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Appendix SA3.1 Basic Relationships in the Multiregional Input–Output Model  
 

In standard input–output fashion, total demand for commodity i in region s is given by 
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The total supply of commodity i in region s is the total that is shipped in from other regions, 
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plus the amount that is supplied from within the region, ss
iz . This is just s

iT , the sum of the 
elements in column s in Table 3.8, as defined in (3.18). Since shipments (supplies) occur only to 
satisfy needs (demands), we have, for each commodity i 
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Total production of i in region r is equivalent to the total amount of i shipped from r, 
including that kept within the region 
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From the definition of the interregional proportions in section 3.4.2, rs rs s
i i ic z T= , (A3.1.3) can be 

rewritten as 
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Putting s
iT  as defined in (A3.1.2), into (A3.1.4) 
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Using familiar matrix notation, let 
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The reader should be convinced that the entire set of n equations for outputs of goods in region r 
can be expressed as 
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There will be p such matrix equations, one for each region r (r = 1, ... , p). Again using 
matrix notation, as in section 3.4, we can construct 
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Then the p matrix equations in (A3.1.6) can be compactly expressed as 

( )= + = +x C Ax f CAx Cf  
from which 
 ( )− =I CA x Cf   (A3.1.7) 

and 
 1( )−= −x I CA Cf   (A3.1.8) 
 as in (3.22) and (3.23) in the text. 
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