negative and positive.
- **4** A real number is negative if and only if its additive inverse is positive.
- 5 The sum and product of positive numbers are positive.

The non-zero real numbers \mathbb{R}^* split into two types: **positive** and **negative**.

We denote the set of positive real numbers by \mathbb{R}^+ and the set of negative real numbers by \mathbb{R}^- .

The key facts associated to this split are as follows.

- 1 Every non-zero real number is either positive or negative.
- 2 Zero is neither positive nor negative.
- 3 No real number is both negative and positive.
- A real number is negative if and only if its additive inverse is positive.
- **5** The sum and product of positive numbers are positive.

These properties are called the **order axioms** of \mathbb{R} .

Combinations of Positive and Negative Numbers CAMBRIDGE ONLY OF COMPANY OF THE CAMBRIDGE OF THE STATE OF THE

Theorem

- 1 If $x, y \in \mathbb{R}^-$ then $x + y \in \mathbb{R}^-$.
- 2 If $x, y \in \mathbb{R}^-$ then $xy \in \mathbb{R}^+$.
- 3 If $x \in \mathbb{R}^+$ and $y \in \mathbb{R}^-$ then $xy \in \mathbb{R}^-$.
- \triangle If $x \in \mathbb{R}^*$ then $x^2 \in \mathbb{R}^+$.
- **6** $1 \in \mathbb{R}^+$.

Combinations of Positive and Negative Numbers CAMBRIDGE ONLY OF COMPANY OF THE CAMBRIDGE OF THE STATE OF THE

Theorem

- 1 If $x, y \in \mathbb{R}^-$ then $x + y \in \mathbb{R}^-$.
- 2 If $x, y \in \mathbb{R}^-$ then $xy \in \mathbb{R}^+$.
- 3 If $x \in \mathbb{R}^+$ and $y \in \mathbb{R}^-$ then $xy \in \mathbb{R}^-$.
- \triangle If $x \in \mathbb{R}^*$ then $x^2 \in \mathbb{R}^+$.
- **6** $1 \in \mathbb{R}^+$.

Combinations of Positive and Negative Numbers CAMBRIDGE ONLY OF CHAMBRIDGE AND AND AND ADDRESS OF CHAMBRIDGE OF CH

Theorem

- 1 If $x, y \in \mathbb{R}^-$ then $x + y \in \mathbb{R}^-$.
- 2 If $x, y \in \mathbb{R}^-$ then $xy \in \mathbb{R}^+$.
- 3 If $x \in \mathbb{R}^+$ and $y \in \mathbb{R}^-$ then $xy \in \mathbb{R}^-$.
- **4** If $x \in \mathbb{R}^*$ then $x^2 \in \mathbb{R}^+$.
- **6** $1 \in \mathbb{R}^+$.

$$x, y \in \mathbb{R}^- \implies -x, -y \in \mathbb{R}^+$$

Combinations of Positive and Negative Numbers CAMBRIDGE ONLY OF COMPANY OF THE CAMBRIDGE OF THE STATE OF THE

Theorem

- 1 If $x, y \in \mathbb{R}^-$ then $x + y \in \mathbb{R}^-$.
- 2 If $x, y \in \mathbb{R}^-$ then $xy \in \mathbb{R}^+$.
- 3 If $x \in \mathbb{R}^+$ and $y \in \mathbb{R}^-$ then $xy \in \mathbb{R}^-$.
- **4** If $x \in \mathbb{R}^*$ then $x^2 \in \mathbb{R}^+$.
- **6** $1 \in \mathbb{R}^+$.

$$x, y \in \mathbb{R}^- \implies -x, -y \in \mathbb{R}^+ \implies (-x) + (-y) \in \mathbb{R}^+$$

Combinations of Positive and Negative Numbers CAMBRIDGE ONLY OF COMPANY OF THE CAMBRIDGE OF THE STATE OF THE

Theorem

- 1 If $x, y \in \mathbb{R}^-$ then $x + y \in \mathbb{R}^-$.
- 2 If $x, y \in \mathbb{R}^-$ then $xy \in \mathbb{R}^+$.
- 3 If $x \in \mathbb{R}^+$ and $y \in \mathbb{R}^-$ then $xy \in \mathbb{R}^-$.
- **4** If $x \in \mathbb{R}^*$ then $x^2 \in \mathbb{R}^+$.
- **6** $1 \in \mathbb{R}^+$.

$$x, y \in \mathbb{R}^- \implies -x, -y \in \mathbb{R}^+ \implies (-x) + (-y) \in \mathbb{R}^+$$

 $\implies x + y = -((-x) + (-y)) \in \mathbb{R}^-.$

Combinations of Positive and Negative Numbers & CAMBRIDGE OF CAMBRIDGE CAMBRIDGE

Theorem

- 1 If $x, y \in \mathbb{R}^-$ then $x + y \in \mathbb{R}^-$.
- 2 If $x, y \in \mathbb{R}^-$ then $xy \in \mathbb{R}^+$.
- 3 If $x \in \mathbb{R}^+$ and $y \in \mathbb{R}^-$ then $xy \in \mathbb{R}^-$.
- **4** If $x \in \mathbb{R}^*$ then $x^2 \in \mathbb{R}^+$
- **6** $1 \in \mathbb{R}^+$.

$$x, y \in \mathbb{R}^{-} \implies -x, -y \in \mathbb{R}^{+} \implies (-x) + (-y) \in \mathbb{R}^{+}$$

$$\implies x + y = -((-x) + (-y)) \in \mathbb{R}^{-}.$$

$$x, y \in \mathbb{R}^{-} \implies -x, -y \in \mathbb{R}^{+} \implies (-x)(-y) \in \mathbb{R}^{+}$$

Combinations of Positive and Negative Numbers CAMBRIDGE Numbers

Theorem

- **1** If $x, y \in \mathbb{R}^-$ then $x + y \in \mathbb{R}^-$.
- 2 If $x, y \in \mathbb{R}^-$ then $xy \in \mathbb{R}^+$.
- 3 If $x \in \mathbb{R}^+$ and $y \in \mathbb{R}^-$ then $xy \in \mathbb{R}^-$.
- **4** If $x \in \mathbb{R}^*$ then $x^2 \in \mathbb{R}^+$.
- **6** $1 \in \mathbb{R}^+$.

$$x, y \in \mathbb{R}^{-}$$
 \Longrightarrow $-x, -y \in \mathbb{R}^{+}$ \Longrightarrow $(-x) + (-y) \in \mathbb{R}^{+}$
 \Longrightarrow $x + y = -((-x) + (-y)) \in \mathbb{R}^{-}$.
 $x, y \in \mathbb{R}^{-}$ \Longrightarrow $-x, -y \in \mathbb{R}^{+}$ \Longrightarrow $(-x)(-y) \in \mathbb{R}^{+}$
 \Longrightarrow $xy = (-x)(-y) \in \mathbb{R}^{+}$.

We say that a is **greater** than b, a > b, if $a - b \in \mathbb{R}^+$. In this case, we also say that b is **less** than a and denote that by b < a.

We say that a is **greater** than b, a > b, if $a - b \in \mathbb{R}^+$. In this case, we also say that b is **less** than a and denote that by b < a.

Theorem

- **1** $\mathbb{R}^+ = \{ x \in \mathbb{R} \mid x > 0 \} \text{ and } \mathbb{R}^- = \{ x \in \mathbb{R} \mid x < 0 \}.$
- 2 (Trichotomy) Exactly one of the following holds: a = b or a > b or a < b.
- **3** (Transitivity) If a > b and b > c then a > c.

We say that a is **greater** than b, a > b, if $a - b \in \mathbb{R}^+$. In this case, we also say that b is **less** than a and denote that by b < a.

Theorem

- **1** $\mathbb{R}^+ = \{ x \in \mathbb{R} \mid x > 0 \} \text{ and } \mathbb{R}^- = \{ x \in \mathbb{R} \mid x < 0 \}.$
- 2 (Trichotomy) Exactly one of the following holds: a = b or a > b or a < b.
- **3** (Transitivity) If a > b and b > c then a > c.
- ① We have $x > 0 \iff x 0 \in \mathbb{R}^+ \iff x \in \mathbb{R}^+$. Similarly for \mathbb{R}^- .

We say that a is **greater** than b, a > b, if $a - b \in \mathbb{R}^+$. In this case, we also say that b is **less** than a and denote that by b < a.

Theorem

- **1** $\mathbb{R}^+ = \{ x \in \mathbb{R} \mid x > 0 \} \text{ and } \mathbb{R}^- = \{ x \in \mathbb{R} \mid x < 0 \}.$
- **2** (Trichotomy) Exactly one of the following holds: a = b or a > b or a < b.
- **3** (Transitivity) If a > b and b > c then a > c.
- 1 We have $x > 0 \iff x 0 \in \mathbb{R}^+ \iff x \in \mathbb{R}^+$. Similarly for \mathbb{R}^- .
- 2 First, $a = b \implies a b = 0$ rules out a > b and a < b.

We say that a is **greater** than b, a > b, if $a - b \in \mathbb{R}^+$. In this case, we also say that b is **less** than a and denote that by b < a.

