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Exercise: concepts from chapter 8  
 

Reading: Fundamentals of Structural Geology, Ch 8 

 

1) The following exercises explore elementary concepts associated with a linear elastic 

material that is isotropic and homogeneous with respect to elastic properties. 

 

a) It is commonly understood that longitudinal deformation, say shortening, implies 

compressive normal stress acting in the direction of this strain. Use the three 

dimensional form of Hooke's Law for an isotropic body with Young’s modulus, 

E, and Poisson’s ratio, , as the two elastic moduli to demonstrate that this could 

be a misconception under some states of stress. As an illustrative example 

consider the state of uniaxial tension, 0,  0xx yy zz     . Describe how your 

result depends upon the elastic moduli and define the full range of these quantities 

that you are considering. 

 

b) Now consider a three-dimensional state of stress that could develop in Earth’s 

crust. The stresses are given by Anderson’s standard state (an isotropic 

compression). We ignore strains that are associated with the development of this 

stress state. Suppose the rock body is subject to a tectonic stress state 

0,  ,  and 0xx yy zz        . In other words a tectonic tension is applied in 

the x-direction and a tension of magnitude  is applied in the y- and z-direction. 

Use Hooke’s Law for an isotropic body with Young’s modulus, E, and Poisson’s 

ratio, , as the two elastic moduli to determine those conditions under which the 

tectonic strains in y and z are a shortening even though the tectonic stress is 

tensile in those directions. 

 

c) It is commonly understood that shearing deformation implies shear stresses acting 

on planes associated with this strain. Use the three dimensional form of Hooke's 

Law for an isotropic body with Young’s modulus and Poisson’s ratio as the two 

elastic moduli to demonstrate that this is an accurate conception. Describe how 

your result depends upon the elastic moduli and define the full range of these 

quantities that you are considering. 

 

d) Many types of rubber have values of Poisson's ratio approaching the upper limit of 

1/2, whereas many varieties of cork have values approaching the lower limit of 0. 

Both of these materials are used as stoppers for bottles containing liquids. What 

mechanical reason can you offer for the predominant usage of cork instead of 

rubber for wine bottle stoppers? Assume that the stopper would be a solid 

cylindrical shape whether rubber or cork. On the other hand, rubber is the choice 

for most stoppers in a chemistry lab, presumably because of its resistance to 

chemical reaction. Can you suggest why most of these rubber stoppers are tapered 

and not cylindrical in shape? 
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e) Suppose a rock mass has a Young's modulus, E = 25 GPa, and Poisson's ratio,  = 

0.15. Determine values for Lamé's constants, G and , and the bulk modulus, K, 

and write down the equations you have used. Suppose you know values for the 

bulk modulus, K, and the shear modulus, G. Using algebra, derive equations for 

Young's modulus, E, and Poisson's ratio, . 

 

2) Consider the block of rock shown in Figure 1 to be linear elastic and isotropic and 

homogeneous with respect to elastic properties.  
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Figure 1. Idealized block of rock that is a linear elastic material. a) Initial unloaded state. 

b) Current loaded state. 

  

Suppose the elastic properties of this block are Young's modulus, E = 50 GPa, and 

Poisson's ratio,  = 0.20. Also suppose the side lengths B = 1000 m, H = 150 m, and W = 

125 m. 

 

a) Compute the three infinitesimal longitudinal strain components (xx, yy, zz) in the 

coordinate directions within this block for the following state of stress: 

 
50 MPa,  35 MPa,  30 MPa

0

xx yy zz

xy yz zx

  

  

     

  
 (1) 

Note that the normal components are principal stresses and all are compressive. 

Assess the magnitude of the strains are indicate if they are within the range for 

typical elastic behavior. 

 

b) Recall the general kinematic equations relating the infinitesimal strain components 

to the displacement components (5.118): 
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 (2) 

Compute the displacement components (ux, uy, uz) at the point x = 1000 m, y = 

150 m, and z = 125 m for the stress state given in (1). Assume the rock mass is 

fixed (zero displacement) at the origin of the coordinate system (Figure 1). 
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c) The stretch, S, the extension (also called the infinitesimal strain), , and the strain 

(also called the Lagrangian strain), E, are related to the initial length, B, and final 

length, b, of the block as follows: 
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 (3) 

Calculate the final length of the block, b, and use this to calculate all three 

measures of deformation in (3). Compare the extension and the strain to 

determine the error introduced when using the infinitesimal strain approximation. 

Assess whether you were justified in using the infinitesimal theory in parts a) and 

b) of this exercise. 

 

d) Show algebraically how the extension and strain are calculated as functions of the 

stretch. Use MATLAB to plot both the extension and the strain versus the stretch 

over the range 0 3S  . Comment on their graphical relationship to one another. 

