Appendix SA3.1 Basic Relationships in the Multiregional Input—Output Model

In standard input—output fashion, total demand for commodity i in region s is given by

daxi+f; (A3.1.1)
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The total supply of commodity i in region s is the total that is shipped in from other regions,
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plus the amount that is supplied from within the region, z; . This is just 7., the sum of the

elements in column s in Table 3.8, as defined in (3.18). Since shipments (supplies) occur only to
satisfy needs (demands), we have, for each commodity i

=Y ax (A3.1.2)
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Total production of i in region 7 is equivalent to the total amount of i shipped from r,
including that kept within the region
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From the definition of the interregional proportions in section 3.4.2, ¢, =z'T;", (A3.1.3) can be
rewritten as
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Putting 7" as defined in (A3.1.2), into (A3.1.4)
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Using familiar matrix notation, let
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The reader should be convinced that the entire set of n equations for outputs of goods in region r
can be expressed as
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There will be p such matrix equations, one for each region r (r =1, ..., p). Again using

matrix notation, as in section 3.4, we can construct
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Then the p matrix equations in (A3.1.6) can be compactly expressed as

x =C(Ax+f)=CAx+Cf

from which
(I-CA)x=Cf (A3.1.7)

and
x=(I-CA)'Cf (A3.1.8)

as in (3.22) and (3.23) in the text.
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