Theorem

- **1** $\mathbb{R}^+ = \{ x \in \mathbb{R} \mid x > 0 \} \text{ and } \mathbb{R}^- = \{ x \in \mathbb{R} \mid x < 0 \}.$
- 2 (Trichotomy) Exactly one of the following holds: a = b or a > b or a < b.
- 3 (Transitivity) If a > b and b > c then a > c.
- 1) We have $x > 0 \iff x 0 \in \mathbb{R}^+ \iff x \in \mathbb{R}^+$. Similarly for \mathbb{R}^-
- 2 First, $a = b \implies a b = 0$ rules out a > b and a < b. Next, let $a \neq b$. Then $a - b \neq 0$ and belongs to exactly one of \mathbb{R}^+ and \mathbb{R}^- . Apply the first part.
- 3 Hint: Consider a-c=(a-b)+(b-c)

Theorem

- **1** If a > b then a + c > b + c.
- 2 Let c > 0. If a > b then ac > bc.
- 3 Let c < 0. If a > b then ac < bc.
- **4** If a < b then $a < \frac{a+b}{2} < b$.
- **5** If 0 < a < b then 0 < 1/b < 1/a.
- **6** Suppose a, b > 0. Then $a > b \iff a^2 > b^2$.
- 7 Suppose a, b > 0. Then $a = b \iff a^2 = b^2$.

Theorem

Let $a, b, c \in \mathbb{R}$. Then the following hold.

- **1** If a > b then a + c > b + c.
- 2 Let c > 0. If a > b then ac > bc.
- 3 Let c < 0. If a > b then ac < bc.
- **4** If a < b then $a < \frac{a+b}{2} < b$.
- **5** If 0 < a < b then 0 < 1/b < 1/a.
- **6** Suppose a, b > 0. Then $a > b \iff a^2 > b^2$.
- 7 Suppose a, b > 0. Then $a = b \iff a^2 = b^2$.

We give hints for the first three statements.

Theorem

Let $a, b, c \in \mathbb{R}$. Then the following hold.

- **1** If a > b then a + c > b + c.
- 2 Let c > 0. If a > b then ac > bc.
- 3 Let c < 0. If a > b then ac < bc.
- **4** If a < b then $a < \frac{a+b}{2} < b$.
- **5** If 0 < a < b then 0 < 1/b < 1/a.
- **6** Suppose a, b > 0. Then $a > b \iff a^2 > b^2$.
- **7** Suppose a, b > 0. Then $a = b \iff a^2 = b^2$.

We give hints for the first three statements.

1 Hint: Consider (a + c) - (b + c) = a - b.

Theorem

Let $a, b, c \in \mathbb{R}$. Then the following hold.

- **1** If a > b then a + c > b + c.
- 2 Let c > 0. If a > b then ac > bc.
- 3 Let c < 0. If a > b then ac < bc.
- **4** If a < b then $a < \frac{a+b}{2} < b$.
- **5** If 0 < a < b then 0 < 1/b < 1/a.
- **6** Suppose a, b > 0. Then $a > b \iff a^2 > b^2$.
- **7** Suppose a, b > 0. Then $a = b \iff a^2 = b^2$.

We give hints for the first three statements.

- **1** Hint: Consider (a + c) (b + c) = a b.
- 2 Hint: Consider ac bc = (a b)c.

Theorem

Let $a, b, c \in \mathbb{R}$. Then the following hold.

- **1** If a > b then a + c > b + c.
- 2 Let c > 0. If a > b then ac > bc.
- 3 Let c < 0. If a > b then ac < bc.
- **4** If a < b then $a < \frac{a+b}{2} < b$.
- **5** If 0 < a < b then 0 < 1/b < 1/a.
- **6** Suppose a, b > 0. Then $a > b \iff a^2 > b^2$.
- **7** Suppose a, b > 0. Then $a = b \iff a^2 = b^2$.

We give hints for the first three statements.

- **1** Hint: Consider (a + c) (b + c) = a b.
- 2 Hint: Consider ac bc = (a b)c.
- 3 As above.

Absolute Value

The **absolute value** of a real number x is defined by

$$|x| = \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0. \end{cases}$$

Theorem

Let $x, y \in \mathbb{R}$. Then we have the following.

- **1** $|x| \ge 0$.
- **2** |x| = 0 if and only if x = 0.
- $|x^2| = |x|^2 = x^2.$
- **4** |xy| = |x||y|.
- **5** (Triangle Inequality) $|x + y| \le |x| + |y|$.
- **6** $|x-y| \ge ||x|-|y||$.

The first two claims are obvious from the definition. To prove the others we use the earlier result that if $a, b \ge 0$ then $a = b \iff a^2 = b^2$.

The first two claims are obvious from the definition. To prove the others we use the earlier result that if $a, b \ge 0$ then $a = b \iff a^2 = b^2$.

3 Since $x^2 \ge 0$, we have $|x^2| = x^2$.

The first two claims are obvious from the definition. To prove the others we use the earlier result that if $a, b \ge 0$ then $a = b \iff a^2 = b^2$.

$$|x|^2 = \begin{cases} x^2 & \text{if } x \ge 0 \\ (-x)^2 & \text{if } x < 0 \end{cases} = x^2.$$

The first two claims are obvious from the definition. To prove the others we use the earlier result that if $a, b \ge 0$ then $a = b \iff a^2 = b^2$.

$$|x|^2 = \begin{cases} x^2 & \text{if } x \ge 0 \\ (-x)^2 & \text{if } x < 0 \end{cases} = x^2.$$

$$4 |xy|^2 = (xy)^2 = x^2y^2 = |x|^2|y|^2 = (|x||y|)^2.$$

The first two claims are obvious from the definition. To prove the others we use the earlier result that if $a, b \ge 0$ then $a = b \iff a^2 = b^2$.

$$|x|^2 = \begin{cases} x^2 & \text{if } x \ge 0 \\ (-x)^2 & \text{if } x < 0 \end{cases} = x^2.$$

- $4 |xy|^2 = (xy)^2 = x^2y^2 = |x|^2|y|^2 = (|x||y|)^2.$
- **6** $|x+y|^2 = (x+y)^2 = x^2 + y^2 + 2xy \le |x|^2 + |y|^2 + 2|x||y| = (|x|+|y|)^2$.

The first two claims are obvious from the definition. To prove the others we use the earlier result that if $a, b \ge 0$ then $a = b \iff a^2 = b^2$.

$$|x|^2 = \begin{cases} x^2 & \text{if } x \ge 0 \\ (-x)^2 & \text{if } x < 0 \end{cases} = x^2.$$

- $4 |xy|^2 = (xy)^2 = x^2y^2 = |x|^2|y|^2 = (|x||y|)^2.$
- **6** $|x+y|^2 = (x+y)^2 = x^2 + y^2 + 2xy \le |x|^2 + |y|^2 + 2|x||y| = (|x|+|y|)^2$.
- **6** $|x-y|^2 = x^2 + y^2 2xy \ge |x|^2 + |y|^2 2|x||y| = ||x| |y||^2$.

The first two claims are obvious from the definition. To prove the others we use the earlier result that if $a, b \ge 0$ then $a = b \iff a^2 = b^2$.

3 Since $x^2 \ge 0$, we have $|x^2| = x^2$. Further,

$$|x|^2 = \begin{cases} x^2 & \text{if } x \ge 0 \\ (-x)^2 & \text{if } x < 0 \end{cases} = x^2.$$

- $|xy|^2 = (xy)^2 = x^2y^2 = |x|^2|y|^2 = (|x||y|)^2.$
- **6** $|x+y|^2 = (x+y)^2 = x^2 + y^2 + 2xy \le |x|^2 + |y|^2 + 2|x||y| = (|x|+|y|)^2$.
- $(3) |x-y|^2 = x^2 + y^2 2xy \ge |x|^2 + |y|^2 2|x||y| = ||x| |y||^2.$

Task

For any $x, a \in \mathbb{R}$ with $a \ge 0$, prove that $|x| \le a \iff -a \le x \le a$.

Distance

We call |x - y| the **distance** between x and y.

Theorem

Let $x, y, z \in \mathbb{R}$. Then we have the following.

- 1 (Positivity) $|x y| \ge 0$, and |x y| = 0 if and only if x = y.
- **2** (Symmetry) |x y| = |y x|.
- 3 (Triangle Inequality) $|x-z| \le |x-y| + |y-z|$.

The proofs are left as an exercise.

 By repeatedly adding 1 we generate the subset of natural numbers,

$$\mathbb{N} = \{1, 2 = 1 + 1, 3 = 2 + 1, \dots\}.$$

We have $1 < 2 < 3 < \cdots$.

 By repeatedly adding 1 we generate the subset of natural numbers,

$$\mathbb{N} = \{1, 2 = 1 + 1, 3 = 2 + 1, \dots\}.$$

We have $1 < 2 < 3 < \cdots$.

By including zero we get the whole numbers,

$$\mathbb{W} = \mathbb{N} \cup \{0\} = \{0, 1, 2, \dots\}.$$

 By repeatedly adding 1 we generate the subset of natural numbers,

$$\mathbb{N} = \{1, 2 = 1 + 1, 3 = 2 + 1, \dots\}.$$

We have $1 < 2 < 3 < \cdots$.

By including zero we get the whole numbers,

$$\mathbb{W} = \mathbb{N} \cup \{0\} = \{0, 1, 2, \dots\}.$$

 By further including the additive inverse of each whole number we get the integers,

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}.$$

 By repeatedly adding 1 we generate the subset of natural numbers,

$$\mathbb{N} = \{1, 2 = 1 + 1, 3 = 2 + 1, \dots\}.$$

We have $1 < 2 < 3 < \cdots$.