 

e) Determine the approximate range of S within which the error introduced by 

neglecting the higher order term in equation (3) for E is less than 10%. Use 

MATLAB to plot the error as a percentage versus the stretch. 

 

3) The quasi-static linear elastic solution for the edge dislocation originally found 

application to problems of plasticity at the scale of defects in the crystal lattice. As 

Weertman and Weertman (1964) point out, the dislocation solution has found application 

as a modeling tool for many different geological structures (Figure 2). 

 

 
Figure 2. Pairs of edge dislocations used to model geological structures at length scales 

ranging from centimeters to kilometers. 

 

a) Describe in words and with a carefully labeled sketch what is meant by the 

following attributes of the edge dislocation: extra half plane of atoms, Burgers 

vector, dislocation line, tangent vector, glide plane, dislocation core. 

 

b) Consider equations (8.36) and (8.37) which give the displacement components that 

solve Navier’s equations of motion for the edge dislocation. Put these equations in 

dimensionless form and plot each term as a function of the polar angle, , for a 

circuit around the dislocation, keeping the radial coordinate, r, constant. Justify 

your choice of r based upon the size of the dislocation core. Identify which 
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term(s) contribute to the displacement discontinuity across the glide plane and 

show how this is related to the magnitude, b, of Burgers vector.  

 

c) Plot a contour map of each displacement component, ux and uy, around the edge 

dislocation centered in a region that is 200b on a side. Choose elastic moduli such 

that 43 10  MPaG    . Compare and contrast your contour plots to those of 

Hytch et al. (2003) from the frontispiece for chapter 8. 

 

d) Plot a contour map of the normal stress component xx using the same elastic 

moduli and region as in part c). Describe the distribution of this stress component, 

pointing out any symmetry. Provide a physical explanation why this normal stress 

is tensile (positive) for y > 0 and compressive (negative) for y < 0. 

 

e) Plot a contour map of the shear stress component xy using the same elastic moduli 

and region as in part c). Describe the distribution of this stress component, 

pointing out any symmetry. Provide a physical explanation why the shear stress is 

positive for x < 0 and negative for x > 0 along the x-axis. Indicate how this stress 

distribution promotes further dislocation glide. 

 

f) Use you results from parts d) and e) to explain why the arrangement of dislocation 

pairs in Figure 2c represents a right lateral strike-slip fault. 

 

 

4) Consider two-dimensional, plane strain conditions defined using the following 

constraints on the displacement components: 

    , ,  , ,  0x x y y zu u x y u u x y u    (4) 

In other words the two displacement components in the (x, y)-plane are only functions of 

x and y, and the z-component of displacement is zero. In this context explore the 

equations relating stress, strain, and displacement components, as well as the governing 

equations for the elastic boundary value problem. 

 

a) Start with the three-dimensional form of Hooke’s Law for the isotropic elastic 

material using Lamé’s constants with stress components as dependent variables: 

 2ij ij kk ijG      (5) 

Using the constraints imposed by (4) and the kinematic equations (2), expand (5) 

for each of the six Cartesian stress components as functions of the strain 

components. 

 

b) Start with the three-dimensional form of Hooke’s Law for the isotropic elastic 

material using Young’s modulus, E, and Poisson’s ratio, , as the elastic constants 

with infinitesimal strain components as dependent variables: 
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Using the constraints imposed by (4), and the results from part a) of this exercise, 

expand (6) for the six Cartesian strain components as functions of the stress 

components. 

 

c) Explain how St. Venant’s six equations of compatibility (7.143) – (7.148) for the 

infinitesimal strain components reduce to one equation relating the in-plane strain 

components under conditions of plane strain. Transform this compatibility 

equation so that it is written in terms of the stress components. 

 

d) Consider the following Airy stress function: 

   31
6

, Cx y y   (7) 

Derive equations for the three in-plane stress components ignoring body forces. 

Take the region of interest as the rectangle drawn in Figure 3. Sketch and label the 

traction boundary conditions acting on this region.  

 
Figure 3. Rectangular region of interest for the traction boundary value problem 

with Airy stress function given in (7). 

 

e)  Derive equations for the in-plane strain components associated with the stress 

distribution given in part d). Use the kinematic equations to derive the 

displacement components from the strains and cast these equations into 

dimensionless form. Plot and describe each normalized displacement component 

and the normalized displacement vector field for the region shown in Figure 3 

where L = 2H. Plot the deformed shape of the originally rectangular region. 

Explain why this solution is called “pure bending”. 

