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Exercises on Ch.11 Direction of phase boundaries 
11.4 Direction of phase boundaries. Exercises 1 and 2 

11.5 Congruent melting points. Exercises 1, 2, 3 and 4 

11.7 Slope of phase boundaries in isothermal sections. Exercise 1 

 

11.4 Direction of phase boundaries 

Exercise 11.4.1 

The direction of an α/β phase field in a T,P diagram for a pure element is given by the 
Clapeyron equation, Eq. 8.17. Derive an expression for the direction of a corresponding 
phase boundary in an H,S diagram. 

Hint 

When the axes are not both potentials, the two phase boundaries α/β and β/α will be 
separated. One may consider either one. Let us take α. The final expression then contains 
properties of the α phase. Let us express them in terms of Gα and its derivatives 
etc. It may then be convenient to start by considering H

αα
PT GG ,  

α and Sα as functions of T and P. 
However, T and P are not independent because we want to follow the α + β two-phase 
equilibrium. Therefore, we know from the Clapeyron equation that 

. We may thus evaluate (dH)/()( βαβα
mmmm SSVVdPdT −−⋅= α/dP)α + β and (dSα/dP)α + β and 

take their ratio and insert the expression for dT/dP. 

Solution 

;)/(; αααααααααα
TTTTTTPT TGTGGGTHTGGTSGH −=−−=∂∂−=+=  

 
. We also get 

. Finally, by dividing the 
two expressions, we get . By inserting the 
value for dT/dP along the α + β equilibrium we find 
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Exercise 11.4.2 

A published Ti–Mo phase diagram shows the liquidus as a dashed line, indicating 
insufficient experimental information. Try to predict its position from the solidus by 
evaluating the width of the two-phase field. 

 

Hint 

Consider the centre of the system. Lacking detailed information, we may assume that the 
heat of solution is equal to the average of the heat of solidification of the elements, − 
15.45 and − 32.54 kJ/mol. Since the temperature is so high, it may be justified to neglect 
the contribution from the excess Gibbs energy in g22 which is thus approximated by 
RT/x1x2. 

Solution 

19.0)2150(43145.8/1200)24000()//()/( 2
21222 −=⋅⋅⋅−=Δ−=− TxxRTdxdTHxx coexm

L ββ

 It seems that the authors have made the same calculation. 

11.5 Congruent melting points 

Exercise 11.5.1 

The following diagram for the Zr–Th system has been proposed. The liquidus was not 
known experimentally and has been drawn tentatively with a thin line. Criticize it. 

 

Hint 

The line has not been carefully drawn at the melting minimum. 
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Solution 

Both the solidus and the liquidus must be horizontal at the point of minimum according 
to Konovalov's rule. It is not very probable that g22 in a liquid would be very large, 
especially if g22 in the solid is not, and the present diagram does not indicate that it is. 

Exercise 11.5.2 

The liquidus in the Fe–S system becomes almost horizontal at 20 atom.% S. From the 
previous exercise one could perhaps expect to see a miscibility gap in the liquid phase 
just above the most horizontal point and, indeed, it was proposed long ago. However, it 
has not been observed experimentally. Try to find an explanation. 

 

Hint 

It is more common that a solution grows more ideal at higher temperatures. If there is a 
tendency to form a miscibility gap it is normally expected to grow stronger at lower 
temperatures. 

Solution 

Lg22  is close to zero on the liquidus and may go through zero below the liquidus. It seems 
most probable that a miscibility gap would be seen below the liquidus if solidification 
could be prevented in some way, i.e. there would be a metastable miscibility gap in the 
supercooled liquid phase. 

Exercise 11.5.3 

Use Richard's rule to estimate the slope of the liquidus from the melting point of A in a 
binary A–B system where the solubility of B in solid A is very low. 

Hint 

Richard's rule says that the heat of melting of a metal is approximately RTm.p.. 

Solution 
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Exercise 11.5.4 

A pure element has a sharp melting temperature at a given pressure. The solid and liquid 
phases can be in equilibrium with each other at a different temperature if a second 
element is added and also if the pressure is changed. Consider how much should be added 
to the liquid phase if the temperature be changed by ΔT and the pressure by ΔP. Do this 
by deriving an expression for the value of . α

22 xx L −

Hint 

Go back to the general equation for the direction of phase boundaries and apply it to a 
binary system. 

Solution 

This time we keep the dP term, 
 

. For small :  
. We can easily integrate if ΔT and ΔP are small and  is a 

constant. By integrating from 0 to  we get  
. We may thus evaluate  if  is small or if  is known. 
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11.7 Slope of phase boundaries in isothermal sections 

Exercise 11.7.1 

The diagram shows the solubility of V2O3 in liquid Fe at 1873 K. It is evident that the 
solubility of O goes through a minimum. Apply the regular solution model and show the 
requirement for the minimum to occur. What parameter or combination of parameters can 
be evaluated from the position of the minimum? 

Hint 

Apply the regular solution model in order to express the derivatives of Gm. Insert the 
expressions in the final equation obtained without any approximations. Parameters will 
occur in two places. Neglect one combination of parameters at a time and examine if the 
result is realistic. 

Solution 

For a very dilute solution we expect the solubility curve for V2O3 to give a solubility 
product (xv)2(x0)3 = costant which yields 2log(mass%V) + 3log(mass%O) = constant. 
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That line can be fitted to the data points at low V contents but not at higher. There we 
must take into account the deviation from ideal behavior and shall try the regular solution 
model and identify the components as Fe = 1; V = 2; and O = 3. The regular solution 
model gives Gm = ∑xi(°Gi + RTlnxi) + x1x2L12 + x2x3L23 + x3x1L31. When evaluating g22 
and g23 we must remember that x1 is a dependent variable. g2 = °G2 – °G1 + RT(x2/x2 + 
lnx2 – x1/x1 – lnx1)+ (x1 – x2)L12 + x3L23 – x3L31 ; g22 =RT(1/x2 + 1/x1) –2L12; g22/RT – 1/x1 –
1/x2 = –2L12/RT; g23/RT(1/x1) – L12 + L23 – L31; g23/RT – 1/x1 = (L23 – L12 – L31)/RT. With 
β = V2O3 we have . The diagram shows that the minimum is at 
log(mass%V) = 0.5 which gives mass%V = 3.2; . We get 0.035 = 0.4/[0.4 – 
0.035)(2L

0;6.0;4.0 132 === βββ xxx
035.02 =αx

12/RT) + (0.6 – 0)( –L23 + L12 + L31) + 0] from the equation for the minimum. 
There are two simple alternatives. 

Alt.1: L23 – L12– L31 can be neglected then 2L12/RT = 31. This would give a very large 
miscibility gap in the Fe–V system which has not been observed. Alt.2: If 2L12/RT is 
much less than 31, then its term can be neglected and we get 19)( 311223 −=−− RTLLL  
(or  if we use the last equation). This is regarded as a reasonable value 
because O and V have a strong affinity to each other. 
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