By including zero we get the whole numbers,

$$\mathbb{W} = \mathbb{N} \cup \{0\} = \{0, 1, 2, \dots\}.$$

 By further including the additive inverse of each whole number we get the integers,

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}.$$

 By dividing integers with each other we get the rational numbers,

$$\mathbb{Q} = \{ a/b \mid a, b \in \mathbb{Z} \text{ and } b \neq 0 \}.$$

First define $x^0 = 1$ for any $x \in \mathbb{R}$.

First define $x^0=1$ for any $x\in\mathbb{R}$. Then, for any $n\in\mathbb{N}$, define $x^n=x\cdot x^{n-1}$.

First define $x^0=1$ for any $x\in\mathbb{R}$. Then, for any $n\in\mathbb{N}$, define $x^n=x\cdot x^{n-1}$. If $x\neq 0$, we define $x^{-n}=(x^n)^{-1}$.

First define $x^0=1$ for any $x\in\mathbb{R}$. Then, for any $n\in\mathbb{N}$, define $x^n=x\cdot x^{n-1}$. If $x\neq 0$, we define $x^{-n}=(x^n)^{-1}$. We will use mathematical induction to prove the following:

If
$$x \neq 0$$
 and $n \in \mathbb{N}$ then $(x^{-1})^n = (x^n)^{-1}$.

First define $x^0=1$ for any $x\in\mathbb{R}$. Then, for any $n\in\mathbb{N}$, define $x^n=x\cdot x^{n-1}$. If $x\neq 0$, we define $x^{-n}=(x^n)^{-1}$. We will use mathematical induction to prove the following:

If
$$x \neq 0$$
 and $n \in \mathbb{N}$ then $(x^{-1})^n = (x^n)^{-1}$.

Let P(n) be the statement $(x^{-1})^n = (x^n)^{-1}$.

First define $x^0=1$ for any $x\in\mathbb{R}$. Then, for any $n\in\mathbb{N}$, define $x^n=x\cdot x^{n-1}$. If $x\neq 0$, we define $x^{-n}=(x^n)^{-1}$. We will use mathematical induction to prove the following:

If
$$x \neq 0$$
 and $n \in \mathbb{N}$ then $(x^{-1})^n = (x^n)^{-1}$.

Let P(n) be the statement $(x^{-1})^n = (x^n)^{-1}$. Then P(1) is the statement $x^{-1} = x^{-1}$ which is certainly true.

First define $x^0=1$ for any $x\in\mathbb{R}$. Then, for any $n\in\mathbb{N}$, define $x^n=x\cdot x^{n-1}$. If $x\neq 0$, we define $x^{-n}=(x^n)^{-1}$. We will use mathematical induction to prove the following:

If
$$x \neq 0$$
 and $n \in \mathbb{N}$ then $(x^{-1})^n = (x^n)^{-1}$.

$$(x^{-1})^{n+1} = x^{-1} \cdot (x^{-1})^n$$
 (definition of a^{n+1})

First define $x^0=1$ for any $x\in\mathbb{R}$. Then, for any $n\in\mathbb{N}$, define $x^n=x\cdot x^{n-1}$. If $x\neq 0$, we define $x^{-n}=(x^n)^{-1}$. We will use mathematical induction to prove the following:

If
$$x \neq 0$$
 and $n \in \mathbb{N}$ then $(x^{-1})^n = (x^n)^{-1}$.

$$(x^{-1})^{n+1} = x^{-1} \cdot (x^{-1})^n$$
 (definition of a^{n+1})
= $x^{-1}(x^n)^{-1}$ (induction hypothesis)

First define $x^0=1$ for any $x\in\mathbb{R}$. Then, for any $n\in\mathbb{N}$, define $x^n=x\cdot x^{n-1}$. If $x\neq 0$, we define $x^{-n}=(x^n)^{-1}$. We will use mathematical induction to prove the following:

If
$$x \neq 0$$
 and $n \in \mathbb{N}$ then $(x^{-1})^n = (x^n)^{-1}$.

$$(x^{-1})^{n+1} = x^{-1} \cdot (x^{-1})^n$$
 (definition of a^{n+1})
= $x^{-1}(x^n)^{-1}$ (induction hypothesis)
= $(x \cdot x^n)^{-1}$ (because $(ab)^{-1} = a^{-1}b^{-1}$)

First define $x^0=1$ for any $x\in\mathbb{R}$. Then, for any $n\in\mathbb{N}$, define $x^n=x\cdot x^{n-1}$. If $x\neq 0$, we define $x^{-n}=(x^n)^{-1}$. We will use mathematical induction to prove the following:

If
$$x \neq 0$$
 and $n \in \mathbb{N}$ then $(x^{-1})^n = (x^n)^{-1}$.

$$(x^{-1})^{n+1} = x^{-1} \cdot (x^{-1})^n$$
 (definition of a^{n+1})
 $= x^{-1}(x^n)^{-1}$ (induction hypothesis)
 $= (x \cdot x^n)^{-1}$ (because $(ab)^{-1} = a^{-1}b^{-1}$)
 $= (x^{n+1})^{-1}$ (definition of a^{n+1}).

First define $x^0 = 1$ for any $x \in \mathbb{R}$. Then, for any $n \in \mathbb{N}$, define $x^n = x \cdot x^{n-1}$. If $x \neq 0$, we define $x^{-n} = (x^n)^{-1}$. We will use mathematical induction to prove the following:

If
$$x \neq 0$$
 and $n \in \mathbb{N}$ then $(x^{-1})^n = (x^n)^{-1}$.

Let P(n) be the statement $(x^{-1})^n = (x^n)^{-1}$. Then P(1) is the statement $x^{-1} = x^{-1}$ which is certainly true. Now assume some P(n) is true. We need to show that this forces P(n+1) to be true:

$$(x^{-1})^{n+1} = x^{-1} \cdot (x^{-1})^n$$
 (definition of a^{n+1})
 $= x^{-1}(x^n)^{-1}$ (induction hypothesis)
 $= (x \cdot x^n)^{-1}$ (because $(ab)^{-1} = a^{-1}b^{-1}$)
 $= (x^{n+1})^{-1}$ (definition of a^{n+1}).

This shows the truth of P(n+1). Therefore, by mathematical induction, $(x^{-1})^n = (x^n)^{-1}$ holds for every $n \in \mathbb{N}$.

Let A be a subset of \mathbb{R} .

 An element M ∈ A is called the maximum or greatest element of A if a ≤ M for every a ∈ A. We write M = max(A).

Let A be a subset of \mathbb{R} .

- An element M ∈ A is called the maximum or greatest element of A if a ≤ M for every a ∈ A. We write M = max(A).
- An element $m \in A$ is called the **minimum** or **least element** of A if $m \le a$ for every $a \in A$. We write $m = \min(A)$.

Let A be a subset of \mathbb{R} .

- An element M ∈ A is called the maximum or greatest element of A if a ≤ M for every a ∈ A. We write M = max(A).
- An element $m \in A$ is called the **minimum** or **least element** of A if $m \le a$ for every $a \in A$. We write $m = \min(A)$.

Example 1: The maximum of A = [1, 2] is 2 and the minimum is 1.

Let A be a subset of \mathbb{R} .

- An element M ∈ A is called the maximum or greatest element of A if a ≤ M for every a ∈ A. We write M = max(A).
- An element $m \in A$ is called the **minimum** or **least element** of A if $m \le a$ for every $a \in A$. We write $m = \min(A)$.

Example 1: The maximum of A = [1, 2] is 2 and the minimum is 1.

Example 2: The maximum of A = (1, 2] is 2 and it has no minimum.

Let A be a subset of \mathbb{R} .

- An element M ∈ A is called the maximum or greatest element of A if a ≤ M for every a ∈ A. We write M = max(A).
- An element $m \in A$ is called the **minimum** or **least element** of A if $m \le a$ for every $a \in A$. We write $m = \min(A)$.

Example 1: The maximum of A = [1, 2] is 2 and the minimum is 1.

Example 2: The maximum of A=(1,2] is 2 and it has no minimum. For if $m\in A$ then $m'=\frac{1+m}{2}$ is in A and m'< m.

Let A be a subset of \mathbb{R} .

- An element M ∈ A is called the maximum or greatest element of A if a ≤ M for every a ∈ A. We write M = max(A).
- An element $m \in A$ is called the **minimum** or **least element** of A if $m \le a$ for every $a \in A$. We write $m = \min(A)$.

Example 1: The maximum of A = [1, 2] is 2 and the minimum is 1.

Example 2: The maximum of A = (1,2] is 2 and it has no minimum. For if $m \in A$ then $m' = \frac{1+m}{2}$ is in A and m' < m.

Example 3: \mathbb{R}^+ has neither a maximum nor a minimum.

Table of Contents

CAMBRIDGE UNIVERSITY PRESS

Field Axioms

Order Axioms

Completeness Axiom

This is our final fundamental property of \mathbb{R} . It seeks to capture the intuition of there being no gaps between the real numbers.

This is our final fundamental property of \mathbb{R} . It seeks to capture the intuition of there being no gaps between the real numbers.