 

5) Cylindrical coordinates are the natural system for a number of important problems in 

structural geology. With zero displacement parallel to the cylindrical z-axis these 

constitute another important set of two-dimensional plane strain problems. 

 

a) The equilibrium equations for plane cylindrical problems are (8.73) and (8.74), and 

the equations relating the in-plane stress components to the Airy stress functions 

are (8.75) – (8.77). Show by substitution, while ignoring the body force terms, 

that these stress components satisfy the equilibrium conditions. 

 

b) Consider the Airy stress function for the stress perturbation due to a cylindrical 

valley that is 100m deep cut from an elastic half-space (Figure 8.21) with mass 

density, , and uniform gravitational acceleration, g*: 

   21
2

, * cosr g R r      (8) 
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Derive the equation for the in-plane radial stress component, rr, and write a 

MATLAB m-script to plot a contour map of the distribution. Describe the 

distribution and explain why this stress component is tensile everywhere. 
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Figure 4. Radial component of normal stress, rr, for the perturbation due to the incision 

of a cylindrical valley in an elastic half-space under gravitational loading. Valley is 1 km 

deep and the unit weight of the rock is g* = 25 MPa/km. 

 

c) Add the stress state due to weight of the material in absence of the valley to the 

result from part b) and plot contour maps of the radial and circumferential stress 

components, rr and . Indicate where these components match the traction 

boundary conditions. Explain why the contours of the circumferential component 

are horizontal lines. 

 

d) Consider the total state of stress due to the weight of the half-space and the 

perturbation of the valley and plot the stress trajectories. What simple relationship 

do the trajectories have to the cylindrical coordinate system? Why? 

 

6) Uniaxial compression test results are given for two granites and for a particular 

limestone measured in two different parts of the same specimen. For both figures the 

axial stress, a, is plotted versus the axial extension, ea. Note that both the applied stress 

and the resulting extension are negative. That is, the stress is compressive and the 

extension is a shortening. 

 

a) Use the stress-extension graph for Georgia granite to estimate the apparent Young's 

modulus. Compare your value with the range of values given in Table 8.2 for 

granites and describe the modulus of Georgia granite relative to those. Would you 
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hear a “ring” or a “thud” if Georgia granite were struck with a geologist’s 

hammer?  

 

b) Stress-extension data from a uniaxial compression test on Colorado granite is 

found in the file colorado.txt with axial stress (MPa) in the first column and axial 

extension in the second column. Plot these data with stress (ordinate) as a function 

of extension (abscissa). Use a forward finite difference method to calculate the 

tangent elastic modulus for each value of the axial extension, omitting that at the 

origin. Plot the tangent elastic modulus versus axial extension. Describe the 

apparent non-linear behavior of this rock and provide possible explanations?  
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Figure 5. Uniaxial compression test results (Obert & Duvall, 1967). a) Colorado granite 

and Georgia granite. b) Two different areas on the same limestone sample. 

 

c) Data in the files limestone.txt and lmst_cracks.txt were taken using samples from 

the same limestone formation. The axial stress is in the first column and the axial 

extension is in the second column of the data files. Construct a plot of axial stress 

versus axial extension. Describe three differences between mechanical responses 

of the two limestones. Determine how the tangent modulus differs for each test 
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and plot the tangent modulus versus the axial extension. Suggest what micro-

mechanical mechanisms might explain the differences in the tangent moduli. 

 

7) In this exercise the two-dimensional solution for the elastic boundary-value problem of 

a cylindrical inclusion (Figure 6) is used to study possible states of stress both within and 

near material heterogeneities in rock that could serve to concentrate or diminish a 

remotely applied stress. The radius of the inclusion is R, the only length dimension in this 

problem. The four elastic moduli are the shear modulus, G, and Poisson's ratio, , for the 

inclusion (subscript i) and the surrounding material (subscript s). The remote boundary 

conditions are defined in terms of the principal stress components, 1 2 and r r  , acting in 

the x- and y-coordinate directions respectively. 
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Figure 6. The plane strain elastic boundary value problem for a cylindrical inclusion 

loaded by remote biaxial principal stresses. 

 

a) Investigate the stress state within the inclusion as a function of the shear moduli 

inside and outside the inclusion. Apply a uniaxial remote stress of unit magnitude 

in the x-direction. Set Poisson's ratio inside and outside the inclusion to 0.25 and 

vary the shear moduli to consider the range from an open cavity to a rigid 

inclusion. Plot your results and describe how the stress state varies with the ratio 

of shear moduli. What conclusions can you draw from this study about stress 

concentration and stress diminution within the inclusion? 