Completeness Axiom

Suppose A and B are non-empty subsets of $\mathbb R$ such that $a \leq b$ for every $a \in A$ and $b \in B$. Then there is a real number m such that $a \leq m \leq b$ for every $a \in A$ and $b \in B$.

This is our final fundamental property of \mathbb{R} . It seeks to capture the intuition of there being no gaps between the real numbers.

Completeness Axiom

Suppose A and B are non-empty subsets of $\mathbb R$ such that $a \leq b$ for every $a \in A$ and $b \in B$. Then there is a real number m such that $a \leq m \leq b$ for every $a \in A$ and $b \in B$.

For example: A=(0,1), B=(1,2), m=1. Or A=(0,1], B=[1,2), m=1. We see that m may or may not belong to either A or B.

This is our final fundamental property of \mathbb{R} . It seeks to capture the intuition of there being no gaps between the real numbers.

Completeness Axiom

Suppose A and B are non-empty subsets of \mathbb{R} such that $a \leq b$ for every $a \in A$ and $b \in B$. Then there is a real number m such that $a \leq m \leq b$ for every $a \in A$ and $b \in B$.

For example: A=(0,1), B=(1,2), m=1. Or A=(0,1], B=[1,2), m=1. We see that m may or may not belong to either A or B.

The Completeness Axiom lends itself to showing the existence of a number with a particular property by locating it between numbers which are too large or too small to have that property.

Existence of Square Roots

Theorem

Let $x \in \mathbb{R}^+$. Then there is a unique $y \in \mathbb{R}^+$ such that $y^2 = x$. (We call y the **positive square root** of x and denote it by $x^{1/2}$ or \sqrt{x} .)

Theorem

Let $x \in \mathbb{R}^+$. Then there is a unique $y \in \mathbb{R}^+$ such that $y^2 = x$. (We call y the **positive square root** of x and denote it by $x^{1/2}$ or \sqrt{x} .)

Define
$$A = \{ a \in \mathbb{R}^+ \mid a^2 < x \}$$
 and $B = \{ b \in \mathbb{R}^+ \mid b^2 > x \}$.

Theorem

Let $x \in \mathbb{R}^+$. Then there is a unique $y \in \mathbb{R}^+$ such that $y^2 = x$. (We call y the **positive square root** of x and denote it by $x^{1/2}$ or \sqrt{x} .)

Define $A = \{ a \in \mathbb{R}^+ \mid a^2 < x \}$ and $B = \{ b \in \mathbb{R}^+ \mid b^2 > x \}$. Check that A and B are non-empty:

Theorem

Let $x \in \mathbb{R}^+$. Then there is a unique $y \in \mathbb{R}^+$ such that $y^2 = x$. (We call y the **positive square root** of x and denote it by $x^{1/2}$ or \sqrt{x} .)

Define $A = \{ a \in \mathbb{R}^+ \mid a^2 < x \}$ and $B = \{ b \in \mathbb{R}^+ \mid b^2 > x \}$. Check that A and B are non-empty:

• If x > 1 then $1 \in A$, while if $x \le 1$ then $x/2 \in A$.

Theorem

Let $x \in \mathbb{R}^+$. Then there is a unique $y \in \mathbb{R}^+$ such that $y^2 = x$. (We call y the **positive square root** of x and denote it by $x^{1/2}$ or \sqrt{x} .)

Define $A = \{ a \in \mathbb{R}^+ \mid a^2 < x \}$ and $B = \{ b \in \mathbb{R}^+ \mid b^2 > x \}$. Check that A and B are non-empty:

- If x > 1 then $1 \in A$, while if $x \le 1$ then $x/2 \in A$.
- In all cases, $x + 1 \in B$.

Theorem

Let $x \in \mathbb{R}^+$. Then there is a unique $y \in \mathbb{R}^+$ such that $y^2 = x$. (We call y the **positive square root** of x and denote it by $x^{1/2}$ or \sqrt{x} .)

Define $A = \{ a \in \mathbb{R}^+ \mid a^2 < x \}$ and $B = \{ b \in \mathbb{R}^+ \mid b^2 > x \}$. Check that A and B are non-empty:

- If x > 1 then $1 \in A$, while if $x \le 1$ then $x/2 \in A$.
- In all cases, $x + 1 \in B$.

Now $a \in A$ and $b \in B$ implies that $a^2 < x < b^2$, and hence a < b.

Theorem

Let $x \in \mathbb{R}^+$. Then there is a unique $y \in \mathbb{R}^+$ such that $y^2 = x$. (We call y the **positive square root** of x and denote it by $x^{1/2}$ or \sqrt{x} .)

Define $A = \{ a \in \mathbb{R}^+ \mid a^2 < x \}$ and $B = \{ b \in \mathbb{R}^+ \mid b^2 > x \}$. Check that A and B are non-empty:

- If x > 1 then $1 \in A$, while if $x \le 1$ then $x/2 \in A$.
- In all cases, $x + 1 \in B$.

Now $a \in A$ and $b \in B$ implies that $a^2 < x < b^2$, and hence a < b. The Completeness Axiom gives $y \in \mathbb{R}^+$ such that $a \le y \le b$ for every $a \in A$, $b \in B$.

Theorem

Let $x \in \mathbb{R}^+$. Then there is a unique $y \in \mathbb{R}^+$ such that $y^2 = x$. (We call y the **positive square root** of x and denote it by $x^{1/2}$ or \sqrt{x} .)

Define $A = \{ a \in \mathbb{R}^+ \mid a^2 < x \}$ and $B = \{ b \in \mathbb{R}^+ \mid b^2 > x \}$. Check that A and B are non-empty:

- If x > 1 then $1 \in A$, while if $x \le 1$ then $x/2 \in A$.
- In all cases, $x + 1 \in B$.

Now $a \in A$ and $b \in B$ implies that $a^2 < x < b^2$, and hence a < b. The Completeness Axiom gives $y \in \mathbb{R}^+$ such that $a \le y \le b$ for every $a \in A$, $b \in B$.

If $y \in A$ then $y = \max(A)$, while if $y \in B$ then $y = \min(B)$.

Theorem

Let $x \in \mathbb{R}^+$. Then there is a unique $y \in \mathbb{R}^+$ such that $y^2 = x$. (We call y the **positive square root** of x and denote it by $x^{1/2}$ or \sqrt{x} .)

Define $A = \{ a \in \mathbb{R}^+ \mid a^2 < x \}$ and $B = \{ b \in \mathbb{R}^+ \mid b^2 > x \}$. Check that A and B are non-empty:

- If x > 1 then $1 \in A$, while if $x \le 1$ then $x/2 \in A$.
- In all cases, $x + 1 \in B$.

Now $a \in A$ and $b \in B$ implies that $a^2 < x < b^2$, and hence a < b. The Completeness Axiom gives $y \in \mathbb{R}^+$ such that $a \le y \le b$ for every $a \in A$, $b \in B$.

If $y \in A$ then $y = \max(A)$, while if $y \in B$ then $y = \min(B)$. Therefore, if we show that A has no maximum and B has no minimum, we will have ruled out both $y^2 < x$ and $y^2 > x$, ensuring $y^2 = x$.

To show that B has no least member, take any $m \in B$. We need to find an $m' \in B$ such that m' < m.

To show that B has no least member, take any $m \in B$. We need to find an $m' \in B$ such that m' < m. Consider the following geometric argument:

$$x/m \rightarrow m$$

To show that B has no least member, take any $m \in B$. We need to find an $m' \in B$ such that m' < m. Consider the following geometric argument:

To show that B has no least member, take any $m \in B$. We need to find an $m' \in B$ such that m' < m. Consider the following geometric argument:

To show that B has no least member, take any $m \in B$. We need to find an $m' \in B$ such that m' < m. Consider the following geometric argument:

Move one of the two strips to an adjacent side of the square, and fill in the missing portion to create a larger square.

To show that B has no least member, take any $m \in B$. We need to find an $m' \in B$ such that m' < m. Consider the following geometric argument:

Move one of the two strips to an adjacent side of the square, and fill in the missing portion to create a larger square.

To show that B has no least member, take any $m \in B$. We need to find an $m' \in B$ such that m' < m. Consider the following geometric argument:

Move one of the two strips to an adjacent side of the square, and fill in the missing portion to create a larger square.

To show that B has no least member, take any $m \in B$. We need to find an $m' \in B$ such that m' < m. Consider the following geometric argument:

Move one of the two strips to an adjacent side of the square, and fill in the missing portion to create a larger square.

If the side of the final square is m' then it is clear that m' < m while $m'^2 > x$.

The geometric argument given above leads to an algebraic one.

Define
$$m' = \frac{1}{2}(m + \frac{x}{m}) = \frac{x}{m} + \frac{1}{2}(m - \frac{x}{m}).$$

The geometric argument given above leads to an algebraic one.

Define
$$m' = \frac{1}{2} (m + \frac{x}{m}) = \frac{x}{m} + \frac{1}{2} (m - \frac{x}{m}).$$

Define $m' = \frac{1}{2} \left(m + \frac{x}{m} \right) = \frac{x}{m} + \frac{1}{2} \left(m - \frac{x}{m} \right)$. Then 0 < m' < m and $m'^2 > \frac{x^2}{m^2} + \frac{x}{m} \left(m - \frac{x}{m} \right) = x$. Hence B has no least element.

The geometric argument given above leads to an algebraic one.

Define
$$m' = \frac{1}{2}(m + \frac{x}{m}) = \frac{x}{m} + \frac{1}{2}(m - \frac{x}{m}).$$

Define $m' = \frac{1}{2}(m + \frac{x}{m}) = \frac{x}{m} + \frac{1}{2}(m - \frac{x}{m}).$ Then 0 < m' < m and $m'^2 > \frac{x^2}{m^2} + \frac{x}{m}(m - \frac{x}{m}) = x$. Hence B has no least element.

The geometric argument given above leads to an algebraic one.

Define
$$m' = \frac{1}{2}(m + \frac{x}{m}) = \frac{x}{m} + \frac{1}{2}(m - \frac{x}{m}).$$

Define $m' = \frac{1}{2}(m + \frac{x}{m}) = \frac{x}{m} + \frac{1}{2}(m - \frac{x}{m})$. Then 0 < m' < m and $m'^2 > \frac{x^2}{m^2} + \frac{x}{m}(m - \frac{x}{m}) = x$. Hence B has no least element.

The geometric argument given above leads to an algebraic one.

Define
$$m' = \frac{1}{2}(m + \frac{x}{m}) = \frac{x}{m} + \frac{1}{2}(m - \frac{x}{m}).$$

Define $m' = \frac{1}{2} (m + \frac{x}{m}) = \frac{x}{m} + \frac{1}{2} (m - \frac{x}{m}).$ Then 0 < m' < m and $m'^2 > \frac{x^2}{m^2} + \frac{x}{m} (m - \frac{x}{m}) = x$. Hence B has no least element.

$$1 \frac{x^2}{m^2} > \frac{x^2}{x} = x, \text{ hence } \frac{x}{m} \in B.$$

2 Choose
$$m' \in B$$
 such that $m' < \frac{x}{m}$.

The geometric argument given above leads to an algebraic one.

Define
$$m' = \frac{1}{2}(m + \frac{x}{m}) = \frac{x}{m} + \frac{1}{2}(m - \frac{x}{m}).$$

Define $m' = \frac{1}{2} (m + \frac{x}{m}) = \frac{x}{m} + \frac{1}{2} (m - \frac{x}{m}).$ Then 0 < m' < m and $m'^2 > \frac{x^2}{m^2} + \frac{x}{m} (m - \frac{x}{m}) = x$. Hence B has no least element.

$$1 \frac{x^2}{m^2} > \frac{x^2}{x} = x, \text{ hence } \frac{x}{m} \in B.$$

2 Choose
$$m' \in B$$
 such that $m' < \frac{x}{m}$.

3
$$\frac{x^2}{m'^2} < \frac{x^2}{x} = x$$
, hence $\frac{x}{m'} \in A$.

The geometric argument given above leads to an algebraic one.

Define
$$m' = \frac{1}{2}(m + \frac{x}{m}) = \frac{x}{m} + \frac{1}{2}(m - \frac{x}{m}).$$

Define $m' = \frac{1}{2} (m + \frac{x}{m}) = \frac{x}{m} + \frac{1}{2} (m - \frac{x}{m}).$ Then 0 < m' < m and $m'^2 > \frac{x^2}{m^2} + \frac{x}{m} (m - \frac{x}{m}) = x$. Hence B has no least element.

$$1 \frac{x^2}{m^2} > \frac{x^2}{x} = x, \text{ hence } \frac{x}{m} \in B.$$

2 Choose
$$m' \in B$$
 such that $m' < \frac{x}{m}$.

$$3 \frac{x^2}{m'^2} < \frac{x^2}{x} = x, \text{ hence } \frac{x}{m'} \in A.$$

4 From
$$0 < m' < \frac{x}{m}$$
 we see that $\frac{x}{m'} > m$.

The geometric argument given above leads to an algebraic one.

Define
$$m' = \frac{1}{2}(m + \frac{x}{m}) = \frac{x}{m} + \frac{1}{2}(m - \frac{x}{m}).$$

Define $m' = \frac{1}{2} (m + \frac{x}{m}) = \frac{x}{m} + \frac{1}{2} (m - \frac{x}{m}).$ Then 0 < m' < m and $m'^2 > \frac{x^2}{m^2} + \frac{x}{m} (m - \frac{x}{m}) = x$. Hence B has no least element.

Now take any $m \in A$, so that m > 0 and $m^2 < x$.

$$1 \frac{x^2}{m^2} > \frac{x^2}{x} = x, \text{ hence } \frac{x}{m} \in B.$$

2 Choose
$$m' \in B$$
 such that $m' < \frac{x}{m}$.

$$3 \frac{x^2}{m'^2} < \frac{x^2}{x} = x, \text{ hence } \frac{x}{m'} \in A.$$

Hence A has no greatest element. This proves that $y^2 = x$. Uniqueness has been established earlier.

Let A be a subset of \mathbb{R} .

• $M \in \mathbb{R}$ is an **upper bound** of A if $a \leq M$ for every $a \in A$.

Let A be a subset of \mathbb{R} .

- $M \in \mathbb{R}$ is an **upper bound** of A if $a \leq M$ for every $a \in A$.
- $m \in \mathbb{R}$ is a **lower bound** of A if $m \le a$ for every $a \in A$.

Let A be a subset of \mathbb{R} .

- $M \in \mathbb{R}$ is an **upper bound** of A if $a \leq M$ for every $a \in A$.
- $m \in \mathbb{R}$ is a **lower bound** of A if $m \le a$ for every $a \in A$.

A is **bounded above** if it has an upper bound.

Let A be a subset of \mathbb{R} .

- $M \in \mathbb{R}$ is an **upper bound** of A if $a \leq M$ for every $a \in A$.
- $m \in \mathbb{R}$ is a **lower bound** of A if $m \le a$ for every $a \in A$.

A is **bounded above** if it has an upper bound.

A is **bounded below** if it has a lower bound.

Let A be a subset of \mathbb{R} .

- $M \in \mathbb{R}$ is an **upper bound** of A if $a \leq M$ for every $a \in A$.
- $m \in \mathbb{R}$ is a **lower bound** of A if $m \le a$ for every $a \in A$.

A is **bounded above** if it has an upper bound.

A is **bounded below** if it has a lower bound.

If A is bounded above and below, we say it is **bounded**.

Let A be a subset of \mathbb{R} .

- $M \in \mathbb{R}$ is an **upper bound** of A if $a \leq M$ for every $a \in A$.
- $m \in \mathbb{R}$ is a **lower bound** of A if $m \le a$ for every $a \in A$.

A is **bounded above** if it has an upper bound.

A is **bounded below** if it has a lower bound.

If A is bounded above and below, we say it is **bounded**.

If *A* is not bounded, we say it is **unbounded**.

Let A be a subset of \mathbb{R} .

- $M \in \mathbb{R}$ is an **upper bound** of A if $a \leq M$ for every $a \in A$.
- $m \in \mathbb{R}$ is a **lower bound** of A if $m \le a$ for every $a \in A$.

A is **bounded above** if it has an upper bound.

A is **bounded below** if it has a lower bound.

If A is bounded above and below, we say it is **bounded**.

If A is not bounded, we say it is **unbounded**.

Example 1: (1,2) has upper bound 2 and lower bound 1, hence is bounded.

Let A be a subset of \mathbb{R} .

- $M \in \mathbb{R}$ is an **upper bound** of A if $a \leq M$ for every $a \in A$.
- $m \in \mathbb{R}$ is a **lower bound** of A if $m \le a$ for every $a \in A$.

A is **bounded above** if it has an upper bound.

A is **bounded below** if it has a lower bound.

If A is bounded above and below, we say it is **bounded**.

If *A* is not bounded, we say it is **unbounded**.

Example 1: (1,2) has upper bound 2 and lower bound 1, hence is bounded.

Example 2: \mathbb{R}^+ has lower bound 0 but no upper bound, hence is unbounded.

Let A be a subset of \mathbb{R} .

- $M \in \mathbb{R}$ is an **upper bound** of A if $a \leq M$ for every $a \in A$.
- $m \in \mathbb{R}$ is a **lower bound** of A if $m \le a$ for every $a \in A$.

A is **bounded above** if it has an upper bound.

A is **bounded below** if it has a lower bound.

If A is bounded above and below, we say it is **bounded**.

If *A* is not bounded, we say it is **unbounded**.

Example 1: (1,2) has upper bound 2 and lower bound 1, hence is bounded.

Example 2: \mathbb{R}^+ has lower bound 0 but no upper bound, hence is unbounded.

Task

Is the empty set bounded as a subset of \mathbb{R} ?

Archimedean Property

Ver. 1

The set \mathbb{N} is not bounded above in \mathbb{R} .

Archimedean Property

Ver. 1

The set \mathbb{N} is not bounded above in \mathbb{R} .

Suppose \mathbb{N} is bounded above.

Archimedean Property

Ver. 1

The set \mathbb{N} is not bounded above in \mathbb{R} .

Suppose \mathbb{N} is bounded above.

Then the set B of all upper bounds of \mathbb{N} is non-empty.

Ver. 1

The set \mathbb{N} is not bounded above in \mathbb{R} .

Suppose \mathbb{N} is bounded above.

Then the set B of all upper bounds of \mathbb{N} is non-empty.

By definition of B, if $a \in \mathbb{N}$ and $b \in B$ then $a \leq b$.