 

b) Study the variation of stress within the inclusion for the same conditions as in part 

a) but set Poisson’s ratio inside and outside the inclusion to 0.5 (incompressible) 

and then to 0 (perfectly compressible). Plot your results as a function of the shear 

moduli ratio and describe how the stress state varies for the two different values 

of Poisson’s ratio. What conclusions can you draw from this study about stress 

concentration and diminution? 
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c) The boundary conditions at the contact of the inclusion with the surroundings 

specify matching displacements, as though the two materials were tightly bonded 

together. What does this imply about the tractions acting on the surfaces of the 

two bodies in contact? What can you deduce about the stress states adjacent to 

these surfaces? Illustrate your answer with a sketch of the boundary and small 

volume elements with the appropriate cylindrical components of stress. If there is 

a discontinuity in any of the components, how does this vary with position on the 

interface? Illustrate your answers with a plot of the three cylindrical stress 

components just inside and just outside of the contact as a function of position, , 

using the following parameters: 

 1 210 GPa, 30 GPa, 0.1, =0.3, 1, 0r r

i s i sG G          (9) 

Use this plot to demonstrate that your code returns the correct boundary 

conditions at the interface. Explain why the apparent variation of stress inside the 

inclusion actually represents a homogeneous state of stress? 

 

d) Investigate the spatial variation of the stress components inside and just outside the 

inclusion, r = R+, given the parameters in (9) except vary the inclusion shear 

modulus to consider three cases: an open cavity; a homogeneous body; and a 

much stiffer inclusion. Keep track of the position, orientation, and magnitude of 

the greatest tensile stress and use this to describe where and with what orientation 

opening cracks would be predicted to form if this tension equals the tensile 

strength. Now change the applied stress to a unit compression acting in the x-

direction and address the same questions about opening cracks. 

 

e) Investigate the radius of influence of the inclusion on the stress field in the 

surrounding material. Because the remotely applied stresses are referred to the 

Cartesian coordinate axes use the Cartesian stress components. Consider the 

spatial variation of stress components along radial lines extending from the edge 

of the inclusion, r/R = 1, to a distance of six times the inclusion radius. Begin by 

considering the case of an open cavity under uniaxial stress of unit magnitude in 

the x-direction and use 10% of this stress as the threshold for identifying a 

significant perturbation. Determine whether the radius of influence changes for 

different stress components and for different orientations of the radial line. 

Determine whether the radius of influence is significantly different for the very 

stiff inclusion relative to the surroundings. 

 

8) Use the two-dimensional solution for the elastic boundary-value problem of a 

cylindrical hole in an orthotropic material to study possible states of stress near holes in 

anisotropic rock that would serve to concentrate stress. For plane strain conditions there 

are two orthogonal axes of elastic symmetry in the (x, y)-plane. E1 and 12 are Young’s 

modulus and Poisson’s ratio in the x-coordinate direction and E2 and 21 are the 

respective moduli in the y-coordinate direction. The self-consistent shear modulus in the 

(x, y)-plane is G. 
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a) Consider the first oil shale listed in Table 8.6 to be orthotropic and take the x-axis 

parallel to bedding and the y-axis perpendicular to bedding. Suppose the other two 

independent moduli are: 

 126.0 GPa, 0.2G    (10) 

Calculate the value of the second Poisson’s ratio, 21, and write down all five 

elastic moduli. 
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Figure 7. The plane strain elastic boundary value problem for a cylindrical hole of radius 

R in an orthotropic material loaded by a remote uniaxial stress. 

 

b) Write down the llinear strain-stress equations using compliances and using the 

more familiar laboratory constants (Young’s modulus and Poisson’s ratio) for the 

orthotropic material. Use these equations to derive equations for the constants, C1 

and C2, employed in solutions to the orthotropic elastic boundary value problem: 

 
 66 1211

1 2

22 22

2
C ,  C

s ss

s s


   (11) 

 

c) The elastic moduli for the oil shale from part a) must be related to elastic 

compliances that are real numbers. Test these values to determine if this condition 

holds starting with the following equations for the constants 1 and 2 which 

appear in the governing compatibility equation for orthotropic elastic boundary 

value problems: 

 1 1 2 2 1 2,  C C      (12) 

Place an upper bound on the shear modulus assuming the measured values of the 

two Young’s moduli and the given value for the Poisson’s ratio are correct. 

 

d) Use the elastic moduli found in part a) and calculate the circumferential stress 

around the circular hole in the orthotropic material for a unit remote normal stress 

and plot this distribution. Describe the concentration and diminution of stress 
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around the hole. Compare your result to that for an isotropic rock using the Kirsh 

solution and plot this distribution on the same graph. Note that the Kirsh solution 

is independent of the elastic moduli. Evaluate the errors introduced in calculations 

of the stress state if you were to assume the oil shale is isotropic. 