Ver. 1

The set \mathbb{N} is not bounded above in \mathbb{R} .

Suppose \mathbb{N} is bounded above.

Then the set B of all upper bounds of \mathbb{N} is non-empty.

By definition of B, if $a \in \mathbb{N}$ and $b \in B$ then $a \leq b$.

Hence, by the Completeness Axiom, there is $\alpha \in \mathbb{R}$ such that

$$a \leq \alpha \leq b$$
 for every $a \in \mathbb{N}$, $b \in B$.

Ver. 1

The set \mathbb{N} is not bounded above in \mathbb{R} .

Suppose \mathbb{N} is bounded above.

Then the set B of all upper bounds of \mathbb{N} is non-empty.

By definition of B, if $a \in \mathbb{N}$ and $b \in B$ then $a \leq b$.

Hence, by the Completeness Axiom, there is $\alpha \in \mathbb{R}$ such that

 $a \leq \alpha \leq b$ for every $a \in \mathbb{N}$, $b \in B$.

Since $\alpha - 1 < \alpha$, we know $\alpha - 1 \notin B$.

Ver. 1

The set \mathbb{N} is not bounded above in \mathbb{R} .

Suppose \mathbb{N} is bounded above.

Then the set B of all upper bounds of \mathbb{N} is non-empty.

By definition of B, if $a \in \mathbb{N}$ and $b \in B$ then $a \leq b$.

Hence, by the Completeness Axiom, there is $\alpha \in \mathbb{R}$ such that $a \leq \alpha \leq b$ for every $a \in \mathbb{N}$, $b \in B$.

Since $\alpha - 1 < \alpha$, we know $\alpha - 1 \notin B$.

Hence there is an $N \in \mathbb{N}$ such that $N > \alpha - 1$.

Ver. 1

The set \mathbb{N} is not bounded above in \mathbb{R} .

Suppose \mathbb{N} is bounded above.

Then the set B of all upper bounds of \mathbb{N} is non-empty.

By definition of B, if $a \in \mathbb{N}$ and $b \in B$ then $a \leq b$.

Hence, by the Completeness Axiom, there is $\alpha \in \mathbb{R}$ such that $a \leq \alpha \leq b$ for every $a \in \mathbb{N}$, $b \in B$.

Since $\alpha - 1 < \alpha$, we know $\alpha - 1 \notin B$.

Hence there is an $N \in \mathbb{N}$ such that $N > \alpha - 1$.

But then $\mathit{N}+1\in\mathbb{N}$ and $\mathit{N}+1>\alpha$, a contradiction.

Ver. 1

The set \mathbb{N} is not bounded above in \mathbb{R} .

Suppose \mathbb{N} is bounded above.

Then the set B of all upper bounds of \mathbb{N} is non-empty.

By definition of B, if $a \in \mathbb{N}$ and $b \in B$ then $a \leq b$.

Hence, by the Completeness Axiom, there is $\alpha \in \mathbb{R}$ such that $a \leq \alpha \leq b$ for every $a \in \mathbb{N}$, $b \in B$.

Since $\alpha - 1 < \alpha$, we know $\alpha - 1 \notin B$.

Hence there is an $N \in \mathbb{N}$ such that $N > \alpha - 1$.

But then $N+1 \in \mathbb{N}$ and $N+1 > \alpha$, a contradiction.

Task

Show that $\mathbb Z$ has neither an upper nor a lower bound in $\mathbb R$.

Ver. 2

Let $x, y \in \mathbb{R}^+$. Then there exists $N \in \mathbb{N}$ such that Nx > y.

Ver. 2

Let $x, y \in \mathbb{R}^+$. Then there exists $N \in \mathbb{N}$ such that Nx > y.

By Ver. 1 there is $N \in \mathbb{N}$ such that N > y/x, hence Nx > y.

Ver. 2

Let $x, y \in \mathbb{R}^+$. Then there exists $N \in \mathbb{N}$ such that Nx > y.

By Ver. 1 there is $N \in \mathbb{N}$ such that N > y/x, hence Nx > y.

Ver. 3

Let $x, y \in \mathbb{R}^+$. Then there exists $N \in \mathbb{N}$ such that $0 < \frac{y}{N} < x$.

Ver. 2

Let $x, y \in \mathbb{R}^+$. Then there exists $N \in \mathbb{N}$ such that Nx > y.

By Ver. 1 there is $N \in \mathbb{N}$ such that N > y/x, hence Nx > y.

Ver. 3

Let $x, y \in \mathbb{R}^+$. Then there exists $N \in \mathbb{N}$ such that $0 < \frac{y}{N} < x$.

There is $N \in \mathbb{N}$ such that Nx > y > 0. Hence $0 < \frac{y}{N} < x$.

Theorem

Let
$$x, y \in \mathbb{R}$$
 and $M > 0$ such that $y - \frac{M}{n} \le x \le y + \frac{M}{n}$ for every $n \in \mathbb{N}$. Then $y = x$.

Theorem

Let
$$x, y \in \mathbb{R}$$
 and $M > 0$ such that $y - \frac{M}{n} \le x \le y + \frac{M}{n}$ for every $n \in \mathbb{N}$. Then $y = x$.

We apply trichotomy.

Theorem

Let
$$x, y \in \mathbb{R}$$
 and $M > 0$ such that $y - \frac{M}{n} \le x \le y + \frac{M}{n}$ for every $n \in \mathbb{N}$. Then $y = x$.

We apply trichotomy.

Suppose y > x. Then 0 < y - x.

Theorem

Let
$$x, y \in \mathbb{R}$$
 and $M > 0$ such that $y - \frac{M}{n} \le x \le y + \frac{M}{n}$ for every $n \in \mathbb{N}$. Then $y = x$.

We apply trichotomy.

Suppose y > x. Then 0 < y - x.

By Archimedean Property Ver. 3, there is $N \in \mathbb{N}$ such that 0 < M/N < y - x.

Theorem

Let
$$x, y \in \mathbb{R}$$
 and $M > 0$ such that $y - \frac{M}{n} \le x \le y + \frac{M}{n}$ for every $n \in \mathbb{N}$. Then $y = x$.

We apply trichotomy.

Suppose y > x. Then 0 < y - x.

By Archimedean Property Ver. 3, there is $N \in \mathbb{N}$ such that

$$0 < M/N < y - x.$$

Hence
$$x < y - M/N$$
.

Theorem

Let
$$x, y \in \mathbb{R}$$
 and $M > 0$ such that $y - \frac{M}{n} \le x \le y + \frac{M}{n}$ for every $n \in \mathbb{N}$. Then $y = x$.

We apply trichotomy.

Suppose y > x. Then 0 < y - x.

By Archimedean Property Ver. 3, there is $N \in \mathbb{N}$ such that

$$0 < M/N < y - x.$$

Hence
$$x < y - M/N$$
.

This contradicts the given relationship between x, y, M.

Theorem

Let
$$x, y \in \mathbb{R}$$
 and $M > 0$ such that $y - \frac{M}{n} \le x \le y + \frac{M}{n}$ for every $n \in \mathbb{N}$. Then $y = x$.

We apply trichotomy.

Suppose y > x. Then 0 < y - x.

By Archimedean Property Ver. 3, there is $N \in \mathbb{N}$ such that

$$0 < M/N < y - x.$$

Hence
$$x < y - M/N$$
.

This contradicts the given relationship between x, y, M.

So
$$y > x$$
 is false.

Theorem

Let
$$x, y \in \mathbb{R}$$
 and $M > 0$ such that $y - \frac{M}{n} \le x \le y + \frac{M}{n}$ for every $n \in \mathbb{N}$. Then $y = x$.

We apply trichotomy.

Suppose y > x. Then 0 < y - x.

By Archimedean Property Ver. 3, there is $N \in \mathbb{N}$ such that

$$0 < M/N < y - x.$$

Hence x < y - M/N.

This contradicts the given relationship between x, y, M.

So y > x is false.

We similarly prove that y < x is false.

Theorem

Let
$$x, y \in \mathbb{R}$$
 and $M > 0$ such that $y - \frac{M}{n} \le x \le y + \frac{M}{n}$ for every $n \in \mathbb{N}$. Then $y = x$.

We apply trichotomy.

Suppose y > x. Then 0 < y - x.

By Archimedean Property Ver. 3, there is $N \in \mathbb{N}$ such that

$$0 < M/N < y - x.$$

Hence
$$x < y - M/N$$
.

This contradicts the given relationship between x, y, M.

So
$$y > x$$
 is false.

We similarly prove that y < x is false.

Therefore, by trichotomy, y = x.

Theorem (Greatest Integer)

Given a real number x, there is a unique integer m such that $m \le x < m + 1$.

Theorem (Greatest Integer)

Given a real number x, there is a unique integer m such that $m \le x < m + 1$.

Let $A = \{ n \in \mathbb{Z} \mid n \leq x \}$ and B be the set of upper bounds of A.

Theorem (Greatest Integer)

Given a real number x, there is a unique integer m such that $m \le x < m + 1$.

Let $A = \{ n \in \mathbb{Z} \mid n \leq x \}$ and B be the set of upper bounds of A. A is non-empty because \mathbb{Z} is not bounded below.

Theorem (Greatest Integer)

Given a real number x, there is a unique integer m such that m < x < m + 1.

Let $A = \{ n \in \mathbb{Z} \mid n \leq x \}$ and B be the set of upper bounds of A. A is non-empty because \mathbb{Z} is not bounded below.

B is non-empty because $x \in B$.

Theorem (Greatest Integer)

Given a real number x, there is a unique integer m such that m < x < m + 1.

Let $A = \{ n \in \mathbb{Z} \mid n \leq x \}$ and B be the set of upper bounds of A.

A is non-empty because \mathbb{Z} is not bounded below.

B is non-empty because $x \in B$.

By the definition of B, $a \in A$ and $b \in B$ implies $a \le b$.

Theorem (Greatest Integer)

Given a real number x, there is a unique integer m such that m < x < m + 1.

Let $A = \{ n \in \mathbb{Z} \mid n \leq x \}$ and B be the set of upper bounds of A.

A is non-empty because $\mathbb Z$ is not bounded below.

B is non-empty because $x \in B$.

By the definition of B, $a \in A$ and $b \in B$ implies $a \le b$.

By the Completeness Axiom there is $\alpha \in \mathbb{R}$ such that $a \leq \alpha \leq b$ for every $a \in A$, $b \in B$.

Theorem (Greatest Integer)

Given a real number x, there is a unique integer m such that m < x < m + 1.

Let $A = \{ n \in \mathbb{Z} \mid n \leq x \}$ and B be the set of upper bounds of A.

A is non-empty because $\mathbb Z$ is not bounded below.

B is non-empty because $x \in B$.

By the definition of B, $a \in A$ and $b \in B$ implies $a \le b$.

By the Completeness Axiom there is $\alpha \in \mathbb{R}$ such that $a \leq \alpha \leq b$ for every $a \in A$, $b \in B$.

Now, $\alpha - 1 \notin B$, so there is $m \in A$ such that $\alpha - 1 < m \le x$.

Theorem (Greatest Integer)

Given a real number x, there is a unique integer m such that m < x < m + 1.

Let $A = \{ n \in \mathbb{Z} \mid n \leq x \}$ and B be the set of upper bounds of A.

A is non-empty because $\mathbb Z$ is not bounded below.

B is non-empty because $x \in B$.

By the definition of B, $a \in A$ and $b \in B$ implies $a \le b$.

By the Completeness Axiom there is $\alpha \in \mathbb{R}$ such that $a \leq \alpha \leq b$ for every $a \in A$, $b \in B$.

Now, $\alpha - 1 \notin B$, so there is $m \in A$ such that $\alpha - 1 < m \le x$.

Then $\alpha < m+1$, hence $m+1 \notin A$ and x < m+1. We have found the desired m.

Theorem (Greatest Integer)

Given a real number x, there is a unique integer m such that m < x < m + 1.

Let $A = \{ n \in \mathbb{Z} \mid n \leq x \}$ and B be the set of upper bounds of A. A is non-empty because \mathbb{Z} is not bounded below.

B is non-empty because $x \in B$.

By the definition of B, $a \in A$ and $b \in B$ implies $a \le b$.

By the Completeness Axiom there is $\alpha \in \mathbb{R}$ such that $a \leq \alpha \leq b$ for every $a \in A$, $b \in B$.

Now, $\alpha - 1 \notin B$, so there is $m \in A$ such that $\alpha - 1 < m \le x$.

Then $\alpha < m+1$, hence $m+1 \notin A$ and x < m+1. We have found the desired m.

For uniqueness, note that any integer with the given property would be the greatest element of *A*.

Theorem (Greatest Integer)

Given a real number x, there is a unique integer m such that m < x < m + 1.

Let $A = \{ n \in \mathbb{Z} \mid n \leq x \}$ and B be the set of upper bounds of A.

A is non-empty because \mathbb{Z} is not bounded below.

B is non-empty because $x \in B$.

By the definition of B, $a \in A$ and $b \in B$ implies $a \le b$.

By the Completeness Axiom there is $\alpha \in \mathbb{R}$ such that $a \leq \alpha \leq b$ for every $a \in A$, $b \in B$.

Now, $\alpha - 1 \notin B$, so there is $m \in A$ such that $\alpha - 1 < m \le x$.

Then $\alpha < m+1$, hence $m+1 \notin A$ and x < m+1. We have found the desired m.

For uniqueness, note that any integer with the given property would be the greatest element of A.

This m is called the **greatest integer** for x and is denoted by [x]

Theorem (Denseness of Rational Numbers)

Let $x, y \in \mathbb{R}$ with x < y. Then there is $r \in \mathbb{Q}$ such that x < r < y.

Theorem (Denseness of Rational Numbers)

Let $x, y \in \mathbb{R}$ with x < y. Then there is $r \in \mathbb{Q}$ such that x < r < y.

By Archimedean Principle, Ver. 2, there is $N \in \mathbb{N}$ such that 1 < N(y - x) = Ny - Nx.

Theorem (Denseness of Rational Numbers)

Let $x, y \in \mathbb{R}$ with x < y. Then there is $r \in \mathbb{Q}$ such that x < r < y.

By Archimedean Principle, Ver. 2, there is $N \in \mathbb{N}$ such that 1 < N(y - x) = Ny - Nx.

Take M = [Nx] + 1. Then $M - 1 \le Nx < M$.

Theorem (Denseness of Rational Numbers)

Let $x, y \in \mathbb{R}$ with x < y. Then there is $r \in \mathbb{Q}$ such that x < r < y.

By Archimedean Principle, Ver. 2, there is $N \in \mathbb{N}$ such that 1 < N(y - x) = Ny - Nx.

Take M = [Nx] + 1. Then $M - 1 \le Nx < M$. This gives $M \le Nx + 1 < Nx + (Ny - Nx) = Ny$.

Theorem (Denseness of Rational Numbers)

Let $x, y \in \mathbb{R}$ with x < y. Then there is $r \in \mathbb{Q}$ such that x < r < y.

By Archimedean Principle, Ver. 2, there is $N \in \mathbb{N}$ such that 1 < N(y - x) = Ny - Nx.

Take
$$M = [Nx] + 1$$
. Then $M - 1 \le Nx < M$.
This gives $M \le Nx + 1 < Nx + (Ny - Nx) = Ny$.
Hence $Nx < M < Ny$ and $x < M/N < y$.

Theorem (Denseness of Rational Numbers)

Let $x, y \in \mathbb{R}$ with x < y. Then there is $r \in \mathbb{Q}$ such that x < r < y.

By Archimedean Principle, Ver. 2, there is $N \in \mathbb{N}$ such that 1 < N(y - x) = Ny - Nx.

Take
$$M = [Nx] + 1$$
. Then $M - 1 \le Nx < M$.
This gives $M \le Nx + 1 < Nx + (Ny - Nx) = Ny$.
Hence $Nx < M < Ny$ and $x < M/N < y$.

Task

Show that there are infinitely many rational numbers between any two distinct real numbers.

We know $\mathbb{Q} \neq \mathbb{R}$. For example, $\sqrt{2} \notin \mathbb{Q}$. A real number which is not rational is called **irrational**.

We know $\mathbb{Q} \neq \mathbb{R}$. For example, $\sqrt{2} \notin \mathbb{Q}$. A real number which is not rational is called **irrational**.

Task

Let t be an irrational number. Show that:

- **1** The numbers -t and 1/t are irrational.
- 2 If r is rational then r + t and r t are irrational.
- 3 If r is a non-zero rational then rt and r/t are irrational.

We know $\mathbb{Q} \neq \mathbb{R}$. For example, $\sqrt{2} \notin \mathbb{Q}$. A real number which is not rational is called **irrational**.

Task

Let t be an irrational number. Show that:

- **1** The numbers -t and 1/t are irrational.
- 2 If r is rational then r + t and r t are irrational.
- 3 If r is a non-zero rational then rt and r/t are irrational.

Theorem (Denseness of Irrational Numbers)

Let $x, y \in \mathbb{R}$ with x < y. Then there is an irrational number t such that x < t < y.

We know $\mathbb{Q} \neq \mathbb{R}$. For example, $\sqrt{2} \notin \mathbb{Q}$. A real number which is not rational is called **irrational**.

Task

Let t be an irrational number. Show that:

- 1 The numbers -t and 1/t are irrational.
- 2 If r is rational then r + t and r t are irrational.
- 3 If r is a non-zero rational then rt and r/t are irrational.

Theorem (Denseness of Irrational Numbers)

Let $x, y \in \mathbb{R}$ with x < y. Then there is an irrational number t such that x < t < y.

By the denseness of \mathbb{Q} , we have $r \in \mathbb{Q}$ such $\sqrt{2}x < r < \sqrt{2}y$.

We know $\mathbb{Q} \neq \mathbb{R}$. For example, $\sqrt{2} \notin \mathbb{Q}$. A real number which is not rational is called **irrational**.

Task

Let t be an irrational number. Show that:

- **1** The numbers -t and 1/t are irrational.
- 2 If r is rational then r + t and r t are irrational.
- 3 If r is a non-zero rational then rt and r/t are irrational.

Theorem (Denseness of Irrational Numbers)

Let $x, y \in \mathbb{R}$ with x < y. Then there is an irrational number t such that x < t < y.

By the denseness of \mathbb{Q} , we have $r \in \mathbb{Q}$ such $\sqrt{2} x < r < \sqrt{2} y$. We can arrange for r to be non-zero.

We know $\mathbb{Q} \neq \mathbb{R}$. For example, $\sqrt{2} \notin \mathbb{Q}$. A real number which is not rational is called irrational.

Task

Let t be an irrational number. Show that:

- 1 The numbers -t and 1/t are irrational.
- 2 If r is rational then r + t and r t are irrational.
- 3 If r is a non-zero rational then rt and r/t are irrational.

Theorem (Denseness of Irrational Numbers)

Let $x, y \in \mathbb{R}$ with x < y. Then there is an irrational number t such that x < t < y.

By the denseness of \mathbb{Q} , we have $r \in \mathbb{Q}$ such $\sqrt{2}x < r < \sqrt{2}y$. We can arrange for r to be non-zero. Then $t = r/\sqrt{2}$ is an irrational number such that x < t < y.

Let A be a non-empty subset of \mathbb{R} . $U \in \mathbb{R}$ is called the **least upper bound** (LUB) or **supremum** (sup) of A if

- \bigcirc *U* is an upper bound of *A*, and
- 2 U is the least among all the upper bounds of A.

Let A be a non-empty subset of \mathbb{R} . $U \in \mathbb{R}$ is called the **least upper bound** (LUB) or **supremum** (sup) of A if

- \bigcirc *U* is an upper bound of *A*, and
- ② *U* is the least among all the upper bounds of *A*.

Example 1: The LUB of (0,1] is 1.

Let A be a non-empty subset of \mathbb{R} . $U \in \mathbb{R}$ is called the **least upper bound** (LUB) or **supremum** (sup) of A if

- \bigcirc *U* is an upper bound of *A*, and
- ② U is the least among all the upper bounds of A.

Example 1: The LUB of (0,1] is 1.

If A has a maximum element M then M is also the LUB of A.

Let A be a non-empty subset of \mathbb{R} . $U \in \mathbb{R}$ is called the **least upper bound** (LUB) or **supremum** (sup) of A if

- \bigcirc *U* is an upper bound of *A*, and
- ② U is the least among all the upper bounds of A.

Example 1: The LUB of (0,1] is 1.

If A has a maximum element M then M is also the LUB of A.

Example 2: The LUB of (0,1) is 1.

Let A be a non-empty subset of \mathbb{R} . $U \in \mathbb{R}$ is called the **least** upper bound (LUB) or supremum (sup) of A if

- \bigcirc *U* is an upper bound of *A*, and
- ② *U* is the least among all the upper bounds of *A*.

Example 1: The LUB of (0,1] is 1.

If A has a maximum element M then M is also the LUB of A.

Example 2: The LUB of (0,1) is 1.

The LUB of A need not belong to A. In particular, it may not be the maximum element of A.

Let A be a non-empty subset of \mathbb{R} . $U \in \mathbb{R}$ is called the **least upper bound** (LUB) or **supremum** (sup) of A if

- \bigcirc *U* is an upper bound of *A*, and
- 2 U is the least among all the upper bounds of A.

Example 1: The LUB of (0,1] is 1.

If A has a maximum element M then M is also the LUB of A.

Example 2: The LUB of (0,1) is 1.

The LUB of A need not belong to A. In particular, it may not be the maximum element of A.

Example 3: \mathbb{N} has no upper bounds, hence has no LUB.

Theorem (LUB Property)

Every non-empty subset of \mathbb{R} which is bounded above has a (unique) least upper bound.

Theorem (LUB Property)

Every non-empty subset of \mathbb{R} which is bounded above has a (unique) least upper bound.

Let $A \subseteq \mathbb{R}$ be non-empty and bounded above.

Theorem (LUB Property)

Every non-empty subset of \mathbb{R} which is bounded above has a (unique) least upper bound.

Let $A \subseteq \mathbb{R}$ be non-empty and bounded above. Define B to be the set of all upper bounds of A.

Theorem (LUB Property)

Every non-empty subset of \mathbb{R} which is bounded above has a (unique) least upper bound.

Let $A \subseteq \mathbb{R}$ be non-empty and bounded above.

Define B to be the set of all upper bounds of A.

The Completeness Axiom then gives U such that $a \leq U \leq b$ for every $a \in A$, $b \in B$.

Theorem (LUB Property)

Every non-empty subset of \mathbb{R} which is bounded above has a (unique) least upper bound.

Let $A \subseteq \mathbb{R}$ be non-empty and bounded above.

Define B to be the set of all upper bounds of A.

The Completeness Axiom then gives U such that $a \leq U \leq b$ for every $a \in A$, $b \in B$.

The condition $a \leq U$ for every $a \in A$ makes U an upper bound of A.

Theorem (LUB Property)

Every non-empty subset of \mathbb{R} which is bounded above has a (unique) least upper bound.

Let $A \subseteq \mathbb{R}$ be non-empty and bounded above.

Define B to be the set of all upper bounds of A.

The Completeness Axiom then gives U such that $a \leq U \leq b$ for every $a \in A$, $b \in B$.

The condition $a \leq U$ for every $a \in A$ makes U an upper bound of A.

The condition $U \le b$ for every $b \in B$ makes U the least among all the upper bounds of A.

Theorem

Let $A, B \subseteq \mathbb{R}$ be non-empty and bounded above. Then

$$\sup(A \cup B) = \max\{\sup(A), \sup(B)\}.$$

Theorem

Let $A, B \subseteq \mathbb{R}$ be non-empty and bounded above. Then

$$\sup(A \cup B) = \max\{\sup(A), \sup(B)\}.$$

Clearly $\alpha = \max\{\sup(A), \sup(B)\}\$ is an upper bound of $A \cup B$.

Theorem

Let $A, B \subseteq \mathbb{R}$ be non-empty and bounded above. Then

$$\sup(A \cup B) = \max\{\sup(A), \sup(B)\}.$$

Clearly $\alpha = \max\{\sup(A), \sup(B)\}$ is an upper bound of $A \cup B$. We'll show that for any $\epsilon > 0$, $\alpha - \epsilon$ is not an upper bound of $A \cup B$.

Theorem

Let $A, B \subseteq \mathbb{R}$ be non-empty and bounded above. Then

$$\sup(A \cup B) = \max\{\sup(A), \sup(B)\}.$$

Clearly $\alpha = \max\{\sup(A), \sup(B)\}\$ is an upper bound of $A \cup B$.

We'll show that for any $\epsilon > 0$, $\alpha - \epsilon$ is not an upper bound of $A \cup B$.

We may assume that $\alpha = \sup(A)$.

Theorem

Let $A, B \subseteq \mathbb{R}$ be non-empty and bounded above. Then

$$\sup(A \cup B) = \max\{\sup(A), \sup(B)\}.$$

Clearly $\alpha = \max\{\sup(A), \sup(B)\}\$ is an upper bound of $A \cup B$.

We'll show that for any $\epsilon > 0$, $\alpha - \epsilon$ is not an upper bound of $A \cup B$.

We may assume that $\alpha = \sup(A)$.

There is $a \in A$ such that $a > \sup(A) - \epsilon = \alpha - \epsilon$. But $a \in A \cup B$.

Theorem

Let $A, B \subseteq \mathbb{R}$ be non-empty and bounded above. Then

$$\sup(A \cup B) = \max\{\sup(A), \sup(B)\}.$$

Clearly $\alpha = \max\{\sup(A), \sup(B)\}\$ is an upper bound of $A \cup B$.

We'll show that for any $\epsilon > 0$, $\alpha - \epsilon$ is not an upper bound of $A \cup B$.

We may assume that $\alpha = \sup(A)$.

There is $a \in A$ such that $a > \sup(A) - \epsilon = \alpha - \epsilon$. But $a \in A \cup B$.

Task

Let $A, B \subseteq \mathbb{R}$ be non-empty and bounded above. Define $A + B = \{ a + b \mid a \in A, b \in B \}$. Show that

$$\sup(A+B)=\sup(A)+\sup(B).$$

Greatest Lower Bound

Let A be a non-empty subset of \mathbb{R} . $L \in \mathbb{R}$ is called the **greatest** lower bound (GLB) or **infimum** (inf) of A if

- \bullet L is a lower bound of A, and
- $oldsymbol{2}$ L is the greatest among all the lower bounds of A.

Greatest Lower Bound

Let A be a non-empty subset of \mathbb{R} . $L \in \mathbb{R}$ is called the **greatest** lower bound (GLB) or **infimum** (inf) of A if

- 1 L is a lower bound of A, and
- $oldsymbol{2}$ L is the greatest among all the lower bounds of A.

Theorem (GLB Property)

Every non-empty subset of \mathbb{R} which is bounded below has a (unique) greatest lower bound.

Proof is similar to the LUB Property.

Greatest Lower Bound

Let A be a non-empty subset of \mathbb{R} . $L \in \mathbb{R}$ is called the **greatest** lower bound (GLB) or **infimum** (inf) of A if

- \bigcirc L is a lower bound of A, and
- 2 L is the greatest among all the lower bounds of A.

Theorem (GLB Property)

Every non-empty subset of \mathbb{R} which is bounded below has a (unique) greatest lower bound.

Proof is similar to the LUB Property.

Task

Let A be a non-empty subset of $\mathbb R$ which is bounded above. Define $-A = \{ x \in \mathbb R \mid -x \in A \}$. Show that

$$\inf(-A) = -\sup(A).$$

